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Abstract

A matching M in a graph G is r-degenerate if the subgraph of G induced by the set of ver-

tices incident with an edge in M is r-degenerate. Goddard, Hedetniemi, Hedetniemi, and Laskar

(Generalized subgraph-restricted matchings in graphs, Discrete Mathematics 293 (2005) 129-138)

introduced the notion of acyclic matchings, which coincide with 1-degenerate matchings. Solving

a problem they posed, we describe an efficient algorithm to determine the maximum size of an

r-degenerate matching in a given chordal graph. Furthermore, we study the r-chromatic index of

a graph defined as the minimum number of r-degenerate matchings into which its edge set can be

partitioned, obtaining upper bounds and discussing extremal graphs.

Keywords: Matching; edge coloring; induced matching; acyclic matching; uniquely restricted

matching

1 Introduction

Matchings in graphs are a central topic of graph theory and combinatorial optimization [24]. While

classical matchings are tractable, several well known types of more restricted matchings, such as

induced matchings [8, 31] or uniquely restricted matchings [16], lead to hard problems. Goddard,

Hedetniemi, Hedetniemi, and Laskar [15] proposed to study so-called subgraph-restricted matchings

in general. In particular, they introduce the notion of acyclic matchings. By a simple yet elegant

argument (cf. Theorem 4 in [15]) they show that finding a maximum acyclic matching in a given

graph is hard in general, and they explicitly pose the problem to describe a fast algorithm for the

acyclic matching number in interval graphs. In the present paper, we solve this problem for the more

general chordal graphs. Furthermore, we study the edge coloring notion corresponding to acyclic

matchings.

Before we give exact definitions and discuss our results as well as related research, we introduce

some terminology. We consider finite, simple, and undirected graphs, and use standard notation.

A matching in a graph G is a subset M of the edge set E(G) of G such that no two edges in M

are adjacent. Let V (M) be the set of vertices incident with an edge in M . M is induced [8] if the

subgraph G[V (M)] of G induced by the set V (M) is 1-regular, that is, M is the edge set of G[V (M)].

Induced matching are also known as strong matchings. M is uniquely restricted [16] if there is no other

matching M ′ in G distinct from M that satisfies V (M) = V (M ′). It is easy to see that M is uniquely

restricted if and only if there is no M -alternating cycle in G, which is a cycle in G every second edge

of which belongs to M [16]. Finally, M is acyclic [15] if G[V (M)] is a forest. Let ν(G), νs(G), νur(G),

and ν1(G) be the maximum sizes of a matching, an induced matching, a uniquely restricted matching,
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and an acyclic matching in G, respectively. Since every induced matching is acyclic, and every acyclic

matching is uniquely restricted, we have

νs(G) ≤ ν1(G) ≤ νur(G) ≤ ν(G).

We chose the notation “ν1(G)” rather than something like “νac(G)”, because we consider some further

natural generalization.

For a non-negative integer r, a graph G is r-degenerate if every subgraph of G of order at least

one has a vertex of degree at most r. Note that a graph is a forest if and only if it is 1-degenerate.

An r-degenerate order of a graph G is a linear order u1, . . . , un of its vertices such that, for every i in

[n], the vertex vi has degree at most r in G[{vi, . . . , vn}], where [n] is the set of the positive integers

at most n. Clearly, a graph is r-degenerate if and only if it has an r-degenerate order.

Now, let a matching M in a graph G be r-degenerate if the induced subgraph G[V (M)] is r-

degenerate, and let νr(G) denote the maximum size of an r-degenerate matching in G.

For every type of matching, there is a corresponding edge coloring notion. An edge coloring of a

graph G is a partition of its edge set into matchings. An edge coloring is induced (strong), uniquely

restricted, and r-degenerate if each matching in the partition has this property, respectively. Let χ′(G),

χ′
s(G), χ′

ur(G), and χ′
r(G) be the minimum numbers of colors needed for the corresponding colorings,

respectively. Clearly,

χ′
s(G) ≥ χ′

1(G) ≥ χ′
ur(G) ≥ χ′(G).

In view of the hardness of the restricted matching notions, lower bounds on the matching numbers

[17–20], upper bounds on the chromatic indices [3, 4], efficient algorithms for restricted graph classes

[9–11, 13, 25], and approximation algorithms have been studied [4, 30]. There is only few research

concerning acyclic matchings; Panda and Pradhan [28] describe efficient algorithms for chain graphs

and bipartite permutation graphs.

Vizing’s [32] famous theorem says that the chromatic index χ′(G) of G is either ∆(G) or ∆(G)+1,

where ∆(G) is the maximum degree of G. Induced edge colorings have attracted much attention

because of the conjecture χ′
s(G) ≤ 5

4∆(G)2 posed by Erdős and Nešetřil (cf. [12]). Building on earlier

work of Molloy and Reed [27], Bruhn and Joos [7] showed χ′
s(G) ≤ 1.93∆(G)2 provided that ∆(G)

is sufficiently large. In [4] we showed χ′
ur(G) ≤ ∆(G)2 with equality if and only if G is the complete

bipartite graph K∆(G),∆(G).

Our results are upper bounds on χ′
r(G) with the discussion of extremal graphs, and an efficient

algorithm for νr(G) in chordal graphs, solving the problem posed in [15].

2 Bounds on the r-degenerate chromatic index

Since, for every two positive integers r and ∆, every r-degenerate matching of the complete bipartite

graph K∆,∆ of order 2∆ has size at most r, we obtain χ′
r(K∆,∆) ≥

∆2

r
.

Our first result gives an upper bound in terms of r and ∆.

Theorem 1 If r is a positive integer and G is a graph of maximum degree at most ∆, then

χ′
r(G) ≤

2(∆ − 1)2

r + 1
+ 2(∆ − 1) + 1. (1)
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Proof: Let K =
⌊

2(∆−1)2

r+1 + 2(∆ − 1) + 1
⌋

. The proof is based on a inductive coloring argument. We

may assume that all but exactly one edge uv of G are colored using colors in [K] such that, for every

color α in [K], the edges of G colored with α form an r-degenerate matching. We consider the colors

in [K] that are forbidden by colors of the edges close to uv. In order to complete the proof, we need

to argue that there is always still some available color for uv in [K].

We introduce some notation illustrated in Figure 1. Let Nu = NG(u)\NG[v], Nv = NG(v)\NG[u],

and Nu,v = NG(u) ∩ NG(v). Let nu = |Nu|, nv = |Nv|, and nu,v = |Nu,v|. Clearly, nu + nu,v =

dG(u)− 1 ≤ ∆− 1 and nv + nu,v = dG(v)− 1 ≤ ∆− 1. Let Eu be the set of edges between u and Nu,

Ev be the set of edges between v and Nv, Eu,v be the set of edges between {u, v} and Nu,v, and, for

every vertex w ∈ Nu ∪Nv ∪Nu,v, let Ew be the set of edges incident with w but not incident with u

or v. Clearly, |Eu|+ |Ev|+ |Eu,v| = (dG(u)− 1) + (dG(v)− 1) ≤ 2(∆− 1) and |Ew| ≤ ∆− 1 for every

vertex w ∈ Nu ∪Nv ∪Nu,v.
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Figure 1: Vertices and edges close to uv. The indicated objects Nu′ , u′′, and Eu′′ will be introduced and
discussed in the proof of Theorem 2. Note that the set Nu∪Nv∪Nu,v is not required to be independent,
that is, the sets Ew and Ew′ may intersect for distinct vertices w and w′ in Nu ∪Nv ∪Nu,v.

Let F1 be the colors that appear on edges in Eu ∪ Ev ∪ Eu,v. Clearly, every color in F1 is forbidden

for uv, because each color class must be a matching. Let F2 be the colors α in [K] that do not belong

to F1 such that

dαu + 2dαu,v + dαv ≥ r + 1,

where dαu is the number of vertices in Nu incident with an edge colored α, dαv is the number of vertices

in Nv incident with an edge colored α, and dαu,v is the number of vertices in Nu,v incident with an edge

colored α. Note that, since F1 and F2 are disjoint, none of the edges contributing to dαu + 2dαu,v + dαv

is incident with u or v.

If there is some α in [K] \ (F1 ∪ F2), then neither u nor v is incident with an edge of color α, and

dαu+2dαu,v+dαv ≤ r. This implies min{dαv+dαu,v, d
α
v+dαu,v} ≤ ⌊r/2⌋ ≤ r−1 and max{dαv+dαu,v, d

α
v+dαu,v} ≤

r. Hence, coloring uv with color α, the edges of G colored α form an r-degenerate matching. As

explained above this would complete the proof. Therefore, we may assume that F1 ∪ F2 = [K].
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Note that

|F1| ≤ |Eu ∪ Ev ∪ Eu,v| (2)

= (dG(u)− 1) + (dG(v)− 1)

≤ 2(∆ − 1) (3)

with equality if and only if

(a) all edges in Eu ∪ Ev ∪ Eu,v are colored differently (equality in (2)), and

(b) u and v have degree ∆ (equality in (3)).

Furthermore,

(r + 1)|F2| ≤
∑

α∈F2

(

dαu + 2dαu,v + dαv
)

(4)

≤
∑

w∈Nu

|Ew|+ 2
∑

w∈Nu,v

|Ew|+
∑

w∈Nv

|Ew| (5)

≤ (∆− 1)nu + 2(∆ − 2)nu,v + (∆− 1)nv (6)

≤ (∆− 1)(dG(u)− 1) + (∆ − 1)(dG(v)− 1) (7)

≤ 2(∆− 1)2. (8)

Note that (r + 1)|F2| = 2(∆− 1)2 if and only if equality holds in (4) to (8), which implies that

(c) dαu + 2dαu,v + dαv = r + 1 for every color α in F2 (equality in (4)),

(d) all edges in
⋃

w∈Nu∪Nu,v∪Nw

Ew have a color from F2 (equality in (5)),

(e) all vertices in Nu ∪Nu,v ∪Nv have degree ∆ (equality in (6)),

(f) nu,v = 0, that is, u and v have no common neighbor (equality in (7)), and

(g) u and v have degree ∆ (equality in (8)).

Altogether, we obtain

|K| = |F1 ∪ F2| = |F1|+ |F2| ≤ 2(∆ − 1) +
2(∆ − 1)2

α+ 1
,

contradicting the choice of K. This completes the proof. ✷

For r = 1, the bound from Theorem 1 simplifies to ∆2. In view of K∆,∆, Theorem 1 is tight in this

case, and, as we show next, K∆,∆ is the only extremal graph.

Theorem 2 If G is a graph of maximum degree at most ∆, then χ′
1(G) = ∆2 if and only if G is

K∆,∆.

Proof: By Theorem 1, we have χ′
1(G) ≤ ∆2. Since χ′

1(K∆,∆) = ∆2, it suffices to show that χ′
1(G) = ∆2

implies that G is K∆,∆. Therefore, we consider a 1-degenerate edge coloring of G using colors in [∆2]

such that the number of edges colored ∆2 is as small as possible. Let uv be an edge colored ∆2.

We use the notation and observations from the proof of Theorem 1. Recall that |F1| ≤ 2(∆ − 1)

and 2|F2| ≤ 2(∆ − 1)2, which implies |F1 ∪ F2| ≤ ∆2 − 1. Furthermore, recall that uv can be colored

4



with any color in [∆2 − 1] \ (F1 ∪ F2). By the choice of the coloring, these observations imply that

F1 ∪ F2 = [∆2 − 1], |F1| = 2(∆ − 1), and 2|F2| = 2(∆ − 1)2. The latter two equalities imply that the

properties (a) to (f) hold.

Let u′ ∈ Nu and let α be the color of the edge uu′. We introduce some more notation already illustrated

in Figure 1. Let Nu′ = NG(u
′) \ {u}. For every vertex w in Nu′ , let Ew be the set of edges incident

with w but not incident with u′. Let E2
u′ =

⋃

w∈Nu′

Ew.

For every color β in [∆2−1], let kβ be the number of vertices w in {v}∪Nv such that Ew contains

an edge colored β, and, similarly, let k′β be the number of vertices w in {u′} ∪ Nu′ such that Ew

contains an edge colored β. Since the color classes are matchings, for every such color β, each of

the sets Ew for w in {v, u′} ∪ Nv ∪ Nu′ contains at most one edge colored β. By (a), (c), and (d),

all edges in Ev have different colors from F1, all edges in
⋃

w∈Nv

Ew have colors from F2, kβ ∈ {0, 1}

for every color β in F1, and kβ ∈ {0, 1, 2} for every color β in F2. By (b), (e), and (f), we obtain
∑

β∈[∆2−1]

kβ = |Ev|+
∑

w∈Nv

|Ew| = ∆(∆− 1).

Our next goal is to show that k′β ≥ kβ for every β in [∆2 − 1].

First, let β in F1 be such that kβ = 1. Since F1 and F2 are disjoint by definition, (d) implies that

no edge in Eu′ has color β. If k′β = 0, that is, no edge in E2
u′ has color β, then changing the color of

uv to α and the color of uu′ to β yields a 1-degenerate edge coloring with less edges colored ∆2, which

is a contradiction. Hence, k′β ≥ 1.

Next, let β be a color in F2 with kβ = 1. If k′β = 0, that is, no edge in Eu′ ∪E2
u′ has color β, then

changing the color of uv to α and the color of uu′ to β yields a 1-degenerate edge coloring with less

edges colored ∆2, which is a contradiction. Hence, k′β ≥ 1.

Finally, let β be a color in F2 with kβ = 2. By (c), no edge in Eu′ has color β. If k′β ≤ 1, that

is, there is at most one vertex in Nu′ that is incident with an edge colored β, then changing the color

of uv to α and the color of uu′ to β yields a 1-degenerate edge coloring with less edges colored ∆2,

which is a contradiction. Hence, k′β ≥ 2.

Altogether, it follows that k′β ≥ kβ for every β in [∆2 − 1], and, we obtain

∆(∆− 1) =
∑

β∈[∆2−1]

kβ ≤
∑

β∈[∆2−1]

k′β ≤ |Eu′ |+
∑

w∈Nu′

|Ew| ≤ (∆− 1) +
∑

w∈Nu′

(∆− 1) ≤ ∆(∆− 1).

Equality throughout this inequality chain implies that k′β = kβ for every β ∈ [∆2 − 1], all edges from

Eu′ ∪ E2
u′ have a color from [∆2 − 1], and all vertices in Nu′ have degree ∆.

Now, let v′ ∈ Nv. Note that symmetric observations apply to the vertex v′ as to the vertex u′. Let

the edge vv′ have color β. There is exactly one vertex u′′ in Nu′ such that some edge in Eu′′ , say u′′u′′′,

has color β. Defining Nv′ and Ew for w ∈ Nv′ similarly as above, it follows, by symmetry between u′

and v′, that there is exactly one vertex v′′ in Nv′ such that some edge in Ev′′ , say v′′v′′′, has color α.

If the edge u′′u′′′ is distinct from the edge vv′, then changing the color of uv to β and the color

of vv′ to α yields a 1-degenerate edge coloring with less edges colored ∆2, which is a contradiction.

Hence, the edge u′′u′′′ equals vv′. Since v is incident with an edge colored ∆2 but u′′ is not, we obtain

that u′′ equal v′, that is, u′ and v′ are adjacent.

Since u′ and v′ were arbitrary vertices in Nu and Nv, respectively, it follows, by symmetry, that every

vertex in Nu is adjacent to every vertex in Nv, that is, G is K∆,∆. ✷

We believe that, for large values of r, the bound from Theorem 1 is far from being tight. Our next
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result vaguely supports this.

Proposition 3 If r is an integer at least 2, then no graph G of maximum degree at most ∆ satisfies

χ′
r(G) = 2(∆−1)2

r+1 + 2(∆ − 1) + 1.

Proof: For contradiction, suppose that G is a graph of maximum degree ∆ that satisfies χ′
r(G) = K,

where K = 2(∆−1)2

r+1 +2(∆−1)+1. Similarly as in the proof of Theorem 2, we consider an r-degenerate

edge coloring of G using colors in [K] such that the number of edges colored K is as small as possible.

Let uv be an edge colored K. Again using the same notation as in the proof of Theorem 1 and arguing

as in the proof of Theorem 2, we obtain that F1∪F2 = [K−1], |F1| = 2(∆−1), (r+1)|F2| = 2(∆−1)2,

and that the properties (a) to (g) hold.

Suppose that there is some color α in F2 such that dαu and dαv are both positive. In this case, (c)

and r ≥ 2 imply that min{dαu , d
α
v } ≤ r − 1 and max{dαu , d

α
v } ≤ r, and changing the color of uv to α

yields an r-degenerate edge coloring with less edges colored K, which is a contradiction. Hence, for

every color α in F2, we obtain, again using (c), that (dαu , d
α
v ) ∈ {(0, r + 1), (r + 1, 0)}.

Let u′ ∈ Nu and let uu′ have color α. Arguing as in the Theorem 2 and using the same notation as

there, it follows that every color β in F1 that appears on some edge in Ev appears on at least one edge

in E2
u′ .

Now, let β be a color in F2 such that some vertex in Nv is incident with an edge colored β. Since

dβv > 0 implies dβu = 0 and dβv = r + 1, there are exactly r + 1 such vertices. If at most r vertices

in Nu′ are incident with an edge colored β, then changing the color of uv to α and the color of uu′

to β yields an r-degenerate edge coloring with less edges colored K, which is a contradiction. Hence,

for every such color β, at least r + 1 vertices in Nu′ are incident with an edge colored β, and, since

dβu = 0, all these edges belong to E2
u′ .

Altogether, we obtain the contradiction

(∆− 1)2 ≥
∑

w∈Nu′

|Ew| ≥ |Ev|+
∑

w∈Nv

|Ew| = ∆(∆− 1),

which completes the proof. ✷

3 Efficient algorithm for chordal graphs

Let G be a chordal graph. It is well known that G has a tree decomposition (T, (Xt)t∈V (T )) such that

each bag Xt is a clique in G. By applying standard manipulations [6], we may furthermore assume

that

• T is a rooted binary tree,

• if t is the root or a leaf of T , then Xt = ∅,

• if some node t of T has two children t′ and t′′, then Xt = Xt′ = Xt′′ (t is a “join node”),

• if some node t of T has only one child t′, then

either |Xt \Xt′ | = 1 and |Xt′ \Xt| = 0 (t is an “introduce node”)

or |Xt \Xt′ | = 0 and |Xt′ \Xt| = 1 (t is a “forget node”), and
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• given G, the decomposition (T, (Xt)t∈V (T )) can be constructed in polynomial time, in particular,

n(T ) is polynomially bounded in terms of n(G).

For every note t of T , let Tt denote the subtree of T rooted in t that contains t and all its descendants.

Let Gt be the subgraph of G induced by
⋃

s∈V (Tt)

Xs.

We design a dynamic programming procedure calculating νr(G) for a fixed positive integer r.

Therefore, for every node t of T , let Rt be the set of all triples (S,N, k) such that

(i) N ⊆ S ⊆ Xt and

(ii) there is a matching M ⊆ E(Gt) \
(

Xt

2

)

such that

(a) k = |M |,

(b) N = V (M) ∩Xt, and

(c) G[V (M) ∪ S] is r-degenerate.

Note that the matching M satisfying (a), (b), and (c) may not be uniquely determined by (S,N, k).

We call every such matching suitable for (S,N, k), and denote one (arbitrary yet specific) suitable

matching by Mt(S,N, k). Intuitively, the vertices in S correspond to those vertices of Xt that can

be incident with edges e of some r-degenerate matching of the entire graph G containing a suitable

matching such that either e has both endpoints in Xt or e has one endpoint in Xt and the other

endpoint in V (G)\V (Gt). Note that, since Xt is a clique, we have |S| ≤ r+1 for every (S,N, k) ∈ Rt,

which implies that |Rt| is polynomially bounded in terms of n(G). Furthermore, if t is the root of T ,

then Gt = G, all triples in Rt have the form (∅, ∅, k), and, by the definition of Rt,

νr(G) = max {k : (∅, ∅, k) ∈ Rt} . (9)

The following lemma contains the relevant recursions.

Lemma 4 Let G, (T, (Xt)t∈V (T )), and (Rt)t∈V (T ) be as above.

(a) If t is a leaf of T , then Rt = {(∅, ∅, 0)}.

(b) If t is an introduce node, t′ is the child of t, and {x} = Xt \Xt′ , then (S,N, k) ∈ Rt if and only if

• either (S,N, k) ∈ Rt′

• or (S,N, k) = (S′ ∪ {x}, N, k) for some (S′, N, k) ∈ Rt′ with |S′| ≤ r.

(c) If t is a forget node, t′ is the child of t, and {x} = Xt′ \Xt, then (S,N, k) ∈ Rt if and only if

• either (S,N, k) ∈ Rt′ and x 6∈ S,

• or (S,N, k) = (S′ \ {x}, N ′ ∪ {y}, k′ + 1) for some (S′, N ′, k′) ∈ Rt′ with x ∈ S′ \ N ′ and

some y ∈ S′ \ (N ′ ∪ {x}),

• or (S,N, k) = (S′ \ {x}, N ′ \ {x}, k′) for some (S′, N ′, k′) ∈ Rt′ with x ∈ N ′.

(d) If t is a join node, and t′ and t′′ are the children of t, then (S,N, k) ∈ Rt if and only if (S,N, k) =

(S,N ′ ∪N ′′, k′ + k′′) for some (S,N ′, k′) ∈ Rt′ and (S,N ′′, k′′) ∈ Rt′′ with N ′ ∩N ′′ = ∅.
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Proof: (a) This follows immediately from the definition of Rt.

(b) Note that NGt
(x) = Xt′ , that is, x has no neighbor in V (Gt′) \Xt′ .

If either (S,N, k) ∈ Rt′ or (S,N, k) = (S′ ∪ {x}, N, k) for some (S′, N, k) ∈ Rt′ with |S′| ≤ r, then

the definition of Rt easily implies that (S,N, k) ∈ Rt. Note, in particular, that in the second case,

the vertex x has degree |S′| ≤ r in the subgraph of G induced by V (Mt′(S
′, N, k)) ∪ S′ ∪ {x}, which

ensures the degeneracy conditions.

Conversely, let (S,N, k) ∈ Rt. If x 6∈ S, then, by the definition of Rt, we obtain (S,N, k) ∈ Rt′ . If

x ∈ S, then, since Xt is a clique, the set S′ = S \ {x} has order at most r, and, since all neighbors of

x belong to Xt, the vertex x does not belong to N , which implies that (S′, N, k) ∈ Rt′ .

(c) Note that Gt = Gt′ , and that NG(x) ⊆ V (Gt′).

If either (S,N, k) ∈ Rt′ and x 6∈ S, or (S,N, k) = (S′\{x}, N ′∪{y}, k′+1) for some (S′, N ′, k′) ∈ Rt′

with x ∈ S′ \ N ′ and some y ∈ S′ \ (N ′ ∪ {x}), or (S,N, k) = (S′ \ {x}, N ′ \ {x}, k′) for some

(S′, N ′, k′) ∈ Rt′ with x ∈ N ′, then the definition of Rt easily implies that (S,N, k) ∈ Rt. In the

first case, this is immediate. In the second case, since x ∈ S′ \ N ′ has no neighbor in G outside of

V (Gt′), any suitable matching contains no edge incident with x but x corresponds to a vertex that

can eventually be matched to some vertex y in S′ \ (N ′ ∪ {x}). Since x is adjacent to all vertices in

S′ \ (N ′ ∪ {x}), we add to Rt all triples corresponding to the possible choices of y, and increase k′ by

1 because of the edge xy that lies between V (Gt) \Xt and Xt. Similarly, in the third case, the vertex

x is incident with an edge in Mt′(S
′, N ′, k′) whose other endpoint lies in V (Gt′) \Xt′ , and removing x

from Xt′ , it has to be removed from S′ and N ′ as well while the size k′ of the matching Mt′(S
′, N ′, k′)

does not change.

Conversely, let (S,N, k) ∈ Rt. Let M = Mt(S,N, k). If x 6∈ V (M), then (S,N, k) ∈ Rt′ . If

xy ∈ M with y ∈ N , then (S ∪ {x}, N \ {y}, k − 1) ∈ Rt′ . Finally, if xy ∈ M with y 6∈ N , then

(S ∪ {x}, N ∪ {x}, k) ∈ Rt′ .

(d) Note that Gt = Gt′ ∩Gt′′ and that Xt = V (Gt′) ∩ V (Gt′′).

First, let (S,N ′, k′) ∈ Rt′ and let (S,N ′′, k′′) ∈ Rt′′ with N ′ ∩N ′′ = ∅. Let M = M ′ ∪M ′′, where

M ′ = Mt′(S,N
′, k′) and M ′′ = Mt′′(S,N

′′, k′′). Since N ′ and N ′′ are disjoint, M is a matching with

M ⊆ E(Gt)\
(

Xt

2

)

, |M | = |M ′|+ |M ′′| = k′+k′′, and V (M)∩Xt = (V (M ′)∪V (M ′′))∩Xt = N ′∪N ′′.

Let u1, . . . , un′ be a linear order of the vertices in V (M ′)∪S such that u1, . . . , un′−|S| contains the

n′ − |S| vertices in V (M ′) \N in an order of non-increasing depth of the corresponding forget nodes.

More precisely, if 1 ≤ i < j ≤ n′ − |S|, ti is the forget node of ui, meaning that ui belongs Xt′
i
where

t′i is the child of ti but ui no longer belongs to Xti , and tj is the forget node of uj , then the depth of

ti within T is at least the depth of tj. Note that, since (T, (Xt)t∈V (T )) is a tree decomposition, the

forget nodes of the vertices of G are uniquely determined.

Now, if 1 ≤ i ≤ n′ − |S|, then the neighborhood of ui in the graph G[{ui, . . . , un′}] is completely

contained in Xt′
i
, because, for all vertices uj of Gt′

i
distinct from ui that belong to V (M ′)∪S, the forget

node of uj has strictly larger depth than the forget node ti of ui. SinceXt′
i
is a clique, and G[V (M ′)∪S]

is r-degenerate, this implies that the degree of ui in the graph G[{ui, . . . , un′}] is at most |S| − 1 ≤ r.

Furthermore, since |S| ≤ r+1, for n′−|S|+1 ≤ i ≤ n′, also the degree of ui in the graph G[{ui, . . . , un′}]

is at most r. Altogether, it follows that u1, . . . , un′ is an r-degenerate order of G[V (M ′) ∪ S]. If the

r-degenerate order v1, . . . , vn′′ of G[V (M ′′)∪S] is defined analogously, then u1, . . . , un′−|S|, v1, . . . , vn′′

is an r-degenerate order of G[V (M) ∪ S], which implies (S,N ′ ∪N ′′, k′ + k′′) ∈ Rt.
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Conversely, let (S,N, k) ∈ Rt. Let M = Mt(S,N, k), M ′ = M ∩ E(Gt′), M
′′ = M ∩ E(Gt′′ ),

N ′ = V (M ′)∩Xt, andN ′′ = V (M ′′)∩Xt. SinceM
′ andM ′′ are disjoint, we obtain that k = |M ′|+|M ′′|

and that also the sets N ′ and N ′′ are disjoint. Furthermore, since the graph G[V (M) ∪ S] is r-

degenerate, also its two induced subgraphs G[V (M ′) ∪ S] and G[V (M ′′) ∪ S] are r-degenerate. It

follows that (S,N ′, |M ′|) ∈ Rt′ and (S,N ′′, |M ′′|) ∈ Rt′′ . ✷

Theorem 5 For a fixed positive integer r, and a given chordal graph G, the maximum size of an

r-degenerate matching can be determined in polynomial time.

Proof: By Lemma 4, it follows that the tree decomposition (T, (Xt)t∈V (G)) as well as the sets Rt can

all be determined in polynomial time processing T in a bottom-up fashion. Furthermore, (9) allows

to extract νr(G) from the set Rt of the root t of T . ✷

It is easy to extend the above dynamic programming approach in such a way that it also determines a

maximum r-degenerate matching of the given graph. Furthermore, given weights on the edges, also a

maximum weight r-degenerate matching can be determined efficiently by replacing the cardinality k

within the triples (S,N, k) by the weights of suitable matchings. In order to maintain the important

property that the sets Rt only contains polynomially many elements, one can prune Rt maintaining

only those triples (S,N, k) that maximize the weight k for given choices of S and N .

Since no efficient algorithm to determine a maximum r-degenerate induced subgraph, and, in

particular for r = 1, a maximum induced forest of a given chordal graph seems to have been published

(cf. comments in [21]), we want to point out that modifying the above approach easily allows to obtain

such an algorithm.

4 Conclusion

The problem to determine the acyclic matching number of a given graph G is equivalent to the

problem to determine an induced forest T of G whose matching number ν(T ) is largest possible. This

observation shows that ν1(G) is somewhat related to the problem to determine a largest induced forest

of a given graph. The latter problem is dual to the feedback vertex set problem, and has received a lot

of attention [1, 2, 5, 14]. In particular, the classes of graphs for which a largest induced forest can be

found efficiently [21–23, 26] are good candidates for classes of graphs for which the acyclic matching

number might be tractable. Note that, for a connected graph G of maximum degree at most ∆, the

value of ν∆−1(G) can be determine efficiently. In fact, if G has no perfect matching, then it equals

ν(G), otherwise, it equals ν(G)− 1.

Further upper bounds on the r-degenerate chromatic index and lower bounds on the r-degenerate

matching number for general as well as for restricted graphs seem to deserve additional research.
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