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On the spanning connectivity of tournaments

Bo zhang, Weihua Yang∗, Shurong Zhang

Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China

Abstract. Let D be a digraph. A k-container of D between u and v, C(u, v), is a set

of k internally disjoint paths between u and v. A k-container C(u, v) of D is a strong (resp.

weak) k∗-container if there is a set of k internally disjoint paths with the same direction (resp.

with different directions allowed) between u and v and it contains all vertices of D. A digraph

D is k∗-strongly (resp. k∗-weakly) connected if there exists a strong (resp. weak) k∗-container

between any two distinct vertices. We define the strong (resp. weak) spanning connectivity of a

digraph D, κ∗s(D) (resp. κ∗w(D) ), to be the largest integer k such that D is ω∗-strongly (resp.

ω∗-weakly) connected for all 1 ≤ ω ≤ k if D is a 1∗-strongly (resp. 1∗-weakly) connected. In

this paper, we show that a tournament with n vertices and irregularity i(T ) ≤ k, if n ≥ 6t+ 5k

(t ≥ 2), then κ∗s(T ) ≥ t and κ∗w(T ) ≥ t+ 1 if n ≥ 6t+ 5k − 3 (t ≥ 2).
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1 Introduction

For terminology not explicitly introduced here, we refer to [3, 11]. A digraph D consists of a

set V (D) of vertices and a set A(D) of order pairs xy of distinct vertices called arcs, if xy is

an arc of D, we say that x dominates y. A tournament T is a digraph such that each pair of

vertices is joined by precisely one arc. A Hamiltonian path (resp. cycle) of a tournament is a

path (resp. cycle) including all vertices of T . Bang-Jensen, Gutin and Huang [4] obtained some

∗Corresponding author. E-mail: ywh222@163.com, yangweihua@tyut.edu.cn.

1

http://arxiv.org/abs/1706.04742v1


characterization for the existence of a Hamiltonian (x, y)-path in an extended tournament. If

P = x1x2...xm is a path in a tournament T and x is a vertex not in the path such that x is

dominated by some xi and dominates some xj with i < j, then T contains an (x1, xm)-path

P
′

= x1x2...xkxxk+1...xm where i ≤ k ≤ j − 1. We say that P
′

is an augmentation of P . By

Menger’s theorem [10], a tournament T is k-strongly connected (or called k-strong) if and only

if for each ordered pair x,y of vertices, T contains k internally disjoint paths from x to y. When

T is not strong, and let T1, T2, ..., Tk be the components. Without loss of generality, we may

assume that whenever i < j, each vertex of Ti dominates each vertex of Tj . We refer to Ti as

the i′th component of T , and to T1 and Tk as the initial and terminal components respectively.

When T is strong, T has a Hamiltonian cycle. If uv ∈ A(T ) and P is a (u, v)-path of length

k, then P is called a k-bypass of uv. Alspach et al. in [2] investigates bypasses in asymmetric

digraphs. Zhang and Wu [12] investigates conditions for arc-3-cyclicity in tournaments. Guo et

al. in [5] investigates bypasses in tournaments.

We denote the in-degree and out-degree of vertex x by d−(x) and d+(x) respectively. The

irregularity i(T ) of a tournament T is the maximum |d+(x) − d−(x)| over all vertices x of T .

Clearly, a tournament is regular if i(T ) = 0. If i(T ) 6= 0, the T contains a vertex of in-degree at

least 1

2
(n− 1) and a vertex of out-degree at least 1

2
(n− 1). Every vertex of T has out-degree at

least 1

2
(n− 1− i(T )).

In an undirected graph G, a k-container of G between u and v, C(u, v), is a set of k internally

disjoint paths between u and v. The concept of container is proposed by Hsu in [6] to evaluate

the performance of communication of an interconnection networks. A k-container C(u, v) of G

is a k∗-container if it contains all vertices of G. A graph G is k∗-connected if there exists a k∗-

container between any two distinct vertices of G. The study of k∗-connected graph is motivated

by the globally 3∗-connected graphs proposed by Albert et al. in [1]. Lin et al. in [9] proved

that the pancake graph Pn is w∗-connected for any w with 1 ≤ w ≤ n − 1 if and only if n 6= 3.

Later, they apply the concept to discuss the spanning connectivity of graphs in [7] and discuss

the spanning fan-connectivity of graphs in [8].

In this paper, we generalize the concepts above to digraphs and we consider the spanning

connectivity of tournaments. Let D be a digraph. A k-container of D between u and v, C(u, v),

is a set of k internally disjoint paths between u and v. A k-container C(u, v) of D is a strong
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(resp. weak) k∗-container if there is a set of k internally disjoint paths with the same direction

(resp. with different directions allowed) between u and v i.e. they have either k (u, v)-paths or

k (v, u)-paths and it contains all vertices of D. A digraph D is k∗-strongly (resp. k∗-weakly)

connected if there exists a strong (resp. weak) k∗-container between any two distinct vertices.

We define the strong (resp. weak) spanning connectivity of a digraph D, κ∗s(D) (resp. κ∗w(D)

), to be the largest integer k such that D is ω∗-strongly (resp. ω∗-weakly) connected for all

1 ≤ ω ≤ k if D is a 1∗-strongly (resp. 1∗-weakly) connected. We prove that for k ≥ 1, a

2k-strong tournament which has at least one path of length 2 between any vertices x and y is

(k + 2)∗-weakly connected, and that for k ≥ 0, a (2k + 1)-strong tournament is (k + 2)∗-weakly

connected. Further, for k ≥ 2, we prove that a 2k-strong tournament is k∗-strongly connected,

and that a (2k + 1)-strong tournament which has at least one 2-bypass for each arc is (k + 1)∗-

strongly connected. Finally, we also prove that a tournament with n vertices and the irregularity

i(T ) ≤ k, if n ≥ 6t+ 5k (t ≥ 2), then κ∗s(T ) ≥ t and that a tournament with n vertices and the

irregularity i(T ) ≤ k, if n ≥ 6t+ 5k − 3 (t ≥ 2), then κ∗w(T ) ≥ t+ 1.

2 k
∗-weakly connected tournaments

Several results proved in [11] are useful in this paper, as follows.

Theorem 2.1 ( [11]). Let T be a tournament and x, y distinct vertices of T . Then T has a

Hamiltonian path from x to y or from y to x unless one condition of (i)− (iv) below is satisfied,

in which case T has no Hamiltonian path connecting x and y.

(i) T is not strong and either the initial or the terminal component of T (or both) contains

none of x, y.

(ii) T is strong, T − x is not strong, and y belongs to neither the initial nor the terminal

component of T − x.

(iii) T is strong, T − y is not strong, and x belongs to neither the initial nor the terminal

component of T − y.

(iv) T is isomorphic to T s
6 or T

s
6 and x and y are as shown in Fig.2 (or interchanged on

this figure).
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Corollary 2.2 ( [11]). For any three vertices of a strong tournament there is a Hamiltonian

path connecting two of them.

Corollary 2.3 ( [11]). A 2-strong tournament is 1∗-weakly connected unless it is isomorphic to

T s
6 or T

s
6.

Thomassen also prove that every arc of a 3-strong tournament is contained in a Hamiltonian

cycle i.e. for any two vertices x, y of a 3-strong tournament, there is a Hamiltonian path between

x and y, and that every arc of a 4-strong tournament has a Hamiltonian bypass i.e. for any two

vertices x, y of a 4-strong tournament, there is a Hamiltonian path from x to y and from y to

x. According to these conclusions, the following is easy to obtain.

Corollary 2.4 ( [11]). A 3-strong tournament is 1∗-weakly connected.

Corollary 2.5 ( [11]). A 4-strong tournament is 1∗-strongly connected and 2∗-strongly con-

nected.

The following is also easy to obtain.

Proposition 2.6. A strong tournament is 2∗-weakly connected.

Proof. Let T be a strong tournament, then T has a Hamiltonian cycle. So for any two vertices x

and y of T , there is a weak 2∗-container between x and y. Therefore, T is 2∗-weakly connected.

Theorem 2.7. For all k ≥ 0, a (2k + 1)-strong tournament is (k + 2)∗-weakly connected.

Proof. Let T be a (2k + 1)-strong tournament and x, y be any two vertices of T . The vertices

of T − {x, y} can be partitioned into four subsets A, B, C, D such that both x and y dominate

each vertex of A and are dominated by each vertex of B, each vertex of C dominates y and is

dominated by x, and each vertex of D dominates x and is dominated by y. Now, we consider

the proposition for k ≥ 0 as follows.

Case 1. C ∪D = ∅. T has no path of length 2 between x and y. Since T is (2k + 1)-strong,

there are at least 2k+1 arcs from A to B. Thus, T has at least 2k +1 internally disjoint paths
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of length 3 between x and y. We choose k internally disjoint paths of length 3 among them and

delate those 2k intermediate vertices of paths of length 3, the resulting tournament is strong.

By Proposition 2.6, there is a weak 2∗-container between x and y. Combining the k internally

disjoint paths of length 3 between x and y, then T has a weak (k+2)∗-container between x and

y.

Case 2. 1 ≤ |C ∪ D| ≤ k − 1. We assume |C ∪ D| = i. Since T is (2k + 1)-strong, as an

argument similar to that used above in the case 2 of Proposition 2.8, there are at least k− i arcs

from A to B. Then T has at least k− i paths of length 3 between x and y. Delate those 2(k− i)

intermediate vertices of paths of length 3 and those i vertices of C ∪D, then T is (i+1)-strong.

So the resulting tournament is at least strong and has a weak 2∗-container between x and y.

Combining the k − i internally disjoint paths of length 3 and the i internally disjoint paths of

length 2 between x and y, then T has a weak (k + 2)∗-container between x and y.

Case 3. |C ∪ D| ≥ k. T has at least k paths of length 2 between x and y. Delate the k

intermediate vertices of paths of length 2, the resulting tournament is strong, by Proposition

2.6, there is a weak 2∗-container between x and y. Combining the k internally disjoint paths of

length 2 between x and y, then T has a weak (k + 2)∗-container between x and y.

Hence, T is (k + 2)∗-weakly connected. The proof is completed.

By an argument similar to that of Theorem 2.7, we obtain the following proposition in which

the connectivity can be weaken slightly.

Proposition 2.8. If a 2k-strong tournament T has at least one path of length 2 between any

two vertices x and y, then T is (k + 2)∗-weakly connected.

Proof. Let x, y be any two vertices of T . The vertices of T −{x, y} can be partitioned into four

subsets A, B, C, D such that both x and y dominate each vertex of A and are dominated by

each vertex of B, each vertex of C dominates y and is dominated by x, and each vertex of D

dominates x and is dominated by y. We assume that there are i paths of length 2 between x

and y i.e. |C ∪D| = i and i ≥ 1.

Case 1. |C ∪D| = 1. Since T is 2k-strong, T has at least 2k− 1 paths of length 3 between x

and y. We choose k − 1 paths of length 3 between x and y, delate those 2(k − 1) intermediate
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vertices of paths of length 3 and the vertex in C or D. The resulting tournament is strong, by

Proposition 2.6, there is a weak 2∗-container between x and y. Combining the k − 1 internally

disjoint paths of length 3 and the path of length 2 between x and y, then T has a weak (k+2)∗-

container between x and y.

Case 2. 2 ≤ |C ∪D| ≤ k− 1. If |C| = |D| = i
2
, since T is 2k-strong, there are at least 2k− i

2

arcs from A to B. Then T has at least 2k− i
2
paths of length 3 between x and y. So we choose

k − i paths of length 3 between x and y. Delate those 2(k − i) intermediate vertices of paths

of length 3 and those i intermediate vertices of paths of length 2. The resulting tournament is

strong, by Proposition 2.6, there is a weak 2∗-container between x and y. Combining the k − i

internally disjoint paths of length 3 and the i internally disjoint paths of length 2 between x and

y, then T has a weak (k + 2)∗-container between x and y. If |C| < |D| or |D| < |C|, we assume

min{|C|, |D|} = m and m < i
2
. Since T is 2k-strong, there are at least 2k −m− 1 arcs from A

to B. Then T has at least 2k −m − 1 paths of length 3 between x and y. So we choose k − i

paths of length 3 between x and y. By an argument similar to that used above in this case, one

can see that T has a weak (k + 2)∗-container between x and y.

Case 3. |C ∪ D| ≥ k. T has at least k paths of length 2 between x and y. Delate the k

intermediate vertices of paths of length 2, the resulting tournament is strong, by Proposition

2.6, there is a weak 2∗-container between x and y. Combining the k internally disjoint paths of

length 2 between x and y, then T has a weak (k + 2)∗-container between x and y.

Hence, T is (k + 2)∗-weakly connected. The proof is completed.

3 k
∗-strongly connected tournaments

Theorem 3.1. For all k ≥ 2, a 2k-strong tournament is k∗-strongly connected.

Proof. Let T be a 2k-strong tournament and x, y be any two vertices of T . Without loss of

generality, we assume xy ∈ A(T ). The vertices of T −{x, y} can be partitioned into four subsets

A, B, C, D such that both x and y dominate each vertex of A and are dominated by each vertex

of B, each vertex of C dominates y and is dominated by x, and each vertex of D dominates x

and is dominated by y. Now, we consider three cases as follows.
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Case 1. C = ∅. Since T is 2k-strong, there are at least 2k−1 arcs from A to B. Thus, T has

2k−1 internally disjoint (x, y)-paths of length 3. We choose k−2 internally disjoint (x, y)-paths

among them and delate the 2(k − 2) intermediate vertices of the (x, y)-paths. The resulting

tournament is 4-strong, by Corollary 2.5, there is a strong 2∗-container from x to y. Combining

the k − 2 internally disjoint (x, y)-paths of length 3, T has a strong k∗-container from x to y.

Case 2. 1 ≤ |C| ≤ k− 3. Since T is 2k-strong, there are at least 2k− 1− |C| arcs from A to

B. Thus, T has 2k − 1− |C| internally disjoint (x, y)-paths of length 3. We choose k − 2− |C|

internally disjoint (x, y)-paths among them, then delate the 2(k− 2− |C|) intermediate vertices

of (x, y)-paths of length 3 and the vertices of C. The resulting tournament is (4 + |C|)-strong,

by Corollary 2.5, there is a strong 2∗-container from x to y. Combining the k−2−|C| internally

disjoint (x, y)-paths of length 3 and the |C| internally disjoint (x, y)-paths of length 2, T has a

strong k∗-container from x to y.

Case 3. |C| ≥ k − 2. T has at least k − 2 internally disjoint (x, y)-paths of length 2. Delate

the k − 2 intermediate vertices of (x, y)-paths of length 2, the resulting tournament is (k + 2)-

strong and it is at least 4-strong, by Corollary 2.5, there is a strong 2∗-container from x to y.

Combining the k−2 internally disjoint (x, y)-paths of length 2, T has a strong k∗-container from

x to y.

Hence, T is k∗-strongly connected. The proof is completed.

By an argument similar to that of the theorem above, we obtain the following theorem in

which the connectivity can be weaken slightly and we omit the detailed proof.

Theorem 3.2. For all k ≥ 2, let T be a 2k+1-strong tournament. If T has at least one 2-bypass

for each arc of T , then T is (k + 1)∗-strongly connected.

4 Spanning connectivity of tournaments

Lemma 4.1 ( [11]). Let T be a tournament with n vertices and the irregularity i(T ) ≤ k. Then

the connectivity of T is at least 1

3
(n − 2k).

Theorem 4.2. Let T be a tournament with n vertices and i(T ) ≤ k. If n ≥ 6t + 5k (t ≥ 2) ,
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then κ∗s(T ) ≥ t.

Proof. By Lemma 4.1, T is 2t-strong. As t ≥ 2, then T is 4-strong. By Corollary 2.5, T is i∗-

strongly connected for i ∈ {1, 2}. Let x, y be any two vertices of T . Without loss of generality,

we assume x dominates y. Let A (resp. B) be the set of vertices in T − {x, y} dominated by x

(resp. dominating y). Now we consider the following three cases.

Case 1. A ∩B = ∅.

We shall show that there are at least t−2 vertices of A dominate at least t−2 vertices of B.

Since |A| ≥ 1

2
(n− 3− k), |B| ≥ 1

2
(n− 3− k) , we have |C| = |V (T )\(A ∪B ∪ {x, y})| ≤ n− 2−

1

2
(n− 3− k)− |A|. Without loss of generality, we may suppose each vertex u 6∈ {u1, u2, ..., ut−2}

satisfying d−(u) ≤ d−(ui) for i ∈ {1, 2, ..., t − 2} in the sub-tournament T [A]. Recall that every

tournament T
′

has a vertex of in-degree at least 1

2
(|T

′

|−1). This means that the in-degree of ui

in T [A] satisfies d−A(ui
) ≥ 1

2
(|A|−t+2) for i ∈ {1, 2, ..., t−2}. Otherwise, there would be a vertex

in A\{u1, u2, ..., ut−2}+ui such that the in-degree of it larger than ui, contradicting the choice of

ui. So the out-degree of ui in T [A] satisfies d+A(ui) = |A|−1−d−A(ui) ≤
1

2
|A|+ 1

2
(t−4). Therefore,

the number of vertices in B dominated by ui is at least
1

2
(n−1−k)−d+A(ui)−d+C(ui) ≥ t+ 5

4
, where

d+C(ui) denotes the number of vertices in C dominated by ui. It can be seen that every vertex

ui dominates at least t− 2 vertices of B. Thus, we obtain t− 2 internally disjoint paths xuivjy

of length 3, where vj ∈ B and j ∈ {1, 2, ..., t − 2}. Let {P1, P2, ..., Pm} (1 ≤ m ≤ t− 2) denote

the m internally disjoint (x, y)-path of length 3. Deleting the 2m vertices from T , the resulting

tournament is 4-strong. By Corollary 2.5, the resulting tournament is 2∗-strongly connected.

As x dominates y, there is a strong 2∗-container from x to y. Let {Pm+1, Pm+2} denote the two

internally disjoint (x, y)-paths. Then {P1, P2, ..., Pm+2} forms a strong (m+ 2)∗-container from

x to y. Hence, T has a strong i∗-container from x to y for all i ∈ {3, 4, ..., t}.

Case 2. |A ∩B| ≥ t− 2.

We choose m (1 ≤ m ≤ t − 2) vertices from A ∩ B and the m vertices imply a set of m

internally disjoint (x, y)-paths of length 2, denoted by {P1, P2, ..., Pm}. Deleting the m vertices,

the resulting tournament is (2t −m)-strong. Clearly, the resulting tournament is 4-strong. By

Corollary 2.5, it is 2∗-strongly connected. As x dominates y, there is a strong 2∗-container from x

to y. Let {Pm+1, Pm+2} denote the two internally disjoint (x, y)-paths. Thus, {P1, P2, ..., Pm+2}

8



forms a strong (m+ 2)∗-container from x to y. Hence, T has a strong i∗-container from x to y

for all i ∈ {3, 4, ..., t}.

Case 3. 1 ≤ |A ∩B| ≤ t− 3.

Suppose A ∩ B = S and |S| = s. Since |A| ≥ 1

2
(n − 3 − k), |B| ≥ 1

2
(n − 3 − k), we have

|C| = |V (T )\(A ∪ B ∪ {x, y})| ≤ n − 2 − 1

2
(n − 3 − k) − |A| + s. We assume each vertex

u 6∈ {u1, u2, ..., ut−2−s} satisfying d−(u) ≤ d−(ui) for all i ∈ {1, 2, ..., t − 2 − s} in the sub-

tournament T [A\B]. The in-degree of ui in T [A\B] satisfies d−
A\B

(u
i
) ≥ 1

2
(|A\B|− t+2+ s) for

each i ∈ {1, 2, ..., t−2−s}. Otherwise, there would be a vertex in A\(B∪{u1, u2, ..., ut−2−s})+ui

such that the in-degree of it larger than ui, contradicting the choice of ui. So the out-degree of

ui in T [A\B] satisfies d+
A\B(ui) = |A\B| − 1− d−

A\B(ui) ≤
1

2
|A\B|+ 1

2
(t− 4− s). Therefore, the

number of vertices in B dominated by ui is at least
1

2
(n−1−k)−d+

A\B(ui)−d+C(ui) ≥ t+ 5

4
, where

d+C(ui) denote the number of vertices in C dominated by ui. It can be seen that every vertex ui

dominates at least (t − 2 − s) vertices of B\A. Thus, we obtain (t − 2 − s) internally disjoint

paths xuivjy of length 3 (vj ∈ B, j ∈ {1, 2, ..., t − 2 − s}) and s internally disjoint (x, y)-paths

of length 2. Let {P1, P2, ..., Ps} (1 ≤ s ≤ t − 3) denotes the s internally disjoint (x, y)-paths of

length 2 and {Q1, Q2, ..., Qm} (1 ≤ m ≤ t− 2− s) denotes the m internally disjoint (x, y)-paths

of length 3. Deleting the 2m+ s vertices from T , the resulting tournament is (4+ s)-strong. By

Corollary 2.5, the resulting tournament is 2∗-strongly connected. As x dominates y, there is a

strong 2∗-container from x to y. Let {R1, R2} denote the two internally disjoint (x, y)-paths.

Then {P1, P2, ..., Ps, Q1, Q2, ..., Qm, R1, R2} forms a strong (s +m + 2)∗-container from x to y.

Hence, T has a strong i∗-container from x to y for all i ∈ {3, 4, ..., t}.

Thus, T is i∗-strongly connected for i ∈ {3, 4, ..., t}. As T is i∗-strongly connected for

i ∈ {1, 2}., then κ∗s(T ) ≥ t. The proof is completed.

By an argument similar to that used above, it is not difficult to obtain the following. We

omit the detailed proof.

Theorem 4.3. Let T be a tournament with n vertices and i(T ) ≤ k. If n ≥ 6t+5k− 3 (t ≥ 2),

then κ∗w(T ) ≥ t+ 1.
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