
General Cut-Generating Procedures for the Stable Set Polytope1

Ricardo C. Corrêaa,∗, Diego Delle Donneb, Ivo Kochc, Javier Marencob

aUniversidade Federal Rural do Rio de Janeiro, Departamento de Ciência da Computação, Av. Governador
Roberto Silveira S/N, 26020-740 Nova Iguaçu - RJ, Brazil

bUniversidad Nacional de General Sarmiento, Instituto de Ciencias, J. M. Gutiérrez 1150, Malvinas Argentinas,
(1613) Buenos Aires, Argentina

cUniversidad Nacional de General Sarmiento, Instituto de Industria, J. M. Gutiérrez 1150, Malvinas Argentinas,
(1613) Buenos Aires, Argentina

Abstract

We propose general separation procedures for generating cuts for the stable set polytope, inspired
by a procedure by Rossi and Smriglio and applying a lifting method by Xavier and Campêlo.
In contrast to existing cut-generating procedures, ours generate both rank and non-rank valid
inequalities, hence they are of a more general nature than existing methods. This is accomplished
by iteratively solving a lifting problem, which consists of a maximum weighted stable set problem
on a smaller graph. Computational experience on DIMACS benchmark instances shows that the
proposed approach may be a useful tool for generating cuts for the stable set polytope.

1. Introduction

Let G = (V,E) be an undirected graph with node set V and edge set E. A stable set in G is
a subset of pairwise non-adjacent vertices of G. Given a graph G, the maximum stable set (MSS)
problem asks for a stable set S in G of maximum cardinality. The stability number of G is this
maximum cardinality and is denoted by α(G). The MSS problem is computationally hard to solve
in practice, being in NP-Hard unless the graph G has some special structure. For an arbitrary input
graph G, a number of exact methods have been developed to solve it through several combinatorial
or mathematical programming-based techniques. For a survey of these theoretical and practical
aspects of the MSS problem, see [3] and references therein.

Enumerative combinatorial algorithms have shown to be efficient to solve the MSS problem
exactly for moderately sized graphs (for an overview, see [22]). Typically, such algorithms perform
a search in a tree with the employment of simple and fast, but still effective, bounding procedures
for pruning purposes. In this vein, the most successful approach involves the use of approximate

1This work has been partially supported by the Stic/AmSud joint program by CAPES (Brazil), CNRS and
MAE (France), CONICYT (Chile) and MINCYT (Argentina) –project 13STIC-05– and the Pronem program by
FUNCAP/CNPq (Brazil) –project ParGO.
∗This author was with the ParGO research team, Universidade Federal do Ceará, Brazil, when most part of this

work has been done.
Email addresses: correa@ufrrj.br (Ricardo C. Corrêa), ddelledo@ungs.edu.ar (Diego Delle Donne),

ikoch@ungs.edu.ar (Ivo Koch), jmarenco@ungs.edu.ar (Javier Marenco)

1

ar
X

iv
:1

51
2.

08
75

7v
2

 [
cs

.D
M

]
 2

8
D

ec
 2

01
7

colorings of selected subgraphs of Ḡ (the complement of G). This bound is based on the following
remark: if Ḡ admits an `-coloring, then α(G) ≤ `. This is a relatively weak bound and, consequently,
the procedure to compute it is generally applied at numerous nodes of the search tree. However, it
can be computed quickly by means of a greedy coloring heuristic implemented with bit parallelism
operations [7, 18, 20].

An alternative to combinatorial algorithms is the use of sophisticated mathematical program-
ming techniques to handle the combinatorial properties of the polytope associated with the formu-
lation α(G) = max{

∑
v∈V xv | xu + xv ≤ 1, uv ∈ E, xv ∈ {0, 1}, v ∈ V }. Although combinatorial

methods for the MSS problem from the literature outperform mathematical programming-based al-
gorithms devised so far, it is of great interest to continue the search for efficient polyhedral methods
for this problem. Despite its natural theoretical relevance, there are other motivations of algorith-
mic nature, namely: (a) the algorithms can be easily extended to the weighted version of the MSS
problem, (b) MSS constraints frequently appear as a sub-structure in many combinatorial optimiza-
tion problems, (c) in many situations, probing strategies gives MSS valid inequalities on conflicting
variables for general mixed integer programs (see, e.g., [1, 4]), and (d) real applications may need
specific versions of the MSS problem with additional constraints. In this context, procedures for
valid inequalities generation often turns out to be effective.

There are two main directions of research when polyhedral techniques, in particular procedures
for valid inequalities generation, are concerned. The first direction is usually referred to as the
lift-and-project method [6], which consists in three steps: first, a lifting operator is applied to the
initial formulation to obtain a lifted formulation in a higher dimensional space; second, the lifted
formulation is strengthened by means of additional valid inequalities; and third, a strengthened
relaxation of the initial formulation is finally obtained as a result of an appropriate projection of
the strengthened lifted formulation onto the original space. Several upper bounds for α(G) have
been stated in connection of this method, such as the ones based on semidefinite programming
(SDP, for short) relaxations described in [8, 13], which can be rather time-consuming to compute in
practice. More recently, a new relaxation was introduced in [10] which preserves some theoretical
properties of SDP relaxations in generating effective cuts but is computationally more tractable for
a range of synthetic instances.

The second direction of research is integer programming, which in turn have followed two main
approaches. The first approach consists in developing strong cuts coming from facet-inducing in-
equalities associated with special structures in the input graph (for instance, cliques, odd holes,
webs, among others) and searching for specialized separation techniques for these families of in-
equalities (an up to date list of references for this approach can be found in [16]). The second
approach relies on general cut-generating procedures which, starting from a fractional solution,
search for a violated inequality with no prespecified structure. Such procedures were either shown
to be effective in practice [16, 17] or to generate provably strong inequalities [23]. The main con-
tribution of this work are general procedures that are both effective and generate inequalities that
can be proved to be facet-inducing under quite general conditions.

We now discuss existing works following the second approach, i.e., procedures generating cuts
with no prespecified structure. Mannino and Sassano [14] introduced in 1996 the idea of edge
projections as a specialization of Lovász and Plummer’s clique projection operation [12]. Many
properties of edge projections are discussed in [14] and, based on these properties, a procedure
computing an upper bound for the MSS problem is developed. This bound is then incorporated
in a branch and bound scheme. Rossi and Smriglio take these ideas into an integer programming
environment in [17], where a separation procedure based on edge projection is proposed. Finally,

2

Pardalos et al. [16] extend the theory of edge projection by explaining the facetness properties of
the inequalities obtained by this procedure. The authors give a branch and cut algorithm that
uses edge projections as a separation tool, as well as several specific families of valid inequalities
such as the odd hole inequalities (with a polynomial-time exact separation algorithm), the clique
inequalities (with heuristic separation procedures), and mod-{2, 3, 5, 7} cuts.

Rossi and Smriglio propose in [17] to employ a sequence of edge projection operations to reduce
the original graph G and make it denser at the same time, allowing for a faster identification of
clique inequalities on the reduced graph G′. This procedure iteratively removes and projects edges
with certain properties, and heuristically finds violated rank inequalities (i.e., inequalities of the
form

∑
v∈A xv ≤ α(G[A]), where A ⊆ V and G[A] is the subgraph of G induced by A). A key

step for achieving this is to be able to establish how α(G) is affected by these edge projections, or,
in other words, how exactly α(G) relates to α(G′). We aim at generalizing Rossi and Smriglio’s
procedure by projecting cliques instead of edges, so we also need to show how α(G) changes as a
result of this operation. Our method allows thus to establish a more general relation between G
and the graph resulting from the clique projection.

In this article we propose the use of clique projections as a general method for cutting plane
generation for the MSS, along with new clique lifting operations that lead to stronger inequalities
than those obtained with the edge projection method. The proposed method is able to generate
both rank and weighted rank valid inequalities (to be defined below), by resorting to the general
lifting operation introduced in [23]. This approach allows to produce cuts of a quite general na-
ture, including cuts from the known families of valid inequalities for the MSS polytope. Based
upon the projection and lifting operations, we give a separation procedure that departs from the
usual template-based paradigm for generating cuts, and seeks to unify and generalize the separa-
tion procedures for the known cuts. In this sense, our main goal is to provide a more complete
understanding of the maximum stable set polytope, which may help also in the solution of other
combinatorial optimization problems. Experimental results are provided to validate the general
procedure we propose.

This work is organized as follows. In Section 2 we define the MSS polytope STAB(G), we define
the operation of clique projection and we explore some basic facts on this operation. Section 3
introduces the crucial concept of clique lifting, based on the results in [23]. In Sections 4 and 5
we introduce our cut-generating method, by applying the lifting method presented in [23]. Finally,
in Section 6 we present some computational experience on the DIMACS and randomly generated
instances, which show that the method is competitive. The paper is closed with some concluding
remarks in Section 7.

2. The Stable Set Polytope and the Clique Projection Operation

Let n := |V |, NG(v) be the neighborhood of v in graph G, and S(G) ⊆ {0, 1}n be the set of
all characteristic vectors of stable sets of G. We write simply N(v) and S, respectively, when G is
clear from context. For W ⊆ V , S(G[W]) stands for the characteristic vectors of stable sets of G
involving vertices in W only. The polytope of stable sets of G is denoted by

STAB(G) = conv{x | x ∈ S(G)}.

Note that the stability number of G is α(G) = max{
∑
v∈V xv | x ∈ STAB(G)}. If c ∈ Rn, then

the weighted stability number of G, according to c is α(G, c) = max{c>x | x ∈ STAB(G)}. The

3

general form of a facet-inducing inequality of STAB(G) is

c>x ≤ α(G[H], c), (1)

where c ∈ Rn, c ≥ 0, H = {v ∈ V | cv > 0}, and (G[H], c) is a so-called facet-subgraph of G [11].
Note that if c ∈ {0, 1}n then we have the rank inequality mentioned in the Introduction.

Our interest is to build inequalities of type (1) by means of the following operation.

Definition 1 (Clique Projection [12]). Let W ⊆ V , |W | ≥ 2, be a clique in G. The clique projection
of W gives the graph G |W = (V,E |W) in which E |W = E ∪ {uv 6∈ E |W ⊆ N(u) ∪N(v)}.

Figure 1 shows an example of this operation. The edges in (E | W)\E (i.e., the added edges
after the projection) are called false edges. These are the edges simulated by W in the sense stated
in the lemma below. For W ⊆ V , we define xW =

∑
v∈W xv.

2 6 7 8 5

3 4

1

(a) Graph G.

W

2 6 7 8 5

3 4

1

(b) Projected graph G |W .

Figure 1: Projected graph G |W (with 3 false edges) is obtained after projecting W = {1, 2, 3}.

Lemma 1. FW = {x ∈ STAB(G) | xW = 1} ⊆ STAB(G |W) ⊆ STAB(G).

Proof. For the first inclusion, we show that x ∈ (STAB(G)\STAB(G |W))∩S(G) implies x 6∈ FW .
For such an x, there is a false edge wz ∈ (E | W) \ E such that x{w} = x{z} = 1. By definition of
clique projection, W ⊆ N(w) ∪N(z). Hence, for every v ∈W , either v ∈ N(w) or v ∈ N(z) holds,
leading to xW = 0. The second inclusion stems directly from the definition of clique projection.

A clique projection of an edge uv is also referred to as edge projection. This term is employed
in [16, 17] with a slightly different meaning since, in those papers, the vertices in (N(u) ∩N(v)) ∪
{u, v} are removed when performing the projection. A fundamental property of edge projection is
the following.

Definition 2 ([17]). An edge uv ∈ E is projectable in G if there exists a maximum stable set S in
G such that S ∩ {u, v} 6= ∅.

Lemma 2 ([14]). If uv ∈ E is a projectable edge in G, then α(G) = α(G | {u, v}).

Proof. Since uv is projectable, we get α(G) ≤ α(G | {u, v}). On the other hand, α(G) ≥ α(G |
{u, v}) due to Lemma 1.

4

Results presented in [14, 17] yield that if N(u)−{v} is a clique, then uv is projectable in every
induced subgraph of G containing u and v. Indeed, in such a situation the projection of uv is
equivalent to the projection of the clique {u, v} ∪ (N(u) ∩N(v)). Thus, define the subgraph G̃ as
the graph obtained from G by removing the edges connecting u to all the vertices in N(u) \W ,
where W ⊆ N(u)− {v} induces a clique in G. Lemma 2 can then be used to write

α(G̃ | {u, v}[H]) = α(G̃[H]) ≥ α(G[H]),

for every H ⊆ V such that {u, v} ⊆ H. A direct consequence is that the rank inequality xH ≤
α(G̃ | {u, v}[H]), valid for G̃ | {u, v}, is also valid for G.

3. The Clique Lifting Operation

In this section we lay a lifting operation that can be applied to valid inequalities of a projected
graph to obtain valid inequalities for STAB(G). Given an inequality

c>x =
∑
v∈H

cvxv ≤ β (2)

with H ⊆ V , β ∈ R, and c ∈ Rn such that cv 6= 0 if and only if v ∈ H, we say that H is the support
of (2). We are now in position of stating the lifting lemma on which our cut-generating procedure
is based. For ease of presentation, we will restrict ourselves to a simplified version of this result in
terms of the stable set polytope, and we refer the reader to [23] for the general result. In order to
keep this work self-contained, we also provide a proof of this simplified version.

Lemma 3 (Simplified version of the Lifting Lemma [23]). Let W ⊆ V be a clique of G. If c>x ≤ d,
c ∈ Rn and d ∈ R, is a valid inequality for FW = {x ∈ STAB(G) | xW = 1} with support H ⊆ V ,
then

f(x) = (c>x− d)− λ (xW − 1) ≤ 0, (3)

with the lifting factor λ being such that

λ ≤ d− α(G[H \W], c), (4)

is a valid inequality for STAB(G). In addition, if W is a maximal clique, c>x ≤ d is facet-defining
for FW , and λ satisfies (4) at equality, then (3) is facet-defining for STAB(G).

Proof. To prove validity, it is sufficient to show that (3) holds for any x ∈ S. If x ∈ FW , then
f(x) ≤ 0 holds because c>x ≤ d is valid for FW . Otherwise, xW = 0 and, by definition,

f(x) = (c>x− d) + λ ≤ c>x− α(G[H \W], c) ≤ 0.

Now, assume that W is a maximal clique (so FW is a facet of STAB(G)) and c>x ≤ d is facet-
defining for FW , and let x1, . . . , xn−1 be n− 1 affinely independent vectors in {x ∈ FW | c>x = d}.
Clearly, f(xi) = 0, for all i ∈ {1, . . . , n − 1}. Additionally, let xn be the characteristic vector of a
maximum weight independent set of G[H \W] according to c. It stems from λ = d−α(G[H \W], c)
that

f(xn) = (c>xn − d)− λ (xnW − 1) = (α(G[H \W], c)− d) + d− α(G[H \W], c) = 0.

Finally, since xn 6∈ FW , x1, . . . , xn are affinely independent vectors in {x ∈ STAB(G) | f(x) =
0}.

5

The lifting operation in [17] corresponds to a special case of Lemma 3 in which inequality
c>x ≤ d is a rank inequality of a projected graph’s clique with empty intersection with W . More
precisely, it includes the projected edge uv, a clique W̃ in the projected graph G̃, and N(u)∩N(v)
such that W̃ ∩N(u) ∩N(v) = ∅, W̃ ∩ {u, v} = ∅, and N(u) ∩N(v) is a clique of G̃ to produce the
valid inequality

xW̃ + x{u,v} + xN(u)∩N(v) ≤ 2 (5)

for STAB(G). It is straightforward to check that Lemma 3, with W = {u, v} ∪ (N(u) ∩ N(v)),
c>x ≤ d being the clique inequality of W̃ , and λ = −1, establishes that (5) is a valid inequality for
STAB(G).

The clique projection operation and the corresponding clique-lifting operations according to
Lemma 3 lead to stronger inequalities than those that can be obtained with the edge projection
method proposed in [17]. As an illustration, consider the structure in Figure 2(a) and W = {d, e, f}.
The projection of de in this graph adds the false edge ac, and if we then lift the clique {a, b, c} of
G | de we get the rank inequality xa + xb + xc + xd + xe + xf ≤ 2. The same inequality is obtained
with Lemma 3 if we take as c>x ≤ d the clique inequality of G+ de for {a, b, c}. Nevertheless, even
in this simple example, there is an inequality that cannot be derived with the method in [17]. If we
take {a, b, c, f} as the clique inducing set of vertices associated with c>x ≤ d in Lemma 3, then we
get xa +xb +xc +xd +xe + 2xf ≤ 2 as a valid (indeed, facet-defining [5]) inequality for STAB(G).

a

c d

f

b e

(a) Not rank inequality.

a

c d

f

b e

(b) Rank inequality.

Figure 2: Structures leading to stronger inequalities than edge projection.

The structure in Figure 2(b) (assuming that it induces a rank inequality of G [2, 5]) also
illustrates the fact that

∑
v∈W xv ≤ 1 being facet-defining for STAB(G) is not necessary to derive

another facet of STAB(G). To show this, we choose W = {d, e} and again take the clique inequality
of G+de associated with {a, b, c, f}. With such a configuration, Lemma 3 gives the rank inequality
xa + xb + xc + xd + xe + xf ≤ 2 as well. Observe that this inequality is not derived by the method
in [17] if edge ae is deleted before projecting de (xb + xc + xd + xe + xf ≤ 2 would be generated
instead).

4. Two Procedures for Generating Valid Inequalities

We are now in position of introducing the general cut-generating procedures based on the previ-
ous definitions and lemmas. We shall introduce two procedures. The first one is a simple procedure
directly based on Lemma 3, whereas the second one is a strenghtening based on the results in [23].
In both procedures, the generation of a valid inequality consists of the following two steps.

6

2 6 7 8 5

3 4

1

(a) G0 (= G by definition).

W1

W2

W3

2 6 7 8 5

3 4

1

(b) G3 (= G2 in this example).

Figure 3: Projected graph G3 (with false edges) is obtained after projecting W1 = {1, 2, 3}, W2 = {1, 3, 4}, and
W3 = {1, 4, 5}, in this order.

Step 1: Sequence of clique projections. Define G0 := G and determine distinct subsets W1, . . . ,Wr

of V such that, for every t ∈ {1, . . . , r}, Wt is a clique of Gt−1 and Gt is the projected graph
Gt−1 |Wt. An illustration of such a sequence is depicted in Figure 3.

Step 2: Sequence of clique lifting operations. Let Wr+1 ⊆ V be a clique of Gr. The lifting procedure
starts with the clique inequality fr(x) = xWr+1 ≤ 1, which is valid for STAB(Gr), and iteratively
for t = r − 1, . . . , 0 applies a specific version of Lemma 3 in order to generate ft(x) = ft+1(x) +
λt+1(xWt+1

− 1) ≤ 1 in such a way that f0(x) ≤ 1 is valid for STAB(G0 = G).

4.1. Basic Procedure

The basic specific version of Lemma 3, stated below, leads the general method to generate valid
inequalities for all projected graphs G0, . . . , Gr. For t ∈ {1, . . . , r}, let

FWt
= {x ∈ STAB(Gt−1) | xWt

= 1}.

Lemma 4. The inequality

xWr+1 +

r∑
t=1

λBt (xWt − 1) ≤ 1 (6)

is valid for STAB(G), where Pt := {x ∈ STAB(Gt−1) | xWt = 0} and

λBt := max

{
xWr+1

+

r∑
i=t+1

λBi (xWi
− 1) | x ∈ Pt

}
− 1.

Proof. This result is obtained by iteratively applying Lemma 3 on Pt, for t = r, . . . , 1 (i.e, in reverse
order). At step t, the first inclusion of Lemma 1 assures that xWt+1

≤ 1 is valid for FWt+1
. Hence,

being the lifting factor λBt calculated according to the definition in (4), the obtained inequality is
valid.

7

Consider the projected graph G3 in Figure 3(b), and let W4 = {2, 5, 6, 7, 8}. The inequality
xW4 ≤ 1 is trivially valid for STAB(G3), and is also valid for STAB(G2) since λB3 = 0. This comes
from λB3 = max {xW4

| xW3
= 0} − 1, which has {8} as an optimal solution. The remaining lifting

operations are illustrated in Figure 4, finally giving rise to the inequality x{4,5,6,7,8}+ 2x{1,2,3} ≤ 3,
which is valid for STAB(G).

W1

W2

2 6 7 8 5

3 4

1

2 7

(a) Lifting xW4
≤ 1 with λB2 =

max
{
xW4

| xW2
= 0

}
− 1 = 1 results in

xW4
+ xW2

≤ 2, valid for STAB(G1).

W1

2 6 7 8 5

3 4

1

4

56

(b) The optimal solution {4, 5, 6} of
max

{
xW4

+ xW2
| xW1

= 0
}

yields λB1 = 1
and xW4

+ xW2
+ xW1

≤ 3 valid for STAB(G0).

Figure 4: Basic lifting procedure starting with the clique inequality of W4 = {2, 5, 6, 7, 8} to generate x{4,5,6,7,8} +
2x{1,2,3} ≤ 3.

4.2. Strengthened Procedure

Let F0 := STAB(G) and, for t ∈ {1, . . . , r},

Ft = {x ∈ Ft−1 | xWt
= 1} = {x ∈ STAB(G) | xWj

= 1, j = 1, . . . , t}.

Clearly, the integral elements of Ft are stable sets of G. A property of the clique projection operation
is that they are also stable sets of Gt. Define Et as the edge set of Gt, for t = 1, . . . , r.

Lemma 5. Ft ⊆ STAB(Gt), for all t ∈ {0, . . . , r}.

Proof. We use induction on t to show that Ft∩S(G) ⊆ STAB(Gt)∩S(G). The case t = 0 is trivial.
For t ≥ 1, Ft−1 ⊆ STAB(Gt−1) by the induction hypothesis and, consequently, Ft = Ft−1 ∩ FWt

.
The results follow from the first inclusion of Lemma 1.

By definition, xWt ≤ 1 is valid for STAB(Gt−1). The previous lemma implies that it is also
valid for the stable sets of G that intersect W1, . . . ,Wt−1.

Corollary 1. xWt ≤ 1 is valid for Ft−1.

Our strengthened lifting procedure is as follows. We assume that max ∅ = 0.

Lemma 6. Let c>x ≤ d, c, x ∈ Rn and d ∈ R, be a valid inequality for STAB(Gr). Then, ft(x) ≤ d
is valid for Ft, where, for t ∈ {0, . . . , r},

ft(x) = c>x+

r∑
`=t+1

λS` (xW`
− 1),

8

St = S(G) ∩ Ft, and

λS` = max
{
f`(x)− d | x ∈ S`−1, xW`

= 0
}
.

Proof. We show that ft(x) ≤ d is valid for Ft by induction on t. For t = r, the result follows
since fr(x) = c>x ≤ d is valid for STAB(Gr) and Fr ⊆ STAB(Gr) by Lemma 5. For t < r, by
induction hypothesis, ft+1(x) ≤ d is valid for Ft+1 = {x ∈ Ft | xWt+1

= 1}. Applying the inequality
construction, we get λSt+1 = 0 if {x ∈ St | xWt+1

= 0} = ∅, and

λSt+1 = max

{
c>x+

r∑
i=t+2

λSi (xWi − 1) | x ∈ St,
xWt+1 = 0

}
− d

otherwise. We now apply Lemma 3, considering that xWt+1
≤ 1 is valid for Ft by Corollary 1 and

ft+1(x) ≤ d is valid for Ft+1, and then obtain that ft(x) ≤ d is valid for Ft.

Let us take Figure 5 as an example of a sequence of r = 3 clique liftings of the projected
graph depicted in Figure 3(b). For t = 3, lifting f3(x) = xW4 ≤ 1 with λS3 = −1 generates
f2(x) = x{2,6,7,8} − x{1,4} + 1 ≤ 1, which is valid for F2 = {x ∈ STAB(G) | xW1

= xW2
= 1}. The

iterative procedure of Lemma 6 may generate stronger valid inequalities than the basic procedure
in Lemma 4. For instance, for the example in Figure 4, x{4,5,6,7,8} + 2x{1,2,3} ≤ 3 is a linear
combination between x{1,2,4,6,7,8} + 2x{3} ≤ 2 and the clique inequality x{1,2,5} ≤ 1..

W1

W2

2 6 7 8 5

3 4

1

2 7

(a) Lifting f2(x) ≤ 1 with λS2 = 2 gives f1(x) =
x{1,2,4,6,7,8} + 2x{3} ≤ 2, valid for F1 = {x ∈
STAB(G) | xW1 = 1}.

W1

2 6 7 8 5

3 4

1

4

56

(b) f0(x) = f1(x) ≤ 2 is also valid for F0 since λS1 =
0.

Figure 5: Strengthened lifting procedure starting with the clique inequality of W4 = {2, 5, 6, 7, 8} to generate
x{1,2,4,6,7,8} + 2x{3} ≤ 2.

4.3. On the Strength of Lemma 6

The following results state that the strengthened procedure is, in some sense, related to facet-
subgraphs of G. The first result indicates that, in general, the inequality produced by the strength-
ened procedure is stronger than the one produced by the basic procedure.

9

Lemma 7. Let f0(x) ≤ 1 be the inequality produced by the strengthened procedure. Then,

1 +

r∑
`=1

λS` = α(G[HS], cS) ≤ α(G[HB], cB) ≤ 1 +

r∑
`=1

λB` ,

where HS ⊆
⋃r+1
t=1 Wt and HB ⊇ HS are the support, and cS and cB are the coefficient vectors, of

f0(x) ≤ 1 and (6), respectively.

Proof. Let us examine the first equality. The inequality 1 +
∑r
`=1 λ

S
` ≥ α(G[HS], cS) holds since

f0(x) ≤ 1 is valid by Lemma 6. For the converse inequality, a stable set of HS of weight 1+
∑r
`=1 λ

S
`

can be constructed by including a subset of Wr+1 of weight λSr and a vertex of each Wt, for all
t ∈ {0, . . . , r − 1}, by the definition of Fr−1 and λSr .

The comparison between the basic and strengthened procedures is given by the next two in-
equalities. The former holds because HS ⊆ HB and λBt ≥ λSt , for all t ∈ {1, . . . , r}, whereas the
validity of (6) (by Lemma 4) implies the latter.

The second result establishes sufficient conditions for the generated inequalities to be facet
defining. These conditions are slightly weaker than those in [23] due to two differences. First, the
subsets W3, . . . ,Wr are not required to be cliques of G. Second, we use clique projection and we
assume condition 3 to impose appropriate false edges in Gt′ instead of the auxiliary contracted
graph defined in [23] to determine Wr+1. Since the proof is very similar to the one in that paper,
it is left to the appendix.

Theorem 1. If fr(x) = xWr+1 and

1. |Wt| = k, the subgraph of Gt−1 induced by
⋃t
i=1Wi is k-partite with vertex classes V 1

t , . . . , V
k
t ,

and Wr+1 is a maximal clique of Gr such that Wr+1 ∩ V kr = ∅,

2. Tt := (Vt,Wt) is a strong hypertree defined by Vt :=
⋃k
i=1 V

i
t and Wt := {W1, . . . ,Wt}. More

precisely, either Wt = {Vt} or there is a v ∈ Vt incident to a hyperedge Wi ∈ Wt sharing
exactly k − 1 vertices with some other hyperedge of Tt such that (Vt \ {v},Wt \ {Wi}) is also
a strong hypertree,

3. for every i ∈ {1, . . . , k − 1} and w ∈ V 0
r such that NGr (w) ∩ V ir 6= ∅, one of the following

holds: v ∈ Wt ∩ V it is a neighbor of w in G or there exists t′ ∈ {1, . . . , r} such that Wt is a
clique of Gt′−1, Wt and Wt′ are adjacent in Tr, v 6∈ Wt′ , and v′ ∈ Wt′ ∩ V ir is a neighbor of
w in Gt′−1,

4. no v ∈ V kt has neighbors in V 0
r , i.e. NGr (v) ∩ V 0

r = ∅,

hold for some k > 0 and for all t ∈ {1, . . . , r}, then ft(x) ≤ 1 is facet defining for Ft, for all
t ∈ {1, . . . , r}.

It can be noticed that the graph and the cliques W1,W2,W3,W4 in Figure 3 satisfy the sufficient
conditions with r = 3 and k = 3. The above theorem implies that the inequality generated by the
strengthened procedure (as shown in Figure 5) is indeed facet defining for the graph of the example.

10

5. The Separation Procedure

We present in this section a separation procedure based on the valid inequality generation pro-
cedures presented in the last section. Algorithm 1 summarizes the proposed separation procedure.
Besides the graph G, the input of this algorithm is a fractional solution x̄ to be separated and a set
W of maximal cliques of G. The variable F , initially empty, stores the set of violated inequalities
that are generated by the separation procedure and returned at the end of its execution. For each
clique W1 in W, we proceed by generating a sequence S = 〈W1, . . . ,Wr+1〉 of distinct maximal
cliques, with the corresponding sequence 〈G0, . . . , Gr〉 of projected graphs, and a set T of indices t
such that the clique inequality associated with Wt is violated for STAB(Gt−1). The generation of
the sequence S continues until a certain number of projections is performed and a violated clique
inequality of the current projected graph is found. At this point, all subsequences 〈W1, . . . ,Wt〉 of S
defined by a violated clique are lifted in reverse order as follows: for each t ∈ T , we apply Lemma 4
or Lemma 6 iteratively to Wt in order to generate a valid inequality for the original graph. The
computation of the lifting factors is accomplished with the algorithm in [15]. The set of violated
valid inequalities so generated (stored in F) is then returned.

Algorithm 1 Separation procedure: sepForStab(G, x̄, W)
Input: Graph G, fractional solution x̄ and set W of maximal cliques of G
Output: A set of clique, rank, or weighted rank cuts
1: k ← 0
2: F ← ∅
3: G0 ← G
4: repeat
5: k ← k + 1
6: Select, and remove, a starting clique W1 in W
7: t← 0
8: T ← ∅
9: while (x̄Wt+1

≤ 1 +MINV IOLATION or t ≤MINDEPTH) and t ≤MAXDEPTH do
10: Project the clique Wt+1, getting the graph Gt+1

11: while |Wt+1| > 2 and Et+1 = Et do
12: Remove a vertex from Wt+1

13: Project the clique Wt+1, getting the graph Gt+1

14: if Et+1 6= Et then
15: if x̄Wt+1

> 1 +MINV IOLATION then
16: T ← T ∪ {t}
17: t← t+ 1

18: Find a maximal clique Wt+1 of Gt

19: for all t ∈ T do
20: ft(x)← xWt+1

21: while t > 0 do
22: t← t− 1
23: Compute λt+1 on Gt

24: ft(x)← ft+1(x) + λt+1(xWt+1
− 1)

25: if f0(x̄) > 1 +MINV IOLATION then
26: F ← F ∪ {f0}
27: until W = ∅ or |F | ≥MAXNCUTS or k = MAXITER
28: return F

The execution of the separation procedure is governed by five parameters. Two parameters
control the number of iterations k of the main loop. According to the condition checked at line 27,

11

the loop is iterated at most MAXITER times, and this as long as there are cliques left in W and
the number of violated inequalities encountered is at most MAXNCUTS. At each iteration, the
size r + 1 of the sequence of projections performed is at least MINDEPTH. The greater is the
sequence size r + 1, the larger is either the number of variables or the coefficients involved in the
valid inequality generated after the lifting process. An inequality is considered violated only if its
violation is greater than the threshold MINV IOLATION . An iteration fails if no violated clique
inequality is found after MINDEPTH clique projections. The number of projections are bounded
from above by parameter MAXDEPTH because of possible failed iterations, which seldom occurs
in practice.

The aim of the set W of maximal cliques given as input to the separation procedure is to yield
different sequences of clique projections. The cliques in W are generated with two versions of a
greedy algorithm. In both versions, the generation of a clique consists in selecting an initial vertex
v and then determining a maximal clique in the subgraph induced by N(v). This clique in N(v)
is greedily built by considering the vertices sorted in a certain order. In one version, vertices are
sorted in a nonincreasing order of weight, where the weight of a vertex v is the value x̄{v}. A
clique built with this version tends to have a relatively large intersection with previous cliques. In
the other version, vertices not covered by previous cliques in W have priority with the purpose of
generating cliques with small intersections. In order to avoid repetitions of cliques, the initial vertex
of both versions is one not covered by previous cliques. In order to maintain a good probability of
generating valid inequalities violated by x̄, only cliques W with x̄W ≥ 0.65 are kept in W.

Some remarks with respect to the generation of maximal cliques at line 18 are the following.
The heuristic used to generate the maximal clique Wt+1 is similar to the one used to generate the
cliques in W. There are two differences, though: Wt+1 is guaranteed to include both a vertex that
does not appear in W0, . . . ,Wt and a false edge in Et \ Et−1, when t > 0. For every K clique
projections, we employ the algorithm in [21] to search for a violated clique. We do not generate all
cliques, but stop when a prespecified number of cliques is enumerated instead. It might be the case
that Gt+1 contains no false edges, relative to Gt, which means that no false edges are generated by
the clique projection of Wt+1. In such a situation, vertices are iteratively removed from Wt+1 until
either a false edge is generated in the projection of Wt+1 or Wt+1 has only one vertex. In the latter
case, Wt+1 is discarded.

6. Computational Experiments and Analysis of Results

In this section we provide some results of computational experiments conducted in order to
explore whether the proposed method is useful as a cut-generating tool for the MSS problem. Our
main goal is not to provide a competitive algorithm for the MSS problem, since combinatorial algo-
rithms are much more effective than cutting-plane algorithms for this problem [7, 19]. As already
pointed out in [17], the facts that other combinatorial problems may be formulated including stable
set constraints, either explicitly or devised to address their vertex packing relaxation, are motiva-
tions to the investigation of efficient polyhedral methods for the stable set problem. In this context,
we intend to assess whether the proposed procedure is effective at generating rank or weighted rank
cuts for the STAB polytope, and the nature of the obtained cuts. To this end, we performed three
cutting-plane method implementations attached to the COIN-Clp linear programming solver to
compute a strengthened upper bound for the MSS problem [9]. In these implementations, a clique
cover of all edges in E is first determined and the corresponding inequalities constitute the initial

12

model. The method consists in iteratively solving the current model. Whenever a fractional solu-
tion is found, we first select the set W of maximal cliques of G. The violated clique inequalities
encountered in this process are added to the model. Then, the separation procedure of Algorithm 1
is executed. In addition to the separation procedure, we also implemented the rounding heuristic
proposed in [16] and employed it to compute lower bounds.

The first implementation, called SFS C, only employs the clique cuts found in the generation of
W and aims to serve as a reference for evaluation of the two other implementations. These are im-
plementations that include a call to sepForStab after the generation ofW. The difference between
these two implementations is restricted to how the lifting operation at line 23 is performed. Version
SFS B uses the procedure established in Lemma 4 while Lemma 6 is employed in version SFS S.
Various configurations of the parameters of sepForStab were tested and we chose to report the
results corresponding to the following setup: MINV IOLATION = 0.03, MINDEPTH = 10,
K = 10, MAXITER = 50, and MAXNCUTS = 20. These were the values that produced the
best average results. All the implementations were written in C++, compiled with g++ -std=c++11

-m64 -O -fPIC, and run on a Intel(R) Core(TM) i7-4790K CPU clocked at 4.00GHz.
Table 1 summarizes the results of experiments with some instances from the DIMACS bench-

mark and for random graphs with 100–300 vertices. The notation G(n, d) specifies random graphs
with n vertices and a density of d ∈ [0, 1], and for these instances we report the average results over
five randomly-generated instances. The experiments were performed on a 64-bit personal computer,
with a time limit of two minutes. The first four columns contain the instance name, the number of
vertices, the graph density, and its stability number. The following columns contain data for the
cutting-plane method: the column “LB” contains the lower bound found by the rounding heuristic,
the columns “Upper bound” contain the upper bound obtained with the three implementations (in
addition, the upper bound Z0 corresponding to the linear relaxation of the initial model is also
indicated), and the columns “Time” report the total time spent, in seconds.

We can observe the following facts from the data in Table 1. The graphs on which the reduc-
tion in the upper bound obtained with sepForStab is significant when compared to SFS C are
brock200 2, brock200 4, C125.9, C250.9 and DSJC500.5. For graphs c-fat200-5 and MANN a45,
clique cuts are not capable of improving the bound obtained with respect to Z0. However, the rank
and weighted rank cuts added with sepForStab made versions SFS B and SFS S capable of
improving the upper bound, attaining the optimal value in the first case. The only case where the
versions SFS B e SFS S do not get better upper bounds than SFS C is the graph san400 0.5 1.
The reason for this phenomenon is that cliques become large in projected graphs at depth 6 and
beyond, making the calculation of lifting factors very time consuming. Thus, the time limit is
reached before violated inequalities are found. In Table 2, the results are presented with a depth
limit of 3 projections, where we can observe the improvement of the bounds with respect to SFS C.
In general, there is a tendency of the version SFS S to produce upper bounds slightly better than
the version SFS B. In particular, the graph DSJC500.5 is the case where the difference is more
pronounced. Unlike the graphs with particular structures, random graphs present a homogenous
behavior, with both versions SFS B and SFS S having better performance than SFS C, to the
advantage of version SFS S. With regard to the comparison of the processing time between the
versions with projection of cliques, we observed a trend to an increase in version SFS S with respect
to version SFS B. There are, however, 3 exceptions: p hat300-2, p hat300-3 and san200 0.7 2.
In such cases, there is a significant reduction in processing time, with slight improvement in the up-
per bound obtained. This confirms the special case of gen400 p0.9 55 and gen400 p0.9 55 where
the integer programming approach has performance far superior to combinatorial algorithms. The

13

Instance Upper bound Time (sec.)
Graph n/Dens. α LB Z0 SFS C SFS B SFS S SFS B SFS S

brock200 1 200/25 21 20 45.48 38.57 35.18 34.85 41.76 44.86
brock200 2 200/50 12 12 28.69 22.05 17.24 16.29 120.29 120.23
brock200 3 200/40 15 14 35.66 28.21 24.22 23.26 120.22 120.47
brock200 4 200/34 17 16 37.82 31.17 27.77 26.81 109.81 117.72
brock400 2 400/25 12 24 78.95 65.68 63.85 63.27 120.67 120.95
brock400 4 400/25 17 23 79.53 65.99 63.61 63.17 120.78 120.80
c-fat200-1 200/92 12 12 12 12 12 12 0.04 0.04
c-fat200-2 200/84 24 24 24 24 24 24 0.02 0.02
c-fat200-5 200/57 58 58 66.66 66.66 58 58 22.67 27.10
c-fat500-1 500/96 14 14 14 14 14 14 1.68 1.65
c-fat500-10 500/81 126 126 126 126 126 126 0.97 0.97
c-fat500-2 500/93 26 26 26 26 26 26 0.69 0.69
c-fat500-5 500/96 64 64 64 64 64 64 0.81 0.81
C125.9 125/10 34 34 44.37 43.21 38.79 38.84 1.05 1.20
C250.9 250/10 44 43 77.25 71.78 65.71 65.35 11.88 18.04
DSJC125.1 125/90 34 34 45.28 43.22 39.23 39.41 1.21 0.94
DSJC125.5 125/50 10 10 20.80 15.98 12.34 11.97 32.44 20.25
DSJC500.5 500/50 13 13 58.94 46.16 39.44 35.54 123.20 123.29
gen400 p0.9 55 400/90 55 55 93.07 55 55 55 1.09 1.22
gen400 p0.9 65 400/90 65 65 103.59 65 65 65 1.32 1.36
gen400 p0.9 75 400/90 75 75 106.54 75 75 75 2.59 2.84
hamming6-4 64/65 4 4 7.57 5.33 4.28 4 0.24 0.23
hamming8-4 256/36 16 16 16 16 16 16 0.18 0.16
keller4 171/35 11 11 25.48 14.82 14.24 14.20 12.71 16.78
MANN a27 378/1 126 125 135 135 135 135 0.11 0.11
MANN a45 1035/0.4 345 341 363 363 360 360 1.39 1.43
MANN a9 45/7 16 16 18 18 18 18 0.00 0.00
p hat300-1 300/75 8 8 24.12 16.06 12.94 12.43 121.91 120.62
p hat300-2 300/51 25 25 45.34 34.06 33.64 33.50 37.18 30.29
p hat300-3 300/26 36 35 66.67 55.67 51.95 51.82 67.61 57.77
san200 0.7 2 200/30 18 18 27.24 19.07 18.73 18.54 20.37 6.83
san200 0.9 1 200/10 70 70 70.29 70 70 70 0.03 0.04
san200 0.9 2 200/10 60 60 65.81 60 60 60 0.26 0.24
san200 0.9 3 200/10 44 44 59.75 44 44 44 0.17 0.23
san400 0.5 1 400/50 13 9 16.41 13.60 15.20 15.18 142.37 124.81
san400 0.9 1 400/10 100 100 119.24 100.11 100 100 2.57 2.87
sanr200 0.7 200/30 18 18 41.30 33.83 30.92 30.21 73.48 77.88
sanr200 0.9 200/10 42 42 64.19 59.98 54.30 54.18 8.98 10.77

G(100, 10) 100/10 31.2 31 37.56 36.25 33.07 33.06 0.35 0.38
G(100, 20) 100/20 20.2 20.2 29.28 26.53 23.87 23.86 1.65 1.67
G(100, 30) 100/30 15 15 24.91 21.04 18.45 18.23 3.69 4.58
G(100, 50) 100/50 9.2 9.2 17.19 13.45 10.83 10.60 7.82 6.52
G(150, 10) 150/10 37.4 37 51.51 48.56 44.07 43.99 2.17 2.60
G(150, 20) 150/20 22.4 22.4 39.84 35.37 32.20 32.06 8.10 10.35
G(150, 30) 150/30 16.6 16.6 32.88 27.80 24.57 24.19 23.49 25.22
G(150, 50) 150/50 10.2 10.2 23.14 18.06 14.15 13.53 59.00 50.63
G(200, 10) 200/10 41.6 41 63.99 60.86 55.11 55.04 7.12 8.07
G(200, 20) 200/20 26 25.4 50.73 44.56 40.87 40.65 23.76 30.26
G(200, 30) 200/30 18 17.8 40.75 34.35 31.21 30.49 60.53 84.12
G(200, 50) 200/50 11 11 29.13 22.32 17.62 16.65 115.00 112.76
G(300, 10) 300/10 – 44.8 90.70 82.81 75.81 75.91 33.74 35.91
G(300, 20) 300/20 28.4 27.2 69.84 59.97 56.55 56.38 74.90 84.56
G(300, 30) 300/30 20.2 19.6 56.79 47.20 43.93 43.31 120.60 120.66
G(300, 50) 300/50 12 12 40.07 30.68 24.47 22.90 121.00 121.29

Table 1: Comparison of upper bounds and processing times among SFS C, SFS B, and SFS S.

14

only combinatorial algorithm that solves these graphs is in [7].

Upper bound Time SFS B N. of cuts SFS S N. of cuts
LB SFS B SFS S [16] SFS B SFS S Rank W-Rank Rank W-Rank

9 13.61 13.59 13.24 113.60 120.46 1437 1072 1331 1121

Table 2: Behavior of SFS B and SFS S with graph san400 0.5 1 when the depth limit is 3.

As shown in Table 3, the procedure is able to generate a large number of cuts, and provides upper
bounds that are competitive with those generated in [16], [17], and [10] for a representative sample
of benchmark graphs. It is worth remarking that the upper bound obtained with our approaches
is tighter, in comparison the ones from the literature, when the density is between 40% and 75%.
The columns “Upper bound” contain the upper bound attained in [17], [16], and [10] in the root
node of their branch-and-cut algorithms, respectively. Finally, the last three columns contain the
number of generated clique cuts, violated rank inequalities, and violated weighted rank inequalities,
respectively. Similarly to existing procedures, our cut-generating algorithm finds a large number of
violated clique inequalities, and is also able to find many violated rank inequalities. The number
of weighted rank inequalities generated by the procedure is smaller, but nevertheless provides an
interesting set of additional and non-trivial valid inequalities. In Table 4, similar results can be
observed for random generated graphs.

Some characteristics of the results presented in Table 3 have been also observed in [16] in
the context of a comparison between the approach adopted in that paper of combinining several
separation heuristics and the one of edge projection of [17]. It was observed that in some peculiar
cases (notably, the sparse graphs C125.9 and C250.9), the edge projection alone performed better
than the combination of cuts with respect to the upper bound obtained. The intriguing question
that deserves further clarification is how a strategy which involves a number of approximations (for
instance, in the removal of edges and in determining the righthand side of the cut resulting of the
lifting operation) results in stronger cuts. An analysis of the description given in [17] indicates
an inaccuracy in the proposed procedure that may generate non-valid inequalities, although the
authors asserted in a personal communication that the cuts generated in the reported experiments
are verified to be valid. This fact leaves the possibility of generating cuts that, though valid, are
not generated by procedures that ensure the viability of all generated cuts. However, the cuts used
in [17] can be considered as a reference of strong cuts for some sparse graphs.

15

Instance Upper bound SFS B: Number of cuts SFS S: Number of cuts
Graph n/Dens. α SFS B SFS S [16] [17] [10] Clique Rank W-Rank Clique Rank W-Rank

brock200 1 200/25 21 35.18 34.85 – – 33.59 849 728 2116 847 752 2083
brock200 2 200/50 12 17.24 16.29 20.99 22.01 18.27 2957 591 6261 2893 628 6512
brock200 3 200/40 15 24.22 23.26 – – 23.55 1873 468 6065 2086 563 6115
brock200 4 200/34 17 27.77 26.81 29.93 30.87 26.77 1491 531 5531 1568 622 5354
brock400 2 400/25 12 63.85 63.27 63.84 67.66 – 2696 843 1394 2657 862 1686
brock400 4 400/25 17 63.61 63.17 63.89 67.98 – 2685 778 1634 2706 937 1998
c-fat200-1 200/92 12 12 12 12.71 12.86 – – – – – – –
c-fat200-2 200/84 24 24 24 24 24 – – – – – – –
c-fat200-5 200/57 58 58 58 58.89 65.25 58 97 843 84 149 866 79
c-fat500-1 500/96 14 14 14 14 14.98 – 107 13 9 72 15 11
c-fat500-10 500/81 126 126 126 126 223.29 – – – – – – –
c-fat500-2 500/93 26 26 26 26.97 57.78 – – – – – – –
c-fat500-5 500/96 64 64 64 64.70 67.08 – – – – – – –
C125.9 125/10 34 38.79 38.84 41.26 37.40 37.81 61 397 148 67 430 132
C250.9 250/10 44 65.71 65.35 69.76 58.30 63.95 389 1111 399 380 1093 402
DSJC125.1 125/90 34 39.23 39.41 – – 38.22 55 387 149 51 365 147
DSJC125.5 125/50 10 12.34 11.97 – – 13.21 918 255 4182 968 261 3270
DSJC500.5 500/50 13 39.44 35.54 – 52.95 – 5556 257 1066 5538 299 1291
gen400 p0.9 55 400/90 55 55 55 – 56.20 – 513 254 33 523 257 32
gen400 p0.9 65 400/90 65 65 65 – 65.25 – 598 246 23 620 269 17
gen400 p0.9 75 400/90 75 75 75 – 75 – 866 408 55 901 475 55
hamming6-4 64/65 4 4.28 4 – – 4.64 291 120 383 310 164 417
hamming8-4 256/36 16 16 16 16 16 – 173 – – 173 – –
keller4 171/35 11 14.24 14.20 14.83 14.95 14.29 560 464 1076 542 535 1172
MANN a27 378/1 126 135 135 – 134.86 132.44 – – – – – –
MANN a45 1035/0.4 345 360 360 – 360 355.86 17 22 – 17 22 –
MANN a9 45/7 16 18 18 – – 17.11 – – – – – –
p hat300-1 300/75 8 12.94 12.43 – – 13.45 2851 141 4046 2703 174 4342
p hat300-2 300/51 25 33.64 33.50 33.81 34.19 30.73 923 89 1197 933 82 1153
p hat300-3 300/26 36 51.95 51.82 54.12 53.19 49.79 995 764 1327 1086 759 1341
san200 0.7 2 200/30 18 18.73 18.54 18.50 19.18 18 747 265 815 676 259 531
san200 0.9 1 200/10 70 70 70 70 70 – 32 22 8 32 22 8
san200 0.9 2 200/10 60 60 60 60 60 – 163 113 10 148 101 5
san200 0.9 3 200/10 44 44 44 44 44.80 – 159 165 20 169 179 25
san400 0.5 1 400/50 13 15.20 15.18 13.24 17.14 – 217 35 57 214 30 57
san400 0.9 1 400/10 100 100 100 100 100.40 – 661 241 42 671 264 50
sanr200 0.7 200/30 18 30.92 30.21 – – 29.45 1196 593 3446 1272 642 3830
sanr200 0.9 200/10 42 54.30 54.18 – – 54.52 265 880 287 250 973 332

Table 3: Upper bounds obtained with SFS B and SFS S, and their comparison with the ones from [16], [17], and [10].

16

Instance Upper bound SFS B: Number of cuts SFS S: Number of cuts
Graph α SFS B SFS S Clique Rank W-Rank Clique Rank W-Rank

G(100, 10) 31.2 33.07 33.06 35.2 300.4 83.4 34.2 297.4 93.2
G(100, 20) 20.2 23.87 23.86 158.2 393.8 406.4 158 389.2 455
G(100, 30) 15 18.45 18.23 295 289.4 1083.2 297 319.6 1073.2
G(100, 50) 9.2 10.83 10.60 571 152.4 2066 556.4 156.6 1889.6
G(150, 10) 37.4 44.07 43.99 117 559.4 217.8 117.6 573.2 224.2
G(150, 20) 22.4 32.20 32.06 338.6 611.6 821.6 348.4 636.2 830.2
G(150, 30) 16.6 24.57 24.19 684.2 465.6 2268.4 706.4 489.6 2294.2
G(150, 50) 10.2 14.15 13.53 1322.8 348 5012 1305.8 350.8 4670.4
G(200, 10) 41.6 55.11 55.04 242.8 858.4 320 235.2 878.6 329.2
G(200, 20) 26 40.87 40.65 583.4 847.2 1089.2 592.2 886 1181.2
G(200, 30) 18 31.21 30.49 1159.6 575 3255.4 1224 667.4 3824.6
G(200, 50) 11 17.62 16.65 2861.8 558 6133.2 2856.8 560.2 6219.2
G(300, 10) – 75.81 75.91 520.8 1429.2 490.2 523.4 1458 480.2
G(300, 20) 28.4 56.55 56.38 1228.4 1092.4 1223.4 1269 1120 1287.4
G(300, 30) 20.2 43.93 43.31 2166.6 669 3903.2 2378.4 740.6 4041
G(300, 50) 12 24.47 22.90 5550.8 610 3550.2 5541.4 666.2 3707.8

Table 4: Upper bounds obtained and number of cuts applied with SFS B and SFS S.

7. Conclusions

In this work we have presented general cut-generating procedures for the standard formulation
of the maximum stable set polytope, which are able to generate both violated rank and generalized
rank inequalities. The main objective of these procedures is to generalize existing ones based on
edge projection, and employ a lifting procedure in order to construct general valid inequalities from
an initial clique inequality by undoing the operation of clique projection in the original graph. The
computational experiments show that the proposed procedures are effective at generating general
cuts, and may be competitive in a general setting.

References

[1] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. Conflict graphs in solving integer
programming problems. European Journal of Operational Research, 121(1):40 – 55, 2000.

[2] E. Balas and M. Padberg. Set partitioning: a survey. SIAM Review, 18:710–760, 1976.

[3] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. In
Handbook of Combinatorial Optimization, pages 1–74. Kluwer Academic Publishers, 1999.

[4] S. S. Brito, H. G. Santos, and M. Poggi. A computational study of conflict graphs and aggressive
cut separation in integer programming. Electronic Notes in Discrete Mathematics, 50:355–360,
2015. Proc. of the VIII Latin-American Algorithms, Graphs and Optimization Symposium.

[5] M. Campêlo, V. Campos, and R. Corrêa. On the asymmetric representatives formulation for
the vertex coloring problem. Discrete Applied Mathematics, 156(7):1097–1111, 2008.

[6] G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical Programming
Ser. B, 112:3–44, 2008.

[7] R. C. Corrêa, P. Michelon, B. Le Cun, T. Mautor, and D. Delle Donne. A bit-parallel russian
dolls search for a maximum cardinality clique in a graph. arxiv, abs/1407.1209, 2014.

17

[8] I. Dukanovic and F. Rendl. Semidefinite programming relaxations for graph coloring and
maximal clique problems. Mathematical Programming, pages 345–365, 2007.

[9] The COmputational INfrastructure for Operations Research Initiative. Coin-or linear pro-
gramming. https://projects.coin-or.org/Clp.

[10] M. Giandomenico, F. Rossi, and S. Smriglio. Strong lift-and-project cutting planes for the
stable set problem. Mathematical Programming Ser. A, 141(1–2):165–192, 2013.

[11] L. Lipták and L. Lovász. Critical facets of the stable set polytope. Combinatorica, pages 61–88,
2001.

[12] L. Lovász and M.D. Plummer. Matching theory. Annals of Discrete Mathematics, 33:544,
1986.

[13] L. Lovász and A. J. Schrijver. Cones of matrices and set-functions and 0–1 optimization. SIAM
Journal on Optimization, 1:166–190, 1991.

[14] C. Mannino and A. Sassano. Edge projection and the maximum cardinality stable set problem.
In DIMACS Ser. Discrete Math. Theoret. Comput. Sci., volume 26, pages 249–261.

[15] P. Österg̊ard. A new algorithm for the maximum weight clique problem. Nordic Journal of
Computing, 8(4):424–436, 2001.

[16] S. Rebennack, M. Oswald, D. O. Theis, H. Seitz, G. Reinelt, and P. M. Pardalos. A branch
and cut solver for the maximum stable set problem. Journal of Combinatorial Optimization,
21:434–457, 2011.

[17] F. Rossi and S. Smriglio. A branch-and-cut algorithm for the maximum cardinality stable set
problem. Operations Research Letters, 28:63–74, 2001.

[18] P. San Segundo, D. Rodŕıguez-Losada, and A. Jiménez. An exact bit-parallel algorithm for
the maximum clique problem. Computers & Operations Research, 38:571–581, 2011.

[19] P. San Segundo and C. Tapia. Relaxed approximate coloring in exact maximum clique search.
Computers & Operations Research, 44:185–192, 2014.

[20] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a maximum
clique with computational experiments. Journal of Global Optimization, 37(1):95–111, 2007.

[21] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generating all
maximal cliques and computational experiments. Theoretical Computer Science, 363:28 – 42,
2006.

[22] Q. Wu and J.-K. Hao. A review on algorithms for maximum clique problems. European Journal
of Operational Research, 242(3):693 – 709, 2015.

[23] A. S. Xavier and M. B. Campêlo. A new facet generating procedure for the stable set polytope.
Electronic Notes in Discrete Mathematics, 37:183–188, 2011.

18

Appendix A. Sufficient Conditions for Faceteness

Consider the subsets W1, . . . ,Wr+1. We show in this section that if there exists k > 0 such that
the following conditions hold, for all t ∈ {1, . . . , r}:

(I) |Wt| = k and the subgraph of Gt−1 induced by
⋃t
i=1Wi is k-partite with vertex classes

V 1
t , . . . , V

k
t ,

(II) Tt := (Vt,Wt) is a strong hypertree defined by Vt :=
⋃k
i=1 V

i
t and Wt := {W1, . . . ,Wt},

(III) for all w ∈ V 0
t := V \ Vt, there exists i ∈ {1, . . . , k} such that NGt−1

(w) ∩ V it = ∅,

then

(i) xWt
≤ 1 is facet defining for Ft−1.

If, in addition to conditions (I)–(II), we assume that

(IV) for every i ∈ {1, . . . , k − 1} and w ∈ V 0
r such that NGr

(w) ∩ V ir 6= ∅, one of the following
holds: v ∈ Wt ∩ V it is a neighbor of w in G or there exists t′ ∈ {1, . . . , r} such that Wt is a
clique of Gt′−1, Wt and Wt′ are adjacent in Tr, v 6∈Wt′ , and v′ ∈Wt′ ∩ V ir is a neighbor of w
in Gt′−1,

(V) no v ∈ V kt has neighbors in V 0
r , i.e. NGr

(v) ∩ V 0
r = ∅,

then we prove that

(ii) ft(x) ≤ 1 is facet defining for Ft,

considering that fr(x) = xWr+1
and Wr+1 is a maximal clique of Gr such that Wr+1 ∩ V kr = ∅.

Appendix A.1. Proof of (i)

The proof of (i) depends on the dimension of Ft, established next, which in turn depends on
conditions (I)–(III).

Lemma 8. If (I) holds, then |W` ∩ V it | = 1, for all ` ∈ {1, . . . , t} and i ∈ {1, . . . , k}.

Proof. Since W` is a clique and V it is a stable set, |W` ∩ V it | ≤ 1. By condition (I), |W`| = k and
there are at least k stable sets intersecting W`. Therefore, |W` ∩ V it | ≥ 1.

Lemma 9 (Adapted from Lemma 3.1 of [23]). If (I)–(III) hold, then dim(Ft) = n− t.

Proof. Because the incidence matrix of Tt has rank t due to conditions (II), it follows that dim(Ft) ≤
n−t. To prove that dim(Ft) ≥ n−t, we exhibit n−t+1 affinely independent vectors of Ft. For this
purpose, define xi to be the incidence vector of V it , for every i ∈ {1, . . . , k}. Clearly, xi ∈ STAB(G)
and, by Lemma 8, xiW`

= 1 for all ` ∈ {1, . . . , t}, which means that xi ∈ Ft. For every v ∈ V 0
t ,

define yv = xi + ev where i ∈ {1, . . . , k} is such that v is not adjacent to any vertex in V it , by
condition (III), and ev is the incidence vector of {v}. Again, it is easy to see that yv ∈ Ft. The
|V 0
t |+ k = n− (k + t− 1) + k = n− t+ 1 points {xi}ki=1 ∪ {yv}v∈V 0

t
are affinely independent.

Theorem 2. If (I)–(III) hold, then (i) holds for all t ∈ {1, . . . , r}.

19

Proof. By Lemma 9, dim(Ft) = dim(Ft−1) − 1. Thus, by Corollary 1, Ft = {x ∈ Ft−1 | xWt = 1}
is a facet of Ft−1.

The reader might observe that conditions (I)–(III) are sufficient for (ii) when t < r.

Theorem 3. If (I)–(III) hold for all t ∈ {1, . . . , r}, fr(x) = xWr
, and d = 1, then (ii) holds for

all t ∈ {1, . . . , r − 1}.

Proof. By induction on t. For t = r, xWr+1 ≤ 1 is facet defining for Fr by (i). For t < r, xWt+1 ≤ 1
is facet defining for Ft by (i) and ft+1(x) is facet defining for Ft+1 = {x ∈ Ft | xWt+1

= 1} by
induction hypothesis. Thus, the result follows by Lemma 3.

Appendix A.2. Proof of (ii)

Conditions (I)–(II) imply the following property of Gr and the stable sets of G that cover
W1, . . . ,Wr. A strong hyperpath is a strong hypertree with exactly two vertices of degree 1.

Lemma 10 (Adapted from Lemma 3.2 of [23]). If (I)–(II) hold and x ∈ Ft, then x{u} = x{v}, for
all i ∈ {1, . . . , k} and {u, v} ⊆ V it .

Proof. Considering that conditions (I)–(II) hold, let Wt1 , . . . ,Wtq be the strong hyperpath in Tt
connecting u, v. We prove the result by induction on q. If q = 2, then xWt1

−xWt2
= x{u}−x{v} = 0.

Otherwise, q > 2. Let w ∈ Wt2 \Wt1 . Since u 6∈ Wt2 , we conclude that w ∈ V it2 by Lemma 8.
Hence, Wt1 ,Wt2 is a strong hyperpath with 2 hyperedges connecting u,w, which gives x{u} =
x{w}. Moreover, Wtp , . . . ,Wtq , for p = max{j | w ∈ Wtj}, is a strong hyperpath with less than
q hyperedges connecting two vertices of V it . By inductive hypothesis, x{w} = x{v}. Therefore,
x{u} = x{v}.

Differently from [23], we determine Wr+1 in Gr (instead of defining an auxiliary graph). For
this purpose, we use the following property of Gr due to conditions (I)–(II) and (IV).

Lemma 11. Let v ∈ V it ∩Wt, for some i ∈ {1, . . . , k−1}, and w ∈ V 0
r be such that V ir ∩NGr

(w) 6= ∅.
If (I)–(II) and (IV) hold, then vw ∈ Er.

Proof. If vw ∈ E, then the lemma is trivially valid. Otherwise, by condition (IV), let t′ ∈ {1, . . . , r}
be such that Wt is a clique of Gt′−1, Wt and Wt′ are adjacent in Tr (considering conditions (I)–(II)),
v 6∈Wt′ and v′ ∈Wt′∩V ir is a neighbor of w in Gt′−1. In this situation, Wt′ ⊆ NGt′−1

(v)∪NGt′−1
(w)

implies vw ∈ Et′ ⊆ Er by the clique projection of Wt′ .

To show (ii), we still need the following property of the subgraph of Gr induced by V 0
r and a

certain subset of vertices. Notation ∼= denotes the affine isomorphism relation [23].

Lemma 12 (Adapted from Lemma 3.3 of [23]). If (I)–(V) hold for t = r, then Fr ∼= STAB(Gr[V
0
r ∪

R]) where R ⊆ V is such that |R ∩ V ir | = 1, for all i ∈ {1, . . . , k − 1}, and R ∩ V kr = ∅.

Proof. In what follows, we denote by vi the unique vertex in R ∩ V ir , for all i ∈ {1, . . . , k − 1}.

STAB(Gr[V
0
r ∪R])→ Fr: Take a point in y ∈ STAB(Gr[V

0
r ∪ R]). For each u ∈ V , set xu = yu

if u ∈ V 0
r ; xu = yvi , if u ∈ V ir , i ∈ {1, . . . , k − 1}; and xu = 1 −

∑k−1
i=1 yvi , if u ∈ V kr . We

prove that x ∈ Fr. First, to show that x ∈ STAB(G), take uw ∈ E. If u,w ∈ V 0
r ∪ R, then

xu + xw ≤ 1 trivially holds. If u,w ∈ Vr, then xu + xw ≤ 1 because {u,w} \ V ir 6= ∅, for all

20

i ∈ {1, . . . , k}. Otherwise, assume without loss of generality that u ∈ Vr \R and w ∈ V 0
r \R.

It turns out that u 6∈ V kr by condition (V). Then, use Lemma 11 to conclude that viw ∈ Er
and, consequently, xu + xw ≤ 1. To show that xW`

= 1, for ` ∈ {1, . . . , t}, we use Lemma 8

to write xW`
=

∑k−1
i=1 yvi + (1−

∑k−1
i=1 yvi) = 1.

Fr → STAB(Gr[V
0
r ∪R]): Take x ∈ Fr. For each v ∈ V 0

r , set yv = xv, and for each i ∈ {1, . . . , k−
1}, set yvi = xvi . This mapping is injective due to Lemma 10. Take vw ∈ E[V 0

r ∪ R]. It is
straightforward to check that yv + yw ≤ 1.

Claim (ii) follows directly from Lemma 12 combined with the Lifting Lemma, as follows.

Theorem 4. If (I)–(II) and (IV)–(V) hold, fr(x) = xWr+1
, and Wr+1 is a maximal clique of Gr

such that Wr+1 ∩ V kr = ∅, then (ii) holds for all t ∈ {1, . . . , r}.

Proof. By induction on t. For t = r, xWr+1 ≤ 1 is facet defining for STAB(Gr[V
0
r ∪R]), for every

R ⊆ V such that |R ∩ V ir | = 1, for all i ∈ {1, . . . , k − 1}, R ∩ V kr = ∅, and Wr+1 ⊆ R. Such an
R exists since Wr+1 ∩ V kr = ∅. Hence, by Lemma 12, fr(x) = xWr+1

≤ 1 is facet defining for Fr.
For t < r, xWt+1

≤ 1 is facet defining for Ft by (i) (notice that (V) implies (III) and therefore we
can use Theorem 2) and ft+1(x) is facet defining for Ft+1 = {x ∈ Ft | xWt+1

= 1} by induction
hypothesis. Thus, the result follows by Lemma 3.

21

	1 Introduction
	2 The Stable Set Polytope and the Clique Projection Operation
	3 The Clique Lifting Operation
	4 Two Procedures for Generating Valid Inequalities
	4.1 Basic Procedure
	4.2 Strengthened Procedure
	4.3 On the Strength of Lemma ??

	5 The Separation Procedure
	6 Computational Experiments and Analysis of Results
	7 Conclusions
	Appendix A Sufficient Conditions for Faceteness
	Appendix A.1 Proof of (??)
	Appendix A.2 Proof of (??)

