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a b s t r a c t

We study the probabilistic properties of reliable networks of minimum costs in
d-dimensional Euclidean space, with reliability in terms of k-edge-connectivity in graphs.
We show that this problem fits into Yukich’s framework for Euclidean functionals for
arbitrary k, dimension d and distant-power gradient p with p < d. With this framework,
several theorems on convergence and concentration of the value of optimal solutions
follow.

These results are then extended to optimal k-edge-connected power assignment
graphs, where we assign transmit power to nodes, and two nodes are connected if they
both have sufficient transmit power. This variant models wireless networks.

Finally, we devise a partitioning heuristic to find approximate solutions quickly, and
we analyze its performance in the framework of smoothed analysis.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The design of fault-tolerant networks is an important issue in today’s research due to their numerous applications.
The goal is to find cheap and reliable networks with some specific characteristics. Reliability is generally expressed in
terms of the connectivity of the network. For example, we might want to have multiple paths between each pair of nodes
to account for possible failures in a link. Applications of this type of problems can be found in the design of reliable
communication and transportation networks [2,11,12].

Wireless ad hoc networks have also received significant attention in recent studies [5,10,18]. Instead of direct
connections between nodes, communication can also take place by relaying through intermediate nodes. Here we assign
a transmission power to each node. As the transmission range is directly related to the power used by a node, the goal
is to find a fault tolerant network with minimum total power usage. Possible applications are environmental monitoring,
emergency disaster relief where wiring is difficult, communication between mobile computers for conferencing and home
networking, wireless sensor networks, multi-hop extensions of cellular telecommunication systems, and networks of
vehicles [3,10]. Metricom Inc.’s Ricochet network and the Army Near-Term Digital Radio network are examples of fully
operational multi-hop wireless networks [18].

In this paper, we study the probabilistic properties of the value of optimal solutions of the problems mentioned
above within Yukich’s framework for Euclidean optimization problems. This yields results both about convergence and
concentration of the value of optimal solutions as a function of the number n of nodes, dimension d of the underlying
Euclidean space, distance-power gradient p, and connectivity requirement k.
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Finding a cheapest k-edge-connected network is NP-hard [9], and so is finding a minimal power wireless network [6].
As we still want to have reasonably good solutions in acceptable computation time, we need to find a good approximation
algorithm. Partitioning algorithms are a simple, easy-to-implement type of heuristic that show good performance for
Euclidean optimization problems [4]. We devise a partitioning heuristic for the design of optimal k-edge-connected
networks. Furthermore, we analyze it in the framework of smoothed analysis [16,22] in order to explain its performance.

The rest of this paper is organized as follows. In Section 2 we give the relevant definitions. We summarize related
work in Section 3. The properties of k-edge-connected graphs are in Section 4. The partitioning heuristic and its smoothed
analysis are presented in Section 5. We extend these results to k-edge-connected power graphs in Section 6. We conclude
with some open problems (Section 7).

2. Definitions

Let V ⊆ Rd be a finite set of nodes, where d ∈ N is an arbitrary constant. In the rest of the paper, n = |V | is the
number of nodes. For two nodes u, v ∈ V , let (u, v) denote the edge connecting u and v, and let |(u, v)| denote the
Euclidean distance between u and v.

A graph G = (V , E) is called k-edge-connected if G is connected after removal of any set of at most k−1 of its edges. An
alternative characterization of k-edge-connectedness is that there exist k edge-disjoint paths between every pair of nodes.
In this paper, we also call any complete graph k-edge-connected, even if it contains fewer than k nodes. (Otherwise, no
k-edge-connected graphs below a certain size exist, which would cause technical issues.)

We study k-edge-connected graphs of minimal costs. The cost of an edge (u, v) is |(u, v)|p, where p > 0 denotes
the distant-power gradient. For a given graph G = (V , E), the costs of this graph are the sum of its edge costs,
i.e.,

∑
(u,v)∈E |(u, v)|p. Then k-ECp(V ) is the minimum cost of any k-edge-connected graph on V with costs computed with

distant-power gradient p.
In the remainder of this paper, k ∈ N, d ∈ N, and p > 0 are assumed to be arbitrary, but fixed constant.
Besides the model above, where we pay per edge, and which could be viewed as modeling wired networks, we also

consider a model where we assign transmit power PA(v) to node v for each v. Two nodes u and v are connected by an
edge if both have sufficient transmit power to reach each other, i.e., if PA(u), PA(v) ≥ |(u, v)|p. The costs of such a power
assignment is the sum of all transmit powers, i.e.,

∑
v∈V PA(v). The graph resulting from a power assignment is called the

corresponding power assignment graph.
k-ECPAp(V ) denotes the minimum costs of any power assignment whose corresponding power assignment graph is

k-edge-connected.
Both k-ECPAp and k-ECp are Euclidean functionals. This means that they map a finite point set to a non-negative real

number, are translation invariant, and scaling all points by a factor of α > 0 changes the costs by a factor of αp [24].
Following Yukich [24], for a Euclidean functional Lp, we write Lp(V , R) to denote the functional on V ∩ R, where R is

some hyperrectangle. Usually, R = [0, 1]d, and we omit R if it is clear from the context. In the following, we denote by
diam R the diameter of R.

In order to fit k-ECp and k-ECPAp into Yukich’s framework for Euclidean optimization problems [24], we have to define
corresponding canonical boundary functionals, an idea first articulated in Redmond’s thesis [19]. Roughly speaking, in
these functionals, the entire boundary of the rectangle is considered as one additional node that can be used. To distinguish
between a functional and its boundary functional, we refer to the former as the original functional.

Given a hyperrectangle R ⊆ Rd and a point set V ⊆ R, a boundary graph is a graph with nodes V plus the boundary
∂R of R as an additional node. We view the boundary as a single node. For a node to be connected to the boundary, it
is sufficient that this node is connected to an arbitrary point of ∂R. A boundary graph is called k-edge-connected if the
graph restricted to V is k-edge-connected, or if the graph on V ∪ {∂R} is k-edge-connected. Here, any edge connecting
v ∈ V to ∂R counts as up to k independent edges. In Fig. 1, you can find an example of a 3-edge-connected boundary
graph. We denote by k-ECp

B the boundary functional corresponding to k-ECp. This means that k-ECp
B(V , R) is the minimum

total length of a k-edge-connected graph in terms of the sum of the edge lengths on V ∪ ∂R raised to the power p. A node
v is connected to the boundary ∂R by adding edge (v, v∂ ) where v∂ = argminw∈∂R |(v, w)|.

Similarly, k-ECPAp
B is the boundary functional of k-ECPAp. Here, v is connected to the boundary if PA(v) ≥ |(v, v∂ )|p.

3. Related work

For a survey about properties of k-edge-connected graphs, we refer to Kammer and Täubig [14].
Finding k-edge-connected networks of minimum costs is NP-hard for k ≥ 2, both in the classical and the power

assignment model [6,9]. Therefore, a considerable amount of research has been focused on approximation algorithms.
Khuller and Vishkin [15] proved that the problem of finding a minimum-cost k-edge connected graph can be

approximated within a factor of 2. Czumaj and Lingas [7] gave a polynomial-time approximation scheme for this problem
for the Euclidean case, where points are contained in Rd for some fixed d.

Althaus et al. [1] devised several approximation algorithms for the problem of finding a connected power assignment
graph. Fuchs [8] proved NP-hardness of the power assignment problem for simple connectivity for d = 2 and APX-
hardness for d ≥ 3. Santi et al. [21] studied the connectivity of power assignment graphs in the Euclidean case for
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Fig. 1. A 3-edge-connected boundary graph on 7 nodes.

d ∈ {1, 2, 3} under the restriction that every node is assigned the same power r . They derived bounds for r to achieve
connectivity with high probability. De Graaf and Manthey [10] analyzed connectivity in power assignment graphs. They
proved properties similar to our results of Section 4, but only for simple connectivity.

Călinescu and Wan [5] analyzed several approximation algorithms for finding cheap k-edge-connected power assign-
ment graphs and obtained an approximation ratio of 2k for this problem.

4. Properties of k-ECp

In this section, we show that k-ECp fits into Yukich’s framework for Euclidean functionals [24].
In the following, we make heavy use of the following lemma, which states that the union of two k-edge-connected

graphs with non-empty intersection is also k-edge-connected.

Lemma 4.1 (Matula [17]). Let G1 = (V1, E1) and G2 = (V2, E2) be k-edge-connected graphs with V1 ∩ V2 ̸= ∅. Then the graph
H = (V1 ∪ V2, E1 ∪ E2) is k-edge-connected.

4.1. Yukich’s framework

For a functional to fit into Yukich’s framework, we have to prove that it is subadditive, has a superadditive boundary
functional, is pointwise close to its boundary functional, and is smooth. With these properties, we obtain several
convergence and concentration results. These properties are worked out in the remainder of this section.

First, we prove that k-ECp is geometrically subadditive. Roughly speaking, this shows that the function value of a set
is not larger – up to an additive error term – than the sum of the function values of a partition of this set.

Lemma 4.2. For p ≥ 1, k-ECp is geometrically subadditive, i.e. for all finite sets V , all rectangles R and all partitions of R into
rectangles R1 and R2 we have

k-ECp(V , R) ≤ k-ECp(V , R1) + k-ECp(V , R2) + C1(diam R)p,

where C1 = C1(d, p) is a constant.

Proof. Consider the graphs (V1, E1) and (V2, E2) with Vi = V ∩ Ri that realize the optimal solutions of k-ECp(V , R1) and
k-ECp(V , R2), respectively. Without loss of generality, we assume that |V1| ≥ |V2|. We distinguish three cases.

1. |V1|, |V2| ≥ k + 1. We join (V1, E1) and (V2, E2) by k vertex-disjoint edges e1, . . . , ek. This results in a k-edge-
connected graph on V . We have |ei| ≤ diam R. Thus, the cost of this k-edge-connected graph is bounded from
above by

k-ECp(V , R) ≤ k-ECp(V , R1) + k-ECp(V , R2) +

k∑
i=1

|ei|p

≤ k-ECp(V , R1) + k-ECp(V , R2) + kdp/2(diam R)p.
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Fig. 2. Two 3-edge-connected boundary graphs after partitioning the graph from Fig. 1 into two rectangles.

2. |V1| ≥ k + 1 and |V2| ≤ k. We know that (V2, E2) is complete, as this is the only way a graph with |V2| ≤ k can be
k-edge-connected. For each node vi ∈ V2, we add k edges ei1 , . . . eik with endpoints in V1. Each pair of nodes of V1
has at least k edge-disjoint paths in E1. By adding eij , each pair in V has k edge-disjoint paths as well. At most k2
edges are added this way. As each edge has a length of at most diam R and k is constant, we can bound the costs
of the k-edge-connected graph obtained in a similar way as in the first case.

3. |V1|, |V2| ≤ k. Both (V1, E1) and (V2, E2) are complete, and we know that a complete graph is always k-edge-
connected. If we make the combined graph complete, then it is k-edge-connected by definition. We have to add at
most k2 edges in this way, and k-ECp(V , R) can be bounded as in the previous cases. □

Subadditivity directly yields an upper bound for the growth of k-ECp as a function of |V |.

Lemma 4.3 (Growth Bound). Let 0 < p < d. Then there exists a constant C = C(d, p) such that for all cubes R ⊂ Rd and all
V ⊂ R, we have

k-ECp(V , R) ≤ C(diam R)p|V |
(d−p)/d.

Proof. This lemma follows directly by combining Lemma 4.2 and a result by Yukich [24, Lemma 3.3]. □

Unfortunately, likewise to the Euclidean functionals considered by Yukich [24], k-ECp is not superadditive. If it were
superadditive, then this together with subadditivity makes the functional nearly additive in the sense that k-ECp(V , R) ≈

k-ECp(V , R1)+k-ECp(V , R2). We could then approximate the optimal solution value of the whole set by the sum of optimal
solutions on its partitions.

The standard way to superadditivity is via the canonical boundary functional of k-ECp
B, which is superadditive according

to the following lemma.

Lemma 4.4. For p ≥ 1, k-ECp
B is superadditive, i.e. for all finite sets V , all rectangles R ⊆ Rd and all partitions of R into

rectangles R1 and R2 we have

k-ECp
B(V , R) ≥ k-ECp

B(V , R1) + k-ECp
B(V , R2).

Proof. Let V and R together with a partition of R into rectangles R1 and R2 be given. Let Vi = V ∩ Ri for i ∈ {1, 2}. Let
E be the edge set of a boundary k-edge-connected graph on V or V ∪ {∂R} of minimum costs. For each edge (u1, u2) ∈ E
with ui ∈ Vi, we add two edges: One edge connecting u1 to the closest point ∂u1 on the boundary of R1, and one edge
connecting u2 to the closest point ∂u2 on the boundary of R2 (see Fig. 2).

The two induced subgraphs are k-edge-connected, as both still have k edge-disjoint paths between any pair of their
nodes, albeit via ∂Ri for i ∈ {1, 2}.

The sum of the costs of these two graphs does not exceed the costs of k-ECp(V , R) by the triangle inequality and because
p ≥ 1. □

Next, we show that k-ECp and k-ECp
B are pointwise close. Together with subadditivity of k-ECp and superadditivity of

k-ECp
B, this yields that both are approximately subadditive and superadditive.
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Fig. 3. Dyadic subdivision of [0, 1]2 .

Lemma 4.5. For 1 ≤ p < d and all rectangles R ⊆ Rd, k-ECp is pointwise close to k-ECp
B, i.e. for all finite sets V ⊂ R, we have⏐⏐k-ECp(V , R) − k-ECp

B(V , R)
⏐⏐ = o(diam(R)p · |V |

(d−p)/d).

Proof. By scaling, we can restrict ourselves to R = [0, 1]d. Let V ⊆ R be a finite set of points. Clearly, k-ECp(V , R) ≥

k-ECp
B(V , R), as each solution for a k-edge-connected graph is also a solution for a k-edge-connected boundary graph.

Thus, we only have to prove k-ECp(V , R) ≤ k-ECp
B(V , R) + o(|V |

(d−p)/p). If |V | ≤ k, then this holds because |V | is constant.
Thus, we assume that |V | ≥ k + 1 from now on. We first prove the following claim.

Claim 4.6. Let V ⊆ [0, 1]d, |V | = n, and 1 ≤ p < d. Consider a graph G = (V , E) that realizes the optimal solution
of k-ECp

B(V , R) for R = [0, 1]d. Then the sum of the pth powers of the lengths of the edges connecting nodes in V with the
boundary of R is bounded by O(n(d−p−1)/(d−1)).

Proof. The proof is almost identical to a proof by Yukich [24, Lemma 3.8] and depends on a dyadic subdivision of [0, 1]d.
Let Q0 by the cube of side length 1/3 and centered within R = [0, 1]d. Let Q1 be the cube of side length 2/3, also centered
within R. We partition Q1 − Q0 into subcubes of side length 1/6. The number of such subcubes is bounded by C6d−1 for
some constant C = C(d).

We continue with this subdivision recursively. This means that at the jth stage we define cube Qj of side length
1 − 2(3 · 2j)−1 and partition Qj − Qj−1 into subcubes of side length (3 · 2j)−1. In Fig. 3, this subdivision is shown for
d = 2. The number of such subcubes is bounded from above by C3d−12j(d−1). We carry out this recursion until the ℓ-th
stage, where ℓ is the unique integer satisfying 2(ℓ−1)(d−1)

≤ n ≤ 2ℓ(d−1).
This procedure produces nested cubes Q1 ⊆ Q2 ⊆ . . . ⊆ Qℓ. It produces a dyadic covering of the cube until the moat

R − Qℓ has a width of O(n−1/(d−1)). We use these properties to prove Claim 4.6 as follows.
This dyadic subdivision partitions the largest cube Qℓ into at most

k∑
j=0

C3d−12j(d−1)
≤ Cn

subcubes, each with a side length equal to the distance between the subcube and the boundary of R. Furthermore, by
partitioning each subcube into (k2y)d congruent subcubes, where y is the least integer satisfying 2y

≥ d1/2, we obtain a
partition P of Qℓ consisting of at most Cn subcubes with the property that k times the diameter of each subcube is less
than the distance to the boundary.

Now let G = (V , E) be a graph that realizes an optimal solution of k-ECp
B(V , R). We observe that in G, each subcube Q

in P contains at most k points in V that are rooted to the boundary. If there were more than k points in V ∩ Q rooted
to the boundary, we can do the following. We know that these points do not have edges directly between them as they
already have k edge-disjoint paths between them, and edges between them would then not all be in G. So we can take
one of them and connect it to all the other points rooted to the boundary (of which there are at least k), while removing
the connection to the boundary. As the diameter of each subcube is less than 1/k times the distance to the boundary, this
relinking gives us a cheaper solution, contradicting the optimality of G.

The sum of the pth powers of the lengths of the edges connecting nodes in V ∩ (Qj − Qj−1) with the boundary is
thus bounded by the product of the number of subcubes in Qj − Qj−1 and the pth power of the common diameter of the
subcubes, namely

C3d−12j(d−1)
· (3 · 2j)−p.



Please cite this article as: B. Manthey and V.M.J.J. Reijnders, Probabilistic properties of highly connected random geometric graphs, Discrete Applied
Mathematics (2019), https://doi.org/10.1016/j.dam.2019.04.007.

6 B. Manthey and V.M.J.J. Reijnders / Discrete Applied Mathematics xxx (xxxx) xxx

Summing over all 1 ≤ j ≤ ℓ yields a bound for the sum of the pth power of the lengths of the edges connecting points to
the boundary in V ∩ Qℓ:

ℓ∑
j=1

C3d−12j(d−1)
· (3 · 2j)−p

≤

{
C max{n(d−p−1)/(d−1), log n} if 1 ≤ p ≤ d − 1
C if d − 1 < p < d.

(1)

The log n term is needed to cover the case p = d − 1. The sum of the pth powers of the lengths of the edges connecting
nodes in V ∩ (R − Qℓ) with the boundary is at most the product of n = |V | and the pth power of the width of the moat
R − Qℓ, i.e. at most

n · Cn−p/(d−1)
= Cn(d−p−1)/(d−1). (2)

Combining (1) and (2) proves the claim. □

We can now continue with the proof of Lemma 4.5. Consider the set U ⊂ V of all nodes connected to the boundary.
Let B ⊆ ∂R be the set of points on the boundary to which these nodes are connected. Then |U | ≥ |B|. As we want to
remove all edges to the boundary to get to a solution for our original functional, we have to add new edges to maintain
k-edge-connectivity. Recall that edges to the boundary can count as up to k edges. As in the proof of Claim 4.6, we know
that there are no edges between the points of U . To get a good bound on the increase of costs that incurs by adding these
edges, we first prove the following claim.

Claim 4.7. Fix 1 ≤ p < d and let G = (V , E) be a k-edge-connected graph realizing the optimal solution for k-ECp(V , R),
where R = [0, 1]d. Then there exists a constant c = c(k, d) such that the degree of every node v ∈ V is bounded by c.

Proof. Let us assume to the contrary that there exists a node v ∈ V for which the degree is not bounded by c. Consider
cones originating from v with aperture π/6:

Cr =

{
x

⏐⏐⏐⏐ (x − v) · r
∥x − v∥2

≥ cos(π/6)
}

.

Here, r denotes a unit vector in the direction of the center of the cone. The aperture of π/6 implies that for every two
x, y ∈ Cr , we have ̸ (x, y, v) ≤ π/3. Since the aperture of the cones that we consider is constant, a constant number of
cones (where the exact number depends only on the dimension d) cover Rd (see also de Graaf and Manthey [10]).

We consider a cone C with an unbounded number of points connected to v and look at the point y that is farthest
from v and connected to v. Such a cone has to exist as the number of cones is bounded. We distinguish two cases.

In the first case, the degree of y is greater than c as well, and y is connected to all nodes in C that are also connected
to v. This means that both are connected to more than k nodes in C . In this case, we can remove the edge between v

and y as we would still have more than k edge-disjoint paths between v and y (and other points will not be affected).
Removing an edge would only lower the cost for the graph, so this would contradict the optimality of the solution.

In the other case, we can find a node z to which y is not connected, but v is connected to z. We consider the
triangle ∆(v, z, y). As we know that ̸ (z, v, y) < π/3, either ̸ (z, y, v) > π/3 or ̸ (v, z, )y > π/3 (or both). Using that
|(v, y)| ≥ |(v, z)|, we can see that |(y, z)| < |(v, y)|. If we then replace the edge from v to y by the edge from y to z, the
number of edge-disjoint paths from y to z or v cannot decrease. But as |(y, z)| < |(v, y)|, we also have |(y, z)|p < |(v, y)|p.
Thus, we have lowered the cost and still have a k-edge-connected graph. This again would contradict the optimality of
G. □

With this lemma we can continue the proof of Lemma 4.5. We can also get a bound on the length of each edge we
have to add. Using the triangle inequality for powers of metrics, we obtain

∑
(u,v)∈M

|(u, v)|p ≤ 2p−1

⎛⎝ ∑
(u,·)∈M

|(u, uB)|p +

∑
(u,v)∈M

|(uB, v)|p

⎞⎠ (3)

≤ 4p−1

⎛⎝ ∑
(u,·)∈M

|(u, uB)|p +

∑
(u,v)∈M

|(uB, vB)|p +

∑
(·,v)∈M

|(vB, v)|p

⎞⎠
≤ 4p

∑
(u,·)∈M

|(u, uB)|p + 4p−1k-ECp(B, R)

≤ 4pC1

∑
u∈U

|(u, uB)|p + 4p−1C2|V |
(d−p−1)/(d−1) (by Lemma 4.3)

≤ 4pC1C3|V |
(d−p−1)/(d−1)

+ o(|V |
(d−p)/d) (by Claim 4.6)

≤ o(|V |
(d−p)/d).
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Now we have changed a graph that realizes an optimal solution for k-ECp
B(V , R), where R = [0, 1]d, into a k-edge-connected

graph without connection to the boundary. The cost of this new graph provides an upper bound for k-ECp(V , R). Observing
that we have increased the costs by at most o(|V |

(d−p)/d) concludes the proof. □

We have shown geometric subadditivity, superadditivity, and pointwise closeness. The last property that we need is
smoothness. Roughly speaking, smoothness means that adding or removing a few nodes does not change the function
value by much.

Lemma 4.8. For 1 ≤ p < d, k-ECp is smooth, i.e. for all finite sets U, V ⊆ [0, 1]d we have⏐⏐k-ECp(U ∪ V ) − k-ECp(U)
⏐⏐ = O(|V |

(d−p)/d).

Proof. Subadditivity (Lemma 4.2) and the growth bound (Lemma 4.3) together yield

k-ECp(U ∪ V ) ≤ k-ECp(U) + k-ECp(V ) + O(1) ≤ k-ECp(U) + O
(
|V |

(d−p)/d).
It remains to be shown that

k-ECp(U) − k-ECp(U ∪ V ) ≤ O(|V |
(d−p)/d).

We start with a graph G = (U ∪ V , E) that realizes k-ECp(U ∪ V ). After removal of V , we show that we can modify
the remaining graph to obtain a k-edge-connected graph on U without increasing the cost by more than O(|V |

(d−p)/d). Let
NV ⊆ U be the set of direct neighbors of nodes in V . By Claim 4.7 we know that |NV | ≤ c|V | for some constant c , that
only depends on k and d. Let m = |NV |.

We now compute a k-edge-connected graph T of minimum cost on NV . By Lemma 4.3, the cost of this graph is bounded
by O(m(d−p)/d). Let F be the set of edges of the subgraph of G induced by U . Clearly, the graph with edge set T ∪ F has
weight at most k-ECp(U∪V )+O(|V |

(d−p)/d). It remains to be proved that it is k-edge-connected. Fix any two nodes u, v ∈ V .
We distinguish three cases:

1. Both u and v are in NV . As T is k-edge-connected graph, there are k edge-disjoint paths connecting u to v.
2. Only one of u and v is in NV . Without loss of generality, let v ∈ NV and u ∈ U \ NV . Consider k edge-disjoint

paths P1, . . . , Pk from u to v in (U ∪ V , E). Let qi be the first node of NV that Pi reaches. The nodes q1, . . . , qk are
not necessarily distinct, and we can have qi = v. However, since T is k-edge-connected, there exist k edge-disjoint
paths within T connecting qi to v for each i ∈ {1, . . . , k}.

3. Both u and v are not in NV . Take any x ∈ NV , then Item 2. yields that there are k edge-disjoint paths from u to x
and from x to v. By Lemma 4.1, we know there are also k edge-disjoint paths from u to v. □

Smoothness for the boundary functional now follows with an almost identical proof.

Lemma 4.9. For 1 ≤ p < d, k-ECp
B is smooth.

Proof. The proof is similar to the proof of Lemma 4.8. For removing V , we ignore the possible connections to the boundary
and create a boundary k-edge-connected graph on NV for k-ECp

B. □

4.2. Limit theorems

For the theorems on the convergence of optimal solutions, we need the notion of complete convergence. Let (Xn)n∈N
be a sequence of random variables. Then Xn converges completely (c.c.) to a constant C if and only if for all ϵ > 0 we
have

∞∑
n=1

P
(
|Xn − C | > ϵ

)
< ∞.

This notion of convergence was first introduced by Hsu and Robbins [13].
As we have geometric subadditivity, superadditivity, pointwise closeness, and smoothness, several limit theorems

directly follow, which are given in this section. The results show that the functional on random points is highly
concentrated around its expected value.

Theorem 4.10. Let V be a set of n points drawn independently and uniformly from [0, 1]d and R = [0, 1]d. Fix 1 ≤ p < d
and k ∈ N. Then there exists a positive constant α = α(k-ECp, d, k) such that

lim
n→∞

k-ECp(V , R)
n(d−p)/p = α c.c., and

lim
n→∞

k-ECp
B(V , R)

n(d−p)/p = α c.c.
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Proof. As k-ECp is a smooth subadditive Euclidean functional and pointwise close to its smooth superadditive boundary
functional, we can use a result by Yukich [24, Theorem 4.1] to directly get this theorem. □

The following concentration of measure result is due to Rhee [20]. It states that the solution value is not far from its
expected value.

Theorem 4.11. Fix d ≥ 2, 1 ≤ p < d and k ∈ N. Let V be a set of n points drawn independently and uniformly from [0, 1]d.
Then there exist constants c1 = c1(k-ECp, d) and c2 = c2(k-ECp, d) such that for all t > 0 we have

P
(⏐⏐k-ECp(

{X1, . . . , Xn}
)
− E

[
k-ECp(

{X1, . . . , Xn}
)]⏐⏐ > t

)
≤ c1 exp

(
−c2t2d/(d−p)

n

)
.

Proof. As k-ECp is a smooth subadditive Euclidean functional which is pointwise close to its superadditive boundary
functional, we can use Rhee’s theorem [20] to obtain this result. □

5. Partitioning heuristics

Partitioning heuristics are a generic approach to design heuristics for Euclidean optimization problems: The d-
dimensional Euclidean space is divided into a number of cells such that each cell contains only a small number of points.
This allows us to compute quickly optimal solutions for the set of points in each cell. Finally, the solutions of the individual
cells are combined to obtain a solution of the whole set of points. We describe this more formally in Algorithm 5.1.

Algorithm 5.1 (Partitioning Scheme). Input: set V ⊆ [0, 1]d of n points and number s > k.

1. Partition [0, 1]d into ℓ =
d√n/s stripes of dimension d − 1 such that each stripe contains exactly n/ℓ = (nd−1s)1/d

points.
2. Keep partitioning each i+ 1-dimensional stripe into ℓ stripes of dimension i such that each stripe contains exactly

n/ℓi = (nd−isi)1/d points. Stop at i = 1 so that each 2-dimensional stripe is partitioned into ℓ cells with n/ℓd = s
points. In this way we end up with ℓd = n/s cells.

3. Compute a graph achieving the optimal solution of k-ECp for each cell.
4. Join the graphs to obtain a k-edge-connected graph on V as follows: Choose k points of each cell. Connect these k

points to the k points of an adjacent cell such that the graph becomes k-edge-connected.

Overall, we obtain the following additive upper bound on the approximation performance.

Theorem 5.2. Let s > k, and let 1 ≤ p < d. The partitioning heuristic (Algorithm 5.1) for k-ECp can be implemented to run in
time 2O(s2)

+ O(n). Furthermore, let PSEp(V ) denote the cost of the k-edge-connected graph computed by Algorithm 5.1. Then
PSEp(V ) ≤ k-ECp(V ) + O

(
(n/s)

d−p
d

)
.

Proof. First, the graph that we get as an output from Algorithm 5.1 is k-edge-connected because of Lemma 4.1. Thus, a
feasible solution is computed.

Second, a simple brute-force search shows that an optimal k-edge-connected graph of s points can be computed in
time 2O(s2). The joining can easily be done in linear time.

Third, let PSEp(V ) be the cost of the k-edge-connected graph on V computed by Algorithm 5.1. By using subadditivity,
PSEp(V ) is bounded from above by k-ECp(V )+C1 plus the costs of joining the optimal solutions in the cells (Step 4.). Here,
C1 = C1(d, p) > 0 is the constant of Lemma 4.2.

The joining (Step 4.) can be implemented to yield additional costs of at most O((n/s)(d−p)/d) using Lemma 4.3. We do
this by lacing cells together in a snakelike succession. We create a matching of k nodes between two succeeding cells.
(Both the choice of the k nodes of each cell and the exact matching is arbitrary.) This yields a k-edge-connected graph on
the cells that we lace together and completes the proof. □

The running-time of the partitioning algorithm is polynomial for s = Ω(n/
√
log n).

The above theorem does not yield a good approximation ratio in the worst case. If the value of an optimum solution
is small compared to the additive error term, then the approximation guarantee is poor. However, typically, this is not
the case, and partitioning heuristics work quite well on typical instances.

In order to explain this, partitioning heuristics for Euclidean optimization problems have been analyzed in the
framework of smoothed analysis for Euclidean optimization problems introduced by Bläser et al. [4]. They use the so-called
one-step model to construct smoothed instances: Let φ ≥ 1 be a perturbation parameter. For each of the n points, an
adversary specifies a probability density function [0, 1]d → [0, φ]. Then the points are drawn independently according to
their respective probability density function. The smoothed performance is then the maximum expected performance that
the adversary can achieve by choosing the density functions. The parameter φ limits the power of the adversary: If φ = 1,
then the adversary can only choose the uniform distribution on the unit hypercube [0, 1]d. For larger φ, the adversary
can concentrate more and more probability mass and, thus, is able to specify (worst-case) instances more accurately.
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For ease of presentations, we restrict ourselves to the case d = 2 and p = 1 in the remainder of this section, because
Bläser et al. [4] also stated their results only for d = 2. It is quite straightforward to generalize the results to larger values
of d, but it seems to be non-trivial to generalize them to p > 1. We obtain the following result.

Theorem 5.3. For p = 1, d = 2, and s = Θ(
√
log n), Algorithm 5.1 has polynomial running-time and achieves a smoothed

approximation ratio of 1 + O
(√

φ
√
log n

)
.

Proof. The polynomial running-time follows from the discussion above. The approximation ratio follows from a result
by Bläser et al. [4, Theorem 3.8] together with Theorem 5.2. □

6. Extension to k-ECPA

The results for k-ECp are easily copied to k-ECPAp by making some small adjustments to the proofs. We start with
subadditivity.

Lemma 6.1. For p ≥ 1, k-ECPAp is a geometric subadditive functional.

Proof. We follow the proof of Lemma 4.2. We need to increase PA(v) accordingly for the edges that need to be added in
the power assignment graph. We define duv = max{0, |(u, v)| − PA(u)}. Then we can add an edge (u, v) by increasing the
transmit powers of u and v by a total of (PA(u) + duv)p + (PA(v) + dvu)p − PA(u)p − PA(v)p ≤ 2(diam R)p. The rest of the
proof follows. □

Proving superadditivity of k-ECPAp
B is even easier than proving it of k-ECp

B as the power of nodes that lose a connection
is already large enough to reach the boundary.

Lemma 6.2. For p ≥ 1, k-ECPAp
B is superadditive.

Proof. We apply the same construction as in the proof of Lemma 4.4. Notice that since |a| ≤ |c| and |b| ≤ |c|, the
edges to the boundary are already included without changing the power assignment. This means that k-ECPAp

B(V , R) ≥

k-ECPAp
B(V , R1) + k-ECPAp

B(V , R2) and therefore k-ECPAp
B is superadditive for p ≥ 1. □

Proving pointwise closeness of k-ECPAp and k-ECPAp
B is a bit more difficult as not all claims we used in the proof of

Lemma 4.5 hold for these functionals. We first prove corresponding auxiliary results.

Claim 6.3. Let V ⊂ [0, 1]d, |V | = n, and 1 ≤ p < d. Consider a graph realizing the optimal solution of k-ECPAp
B(V , R), where

R = [0, 1]d. The sum of the pth powers of the lengths of the edges connecting nodes in V with the boundary of R is bounded
by O(n(d−p−1)/(d−1)).

Proof. The proof is similar to that of Claim 4.6, except that for power assignment, in case more than k points are rooted
to the boundary, all of them are also connected to each other (as the diameter of the subcube is less than the distance to
the boundary). Without changing the solution, we can remove one of the roots to the boundary. This also gives us that we
only have to take into account at most k points rooted to the boundary in each subcube. The rest of the proof follows. □

As we know the degree of nodes in an optimal power assignment graph can be unbounded [10], we cannot show a
claim similar to Claim 4.7 for k-ECPAp as well. We do however have the following claim.

Claim 6.4. Fix 1 ≤ p < d, let V ⊂ [0, 1]d be V is a finite subset and let R be a d-dimensional rectangle. Then we have that
k-ECPAp(V , R) ≤ 2k-ECp(V , R).

Proof. Consider a graph G = (V , E) achieving the optimal solution for k-ECp(V , R). Then for each node v ∈ V we take the
longest edge from v and we set power PA(v) to the length of this edge. This means that all edges that were in E, are also
in the graph resulting from power assignment PA. So the power assignment graph resulting from power assignment PA
is also k-edge-connected, and has cost no more than twice k-ECp(V , R). An optimal solution for k-ECPAp(V , R) can only
have costs lower than or equal to that of PA, so k-ECPAp(V , R) ≤ 2k-ECp(V , R) follows. □

Lemma 6.5. For 1 ≤ p < d, k-ECPAp is pointwise close to k-ECPAp
B.

Proof. The proof for power assignments is the same as the proof of Lemma 4.5, except that we use Claim 6.4 and Eq. (3)
to get the following result for a k-edge-connected power assignment graph on U

k-ECPAp(U, R) ≤ 2k-ECp(U, R) = 2
∑

(u,v)∈M

d(u, v)p ≤ o(|V |
(d−p)/d), (4)
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where R is [0, 1]d and M is the set of edges used create a k-edge-connected graph on U . This gives us for k-ECPAp that
we have k-ECPAp(V , R) ≤ k-ECPAp

B(V , R) + o(|V |
(d−p)/p), and therefore k-ECPAp

B and k-ECPAp are pointwise close. □

If we try to extend the proof of Lemma 4.8 to power assignments, we run into trouble with the possible unbounded
degree of power assignment. So instead of trying to bound the number of nodes connected to one node, we bound the
number of k-edge-connected components connected to one node. To do this, we use another lemma [10, Lemma 3.2].
With this lemma, we can prove smoothness for k-ECPAp.

Lemma 6.6. For 1 ≤ p < d, k-ECPAp is smooth.

Proof. To prove smoothness, we follow de Graaf and Manthey [10, Proof of Lemma 3.6]. Consider a graph G = (U ∪V , E)
that realizes an optimal solution for k-ECPAp(U ∪ V , R). The problem for smoothness is that the degree degG(v) of nodes
v ∈ V can be unbounded. The idea is to exploit the fact that removing v ∈ V also frees some power. Roughly speaking,
we proceed as follows: Let v ∈ V be a node of possibly large degree. We add the power of v to some nodes close to v. The
graph obtained from removing v and distributing its energy has only a constant number of k-edge-connected components
(either separate nodes, or components with k + 1 or more nodes). To prove this, we consider cones again, as done by de
Graaf and Manthey [10, Lemma 3.2] and in our Claim 4.7. We consider cones rooted at v with the following properties:

• The cones have a small angle α with v; for all cones C and for all x, y ∈ C , we have ̸ (x, v, y) < α = π/6.
• Every point in [0, 1]d is covered by some cone.
• The number of cones m is finite (as d is a constant).

Let C1, . . . , Cm be these cones (m is a constant, depending only on the dimension d). By abusing notation, let Ci also denote
all points Ci ∩ (U ∪V \ {x}) that are adjacent to v in G. Let xi1 , . . . , xik be the k points in Ci closest to v and let yi be farthest
from v. (We ignore Ci if Ci ∩ U = ∅.) Let ℓi = |(yi, v)| be the maximum distance of a node in Ci to v and let ℓ = maxi ℓi.
We note that ℓ ≤

p√PA(v).
We increase the power of the k closest points in each Ci by ℓp/(mk). Since the power of v is at least ℓp and we have

m cones, we can account for this increase by the removal of v. As α = π/6, and as xi1 , . . . , xik are the closest points to
v, any point in Ci is closer to xi1 , . . . , xik than to v. According to de Graaf and Manthey [10, Lemma 3.2(a)], every point
in Ci \ {xi1 , . . . , xik} has sufficient power to reach all nodes in xi1 , . . . , xik . There is now an edge between xi1 , . . . , xik and
every point z ∈ Ci that has a distance of at most ℓ/

p√mk. Now let z1 be the first node not connected to all xi1 , . . . , xik as it
has too little power. The second part of de Graaf and Manthey’s lemma [10, Lemma 3.2(b)] implies that if x and y are not
connected, then |(y, v)| > 2 cos(α)|(x, v)| =

√
3|(x, v)|. We section the cone in pieces such that if x and y are in one piece,

we have |(y, v)| ≤
√
3|(x, v)|. In this way, adjacent pieces are scaled by a factor

√
3. We cover all nodes in the cone in

this way, starting with the piece containing all xi1 , . . . , xik up to z1. Let us denote the number of pieces we need to cover
the cone by h. We can state that ℓ ≥ ℓi = |(yi, v)| ≥

√
3
h−1

|(z1, v)| ≥ ℓ/
p√mk. This implies that h ≤ log√

3(
p√mk) + 1.

For each piece, we have two options.

1. The number of nodes in there is smaller than or equal to k. In this case we just count all of them as separate
k-edge-connected components.

2. The number of nodes in there is larger than or equal to k+1. As |(y, v)| ≤
√
3|(x, v)| for all x and y in one piece, we

know all nodes in this piece are connected to each other by Lemma 3.2 in [10]. A complete graph on k + 1 nodes
is k-edge-connected, so we can count this whole piece as one k-edge-connected component.

This means that the number of k-edge-connected components per cone after removing k and redistributing the power
is bounded by h · k = k log√

3(
p√mk) + k, which is a constant number. As the number of cones is finite as well, the total

number of k-edge-connected components is bounded by a constant as well. If we remove |V | points, the graph falls apart
into at most O(|V |) k-edge-connected components. Creating a k-edge-connected graph on these components increases the
costs no more than O(|V |

(d−p)/d), meaning that we can follow the proof from Lemma 4.8. This proves that k-ECPAp is also
smooth for k ≥ 2. □

Now the limit theorems also hold for k-ECPAp (Theorems 4.10 and 4.11), as well as the results for the partitioning
algorithm (Theorems 5.2 and 5.3).

7. Conclusions and open problems

In this paper, we have looked at fault tolerant networks in terms of k-edge-connected graphs. We studied both a
standard (wired) model and a model for wireless networks. We analyzed the corresponding Euclidean functionals k-ECp

and k-ECPAp on random inputs. We fitted k-ECp into Yukich’s framework for Euclidean functionals and obtained proba-
bilistic results for k-ECp. With Yukich’s framework, we derived several concentration results. We derived a partitioning
heuristic for k-EC1, for which we proved an additive approximation guarantee. We analyzed its approximation ratio in
the framework of smoothed analysis. Finally, we transferred these results to k-ECPAp.

We conclude this paper with a few open problems for future research.
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We have only looked at k-edge-connected graphs. But we can also consider connectivity in terms of k-vertex-connected
graphs. While subadditivity, superadditivity of the corresponding boundary functional, and pointwise closeness are
relatively straightforward to prove, we feel that the main technical difficulty in proving smoothness is the lack of a
counterpart of Lemma 4.1.

Another extension would be the case p ≥ d. As is the case with other Euclidean functionals, our functionals also lack
smoothness and closeness. Instead, we require closeness in mean and smoothness in mean to deal with p ≥ d. With these
properties, complete convergence could also be proved for p ≥ d using Warnke’s concentration of measure result [23], as
has been shown by de Graaf and Manthey [10].
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