
Further results on the deficiency of graphs

P.A. Petrosyanab∗, H.H. Khachatriana†

aDepartment of Informatics and Applied Mathematics,
Yerevan State University, 0025, Armenia

bInstitute for Informatics and Automation Problems,
National Academy of Sciences, 0014, Armenia

A proper t-edge-coloring of a graph G is a mapping α : E(G) → {1, . . . , t} such that
all colors are used, and α(e) 6= α(e′) for every pair of adjacent edges e, e′ ∈ E(G). If α
is a proper edge-coloring of a graph G and v ∈ V (G), then the spectrum of a vertex v,
denoted by S (v, α), is the set of all colors appearing on edges incident to v. The defi-
ciency of α at vertex v ∈ V (G), denoted by def(v, α), is the minimum number of integers
which must be added to S (v, α) to form an interval, and the deficiency def (G,α) of a
proper edge-coloring α of G is defined as the sum

∑
v∈V (G) def(v, α). The deficiency of

a graph G, denoted by def(G), is defined as follows: def(G) = minα def (G,α), where
minimum is taken over all possible proper edge-colorings of G. For a graph G, the small-
est and the largest values of t for which it has a proper t-edge-coloring α with deficiency
def(G,α) = def(G) are denoted by wdef (G) and Wdef (G), respectively. In this paper, we
obtain some bounds on wdef (G) and Wdef (G). In particular, we show that for any l ∈ N,
there exists a graph G such that def(G) > 0 and Wdef (G)−wdef (G) ≥ l. It is known that
for the complete graph K2n+1, def(K2n+1) = n (n ∈ N). Recently, Borowiecka-Olszewska,
Drgas-Burchardt and Ha luszczak posed the following conjecture on the deficiency of near-
complete graphs: if n ∈ N, then def(K2n+1 − e) = n − 1. In this paper, we confirm this
conjecture.

Keywords: proper edge-coloring, interval (consecutive) coloring, deficiency, complete
graph, near-complete graph.

Dedicated to the memory of Haroutiun Khachatrian

1. Introduction

All graphs considered in this paper are finite, undirected, and have no loops or multiple
edges. Let V (G) and E(G) denote the sets of vertices and edges of G, respectively. The
degree of a vertex v ∈ V (G) is denoted by dG(v), the diameter of G by diam(G), and the
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chromatic index of G by χ′(G). For a graph G, let ∆(G) and δ(G) denote the maximum
and minimum degrees of vertices in G, respectively. The terms and concepts that we do
not define can be found in [4,24,37].

A proper t-edge-coloring of a graph G is a mapping α : E(G) → {1, . . . , t} such that
all colors are used, and α(e) 6= α(e′) for every pair of adjacent edges e, e′ ∈ E(G).
If α is a proper edge-coloring of a graph G and v ∈ V (G), then the spectrum of a
vertex v, denoted by S (v, α), is the set of all colors appearing on edges incident to v.
A proper t-edge-coloring α of a graph G is an interval t-coloring if for each vertex v
of G, the set S (v, α) is an interval of integers. A graph G is interval colorable if it
has an interval t-coloring for some positive integer t. The set of all interval colorable
graphs is denoted by N. For a graph G ∈ N, the smallest and the largest values of t
for which it has an interval t-coloring are denoted by w(G) and W (G), respectively. The
concept of interval edge-coloring of graphs was introduced by Asratian and Kamalian [2]
in 1987. In [2], the authors proved that if G ∈ N, then χ′ (G) = ∆(G). Asratian and
Kamalian also proved [2,3] that if a triangle-free graph G admits an interval t-coloring,
then t ≤ |V (G)| − 1. In [18,19], Kamalian investigated interval colorings of complete
bipartite graphs and trees. In particular, he proved that the complete bipartite graph
Km,n has an interval t-coloring if and only if m+ n− gcd(m,n) ≤ t ≤ m+ n− 1, where
gcd(m,n) is the greatest common divisor of m and n. In [25,28], Petrosyan, Khachatrian
and Tananyan proved that the n-dimesional cube Qn has an interval t-coloring if and
only if n ≤ t ≤ n(n+1)

2
. The problem of determining whether or not a given graph

is interval colorable is NP -complete, even for regular [2] and bipartite [33] graphs. In
some papers [2,3,11,12,16,17,18,19,24,25,27,28,29,30,33], the problems of the existence,
construction and estimating of the numerical parameters of interval colorings of graphs
were investigated.

It is known that there are graphs that have no interval colorings. A smallest example
is K3. Since not all graphs admit an interval coloring, it is naturally to consider a
measure of closeness for a graph to be interval colorable. In [13], Giaro, Kubale and
Ma lafiejski introduced such a measure which is called deficiency of a graph (another
measure was suggested in [32]). The deficiency def(G) of a graph G is the minimum
number of pendant edges whose attachment to G makes it interval colorable. The concept
of deficiency of graphs can be also defined using proper edge-colorings. The deficiency
of a proper edge-coloring α at vertex v ∈ V (G), denoted by def(v, α), is the minimum
number of integers which must be added to S (v, α) to form an interval, and the deficiency
def (G,α) of a proper edge-coloring α of G is defined as the sum

∑
v∈V (G) def(v, α). In

fact, def(G) = minα def (G,α), where minimum is taken over all possible proper edge-
colorings of G. The problem of determining the deficiency of a graph is NP -complete,
even for regular and bipartite graphs [2,33,13]. In [13], Giaro, Kubale and Ma lafiejski
obtained some results on the deficiency of bipartite graphs. In particular, they showed
that there are bipartite graphs whose deficiency approaches the number of vertices. In
[14], the same authors proved that if G is an r-regular graph with an odd number of
vertices, then def(G) ≥ r

2
, and determined the deficiency of odd cycles, complete graphs,

wheels and broken wheels. In [34], Schwartz investigated the deficiency of regular graphs.
In particular, he obtained tight bounds on the deficiency of regular graphs and proved that
there are regular graphs with high deficiency. Bouchard, Hertz and Desaulniers [9] derived
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some lower bounds for the deficiency of graphs and provided a tabu search algorithm for
finding a proper edge-coloring with minimum deficiency of a graph. Recently, Borowiecka-
Olszewska, Drgas-Burchardt and Ha luszczak [7] studied the deficiency of k-trees. In
particular, they determined the deficiency of all k-trees with maximum degree at most
2k, where k ∈ {2, 3, 4}. They also proved that the following lower bound for def(G) holds:

if G is a graph with an odd number of vertices, then def(G) ≥ 2|E(G)|−(|V (G)|−1)∆(G)
2

. In the
same paper, Borowiecka-Olszewska, Drgas-Burchardt and Ha luszczak posed the following
conjecture on the deficiency of near-complete graphs: if n ∈ N, then def(K2n+1 − e) =
n− 1.

For a graph G, the smallest and the largest values of t for which it has a proper t-edge-
coloring α with deficiency def(G,α) = def(G) are denoted by wdef (G) and Wdef (G),
respectively. In this paper, we obtain some bounds on wdef (G) and Wdef (G). We also
determine the deficiency of certain graphs. In particular, we confirm the above-mentioned
conjecture of Borowiecka-Olszewska, Drgas-Burchardt and Ha luszczak.

2. Notation, definitions and auxiliary results

We use standard notation Cn and Kn for the simple cycle and complete graph on n
vertices, respectively. We also use standard notation Km,n and Kl,m,n for the complete
bipartite and tripartite graph, respectively, one part of which has m vertices, other part
has n vertices and a third part has l vertices.

For two positive integers a and b with a ≤ b, we denote by [a, b] the interval of integers
{a, a+ 1, . . . , b− 1, b}. If a > b, then [a, b] = ∅.

Let A be a finite set of integers. The deficiency def(A) of A is the number of integers
between minA and maxA not belonging to A. Clearly, def(A) = maxA−minA−|A|+1.
A set A with def(A) = 0 is an interval.

If α is a proper edge-coloring of a graph G and v ∈ V (G), then the spectrum of a
vertex v, denoted by S (v, α), is the set of colors appearing on edges incident to v. The
smallest and largest colors of S (v, α) are denoted by S (v, α) and S (v, α), respectively.
If α is a proper edge-coloring of a graph G and V ′ ⊆ V (G), then we can define S (V ′, α)
as follows: S (V ′, α) =

⋃
v∈V ′ S (v, α). The smallest and largest colors of S (V ′, α) are

denoted by S (V ′, α) and S (V ′, α), respectively. The deficiency of α at vertex v ∈ V (G),
denoted by def(v, α), is defined as follows: def(v, α) = def (S (v, α)). The deficiency
of a proper edge-coloring α of G is defined as the sum def (G,α) =

∑
v∈V (G) def(v, α).

For a graph G, define the deficiency def(G) as follows: def(G) = minα def (G,α), where
minimum is taken over all possible proper edge-colorings of G. Clearly, def(G) = 0 if
and only if G ∈ N. Also, it is easy to see that def(G) can be defined as the minimum
number of pendant edges whose attachment to G makes it interval colorable. For a graph
G, the smallest and the largest values of t for which it has a proper t-edge-coloring α
with deficiency def(G,α) = def(G) are denoted by wdef (G) and Wdef (G), respectively.
Clearly, if for a graph G, def(G) = 0, then wdef (G) = w(G) and Wdef (G) = W (G).

We will use the following five results.
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Theorem 2.1. [2,3] If G ∈ N, then χ′(G) = ∆(G). Moreover, if G is a regular graph,
then G ∈ N if and only if χ′(G) = ∆(G).

Theorem 2.2. [2,3] If G is a regular graph and G ∈ N, then for every t, w(G) ≤ t ≤
W (G), G has an interval t-coloring.

Theorem 2.3. [2,3] If G is a triangle-free graph and G ∈ N, then W (G) ≤ |V (G)| − 1.

Theorem 2.4. [5] If G is a planar graph and G ∈ N, then W (G) ≤ 11
6
|V (G)|.

Theorem 2.5. [15] For any m,n ∈ N, K1,m,n ∈ N if and only if gcd(m + 1, n + 1) = 1.
Moreover, if gcd(m+ 1, n+ 1) = 1, then w (K1,m,n) = m+ n.

We also need the following lemma on a special interval coloring of the complete bipartite
graph Kp,p.

Lemma 2.6. If Kp,p is a complete bipartite graph with bipartition (X, Y ), where X =
{x1, . . . , xp} and Y = {y1, . . . , yp}, then Kp,p has an interval coloring β such that S(xi, β) =
S(yi, β) =

⌊
i
2

⌋
+ 1 for 1 ≤ i ≤ p.

Proof. We construct an edge-coloring β of Kp,p in the following way: for every 1 ≤ k ≤⌊
p
2

⌋
, let

β (xiyj) =

{
k, if i+ j = 2k,
k + p, if i+ j = 2k + p.

At this point exactly
⌊
p
2

⌋
edges incident to each vertex are colored. Let H denote

the subgraph of Kp,p which contains all vertices of Kp,p but only its non-colored edges.
Clearly, H is a

⌈
p
2

⌉
-regular bipartite graph, so, by König’s edge-coloring theorem, it has

a proper
⌈
p
2

⌉
-edge-coloring β′. We complete the edge-coloring β of Kp,p by shifting the

colors from β′ by
⌊
p
2

⌋
. For every e ∈ E(H), let

β(e) = β′(e) +
⌊p

2

⌋
.

The resulting spectrums of the vertices xi and yi (1 ≤ i ≤ p) are the following:

S(xi, β) = S(yi, β) =

[⌊
i

2

⌋
+ 1,

⌊p
2

⌋]
∪
[
1 + p,

⌊
i

2

⌋
+ p

]
∪
[⌊p

2

⌋
+ 1, p

]
,

where the last interval comes from the subgraph H and is common for all vertices of Kp,p.
The union of these intervals is

S(xi, β) = S(yi, β) =

[⌊
i

2

⌋
+ 1,

⌊
i

2

⌋
+ p

]
(1 ≤ i ≤ p).

Note that this lemma is a partial case of Lemma 4 from [35].
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3. Some bounds on wdef (G) and Wdef (G)

Recently, in [1], Altinakar, Caporossi and Hertz proved that if G has at least three
vertices, then Wdef (G) ≤ 2|V (G)| − 4 + def(G). Here, we provide some other bounds for
the parameters wdef (G) and Wdef (G) depending on the number of vertices, degrees and
diameter for connected, triangle-free and planar graphs.

Theorem 3.1. Let C be a class of graphs closed under the operation of attaching of
pendant edges. If W (G′) ≤ f(|V (G′)|) holds for any graph G′ ∈ C∩N, then for any graph
G ∈ C, we have

Wdef (G) ≤ f (|V (G)|+ def(G)).

Proof. Let G ∈ C and α be a proper Wdef (G)-edge-coloring of G such that def(G,α) =
def(G).

Define an auxiliary graph G′ as follows: for each vertex v ∈ V (G) with def(v, α) > 0,
we attach def(v, α) pendant edges at vertex v. Clearly, G′ ∈ C and |V (G′)| = |V (G)| +
def(G). Next, we extend a proper Wdef (G)-edge-coloring α of G to a proper Wdef (G)-
edge-coloring β of G′ as follows: for each vertex v ∈ V (G) with def(v, α) > 0, we color
the attached edges incident to v using distinct colors from

[
S (v, α) , S (v, α)

]
\ S(v, α).

By the definition of β and the construction of G′, we obtain that G′ has an interval
Wdef (G)-coloring. Since G′ ∈ C ∩N, we have

Wdef (G) ≤ W (G′) ≤ f(|V (G′)|) = f (|V (G)|+ def(G)).

Since the class of triangle-free graphs is closed under the operation of attaching of
pendant edges, by Theorems 2.3 and 3.1, we obtain the following results.

Corollary 3.2. If G is a triangle-free graph, then Wdef (G) ≤ |V (G)|+ def(G)− 1.

Corollary 3.3. If G is a bipartite graph, then Wdef (G) ≤ |V (G)|+ def(G)− 1.

It is known that Wdef (Km,n) = m + n − 1 (m,n ∈ N) [18,19], so this upper bound is
sharp for graphs G with def(G) = 0. Now let us consider graphs G with def(G) = 1.
Let K ′n,n be a complete bipartite graph with exactly one subdivided edge, i.e.

V
(
K ′n,n

)
= {u1, . . . , un, v1, . . . , vn, w} and

E
(
K ′n,n

)
= ({uivj : 1 ≤ i ≤ n, 1 ≤ j ≤ n} \ {unvn}) ∪ {unw,wvn}.

It is well-known that χ′
(
K ′n,n

)
= n + 1 [6,36], so by Theorem 2.1, K ′n,n /∈ N. Thus,

def
(
K ′n,n

)
≥ 1. On the other hand, let us define an edge-coloring α of K ′n,n as follows:

for every e ∈ E
(
K ′n,n

)
, let

α (e) =


i+ j − 1, if e = uivj,
2n− 1, if e = unw,
2n, if e = wvn.
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It is not difficult to see that α is a proper 2n-edge-coloring of K ′n,n with deficiency
def(K ′n,n, α) = 1. Hence, def(K ′n,n) = 1 and 2n ≤ Wdef (K

′
n,n) ≤ 2n+ 1.

Since the class of planar graphs is closed under the operation of attaching of pendant
edges, by Theorems 2.4 and 3.1, we obtain the following result.

Corollary 3.4. If G is a planar graph, then Wdef (G) ≤ 11
6

(|V (G)|+ def(G)).

Next we give some upper bounds for Wdef (G) depending on degrees and diameter of
the connected graph G.

Theorem 3.5. If G is a connected graph, then

Wdef (G) ≤ 1 + def(G) + max
P∈P

∑
v∈V (P )

(dG(v)− 1),

where P is the set of all shortest paths in the graph G.

Proof. In the proof we follow the idea from [3] (Thm. 2). Let α be a proper Wdef (G)-
edge-coloring of G such that def(G,α) = def(G).

Similarly as in the proof of Theorem 3.1, we define an auxiliary graph H as follows:
for each vertex v ∈ V (G) with def(v, α) > 0, we attach def(v, α) pendant edges at
vertex v. Clearly, H is a connected graph. Again, we extend a proper Wdef (G)-edge-
coloring α of G to a proper Wdef (G)-edge-coloring β of H as follows: for each vertex
v ∈ V (G) with def(v, α) > 0, we color the attached edges incident to v using colors from[
S (v, α) , S (v, α)

]
\ S(v, α). By the definition of β and the construction of H, we obtain

that H has an interval Wdef (G)-coloring. In the coloring β of H, we consider the edges
with colors 1 and Wdef (G). Let e = u1u2, e

′ = w1w2 and β(e) = 1, β(e′) = Wdef (G).
Without loss of generality we may assume that a shortest path P joining e with e′ joins
u1 with w1, where P = v0e1v1 . . . vi−1eivi . . . vk−1ekvk and v0 = u1, vk = w1.

Since β is an interval Wdef (G)-coloring of H, we have

β(e1) ≤ dH(v0),
β(e2) ≤ β(e1) + dH(v1)− 1,
· · · · · · · · · · · · · · · · · ·

β(ei) ≤ β(ei−1) + dH(vi−1)− 1,
· · · · · · · · · · · · · · · · · ·

β(ek) ≤ β(ek−1) + dH(vk−1)− 1,
β(e′) ≤ β(ek) + dH(vk)− 1.

Summing up these inequalities, we obtain

β(e′) ≤ 1 +
k∑
j=0

(dH(vj)− 1).

From here, we obtain



Further results on the deficiency of graphs 7

Wdef (G) = β(e′) ≤ 1 +
k∑
j=0

(dH(vj)− 1) ≤ 1 + def(G) +
k∑
j=0

(dG(vj)− 1)

≤ 1 + def(G) + max
P∈P

∑
v∈V (P )

(dG(v)− 1) .

Corollary 3.6. If G is a connected graph, then

Wdef (G) ≤ 1 + def(G) + (diam(G) + 1) (∆(G)− 1).

It is known that the upper bound in Theorem 3.5 is sharp for trees [18,19]. The
upper bound in Corollary 3.6 cannot be significantly improved, since def (C2n+1) = 1,
diam (C2n+1) = n and Wdef (C2n+1) = n+ 2 (n ∈ N).

Here we prove a lower bound on wdef (G) for graphs without perfect matching.

Theorem 3.7. If G has no perfect matching, then wdef (G) ≥ 2δ(G)− def(G).

Proof. In the proof of this theorem we follow the idea from [9] (Prop. 2).
Let α be a proper wdef (G)-edge-coloring of G such that def(G,α) = def(G).
It is easy to see that for every v ∈ V (G), we have

1 ≤ S (v, α) ≤ wdef (G)− δ(G) + 1.

Assume that wdef (G) − δ(G) + 1 ≤ δ(G) (otherwise, wdef (G) ≥ 2δ(G) ≥ 2δ(G) −
def(G)).

Since G has no perfect matching, for each color c ∈ [wdef (G)− δ(G) + 1, δ(G)], there
is at least one vertex vc such that c /∈ S (vc, α) and S (vc, α) < c < S (vc, α). This
implies that there are at least 2δ(G) − wdef (G) missing colors at vertices of G. Hence,
def(G) ≥ 2δ(G)− wdef (G).

Corollary 3.8. [9] If G is a graph with an odd number of vertices, then wdef (G) ≥
2δ(G)− def(G).

Corollary 3.9. [9] If G is an r-regular graph with an odd number of vertices and def(G) =
r
2
, then wdef (G) ≥ 3r

2
.

Corollary 3.10. If G has no perfect matching and G ∈ N, then w(G) ≥ max{∆(G), 2δ(G)}.

In [14], Giaro, Kubale and Ma lafiejski determined the deficiency of K2n+1, and they
proved that def(K2n+1) = n (n ∈ N). The lower bound in Theorem 3.7 is sharp for
K2n+1, since δ(K2n+1) = 2n and it was proved in [9] that wdef (K2n+1) = 3n (n ∈ N).
In the next section we will prove that this lower bound is also sharp for near-complete
graphs, but first we consider the difference Wdef (G)−wdef (G). In [19], Kamalian proved
that for any l ∈ N, there exists a graph G such that G ∈ N and W (G)− w(G) ≥ l. Here
we extend this result to graphs with a positive deficiency.
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Figure 1. We divide the vertices of Kp2q+1+1 into 2q+1 groups, such that the intersection
of each pair of groups is the vertex v0.

Theorem 3.11. For any l ∈ N, there exists a graph G such that def(G) > 0 and
Wdef (G)− wdef (G) ≥ l.

Proof. Let p = 2l + 1 and G = K2p+1. Since def(G) = p > 0 and wdef (G) = 3p, so to
complete the proof it is sufficient to show that Wdef (G) ≥ 3p + p−1

2
= 3p + l. We will

prove a more general statement for all complete graphs with odd number of vertices. We
will show that if n = p2q, where p is odd and q ∈ Z+, then

Wdef (K2n+1) ≥ 3n+ p−1
2

.

We construct an edge-coloring φ of Kp2q+1+1 by composing three colorings of different
graphs.

1. We need interval
(

3
2
(p+ 1)− 2

)
-coloring α of Kp+1 as described in the proof of The-

orem 4 from [25]. We denote the vertices of Kp+1 in the following way: V (Kp+1) =
{ui : i = 0, . . . , p}. The coloring α has an important property that S(ui, α) = b i

2
c+1

for every i = 0, . . . , p.
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2. Next, we need the interval coloring β of Kp,p described in Lemma 2.6. We denote
the vertices of Kp,p in the following way: V (Kp,p) = {xi, yi : i = 1, . . . , p}. Lemma
2.6 guarantees that for every i = 1, . . . , p, S(xi, β) = S(yi, β) =

⌊
i
2

⌋
+ 1.

3. Finally, we need a proper edge-coloring γ of K2q+1+1 with 3 · 2q colors. We denote
its vertices by V (K2q+1+1) = {wj : j = 0, . . . , 2q+1}. The coloring γ must satisfy
the following condition: def(K2q+1+1, γ) = def(w0, γ) = 2q. Colorings with these
properties are described in the proof of Theorem 4.2 in [14] and in the proof of
Theorem 29 in [31].

We denote the vertices of Kp2q+1+1 in the following way (Fig. 1):

V (Kp2q+1+1) = {v0} ∪
{
vji : i = 1, . . . , p, j = 1, . . . , 2q+1

}
.

We construct its edge-coloring φ in the following way:

φ
(
vji1v

j
i2

)
= α(ui1ui2) + p

(
γ(w0wj)− 1

)
, 0 ≤ i1 < i2 ≤ p, 1 ≤ j ≤ 2q+1;

φ
(
vj1i1 v

j2
i2

)
= β(xi1yi2) + p

(
γ(wj1wj2)− 1

)
, 1 ≤ i1, i2 ≤ p, 1 ≤ j1 < j2 ≤ 2q+1.

The symbols vj0 in the above formulas refer to the same vertex v0, for all j = 1, . . . , 2q+1.
The first formula colors the edges that have both ends in the same group in Fig. 1, while
the second formula colors the edges that join vertices from different groups. We show
that the spectrums of the vertices vji , i = 1, . . . , p, j = 1, . . . , 2q+1 are intervals.

S
(
vji , φ

)
=
[
S(ui, α) + p

(
γ(w0wj)− 1

)
, S(ui, α) + p

(
γ(w0wj)− 1

)]
∪

⋃
j′∈[1,2q+1]\{j}

[
S(xi, β) + p

(
γ(wjwj

′
)− 1

)
, S(xi, β) + p

(
γ(wjwj

′
)− 1

)]
.

We have that S(ui, α) = S(xi, β) = b i
2
c+1 for every i = 1, . . . , p. So the above expression

becomes:

S
(
vji , φ

)
=

[⌊
i

2

⌋
+ 1 + p

(
γ(w0wj)− 1

)
,

⌊
i

2

⌋
+ p+ p

(
γ(w0wj)− 1

)]
∪

⋃
j′∈[1,2q+1]\{j}

[⌊
i

2

⌋
+ 1 + p

(
γ(wjwj

′
)− 1

)
,

⌊
i

2

⌋
+ p+ p

(
γ(wjwj

′
)− 1

)]

=
⋃

j′∈[0,2q+1]\{j}

[⌊
i

2

⌋
+ 1 + p

(
γ(wjwj

′
)− 1

)
,

⌊
i

2

⌋
+ p+ p

(
γ(wjwj

′
)− 1

)]

=

[⌊
i

2

⌋
+ 1 + p

(
S(wj, γ)− 1

)
,

⌊
i

2

⌋
+ p+ p

(
S(wj, γ)− 1

)]
.

The last equation holds because the spectrum S (wj, γ) is an interval for j = 1, . . . , 2q+1.
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Finally, the spectrum of v0 and the deficiency of φ at v0 will be:

S (v0, φ) =
⋃

j′∈[1,2q+1]

[
S(u0, α) + p

(
γ(w0wj

′
)− 1

)
, S(u0, α) + p

(
γ(w0wj

′
)− 1

)]
=

⋃
j′∈[1,2q+1]

[
1 + p · γ(w0wj

′
)− p, p · γ(w0wj

′
)
]
,

def(v0, φ) = S(v0, φ)− S(v0, φ)− dK2n+1(v0) + 1

= p · S(w0, γ)− (1 + p · S(w0, γ)− p)− p · 2q+1 + 1

= p
(
S(w0, γ)− S(w0, γ)− dK2q+1+1

(w0) + 1
)

= p · def(w0, γ) = p2q = n.

Let wj and wj be the vertices of K2q+1+1 such that S
(
wj, γ

)
= 1 and S

(
wj, γ

)
= 3 ·2q.

It is easy to see that S
(
v
j

1, φ
)

= 1 and S
(
vjp, φ

)
=
⌊
p
2

⌋
+ p + p (3 · 2q − 1) = 3n + p−1

2
.

So, φ is a proper edge-coloring of K2n+1 with 3n + p−1
2

colors having def(K2n+1, φ) =
def (v0, φ) = n.

The last theorem of this section generalizes Theorem 2.2.

Theorem 3.12. Let α0 be a proper t0-edge-coloring of a regular graph G and D ⊆ V (G)
be a subset of its vertices. If for every v ∈ V (G) \ D, def(v, α0) = 0, then for every t,
S(D,α0)− S(D,α0) + 1 ≤ t ≤ t0, G has a proper t-edge-coloring α such that def(v, α) =
def(v, α0) for every vertex v ∈ V (G).

Proof. Let a = S(D,α0)− 1 and b = t0−S(D,α0). Basically we have a+ b colors outside
the range [S(D,α0), S(D,α0)] and we need to get rid of t0 − t of them. We construct
the edge-coloring α of G by copying colors of all the edges from α0 and then modifying
some of them. First we try to remove the colors larger than S(D,α0), and if these are
not enough, we remove the colors smaller than S(D,α0).

If t0−t ≤ b, then for every e ∈ E(G) with α0(e) ∈ [t+ 1, t0], we set α(e) = α0(e)−∆(G).
If t0 − t > b, then for every e ∈ E(G) with α0(e) ∈

[
S(D,α0) + 1, t0

]
, we set α(e) =

α0(e) − ∆(G). Next, for every e ∈ E(G) with α0(e) ∈ [1, t0 − t− b], we set α(e) =
α0(e) + ∆(G). In both cases, the spectrums of the vertices from D are not modified and
the spectrums of the other vertices remain intervals. If S(V (G), α) > 1, then we subtract
S(V (G), α)− 1 from colors of all the edges to obtain the final coloring.

Note that if we apply the above theorem on an interval colorable regular graph G by
taking its interval W (G)-coloring as α0 and any set containing a single vertex as D, we
obtain Theorem 2.2.

Theorems 3.11 and 3.12 imply the following result.

Corollary 3.13. Let n = p2q, where p is odd and q ∈ Z+. For every t, 3n ≤ t ≤ 3n+ p−1
2

,
K2n+1 has a proper t-edge-coloring α such that def(K2n+1, α) = n.

Proof. It is enough to take a proper
(
3n+ p−1

2

)
-edge-coloring α0 of the graph K2n+1 from

the proof of Theorem 3.11 and a set D = {v0}, where v0 ∈ V (K2n+1) and def(v0, α0) =
def(K2n+1, α0) = n, and notice that S(D,α0)−S(D,α0)+1 = S(v0, α0)−S(v0, α0)+1 =
def(v0, α0) + dK2n+1(v0) = n+ 2n = 3n.
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4. The deficiency of certain graphs

This section is devoted to the deficiency of near-complete graphs and some complete
tripartite graphs. We begin our consideration with near-complete graphs. Recently, it
was shown that the following result holds.

Theorem 4.1. [7] If G is a graph with an odd number of vertices, then

def(G) ≥ 2|E(G)|−(|V (G)|−1)∆(G)
2

.

Corollary 4.2. [7] For any n,m ∈ N, we have

def(K2n+1 −mK2) ≥ n−m, where 1 ≤ m ≤ n.

In general, the lower bound on def(K2n+1−mK2) (1 ≤ m ≤ n) is not sharp, since for any
maximum matching M of K2n+1 (n ≥ 2), K2n+1−M /∈ N [25], hence def(K2n+1−nK2) >
0. However, the lower bound is sharp for K2n+1 − e as it was conjectured in [7].

Theorem 4.3. If n ∈ N, then def(K2n+1 − e) = n− 1.

Proof. By Corollary 4.2, we have def(K2n+1 − e) ≥ n − 1 for any n ∈ N. For the proof,
it suffices to construct a proper edge-coloring β of K2n+1− e with deficiency def(K2n+1−
e, β) = n − 1. Let V (K2n+1 − e) = {v0, v1, . . . , v2n}. Without loss of generality we may
assume that e = v1v2n.

Define an edge-coloring β of K2n+1 − e. For each edge vivj ∈ E(K2n+1) with i < j and
(i, j) 6= (1, 2n), define a color β (vivj) as follows:

β (vivj) =



1, if i = 0, j = 1;
2n+ 1, if i = 0, j = 2;
j − 1, if i = 0, 3 ≤ j ≤ n;
n+ 1 + j, if i = 0, n+ 1 ≤ j ≤ 2n− 2;
n, if i = 0, j = 2n− 1;
2n, if i = 0, j = 2n;
i+ j − 1, if 1 ≤ i ≤

⌊
n
2

⌋
, 2 ≤ j ≤ n, i+ j ≤ n+ 1;

i+ j + n− 2, if 2 ≤ i ≤ n− 1,
⌊
n
2

⌋
+ 2 ≤ j ≤ n, i+ j ≥ n+ 2;

n+ 1 + j − i, if 3 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n− 2, j − i ≤ n− 2;
j − i+ 1, if 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n, j − i ≥ n;
2i− 1, if 2 ≤ i ≤ 1 +

⌊
n−1

2

⌋
, n+ 1 ≤ j ≤ n+

⌊
n−1

2

⌋
, j − i = n− 1;

i+ j − 1, if
⌊
n−1

2

⌋
+ 2 ≤ i ≤ n, n+ 1 +

⌊
n−1

2

⌋
≤ j ≤ 2n− 1, j − i = n− 1;

i+ j − 2n+ 1, if n+ 1 ≤ i ≤ n+
⌊
n
2

⌋
− 1, n+ 2 ≤ j ≤ 2n− 2, i+ j ≤ 3n− 1;

i+ j − n, if n+ 1 ≤ i ≤ 2n− 1, n+
⌊
n
2

⌋
+ 1 ≤ j ≤ 2n, i+ j ≥ 3n.

Let us prove that β is a proper (3n − 1)-edge-coloring of K2n+1 − e with deficiency
def(K2n+1 − e, β) = n− 1.

Let G be the subgraph of K2n+1 − e induced by {v1, . . . , v2n}. Clearly, G is isomorphic
to K2n − e. This edge-coloring β of K2n+1 − e is constructed on the interval (3n − 2)-
coloring of K2n which is described in the proof of Theorem 4 from [25]. We use this
interval (3n−2)-coloring of K2n and then we shift all colors of the edges of G by one. Let
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Figure 2. Proper 8-edge-coloring β of K7 − e with def(v0, β) = def(K7 − e) = 2.

α be this edge-coloring of G. Using the property of this edge-coloring which is described
in the proof of Corollary 6 from [25], we get

1) S (v1, α) = [2, 2n− 1] and S (v2, α) = [2, 2n],

2) S (vi, α) = S (vn+i−2, α) = [i, 2n− 2 + i] for 3 ≤ i ≤ n,

3) S (v2n−1, α) = [n+ 1, 3n− 1] and S (v2n, α) = [n+ 1, 3n− 1] \ {2n}.

Now, by the definition of β, we have

1) S (v0, β) = [1, n] ∪ [2n, 3n− 1],

2) S (v1, β) = [1, 2n− 1] and S (v2, β) = [2, 2n+ 1],

3) S (vi, β) = [i− 1, 2n− 2 + i] and S (vn+i−2, β) = [i, 2n− 1 + i] for 3 ≤ i ≤ n,

4) S (v2n−1, β) = [n, 3n− 1] and S (v2n, β) = [n+ 1, 3n− 1].

This shows that β is a proper (3n − 1)-edge-coloring of K2n+1 − e with deficiency
def(K2n+1 − e, β) = n− 1. Hence, def(K2n+1 − e) = n− 1. (see Fig. 2).
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Theorem 4.4. If n ∈ N, then wdef (K2n+1 − e) = 3n− 1.

Proof. From the proof of Theorem 4.3, we have that K2n+1 − e has a proper (3n − 1)-
edge-coloring α with deficiency def(K2n+1− e, α) = def(K2n+1− e) = n−1. This implies
that wdef (K2n+1 − e) ≤ 3n − 1. On the other hand, since K2n+1 − e has no perfect
matching, δ(K2n+1− e) = 2n− 1 and def(K2n+1− e) = n− 1, by Theorem 3.7, we obtain
wdef (K2n+1 − e) ≥ 2(2n− 1)− n+ 1 = 3n− 1.

In [10], it was shown that def (K1,1,n) = 0 if n is even, and def (K1,1,n) = 1 if n is odd.
Here we generalize this result and determine the deficiency of K1,m,n for any m,n ∈ N.

Theorem 4.5. For any m,n ∈ N, we have

def (K1,m,n) =

{
0, if gcd(m+ 1, n+ 1) = 1,
1, otherwise.

Proof. By Theorem 2.5, we have K1,m,n ∈ N if and only if gcd(m+ 1, n+ 1) = 1 for any
m,n ∈ N. This implies that def (K1,m,n) = 0 if gcd(m+1, n+1) = 1, and def (K1,m,n) ≥ 1
if gcd(m+ 1, n+ 1) > 1. We now show that def (K1,m,n) ≤ 1.

Let V (K1,m,n) = {u1, . . . , um, v1, . . . , vn, w} and E (K1,m,n) = {uivj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}∪
{wui : 1 ≤ i ≤ m} ∪ {wvj : 1 ≤ j ≤ n}.

Define an edge-coloring α of K1,m,n as follows:

(1) for 1 ≤ i ≤ m and 1 ≤ j ≤ n, let α (uivj) = i+ j,

(2) for 1 ≤ i ≤ m, let α (wui) = i,

(3) for 1 ≤ j ≤ n, let α (wvj) = m+ 1 + j.

Let us prove that α is a proper (m + n + 1)-edge-coloring of K1,m,n with deficiency
def (K1,m,n, α) = 1.

By the definition of α, we have

1) for 1 ≤ i ≤ m,

S (ui, α) = [i+ 1, n+ i] ∪ {i} = [i, n+ i] due to (1) and (2),

2) for 1 ≤ j ≤ n,

S (vj, α) = [j + 1,m+ j] ∪ {m+ 1 + j} = [j + 1,m+ 1 + j] due to (1) and (3),

3) S (w, α) = [1,m] ∪ [m+ 2,m+ n+ 1] due to (2) and (3).

This implies that α is a proper (m + n + 1)-edge-coloring of K1,m,n with deficiency
def (K1,m,n, α) = 1 (m,n ∈ N); thus def (K1,m,n) ≤ 1 if gcd(m+ 1, n+ 1) > 1.
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5. Concluding Remarks

In 1999, Giaro, Kubale and Ma lafiejski [13] showed that there are bipartite graphs
whose deficiency approaches the number of vertices. On the other hand, in [9] Bouchard,
Hertz, Desaulniers suggested the following conjecture.

Conjecture 5.1. For every graph G,

def(G) ≤ |V (G)|.

The conjecture is still open, but it holds for regular graphs, some bipartite graphs
and outerplanar graphs [34,13,8,23]. If the conjecture is true, then, by Corollary 3.2, we
obtain that the upper bound Wdef (G) ≤ 2|V (G)| − 1 holds for every triangle-free graph
G. Moreover, if the conjecture is true, then, by the result of Altinakar, Caporossi and
Hertz [1], we derive that the bound Wdef (G) ≤ 3|V (G)| − 4 holds for every graph G with
at least three vertices.

In Section 3, we obtained some results on the parameters wdef (K2n+1) and Wdef (K2n+1).
In particular, we proved that the difference Wdef (K2n+1)−wdef (K2n+1) can be arbitrarily
large. On the other hand, we cannot find a proper edge-coloring of K2n+1 with more
than 3n colors having minimum deficiency when n is a power of two. So we would like to
suggest the following conjecture.

Conjecture 5.2. For any q ∈ Z+,

wdef (K2q+1+1) = Wdef (K2q+1+1) = 3 · 2q.

Finally, we would like to introduce the concept of deficiency-critical graphs, since it will
be very useful for investigating deficiency of graphs. A graph G with def(G) = k > 0 is
k-deficiency-critical if def(G − e) < def(G) for every edge e in G. Clearly, odd cycles
C2n+1 (n ∈ N) are 1-deficiency-critical graphs. In fact, the conjecture of Borowiecka-
Olszewska, Drgas-Burchardt and Ha luszczak can be reformulated as follows: all complete
graphs K2n+1 (n ∈ N) are n-deficiency-critical. Here we would like to suggest the following
problem.

Problem 1. Characterize all k-deficiency-critical graphs.
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