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Infinitely many minimal classes of graphs

of unbounded clique-width∗

A. Collins†, J. Foniok‡, N. Korpelainen§, V. Lozin¶, V. Zamaraev‖

Abstract

The celebrated theorem of Robertson and Seymour states that in the family of
minor-closed graph classes, there is a unique minimal class of graphs of unbounded
tree-width, namely, the class of planar graphs. In the case of tree-width, the restriction
to minor-closed classes is justified by the fact that the tree-width of a graph is never
smaller than the tree-width of any of its minors. This, however, is not the case with
respect to clique-width, as the clique-width of a graph can be (much) smaller than
the clique-width of its minor. On the other hand, the clique-width of a graph is
never smaller than the clique-width of any of its induced subgraphs, which allows
us to be restricted to hereditary classes (that is, classes closed under taking induced
subgraphs), when we study clique-width. Up to date, only finitely many minimal
hereditary classes of graphs of unbounded clique-width have been discovered in the
literature. In the present paper, we prove that the family of such classes is infinite.
Moreover, we show that the same is true with respect to linear clique-width.

Keywords: clique-width, linear clique-width, hereditary class

1 Introduction

Clique-width is a graph parameter which is important in theoretical computer science,
because many algorithmic problems that are generally NP-hard become polynomial-time
solvable when restricted to graphs of bounded clique-width [4]. Clique-width is a relatively
new notion and it generalises another important graph parameter, tree-width, studied in
the literature for decades. Clique-width is stronger than tree-width in the sense that
graphs of bounded tree-width have bounded clique-width, but not necessarily vice versa.
For instance, both parameters are bounded for trees, while for complete graphs only
clique-width is bounded.

When we study classes of graphs of bounded tree-width, we may assume without loss
of generality that together with every graph G our class contains all minors of G, as the
tree-width of a minor can never be larger than the tree-width of the graph itself. In other
words, when we try to identify classes of graphs of bounded tree-width, we may restrict
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ourselves to minor-closed graph classes. However, when we deal with clique-width this
restriction is not justified, as the clique-width of a minor of G can be much larger than
the clique-width of G. On the other hand, the clique-width of G is never smaller than
the clique-width of any of its induced subgraphs [5]. This allows us to be restricted to
hereditary classes, that is, those that are closed under taking induced subgraphs.

One of the most remarkable outcomes of the graph minor project of Robertson and
Seymour is the proof of Wagner’s conjecture stating that the minor relation is a well-quasi-
order [13]. This implies, in particular, that in the world of minor-closed graph classes there
exist minimal classes of unbounded tree-width and the number of such classes is finite. In
fact, there is just one such class (the planar graphs), which was shown even before the
proof of Wagner’s conjecture [12].

In the world of hereditary classes the situation is more complicated, because the in-
duced subgraph relation is not a well-quasi-order. It contains infinite antichains, and
hence, there may exist infinite strictly decreasing sequences of graph classes with no min-
imal one. In other words, even the existence of minimal hereditary classes of unbounded
clique-width is not an obvious fact. This fact was recently confirmed in [8]. However,
whether the number of such classes is finite or infinite remained an open question. In the
present paper, we settle this question by showing that the family of minimal hereditary
classes of unbounded clique-width is infinite. Moreover, we prove that the same is true
with respect to linear clique-width.

The organisation of the paper is as follows. In the next section, we introduce basic
notation and terminology. In Section 3, we describe a family of graph classes of unbounded
clique-width and prove that infinitely many of them are minimal with respect to this
property. In Section 4, we identify more classes of unbounded clique-width. Finally,
Section 5 concludes the paper with a number of open problems.

2 Preliminaries

All graphs in this paper are undirected, without loops and multiple edges. For a graph
G, we denote by V (G) and E(G) the vertex set and the edge set of G, respectively. The
neighbourhood of a vertex v ∈ V (G) is the set of vertices adjacent to v and the degree of v
is the size of its neighbourhood. As usual, by Pn and Cn we denote a chordless path and
a chordless cycle with n vertices, respectively.

In a graph, an independent set is a subset of vertices no two of which are adjacent.
A graph is bipartite if its vertices can be partitioned into two independent sets. Given
a bipartite graph G together with a bipartition of its vertices into two independent sets
V1 and V2, the bipartite complement of G is the bipartite graph obtained from G by
complementing the edges between V1 and V2.

Let G be a graph and U ⊆ V (G) a subset of its vertices. Two vertices of U will be
called U -similar if they have the same neighbourhood outside U . Clearly, U -similarity is
an equivalence relation. The number of equivalence classes of U -similarity will be denoted
µ(U). Also, by G[U ] we will denote the subgraph of G induced by U , that is, the subgraph
of G with vertex set U and two vertices being adjacent in G[U ] if and only if they are
adjacent in G. We say that a graph H is an induced subgraph of G if H is isomorphic to
G[U ] for some U ⊆ V (G).
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A class X of graphs is hereditary if it is closed under taking induced subgraphs, that
is, G ∈ X implies H ∈ X for every induced subgraph H of G. It is well-known that a
class of graphs is hereditary if and only if it can be characterised in terms of forbidden
induced subgraphs. More formally, given a set of graphs M , we say that a graph G is
M -free if G does not contain induced subgraphs isomorphic to graphs in M . Then a class
X is hereditary if and only if graphs in X are M -free for a set M .

The notion of clique-width of a graph was introduced in [3]. The clique-width of a
graph G is denoted cwd(G) and is defined as the minimum number of labels needed to
construct G by means of the following four graph operations:

• creation of a new vertex v with label i (denoted i(v)),

• disjoint union of two labelled graphs G and H (denoted G⊕H),

• connecting vertices with specified labels i and j (denoted ηi,j) and

• renaming label i to label j (denoted ρi→j).

Every graph can be defined by an algebraic expression using the four operations above.
This expression is called a k-expression if it uses k different labels. For instance, the
cycle C5 on vertices a, b, c, d, e (listed along the cycle) can be defined by the following
4-expression:

η4,1(η4,3(4(e)⊕ ρ4→3(ρ3→2(η4,3(4(d)⊕ η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))))).

Alternatively, any algebraic expression defining G can be represented as a rooted tree,
whose leaves correspond to the operations of vertex creation, the internal nodes correspond
to the ⊕-operations, and the root is associated with G. The operations η and ρ are
assigned to the respective edges of the tree. Figure 1 shows the tree representing the
above expression defining a C5.

���� ���� ���� ���� ��������

���� ���� ���� ����
+ + + +C5

4(e) 4(d) 3(c) 2(b)

1(a)
ρ4→3ρ3→2η4,3η4,1η4,3 η3,2 η2,1

Figure 1: The tree representing the expression defining a C5

Let us observe that the tree in Figure 1 has a special form known as a caterpillar
tree (that is, a tree that becomes a path after the removal of vertices of degree 1). The
minimum number of labels needed to construct a graph G by means of caterpillar trees
is called the linear clique-width of G and is denoted lcwd(G). Clearly, lcwd(G) ≥ cwd(G)
and there are classes of graphs for which the difference between clique-width and linear
clique-width can be arbitrarily large (see e.g. [2]).

A notion which is closely related to clique-width is that of rank-width (denoted rwd(G)),
which was introduced by Oum and Seymour in [10]. They showed that rank-width and
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clique-width are related to each other by proving that if the clique-width of a graph G is
k, then

rwd(G) ≤ k ≤ 2rwd(G)+1 − 1.

Therefore a class of graphs has unbounded clique-width if and only if it also has unbounded
rank-width.

For a graph G and a vertex v, the local complementation at v is the operation that
replaces the subgraph induced by the neighbourhood of v with its complement. A graph
H is a vertex -minor of G if H can be obtained from G by a sequence of local complemen-
tations and vertex deletions. In [11] it was proved that if H is a vertex-minor of G, then
the rank-width of H is at most the rank-width of G.

Finally, we introduce some language-theoretic terminology and notation. Given a word
α, we denote by α(k) the k-th letter of α and by αk the concatenation of k copies of α.
A factor of α is a contiguous subword of α, that is, a subword α(i)α(i + 1) . . . α(i + k)
for some i and k. An infinite word α is periodic if there is a positive integer k such that
α(i) = α(i+ k) for all i.

3 Minimal classes of graphs of unbounded clique-width

In this section, we describe an infinite family of graph classes of unbounded clique-width
(Subsections 3.1 and 3.2). The fact that each of them is a minimal hereditary class of
unbounded clique-width will be proved in Subsection 3.3.

Each class in our family is defined through a universal element, that is, an infinite
graph that contains all graphs from the class as induced subgraphs. All constructions
start from the graph P given by

V (P) = {vi,j : i, j ∈ N},
E(P) =

{
{vi,j , vi,j+1} : i, j ∈ N

}
.

The j-th column of P is the set Vj = {vi,j : i ∈ N}, and the i-th row of P is the set
Ri = {vi,j : j ∈ N}. Observe that each row of P induces an infinite chordless path, and
the graph P is the disjoint union of these paths. Moreover, any two consecutive columns
Vj and Vj+1 induce a 1-regular graph, that is, a collection of disjoint edges (one edge from
each path).

Let α = α1α2 . . . be an infinite binary word, that is, an infinite word such that αj ∈
{0, 1} for each natural j. The graph Pα is obtained from P by complementing the edges
between two consecutive columns Vj and Vj+1 if and only if αj = 1. In other words,
we apply bipartite complementation to the bipartite graph induced by Vj and Vj+1. In
particular, if α does not contain 1s, then Pα = P.

Finally, by Gα we denote the class of all finite induced subgraphs of Pα. By definition,
Gα is a hereditary class. In what follows we show that Gα is a minimal hereditary class of
unbounded clique-width for infinitely many values of α.

3.1 The basic class

Our first example constitutes the basis for infinitely many other constructions. It deals
with the class G1∞ , where 1∞ stands for the infinite word of all 1s. Let us denote by
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Fn,n the subgraph of P1∞ induced by n consecutive columns and any n rows.

In order to show that G1∞ is a class of unbounded clique-width, we will prove the following
lemma.

Lemma 1. The clique-width of Fn,n is at least bn/2c.

Proof. Let cwd(Fn,n) = t. Denote by τ a t-expression defining Fn,n and by tree(τ) the
rooted tree representing τ . The subtree of tree(τ) rooted at a node x will be denoted
tree(x, τ). This subtree corresponds to a subgraph of Fn,n, which will be denoted F (x).
The label of a vertex v of the graph Fn,n at the node x is defined as the label that v has
immediately prior to applying the operation x.

Let a be a lowest ⊕-node in tree(τ) such that F (a) contains a full column of Fn,n.
Denote the children of a in tree(τ) by b and c. Let us colour all vertices in F (b) blue and
all vertices in F (c) red, and the remaining vertices of Fn,n yellow. Note that by the choice
of a the graph Fn,n contains a non-yellow column (that is, a column each vertex of which
is non-yellow), but none of its columns are entirely red or blue. Let Vr be a non-yellow
column of Fn,n. Without loss of generality we assume that r ≤ dn/2e and that the column
r contains at least n/2 red vertices, since otherwise we could consider the columns in
reverse order and swap the colours red and blue.

Observe that edges of Fn,n between different coloured vertices are not present in F (a).
Therefore, if a non-red vertex distinguishes two red vertices u and v, then u and v must
have different labels at the node a. We will use this fact to show that F (a) contains a set
U of at least bn/2c vertices with pairwise different labels at the node a. Such a set can be
constructed by the following procedure.

1. Set j = r, U = ∅ and I = {i : vi,r is red}.

2. Set K = {i ∈ I : vi,j+1 is non-red}.

3. If K 6= ∅, add the vertices {vk,j : k ∈ K} to U . Remove members of K from I.

4. If I = ∅, terminate the procedure.

5. Increase j by 1. If j = n, choose an arbitrary i ∈ I, put U = {vi,m : r ≤ m ≤ n− 1}
and terminate the procedure.

6. Go back to Step 2.

It is not difficult to see that this procedure must terminate. To complete the proof, it
suffices to show that whenever the procedure terminates, the size of U is at least bn/2c
and the vertices in U have pairwise different labels at the node a

First, suppose that the procedure terminates in Step 5. Then U is a subset of red
vertices from at least bn/2c consecutive columns of row i. Consider two vertices vi,l , vi,m ∈
U with l < m. According to the above procedure, vi,m+1, is red. Since Fn,n does not
contain an entirely red column, there must exist a non-red vertex w in the column m+ 1.
According to the structure of Fn,n, vertex w is adjacent to vi,m and non-adjacent to vi,l.
We conclude that vi,l and vi,m have different labels. Since vi,l and vi,m have been chosen
arbitrarily, the vertices of U have pairwise different labels.
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Now suppose that the procedure terminates in Step 4. By analysing Steps 2 and 3, it
is easy to deduce that U is a subset of red vertices of size at least bn/2c. Suppose that
vi,l and vk,m are two vertices in U with l ≤ m. The procedure certainly guarantees that
i 6= k and that both vi,l+1 and vk,m+1 are non-red. If m ∈ {l, l + 2}, then it is clear that
vi,l+1 distinguishes vertices vi,l and vk,m, and therefore these vertices have different labels.
If m /∈ {l, l + 2}, we may consider vertex vk,m−1 which must be red. Since Fn,n does not
contain an entirely red column, the vertex vk,m must have a non-red neighbour w in the
column m− 1. But w is not a neighbour of vi,l, trivially. We conclude that vi,l and vk,m
have different labels, and therefore, the vertices of U have pairwise different labels. This
shows that the clique-width of the graph Fn,n is at least bn/2c.

3.2 Other classes

In this section, we discover more hereditary classes of graphs of unbounded clique-width
by showing that for all n ∈ N such classes have graphs containing Fn,n as a vertex-minor.

Lemma 2. Let α be an infinite binary word containing infinitely many 1s. Then the
clique-width of graphs in the class Gα is unbounded.

Proof. First fix an even number n. Let β be a factor of α containing precisely n occurrences
of 1, starting and ending with 1. We denote the length of β by ` and consider the subgraph
Gn of Pα induced by ` + 1 consecutive columns corresponding to β and by any n rows.
We will now show that Gn contains the graph Fn,n defined in Lemma 1 as a vertex-minor.

If β contains 00 as a factor, then there are three columns Vi, Vi+1, Vi+2 such that each
of Vi ∪Vi+1 and Vi+1 ∪Vi+2 induces a 1-regular graph. We apply a local complementation
to each vertex of Gn in column Vi+1 and then delete the vertices of Vi+1 from Gn. Under
this operation, our graph transforms into a new graph where column Vi+1 is absent,
while columns Vi and Vi+2 induce a 1-regular graph. In terms of words, this operation is
equivalent to removing one 0 from the factor 00. Applying this transformation repeatedly,
we can reduce Gn to an instance corresponding to a word β with no two consecutive 0s.

Now assume β contains 01 as a factor, and let Vj , Vj+1 and Vj+2 be three consecutive
columns such that Vj ∪ Vj+1 induces a 1-regular graph, while the edges between Vj+1 and
Vj+2 form the bipartite complement of a 1-regular graph. We apply a local complemen-
tation to each vertex of Vj+1 in turn and then delete the vertices of Vj+1 from Gn. It is
not difficult to see that in the transformed graph the edges between Vj and Vj+2 form the
bipartite complement of a matching. Looking at the vertices in Vj+2 we see that for any
two vertices x and y in this column, when a local complementation is applied at z ∈ Vj+1

the adjacency between x and y is complemented if and only if both x and y are adjacent
to z. Since |Vj+2| = n is even, we conclude that after n applications of local complemen-
tation Vj+2 remains an independent set. In terms of words, this operation is equivalent
to removing 0 from the factor 01. Applying this transformation repeatedly, we can reduce
Gn to an instance corresponding to a word β which is free of 0s.

The above discussion shows that Gn can be transformed by a sequence of local com-
plementations and vertex deletions into Fn,n. Therefore, Gn contains the graph Fn,n as
a vertex-minor. Since n can be arbitrarily large, we conclude that the rank-width, and
hence the clique-width, of graphs in Gα is unbounded.
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3.3 Minimality of classes Gα with a periodic α

In the previous section, we proved that any class Gα with infinitely many 1s in α has
unbounded clique-width. In the present section, we will show that if α is periodic, then
Gα is a minimal hereditary class of graphs of unbounded clique-width, provided that α
contains at least one 1. In other words, we will show that in any proper hereditary
subclass of Gα the clique-width is bounded. Moreover, we will show that proper hereditary
subclasses of Gα have bounded linear clique-width. To this end, we first prove a technical
lemma, which strengthens a similar result given in [8] from clique-width to linear clique-
width. Let us repeat that by µ(U) we denote the number of similarity classes with respect
to an equivalence relation defined in Section 2.

Lemma 3. Let m ≥ 2 and ` be positive integers. Suppose that the vertex set of G can be
partitioned into sets U1, U2, . . . where for each i,

(1) lcwd(G[Ui]) ≤ m,

(2) µ(Ui) ≤ ` and µ(U1 ∪ · · · ∪ Ui) ≤ `.

Then lcwd(G) ≤ `(m+ 1).

Proof. If G[U1] can be constructed with at most m labels and µ(U1) ≤ `, then G[U1]
can be constructed with at most m` different labels in such a way that in the process of
construction any two vertices in different equivalence classes of U1 have different labels,
and by the end of the process any two vertices in the same equivalence class of U1 have the
same label. In other words, we build G[U1] with at most m` labels and finish the process
with at most ` labels corresponding to the equivalence classes of U1.

Now assume we have constructed the graph Gi = G[U1 ∪ · · · ∪ Ui] using m` different
labels making sure that the construction finishes with a set A of at most ` different labels
corresponding to the equivalence classes of U1 ∪ · · · ∪ Ui. By assumption, it is possible
to construct G[Ui+1] using a set B of at most m` different labels such that we finish the
process with at most ` labels corresponding to the equivalence classes of Ui+1. We choose
labels so that A and B are disjoint. As we construct G[Ui+1] join each vertex to its
neighbours in Gi to build the graph Gi+1 = G[U1 ∪ · · · ∪ Ui ∪ Ui+1]. Notice that any two
vertices in the same equivalence class of U1∪· · ·∪Ui or Ui+1 belong to the same equivalence
class of U1 ∪ · · · ∪ Ui ∪ Ui+1. Therefore, the construction of Gi+1 can be completed with
a set of at most ` different labels corresponding to the equivalence classes of the graph.
The conclusion now follows by induction.

Now let α be an infinite binary periodic word of period p with at least one 1. In the
following three lemmas, let Hk,t be any subgraph of Pα induced by the first k rows and
any t consecutive columns.

It is not difficult to see the following fact.

Lemma 4. A graph with n vertices in Gα is an induced subgraph of Hk,t for any k ≥ n
and any t ≥ n(p+ 1).

Now, with the help of Lemma 3 we derive the following conclusion.

Lemma 5. The linear clique-width of Hk,t is at most 4t.
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Proof. Denote by Ui the i-th row of Hk,t. Since each row induces a path forest (that is, a
disjoint union of paths), it is clear that lcwd(G[Ui]) ≤ 3 for every i. Trivially, µ(Ui) ≤ t,
since |Ui| = t. Also, denoting Wi := U1∪ . . .∪Ui, it is not difficult to see that µ(Wi) ≤ t for
every i, since the vertices of the same column are Wi-similar. Now the conclusion follows
from Lemma 3.

Next we use Lemmas 3, 4 and 5 to prove the following result.

Lemma 6. For any fixed k ≥ 1, the linear clique-width of any Hk,k-free graph G in the
class Gα is at most (4k − 2)(8k + 1).

Proof. Let G be an Hk,k-free graph in Gα. By Lemma 4, the graph G is an induced
subgraph of Hn,n for some n. For convenience, assume that n is a multiple of k, say
n = tk. We fix an arbitrary embedding of G into Hn,n and call the vertices of Hn,n that
induce G black. The remaining vertices of Hn,n will be called white.

For 1 ≤ i ≤ t, let us denote by Wi the subgraph of Hn,n induced by the k consecutive
columns (i − 1)k + 1, (i − 1)k + 2, . . . , ik. We partition the vertices of G into subsets
U1, U2, . . . , Ut according to the following procedure:

1. For 1 ≤ j ≤ t, set Uj = ∅. Add every black vertex of W1 to U1. Set i = 2.

2. For j = 1, . . . , n,

• if row j of Wi is entirely black, then add the first vertex of this row to Ui−1 and
the remaining vertices of the row to Ui.

• otherwise, add the (black) vertices of row j preceding the first white vertex to
Ui−1 and add the remaining black vertices of the row to Ui.

3. Increase i by 1. If i = t+ 1, terminate the procedure.

4. Go back to Step 2.

Let us show that the partition U1, U2, . . . , Ut given by the procedure satisfies the as-
sumptions of Lemma 3 with m and ` depending only on k.

The procedure clearly assures that each G[Ui] is an induced subgraph of G[V (Wi) ∪
V (Wi+1)]. By Lemma 5, we have lcwd(G[V (Wi) ∪ V (Wi+1)]) = lcwd(Fn,2k) ≤ 8k. Since
the linear clique-width of an induced subgraph cannot exceed the linear clique-width of the
parent graph, we conclude that lcwd(G[Uj ]) ≤ 8k, which shows condition (1) of Lemma 3.

To show condition (2) of Lemma 3, let us call a vertex vj,m of Ui boundary if either
vj,m−1 belongs to Ui−1 or vj,m+1 belongs to Ui+1 (or both). It is not difficult to see that
a vertex of Ui is boundary if it belongs either to the second column of an entirely black
row of Wi or to the first column of an entirely black row of Wi+1. Since the graph G is
Hk,k-free, the number of rows of Wi which are entirely black is at most k − 1. Therefore,
the boundary vertices of Ui introduce at most 2(k − 1) equivalence classes in Ui.

Now consider two non-boundary vertices of Ui from the same column. It is not difficult
to see that these vertices have the same neighbourhood outside of Ui. Therefore, the non-
boundary vertices of the same column of Ui are Ui-similar and hence the non-boundary
vertices give rise to at most 2k equivalence classes in Ui. Thus, µ(Ui) ≤ 4k − 2 for all i.

Similar argument show that µ(U1 ∪ . . .∪Ui) ≤ 3k− 1 ≤ 4k− 2 for all i. Therefore, by
Lemma 3, we conclude that lcwd(G) ≤ (4k − 2)(8k + 1), which completes the proof.
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Theorem 1. Let α be an infinite binary periodic word containing at least one 1. Then
the class Gα is a minimal hereditary class of graphs of unbounded clique-width and linear
clique-width.

Proof. By Lemma 2, the clique-with of graphs in Gα is unbounded. Therefore, linear
clique-width is unbounded too. To prove the minimality, consider a proper hereditary
subclass X of Gα and let G ∈ Gα \ X. By Lemma 4, G is an induced subgraph of Hk,k

for some finite k. Therefore, each graph in X is Hk,k-free. Observe that the value of k is
the same for all graphs in X. It depends only on G and the period of α. Therefore, by
Lemma 6, the linear clique-width (and hence clique-width) of graphs in X is bounded by
a constant.

4 More classes of graphs of unbounded clique-width

In this section, we extend the alphabet from {0, 1} to {0, 1, 2} in order to construct more
classes of graphs of unbounded clique-width. Let α be an infinite word over the alphabet
{0, 1, 2}. We remind the reader that the letter 1 stands for the operation of bipartite
complementation between two consecutive columns Vj and Vj+1 of the graph P, that is,
if αj = 1, then two vertices vi,j ∈ Vj and vk,j+1 ∈ Vj+1 are adjacent in Pα if and only if
they are not adjacent in P.

The new letter 2 will represent the operation of “forward” complementation, that is,
if αj = 2, then two vertices vi,j ∈ Vj and vk,j+1 ∈ Vj+1 with i < k are adjacent in Pα if
and only if they are not adjacent in P. In other words, this operation adds edges between
vi,j and vk,j+1 with i < k. The bipartite graph induced by two consecutive columns
corresponding to the letter 2 is known in the literature as a chain graph.

Of special interest for the topic of this paper is the word 2∞ = 222 . . .. The class G2∞
is also known as the class of bipartite permutation graphs and this is one of the first two
minimal classes of graphs of unbounded clique-width discovered in the literature [8]. We
will denote by

Xn,n the subgraph of P2∞ induced by n consecutive columns and and any n rows. Figure 2
represents an example of the graph Xn,n with n = 6.

The unboundedness of clique-width in the class G2∞ follows from the following result
proved in [1].

Lemma 7. The clique-width of Xn,n is at least n/6.

In what follows, we will prove that that every class Gα with infinitely many 2s in α
has unbounded clique-width by showing that graphs in this class contain Xn,n as a vertex
minor for arbitrarily large values of n. We start with the case when the letter 1 appears
finitely many times in α.

Lemma 8. Let α be an infinite word over the alphabet {0, 1, 2}, containing the letter 2
infinitely many times and the letter 1 finitely many times. Then the class Gα has unbounded
clique-width.
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Figure 2: The graph X6,6

Proof. First fix a constant n. Let β be a factor of α containing precisely n instances of the
letter 2, starting and ending with the letter 2 and containing no instances of the letter 1
(since letter 2 appears infinitely many times and letter 1 finitely many times in α, we can
always find such a factor). We denote the length of β by ` and consider the subgraph Gn
of Pα induced by ` + 1 consecutive columns corresponding to β and by any n2n−1 rows.
We will now show that Gn contains the graph Xn,n as a vertex-minor.

Using arguments identical to those in Theorem 2, we can show that any instance of 00
can be replaced by 0 with the help of local complementations and vertex deletions.

Now each instance of 0 is surrounded by 2s in β. Consider any factor 02 of β and
let Vj , Vj+1, Vj+2 be three columns such that Vj ∪ Vj+1 induces a 1-regular graph and
Vj+1 ∪ Vj+1 induces a chain graph. If we apply a local complementation to each vertex
of Vj+1 in turn, it is easy to see that the edges between Vj and Vj+2 form a chain graph.
Looking at the vertices in the column Vj+2 we see that for any two vertices x and y, when
a local complementation is applied at z ∈ Vj+1 the edge between x and y is complemented
if and only if both x and y are adjacent to z. Therefore, x and y are adjacent if and only
if min{|N(x) ∩ Vj+1|, |N(y) ∩ Vj+1|} is odd. Hence the vertices of Vj+2 in the even rows
induce an independent set. So, applying a local complementation to each vertex of Vj+1

in turn and then deleting column Vj+1 together with the odd rows allows us to reduce the
factor 02 to 2. This transformation also reduces the number of rows two times. Since the
factor 02 can appear at most n − 1 times, in at most n − 1 transformations we reduced
Gn to a graph containing Xn,n. Therefore, Gn contains Xn,n as a vertex minor.

Since n can be arbitrarily large, we conclude with the help of Lemma 7 that graphs in
Gα can have arbitrarily large clique-width.

To extend the last lemma to a more general result, we again refer to [11], which
introduces another useful transformation, called pivoting. For a graph G and an edge xy,
the graph obtained by pivoting xy is defined to be the graph obtained by applying local
complementation at x, then at y and then at x again. Oum shows in [11] that in the case
of bipartite graphs pivoting xy is identical to complementing the edges between N(x)\{y}
and N(y) \ {x}. We will use this transformation to prove the following result.
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Lemma 9. Let α be an infinite word over the alphabet {0, 1, 2}, containing the letter 2
infinitely many times. Then the class Gα has unbounded clique-width.

Proof. First, fix a constant n. Let β be a factor of α containing precisely n instances of
the letter 2, starting and ending with the letter 2. Let Gn be the subgraph of Pα induced
by the columns corresponding to β and by any n2n + n2 rows. To prove the lemma, it is
enough to show that Gn contains either Fn,n or Xn,n as a vertex minor.

Consider any two consecutive appearances of 2 in β and denote the word between them
by γ. In other words, γ is a (possibly empty) word in the alphabet {0, 1}. If γ contains at
least n instances of 1, then by Lemma 2 Gn contains Fn,n as a vertex minor. Therefore,
we assume that the number of 1s in γ is at most n − 1. If γ contains no instance of 1,
then we apply the idea of Lemma 8 to reduce it to the empty word. If γ contains at least
one instance of 1, we apply the idea of Lemma 2 to eliminate all 0s from it.

Suppose that after this transformation γ contains at least two 1s, that is, β contains
211 as a factor. Let Vj , Vj+1, Vj+2 and Vj+3 be the four columns such that Vj+1∪Vj+2 and
Vj+2∪Vj+3 induce bipartite complements of 1-regular graph and Vj ∪Vj+1 induces a chain
graph. Let x be the vertex in the first row of column Vj+1 and y be the vertex in the last
row of column Vj+2. It is not difficult to see that if we pivot the edge xy and delete the
first and the last row, then the graphs induced by Vj+1 ∪Vj+2 and by Vj+2 ∪Vj+3 become
a 1-regular. In other words, we transform the factor 211 into 200. Then we apply the idea
of Lemma 2 to further transform it into 2.

Repeated applications of the above transformation allows us to assume that γ contains
exactly one 1, that is, β contains 212 as a factor. Let Vj , Vj+1, Vj+2 and Vj+3 be the four
columns such that Vj ∪Vj+1 and Vj+2 ∪Vj+3 induce chain graphs and Vj+1 ∪Vj+2 induces
the bipartite complement of a 1-regular graph. Let x be the vertex in the first row of
column Vj+1 and y be the vertex in the last row of column Vj+2. It is not difficult to
see that if we pivot the edge xy and delete the first and the last row, then the graph
induced by Vj+1 ∪ Vj+2 becomes 1-regular, while the graphs induced by Vj ∪ Vj+1 and by
Vj+2 ∪ Vj+3 remain chain graphs. In other words, we transform the factor 212 into 202.
Then we apply the idea of Lemma 8 to further transform it into 22.

The above procedure applied at most n − 1 times allows us to transform β into the
word of n consecutive 2s. In terms of graphs, Gn transforms into a sequence of n chain
graphs. Moreover, it is not difficult to see that if initially Gn contains n2n+n2 rows, then
the resulting graph has at least n rows, that is, it contains Xn,n as a vertex minor.

5 Conclusion and open problems

In the preceding sections, we have described a new family of hereditary classes of graphs
of unbounded clique-width. For many of them, we proved the minimality. Our results
allow us to make the following conclusion.

Theorem 2. There exist infinitely many minimal hereditary classes of graphs of un-
bounded clique-width and linear clique-width.

Proof. Let n be a natural number and α(n) = (0n1)∞. Since α(n) is an infinite periodic
word, by Theorem 1 Gα(n) is a minimal class of unbounded clique-width and linear clique-
width.

11



If n < m, then Gα(n) and Gα(m) do not coincide, since Gα(n) contains an induced C2(n+2),
while Gα(m) does not (which is not difficult to see). Therefore, Gα(1) , Gα(2) , . . . is an infinite
sequence of minimal hereditary classes of graphs of unbounded clique-width and linear
clique-width.

A full description of minimal classes of the form Gα remains an open question. To
propose a conjecture addressing this question, we first define the notion of almost periodic
word. An infinite word α is almost periodic if for each factor β of α there exists a constant
`(β) such that every factor of α of length at least `(β) contains β as a factor.

Conjecture 1. Let α be an infinite word over the alphabet {0, 1, 2}. Then the class Gα
is a minimal hereditary class of unbounded clique-width if and only if α is almost periodic
and contains at least one 1 or 2.

Note that almost periodicity implies that either 1 or 2 appears in α infinitely many
times. It is not hard to verify that this condition is necessary for the class Gα to have
unbounded clique-width. In other words, if α contains finitely many 1s and 2s the class
Gα has bounded clique-width.

We conclude the paper by discussing an intriguing relationship between clique-width
in a hereditary class X and the existence of infinite antichains in X with respect to the
induced subgraph relation. In particular, the following question was asked in [6]: is it
true that if the clique-width in X is unbounded, then it necessarily contains an infinite
antichain? Recently, this question was answered negatively in [9]. However, in the case of
so-called coloured induced subgraphs, the question remains open.

Coloured induced subgraphs. We define this notion for two colours, which is the
simplest case where the above question is open. Assume we deal with graphs whose
vertices are coloured by two colours, say white and black. We say that a graph H is
a coloured induced subgraph of G if there is an embedding of H into G that respects
the colours. With this strengthening of the induced subgraph relation, some graphs
that are comparable without colours may become incomparable if equipped with
colours. Consider, for instance, two chordless paths Pk and Pn. Without colours,
one of them is an induced subgraph of the other. Now imagine that we colour
the endpoints of both paths black and the remaining vertices white. Then clearly
they become incomparable with respect to the coloured induced subgraph relation
(if k 6= n). Therefore, the set of all paths coloured in this way create an infinite
coloured antichain. Let us denote it by A0.

In [6], it was conjectured that hereditary classes of graphs of unbounded clique-width
necessarily contain infinite coloured antichains. We believe this is true. Moreover, we
propose the following strengthening of the conjecture from [6].

Conjecture 2. Every minimal hereditary class of graphs of unbounded clique-width con-
tains a canonical infinite coloured antichain.

The notion of a canonical antichain was introduced by Guoli Ding in [7] and can be
defined for hereditary classes as follows. An infinite antichain A in a hereditary class X
is canonical if any hereditary subclass of X containing only finitely many graphs from A
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has no infinite antichains. In other words, speaking informally, an antichain is canonical
if it is unique in the class.

To support Conjecture 2, let us observe that it is valid for all minimal classes Gα
described in Theorem 1. Indeed, all of them contain arbitrarily large chordless paths and
hence all of them contain the infinite coloured antichain A0 defined above. Moreover, this
antichain is canonical, because by forbidding all paths of length greater than k for some
fixed k, we are left with subgraphs of Pα occupying at most k consecutive columns, in
which case the clique-width of such graphs is at most 4k by Lemma 5.

There exist many other infinite coloured antichains, but all available examples are
obtained from the antichain A0 by various transformations. We believe that any infinite
coloured antichain can be transformed from A0 in a certain way and that any minimal
hereditary class of unbounded clique-width can be transformed from Pα (for some α) in
a similar way. Describing the set of these transformations is a challenging research task.
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