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Abstract

In this paper we study some generalizations of the parking permit problem (Meyerson, FOCS’05), in which
we are given a demand rt ∈ {0, 1} for instant of time t = 0, . . . , T − 1, along with K permit types with
lengths of time δ1, . . . , δK and sub-additive costs. A permit is a pair (k, t̂) ∈ [K]×Z+, and it covers interval
[t̂, t̂+ δk). We wish to find a minimum-cost set of permits that covers every t with rt = 1. Meyerson gave
deterministic O(K)-competitive and randomized O(lgK)-competitive online algorithms for this problem, as
well as matching lower bounds.

The first variant we propose is the multi parking permit problem, in which an arbitrary demand is given
at each instant (rt ∈ Z+) and we may buy multiple permits to serve it. We prove that the offline version of
this problem can be solved in polynomial time, and we show how to reduce it to the parking permit problem,
while losing a constant cost factor. This approximation-preserving reduction yields a deterministic O(K)-
competitive online algorithm and a randomized O(lgK)-competitive online algorithm. For a leasing variant
of the Steiner network problem, these results imply a O(lg n)-approximation algorithm and a O(lgK lg |V |)-
competitive online algorithm, where n is the number of requests and |V | is the size of the input metric.

The second variant we propose is the group parking permit problem, in which we also have an arbitrary
demand for each instant, and each permit of type k can be either a single permit, costing γk and covering
one demand per instant of time, or a group permit, which costs M · γk for some constant M ≥ 1 and covers
an arbitrary number of demands in the interval covered by this permit. (I.e., group permits have infinite
capacity.) For this version of the problem, we give an 8-approximation algorithm and a deterministic O(K)-
competitive online algorithm. The first result yields an improvement on the previous best approximation
algorithm for the leasing version of the rent-or-buy problem.

Finally, we study the 2D parking permit problem, proposed by Hu, Ludwig, Richa and Schmid (2015),
in which a permit type is defined by a length of time and an integer capacity. They presented a constant
approximation algorithm and a deterministic O(K)-competitive online algorithm for a hierarchical version
of the problem, but those algorithms have pseudo-polynomial running time. We show how to turn their
algorithms into polynomial time algorithms. Moreover, these results yield approximation and competitive
online algorithms for a hierarchical leasing version of the buy-at-bulk network design problem. We also show
that their original pseudo-polynomial offline algorithm works for a more general version of the 2D parking
permit problem, which we prove to be NP-hard.
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1. Introduction

Imagine the following scenario: Johnny goes to work everyday and, since he lives close to his job, he
may go walking or by car. Since he is aware of the global environmental issues, Johnny decided that he will
always go walking when it does not rain, and he will drive otherwise. When he drives, he needs a parking
permit. The parking lot has K different types of permits; a permit of type k ∈ {1, . . . ,K} can be used
for δk consecutive days, and it costs γk. Once a permit of type k is bought at day t̂, it can be used at days
t̂, . . . , t̂+ δk − 1, so permits expire even when they are not used. The goal is to buy permits for rainy days
by spending as little money as possible. We define the problem formally below. Throughout this paper, we
denote by [K] := {1, . . . ,K}, N the set of positive natural numbers, Z+ the set of non-negative integers, R+

the set of non-negative real numbers, and R
∗
+ the set of positive real numbers.

Problem 1 (Parking Permit [32] (PP)). Given K permit types with lengths δ1, . . . , δK ∈ N and costs
γ1, . . . , γK ∈ R

∗
+, along with a sequence r0, . . . , rT−1 ∈ {0, 1}, where rt = 1 indicates that day t is rainy,

find a set of permits S ⊆ [K]×Z+ such that, for each rainy day t, there is some permit (k, t̂) ∈ S satisfying
t ∈ [t̂, t̂+ δk), which minimizes

∑

(k,t̂)∈S γk.

This problem was proposed by Meyerson [32], and it admits a polynomial-time dynamic programming
algorithm. In a more realistic online version, T is unknown and r0, . . . , rT−1 are revealed one at a time.
For this version, Meyerson [32] showed that the problem has deterministic O(K)-competitive algorithm and
Ω(K) lower bound, as well as randomized O(lgK)-competitive algorithm and Ω(lgK) lower bound.

PP is the seminal problem for the leasing optimization model, in which each resource may be
leased for different periods of time, and it is more cost-effective to lease resources for longer periods. This
contrasts with traditional optimization models, in which acquired resources last for unlimited duration.
Leasing problems arise, for example, in the current trend among start-ups that prefer to lease servers in a
cloud service rather than install their own servers [1, 7, 30]. Leasing optimization may be applied to both
offline and online problems. Some literature has been devoted to leasing variants of classical optimization
problems [1, 3, 7, 9, 10, 33]. Also, variants of PP and related problems were studied [12, 20, 24, 28, 31].
A traditional problem whose leasing variant was studied by Meyerson [32] is the Steiner forest problem. In
the Steiner leasing problem (SLe), each edge can be leased for a limited amount of time; after the lease
ceases, the edge is no longer available unless it is leased again. Meyerson presented a relationship between
SLe and PP: if the input metric is a tree, SLe reduces to solve PP for each edge. Using the technique of
approximating a metric by a tree metric [6, 11], a solution for a generic input can be obtained, losing some
guarantee of quality. Meyerson obtained a O(lgK lg |V |)-competitive online algorithm for SNLe, where |V |
is the size of the input metric; the same idea yields a O(lgn)-approximation for the offline setting, where n
is the number of requests.

In this paper, we study three generalizations of PP, which can be used to solve leasing variants of three
classical network design problems: the Steiner network problem, the rent-or-buy problem, and the buy-at-
bulk network design problem. In the Steiner network problem (with edge duplication) (SN) [23, 37], we
are given pairs of vertices and a demand r(u, v) for each pair (u, v), and we wish to buy a minimum-cost
multiset of edges that contains r(u, v) edge-disjoints (u, v)-paths, for each pair (u, v). In the rent-or-buy
problem (RoB) [25], we are given pairs of vertices, and we wish to buy some edges and, for each pair
of vertices, rent some edges, so that rented and bought edges connect the corresponding pairs; the cost of
buying an edge is M times the cost of renting it, for some constant M ≥ 1. In the buy-at-bulk network
design problem (BaBND) [4], we also have pairs of vertices with demands, but we can install cables on
each edge with different capacities per length, and we wish to install a minimum-cost multiset of cables that
meet the total demand.

In the following paragraphs, we present the three generalizations of PP, which are the central problems
studied in this paper. The first two problems are proposed by us.

Imagine that Johnny and his coworkers decide to share parking permits to save some money. Johnny’s
means of transportation depend on weather, but Linda goes by car when she has tennis lessons, and so does
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Ringo when he has to get his kids at school. So, for different days, different employees need a parking permit,
and permits can be exchanged so that a same permit can be used by different employees on different days.
Note that a demand greater than one can be given for each day, i.e., we receive a sequence r0, . . . , rT−1 ∈ Z+.
Moreover, multiple copies of the same permit can be bought, so a solution is a multiset of permits. We give
a formal definition below. Given a multiset B and an element b ∈ B, we denote by mB(b) the multiplicity
of b in B.

Problem 2 (Multi Parking Permit (MPP)). Given K permit types with lengths δ1, . . . , δK ∈ N and
costs γ1, . . . , γK ∈ R

∗
+, along with a sequence r0, . . . , rT−1 ∈ Z+, find a multiset of permits S ⊆ [K] × Z+

such that
∑

(k,t̂)∈S

t∈[t̂,t̂+δk)

mS(k, t̂) ≥ rt for each t, which minimizes
∑

(k,t̂)∈S mS(k, t̂) · γk.

This problem reduces to PP if rt ≤ 1 for every day t.
In the second problem we propose, every day a tourism agency receives a group of guests willing to visit

a museum. The agency has an agreement with the museum, for which the agency can buy permits (or
tickets) that last for different periods (e.g., a day, a week, a month). Moreover, the agency can buy a special
permit of type k ∈ [K] beginning at day t̂ that costs M · γk, which can be used by an unlimited number of
guests on the period [t̂, t̂+ δk). We call this a group permit, and a usual permit for a single guest a single
permit. The agency wishes to buy a minimum-cost multiset of single and group permits. Below we give a
formal definition of the problem.

Problem 3 (Group Parking Permit (GPP)). Given K permit types with lengths δ1, . . . , δK ∈ N and
costs γ1, . . . , γK ∈ R

∗
+, along with a sequence r0, . . . , rT−1 ∈ Z+ and a constant M ≥ 1, find a multiset

S ⊆ [K]× Z+ of single permits, and a set Q ⊆ [K]× Z+ of group permits, such that, for t = 0, . . . , T − 1,
either

∑

(k,t̂)∈S

t∈[t̂,t̂+δk)

mS(k, t̂) ≥ rt, or there is some group permit (k, t̂) ∈ Q such that t ∈ [t̂, t̂+ δk). We wish

to minimize
∑

(k,t̂)∈S

mS(k, t̂) · γk +M ·
∑

(k,t̂)∈Q

γk.

This problem reduces to PP if rt ≤ 1 for every day t, to MPP if M =∞, and to the ski rental problem [26]
if K = 1 and δ1 =∞.

Finally, we also study the 2D parking permit problem, which was proposed by Hu et al. [20]. As in
MPP and GPP, at each instant we receive a non-negative demand. However, in this problem each type of
permit has a capacity, besides the length in time. The objective, as usual, is to cover demands with permits
whose total cost is minimum. Below we present a formal definition.

Problem 4 (2D Parking Permit [20] (2DPP)). Given K permit types with lengths δ1, . . . , δK ∈ N,
costs γ1, . . . , γK ∈ R

∗
+, and capacities φ1, . . . , φK ∈ N, along with a sequence r0, . . . , rT−1 ∈ Z+, find a

multiset S ⊆ [K]×Z+ of permits, such that, for t = 0, . . . , T − 1, we have that
∑

(k,t̂)∈S

t∈[t̂,t̂+δk)

mS(k, t̂) ·φk ≥ rt,

which minimizes
∑

(k,t̂)∈S mS(k, t̂) · γk.

We identify two important particular cases of 2DPP. The first is what we call the orthogonal 2D
parking permit problem (O2DPP), in which we have K · L types of permits, each defined by a length
of time and a capacity. There are K lengths of time δ1, . . . , δK ∈ N with corresponding time scaling costs
γ1, . . . , γK ∈ R

∗
+, and L capacities φ1, . . . , φL ∈ N with corresponding capacity scaling costs µ1, . . . , µL ∈ R

∗
+.

A permit with length of time δk and capacity φℓ costs γk · µℓ. Note that O2DPP reduces to GPP if
L = 2, φ = (1,∞) and µ = (1,M). We call the second case the hierarchical 2D parking permit
problem (H2DPP), in which we assume that δ1 ≤ · · · ≤ δK and φ1 ≤ · · · ≤ φK ; i.e., a permit of type k′

always fits into a permit of type k > k′. This version of the problem was proposed by Hu et al. [20]. Note
that GPP is not a particular case of this problem, because group permits of smaller length do not fit into
single permits of larger length.
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Those parking permit problems can be used to solve leasing variants of SN, RoB and BaBND, via the
technique of approximating a metric by a tree metric [6, 11], in a similar fashion as Meyerson used PP to
solve SLe. If the input metric is a tree, then: (i) the leasing variant of SN reduces to MPP; (ii) the leasing
variant of RoB reduces to GPP; (iii) the leasing variant of BaBND reduces to 2DPP. (We can also define
hierarchical and orthogonal versions of leasing BaBND, as we did for 2DPP.) In Figure 1 we depict the
dependency between the problems we study in this paper.

PP MPP

GPP O2DPP

H2DPP

2DPP

SLe SNLe

LeRoB OLeBaBND

HLeBaBND

LeBaBND

Figure 1: A graph depicting dependency between the problems we study. A full arrow A → B indicates that problem A is a
particular case of problem B. A dashed arrow A 99K B indicates that parking permit problem A is a particular case of network
leasing problem B, and B reduces to solving A for each edge if the input metric is a tree.

In some sense, the goal of this paper is to understand how time dynamicity, which is the central issue
in PP, interacts with capacity dynamicity. The capacity dynamicity issue is well-solved for a fixed
resource, since it consists in the ski rental problem [26]. (Even though the ski rental problem is usually
defined with time as a parameter, we note that capacity is a better interpretation for it.) The ski rental
problem has a trivial exact solution in the offline setting, and a simple 2-competitive online algorithm.
We may interpret GPP as a combination of PP with the ski rental problem, the first dealing with time
dynamicity, and the second dealing with capacity dynamicity.

Going one step further, the ski rental problem can be generalized to multiple types of skis, each lasting
for a different amount of time (capacity). In the offline setting, this problem has an FPTAS algorithm [21].
It also admits a 2-competitive online algorithm [4, 32]. The combination of PP with this generalization of
the ski rental problem is, then, 2DPP.

In a first glance, it looks like time dynamicity and capacity dynamicity are independent issues. We
conjecture that this is not true, and in particular the results we present in this paper point in the direction
that more sophisticated techniques are necessary when those issues are combined in the same problem.

Related Work. Besides the work of Meyerson on PP and SLe [32], the previous main work on network
leasing problems is due to Anthony and Gupta [3]. The authors reduce the problem of solving an optimization
problem with K lease types in the offline setting to the corresponding K-stage stochastic problem, while
losing a constant cost factor. By using previous results in K-stage stochastic optimization, the authors
obtained a O(K)-approximation algorithm for the single-source case of SLe4, as well as approximation
algorithms for leasing variants of facility location, vertex cover and set cover. The authors also propose new
K-stage stochastic algorithms for single-sourceRoB, single-sourceBaBND and multi-sourceBaBND. That
way, they obtained O(K)-approximation algorithms for the single-source cases of leasingRoB and orthogonal
leasing BaBND, as well as a O(K lg n)-approximation for multi-source orthogonal leasing BaBND. This
last result consists of a O(K)-approximation for a generalization of O2DPP, combined with the technique
of approximating a metric by a tree metric [6, 11].

4Note that the single-source case of SLe is the Steiner tree leasing problem.
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More recently, Bienkowski, Kraska and Schmidt [7] gave a deterministic O(K lg n)-competitive online
algorithm for single-source SLe. Their algorithm does not use a simple application of the metric approxima-
tion technique; instead, they build upon the technique of bounding the cost of a greedy-like algorithm via
a hierarchical tree decomposition of the input metric. This technique was recently proposed by Umboh [37]
for solving various online network design problems.

Other literature on leasing variants of classical optimization problems include the following. Nagarajan
and Williamson [33] presented primal-dual algorithms for offline and online facility leasing. In particu-
lar, they modified and reanalyzed the primal-dual algorithm for the online facility location problem by
Fotakis [14], which is then extended to solve the online facility leasing problem. Abshoff et al. [1] built
upon the work of Nagarajan and Williamson, obtaining an improved algorithm for the online facility leasing
problem; they also solve the online set multicover leasing problem. More recently, de Lima, San Felice and
Lee [9] combined various algorithms for facility leasing and Steiner problems to solve a particular case of
offline and online leasing variants of the connected facility location problem. In another paper, the same
authors presented an approximation algorithm for the facility leasing problem with penalties [10], which is a
primal-dual algorithm that combines ideas from the algorithm by Nagarajan and Williamson for the facility
leasing problem [33] and the algorithm by Charikar et al. [8] for the facility location problem with penalties.

H2DPP was proposed by Hu et al. [20]. The authors presented a constant-approximation algorithm,
which is based on dynamic programming, and a deterministic O(K)-competitive online algorithm, which
is pretty similar to Meyerson’s online algorithm for PP. Both those algorithms, however, have pseudo-
polynomial running time. They conjectured that H2DPP is NP-hard, which we prove in this paper.

Another form of defining O2DPP is supposing we are given a sub-additive function µ′ : Z+ → R+ which,
given an arbitrary integer capacity, returns a capacity scaling cost in polynomial time. Thus, a permit of
length δk and capacity φ ∈ N costs γk · µ′(φ). This version of the problem is equivalent up to a constant to
our definition [35]. There is a O(K)-approximation algorithm for this version of O2DPP, which was given
for a more general problem by Anthony and Gupta [3] (we discuss this in Section 6.3).

MPP was studied independently by Jin, Hayashi and Tagami [24]. The authors proved that the problem
admits an offline exact algorithm in the interval model, as well as deterministic O(K)-competitive and
randomized O(lgK + lg δK)-competitive online algorithms.

Other variants of PP were also studied. Li et al. [28] study the case when a demand does not need
to be served immediately when it arrives, but instead has a deadline which must be respected. Feldkord,
Markarian and auf der Heide [12] discuss what happens when leasing costs are allowed to fluctuate over
time. Markarian [31] extends the leasing model for the case in which a demand can be refused by paying
a penalty, and for the case in which a demand may be delayed by incurring a penalty per unit of delayed
time. Mäcker [30] recently proposed a different model for cloud resource allocation, in which a resource can
be leased for an arbitrary length of time and a cost per unit of time is specified.

Our Contribution. The main results of this paper concern approximation and competitive online algo-
rithms for MPP, GPP and 2DPP.

We show that MPP has a linear program formulation whose matrix is totally unimodular, so it can be
solved in polynomial time. We also show how to reduce MPP to PP while losing a constant cost factor.
This reduction is based: (i) on the Interval Model, proposed by Meyerson [32] to add structure to permits;
(ii) on a particular ordering of the permits and an assignment between permits and demands, which we call
the Hanoi tower ordering; and (iii) on an exponential sampling, which allows us to perform the reduction
in polynomial time. This approximation-preserving reduction yields deterministic O(K)-competitive and
randomized O(lgK)-competitive online algorithms for MPP. Those results are asymptotically optimal,
since the lower bounds for PP [32] (deterministic Ω(K) and randomized Ω(lgK)) also apply to MPP. This
problem was studied independently by Jin, Hayashi and Tagami [24], and the authors obtained similar
results to ours. However, our algorithms are simpler, and they do not prove that the problem can be solved
exactly in polynomial time even if the Interval Model is not assumed.

The most relevant contribution in this paper are our results for GPP. We conjecture that the problem
is weakly NP-hard; one evidence towards this fact is that the linear program formulation has non-trivial
integrality gap. We then present an 8-approximation algorithm for GPP. This algorithm is also based
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on the Interval Model and on an extension of the Hanoi tower ordering to GPP. It performs an iterative
improvement of the solution, considering group permits of increasing types. In particular, the analysis of
this algorithm is quite unorthodox, in the sense that we do not give a lower bound to the cost of an optimum
solution directly, but instead we bound the cost of our algorithm by a hypothetical algorithm that knows some
choices of the optimum solution. We also present a deterministic O(K)-competitive online algorithm, which
is asymptotically optimal due to the deterministic lower bound of Ω(K) for PP [32]. This algorithm uses our
approximation algorithm to update its decisions, in a similar way to Meyerson’s online algorithm for PP [32],
except that his algorithm uses an optimum offline solution. Our analysis, however, is different because it uses
information of the offline approximate solution at instant t to update the bound on the solution obtained
by the online algorithm up to instant t− 1. This analysis builds on the concept of delimiting the “amount
of regret” of the algorithm, which is an important tool for the application of online algorithms in machine
learning [19]. The same result can be obtained via the algorithm by Koufogiannakis and Young for the
covering problem with linear costs [27]; our algorithm, however, was obtained independently, and we add a
substantial contribution in terms of analysis technique.

We then prove that 2DPP is NP-hard, which was conjectured by Hu et al. [20]. For H2DPP, Hu et al.

gave a constant approximation algorithm and a deterministic O(K)-competitive online algorithm, which
is asymptotically optimal due to the deterministic lower bound of Ω(K) for PP [32]. However, those
algorithms have pseudo-polynomial running time. We show how to turn the offline algorithm, which is a
dynamic programming algorithm, into a polynomial time algorithm, by using a proper data structure and a
binary search on the dynamic programming. This turns the online algorithm into a polynomial time one as
well, since the offline algorithm is used to update the online algorithm’s decisions. We also show that their
original pseudo-polynomial algorithm works for generic 2DPP, and we point that it can be implemented
more efficiently than the authors claimed. Moreover, we discuss how the algorithm by Koufogiannakis and
Young for the covering problem with linear costs [27] can be used to obtain some general results for 2DPP.

By combining our results for MPP, GPP and 2DPP with the technique of approximating metrics
by tree metrics, we obtain the following results for network leasing problems: (i) for the leasing variant
of SN, a O(lgn)-approximation algorithm and a O(lgK lg |V |)-competitive online algorithm, where n is the
number of request pairs and |V | is the input metric size; (ii) for the leasing variant of RoB, a O(lgn)-
approximation algorithm and a O(K lg |V |)-competitive online algorithm; (iii) for the hierarchical leasing
variant of BaBND, a O(lgn)-approximation algorithm and a O(K lg |V |)-competitive online algorithm;
(iv) for the general case of leasing BaBND, a pseudo-polynomial O(lgn)-approximation algorithm. In
particular, our results improve the multi-source case for leasing SN and leasing RoB5, for which the previous
best result was the O(K lgn)-approximation algorithm for multi-source orthogonal leasing BaBND by
Anthony and Gupta [3]. We also improve the result for hierarchical leasing BaBND, which was a O(K lgn)-
approximation obtained by combining the results in [27] with the metric approximation technique.

Organization of the Paper. In Section 2, we discuss the Interval Model, which is useful to solve parking
permit and leasing optimization problems. Sections 3, 4 and 5 are devoted to MPP, GPP and 2DPP,
respectively. In Section 6, we present the consequences of the results in the previous sections to the leasing
variants of SN, RoB and BaBND. Finally, in Section 7, we present a summary of known results (see
Tables 1 and 2), some open questions and future research directions.

2. The Interval Model

In order to give more structure to parking permit problems, it is useful to adopt the following assump-
tions [3, 32].

Hypothesis 5 (Simple Interval Model (SIM)). Permits of type k can only begin at instants c · δk, for
c ∈ Z+.

5Even though the standard definition of RoB does not generalize SN, leasing RoB generalizes leasing SN. We discuss this
in Section 6.2.
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Hypothesis 6 (Hierarchical Length Property (HLP)). δk−1 divides δk for k = 2, . . . ,K.

Note that SIM is a restriction on the solutions, while HLP is a hypothesis on the instance. In what
follows, we state Facts 7 and 8 and Lemma 10 for 2DPP, but they extend to PP, MPP and GPP straight-
forwardly, since the proofs do not use any specific structure of 2DPP. Furthermore, the reduction can be
performed in an online manner, so the results also apply for online algorithms. We present proofs for the
sake of completion, but they are identical as those in [3, 32].

Fact 7. An α-approximation algorithm for 2DPP under SIM is a 2α-approximation if we do not re-

quire SIM. Conversely, if there is an α-approximation algorithm for 2DPP not requiring SIM, then there

is a 2α-approximation algorithm under SIM.

Proof. (⇒) We just have to bound an optimum solution Ŝ under SIM with regard to an arbitrary optimum
solution S∗. By simply replacing each permit (k, t̂) ∈ S∗ with permits (k, ⌊t̂/δk⌋ · δk) and (k, ⌈t̂/δk⌉ · δk)
(which may be the same permit), we obtain a solution which respects SIM, costs at most twice the cost
of S∗, and costs at least the cost of Ŝ (since Ŝ is optimum under SIM).

(⇐) Given a solution S′ that does not respect SIM, we can obtain a solution that respects SIM by
replacing each permit (k, t̂) ∈ S′ with permits (k, ⌊t̂/δk⌋ · δk) and (k, ⌈t̂/δk⌉ · δk) (which may be the same
permit). Given an optimum solution Ŝ under SIM and an arbitrary optimum solution S∗, clearly cost(S∗) ≤
cost(Ŝ), so the claim follows. �

Fact 8. If there is an α-approximation algorithm for 2DPP under HLP, then there is a 2α-approximation

algorithm for instances that do not satisfy HLP.

Proof. Given an instance I = (T,K, δ, γ, φ, r) that does not satisfy HLP, we obtain an instance I ′ =
(T, k, δ′, γ, φ, r) that satisfies HLP in the following manner. Assume δ1 ≤ · · · ≤ δK , and take δ′k := 2⌊lg δk⌋,
i.e., round down each permit length to the closest power of 2. Any feasible solution for I ′ is feasible for I,
since δ′k ≤ δk, so it remains to bound opt(I ′) with regard to opt(I). Given an optimum solution S∗ for I,
replace each permit (k, t̂) ∈ S∗ with (k, t̂) and (k, t̂+ δ′k); since δk < 2 · δ′k, the resulting solution is feasible
for I ′, thus it costs at least opt(I ′), and it costs twice as opt(I). �

For most results we present here, we adopt the following assumption.

Hypothesis 9 (Interval Model (IM)). We assume SIM and HLP.

The next lemma follows by applying Facts 7 and 8.

Lemma 10. If there is an α-approximation algorithm for 2DPP under IM, then there is a 4α-approxima-

tion algorithm for arbitrary instances.

The main property of the Interval Model is that optimum solutions of intervals of length δK are inde-
pendent. This can be generalized in the following manner. We state Definitions 11 and 12 and Lemma 13 in
terms of 2DPP, but those also apply to PP, MPP and GPP, since these are particular cases of the former.

Consider an instance I = (T,K, δ, γ, φ, r) of 2DPP. For some forthcoming proofs and algorithms, it is
convenient to define restricted instances of I in the following manner.

Definition 11 (I[k]). Given a permit type k ∈ [K], let I[k] := (T, k, δ, γ, φ, r) be the sub-instance of I in
which we can only use permits of type 1, . . . , k.

Definition 12 (I[k, t̂]). Given a permit type k ∈ [K] and an instant of time t̂ = c · δk with c ∈ Z+, let
I[k, t̂] := (δk, k, δ, γ, φ, (rt̂, . . . , rt̂+δk−1)) be the sub-instance of I[k] restricted to the interval of length δk
beginning at instant t̂.
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Lemma 13. Let I be an instance of 2DPP and let k ∈ [K] be a permit type. Then, under IM, we have

that

opt(I[k]) =

⌈T/δk⌉−1
∑

c=0

opt(I[k, c · δk]).

I.e., solving I[k] is equivalent to solving independently each sub-instance of length δk and taking the
union of the corresponding solutions. (The proof of this lemma follows from a standard optimal substructure
argument.)

For PP, MPP and GPP, under IM, we can assume without loss of generality that

1 = δ1 < δ2 < · · · < δK and γk/δk < γk′/δk′ for k > k′; (1)

i.e., permit costs are sub-additive and represent economies of scale. If δ1 > 1, we can simply divide each δk
by δ1 and rescale the instance by having the maximum demand for each interval of length δ1. If two permit
types k and k′ with k > k′ do not satisfy Equation (1), we can discard type k by replacing each permit of
type k with δk/δk′ permits of type k′, and the optimum solution of the new instance is not worse than the
original one. We discuss variations of this assumption for 2DPP in Section 5.

3. The Multi Parking Permit Problem

In this section, we discuss MPP. The problem has the following formulation as an integer linear program.

minimize

K
∑

k=1

T−1
∑

t̂=0

xkt̂ · γk

subject to

K
∑

k=1

∑

t̂=0,...,T−1
t∈[t̂,t̂+δk)

xkt̂ ≥ rt ∀t ∈ {0, . . . , T − 1},

xkt̂ ∈ Z+ ∀k ∈ [K], t̂ ∈ {0, . . . , T − 1}.

In this formulation, variable xkt̂ indicates the multiplicity of permit (k, t̂). (To ensure polynomial size, we
may only allow permits that begin at instants t with rt > 0.) The first constraint ensures that each day is
covered by enough permits. Let P := {x ∈ R

K×T |A ·x ≥ r,x ≥ 0} be the polytope of the relaxation of this
linear program. Note that, for a fixed column in matrix A, ones are consecutive, because a permit covers
a consecutive sequence of days. Such a matrix is totally unimodular [36] and, since r is integer, it follows
that all extreme points of P are integral [34]. Thus, MPP can be solved in polynomial time.

Now we present another result which helps us to solve MPP in the online setting, where T is unknown
and r0, . . . , rT−1 are revealed one at a time. We will assume IM and Equation (1).

We define an ordering of the permits in a solution and a unique assignment between demands and
permits, from which our next result follows straightforwardly. Given a multiset of permits, we sort them in
non-increasing order of permit type; permits of same type are sorted in non-decreasing order of starting time,
breaking ties arbitrarily. We call this the Hanoi tower ordering (HTO), since if we represent permits as
rectangles as in Figure 2(a), larger permits are under smaller permits, as in the Hanoi tower problem. Then,
we assign demands of the input to permits in a solution so that each demand is covered by the earliest
possible permit in HTO. Note that this defines a level to each demand and each permit; see Figure 2(b).
Due to IM, a demand from instant t is assigned to a smaller permit only if all larger permits that cover
instant t have some other demand assigned to them.

Thus, under IM and HTO, MPP has the following property: each level of an optimum solution is an
optimum solution of the corresponding PP instance. Let I = (T,K, δ, γ, r) be an instance of MPP. Let
R := maxt=0,...,T−1 rt and, for j = 1, . . . , R, let Ij := (T,K, δ, γ, rj) be an instance of PP such that, for

t = 0, . . . , T − 1, rjt = 1 if rt ≥ j, and rjt = 0 otherwise. (Ij is the PP instance corresponding to level j.)
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Figure 2: (a) Example of a MPP solution ordered in HTO, given an instance with r = (2, 0, 1, 3, 1, 2, 3, 0, 1, 1, 2, 2) as the
demand sequence. (b) Demands of this instance assigned to those permits.

Lemma 14. Assume IM. Given an MPP instance I, there exists an optimum solution of I which is the

union of optimum solutions of PP instances I1, I2, . . . , IR.

Proof. Let S∗ be an optimum solution of I and, for each j ∈ [R], let Sj∗ be an optimum PP solution of Ij .

Note that
⋃R

j=1 S
j∗ is a feasible solution for I. Suppose by contradiction that cost(S∗) <

∑R
j=1 cost(S

j∗).
Sort permits in S∗ and assign demands to permits as in HTO. Demands of instant t will be assigned to
levels 1, . . . , rt since, due to IM, if permits (k, t̂) and (k′, t′) are such that k < k′ and t̂ ∈ [t′, t′ + δk′), then
[t̂, t̂+ δk) ⊆ [t′, t′ + δk′). (See Figure 3.) Thus, S∗ can be partitioned into feasible solutions of I1, . . . , IR, a
contradiction to the fact that S1∗, . . . , SR∗ are optimum. �

(a) (b) (c)

Figure 3: An illustration of the proof of Lemma 14. Consider an instance with T = 6, K = 3, δ = (1, 3, 6), γ = (1, 5/2, 4) and
r = (3, 1, 2, 0, 1, 2). (a) The optimum solution is {(2, 0), (1, 0), (3, 0), (1, 5)}. (b) Optimum solution after reordering permits.
(c) Optimum solution after reassigning demands; permits correspond to optimum solutions for PP instances.

So under IM, from Lemma 14, MPP reduces to solving R instances of PP. Thus, given an α-competitive
online algorithm for PP, we obtain an α-competitive online algorithm for MPP.6 By Lemma 10, we have
deterministic O(K)-competitive and randomized O(lgK)-competitive online algorithms for MPP. Note
that Lemma 14 is valid only if we assume IM. (See a counterexample if we do not assume IM in Figure 4.)
However, this reduction is pseudo-polynomial, since it runs in time Ω(R) and the input size is proportional to
O(lgR). We show how to overcome this in the following lemma, which is inspired from the online algorithm
for SN [37].

6Since an online algorithm does not know the value of R in advance, we must run new instances of the online algorithm
for PP as the maximum demand increases.

9



(a) (b)

Figure 4: Lemma 14 is no longer valid if we do not assume IM. Consider an instance I with T = 5, K = 3, δ = (1, 2, 4),
γ = (2, 3, 5) and r = (1, 2, 1, 1, 1). (a) The optimum solution is {(2, 0), (3, 1)}, which costs 8. (b) The union of optimum
solutions for PP instances I1 and I2 is {(1, 0), (3, 1), (1, 1)}, which costs 9.

Lemma 15. Assume IM. Given an α-competitive algorithm for PP, there exists a strictly polynomial-time

2α-competitive algorithm for MPP.

Proof. Let L := ⌊lgR⌋; we define L+1 instances Î0, Î1, . . . , ÎL of PP. For each instant t and ℓ = 0, . . . , L,
the demand of day t in Îℓ is 1 if ℓ ≤ ⌊lg rt⌋, and 0 otherwise. Run the α-competitive algorithm for
PP on each of Î0, . . . , ÎL, and buy 2ℓ copies of the permits bought by PP on Îℓ. This is feasible since
∑⌊lg rt⌋

ℓ=0 2ℓ = 2⌊lg rt⌋+1 − 1 and rt < 2⌊lg rt⌋+1.
Consider instances I1, . . . , IR as defined before Lemma 14. By Lemma 14, we have that opt(I) =

∑R
j=1 opt(I

j). For 1 ≤ j < R, we have that rj+1
t ≤ rjt for every t; thus, an optimum solution for Ij is

feasible for Ij+1, and hence opt(Ij+1) ≤ opt(Ij), for 1 ≤ j < R.

Note that, for ℓ = 0, . . . , L, we have that Îℓ = I2
ℓ

. Let Ŝℓ be the solution obtained by the α-competitive
algorithm for PP on instance Îℓ; we have that cost(Ŝℓ) ≤ α · opt(Îℓ). Let S be the returned MPP solution.
We have that

cost(S) =
L
∑

ℓ=0

2ℓ · cost(Ŝℓ) ≤
L
∑

ℓ=0

2ℓ · α · opt(Îℓ) = α ·

(

opt(I1) + 2 ·
L
∑

ℓ=1

2ℓ−1opt(I2
ℓ

)

)

≤ α ·



opt(I1) + 2 ·
L
∑

ℓ=1

2ℓ
∑

j=2ℓ−1+1

opt(Ij)



 = α ·



opt(I1) + 2 ·
2L
∑

j=2

opt(Ij)





≤ 2α ·
R
∑

j=1

opt(Ij) = 2α · opt(I),

where the second inequality follows because interval [2ℓ−1 + 1, 2ℓ] contains 2ℓ−1 integers, and opt(Ij+1) ≤
opt(Ij) for 1 ≤ j < R. Thus, the lemma follows. �

Due to the online algorithms for PP by Meyerson [32], we have the following result.

Theorem 16. There are polynomial-time deterministic O(K)-competitive and randomized O(lgK)-competi-

tive online algorithms for MPP.

This is asymptotically optimal due to the deterministic Ω(K) and randomized Ω(lgK) lower bound
for PP [32].

4. The Group Parking Permit Problem

In this section, we discuss GPP. In order to simplify our notation, we denote the total cost of a multiset
of permits S by cost(S) :=

∑

(k,t̂)∈S mS(k, t̂) ·γk. Thus, the cost of a solution (S,Q) is cost(S)+M ·cost(Q).

Throughout this section, we assume IM and Equation (1).
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4.1. Offline Group Parking Permit

Consider the following formulation of GPP as an integer linear program.

minimize

K
∑

k=1

T−1
∑

t̂=0

(xkt̂ +M · ykt̂) · γk

subject to
K
∑

k=1

∑

t̂=0,...,T−1
t∈[t̂,t̂+δk)

(xkt̂ + rt · ykt̂) ≥ rt ∀t ∈ {0, . . . , T − 1},

xkt̂ ∈ Z+, ykt̂ ∈ {0, 1} ∀k ∈ [K], t̂ ∈ {0, . . . , T − 1}.

Variable xkt̂ indicates how many copies of single permit (k, t̂) we must buy, and ykt̂ indicates whether
we must buy a group permit (k, t̂). The first constraint ensures that each day is covered by a group permit
or by enough single permits. The matrix of this linear program is no longer totally unimodular, since it is
not a 0/1 matrix. It is interesting to remark that, after running some experiments, we found some random
instances for which the integrality gap is greater than 1, even under IM.7 We believe that GPP is weakly
NP-hard even under IM, but this is an open question. (Otherwise, it is one of those few interesting problems
which are polynomially solvable but have integrality gap.) Under IM, there exists a pseudo-polynomial exact
algorithm for GPP, proposed by Hu et al. [20]. We discuss this algorithm in Section 5.1.

In this section, we propose a polynomial-time 2-approximation algorithm for GPP under IM. Before we
present the algorithm, let us define some notation.

Definition 17 (S[k, t̂]). Given a multiset of permits S ⊆ [K]× Z+, a permit type k ∈ [K] and an instant
of time t̂ = c · δk with c ∈ Z+, let

S[k, t̂] := {(k′, t′) ∈ S : k′ ≤ k and t′ ∈ [t̂, t̂+ δk)}

be the submultiset of permits of S of types 1, . . . , k that are contained in the interval of length δk beginning
at instant t̂. Note that this definition applies both to multisets of single permits and sets of group permits.

The pseudocode of our algorithm is presented in Algorithm 1. Roughly speaking, first we run a
polynomial-time algorithm for MPP under IM, which we denote by AlgMPP, on the corresponding in-
stance (ignoring M); this is the initial solution. Then, for k = 1, . . . ,K, we consider an interval of type k,
and we check if we improve the current solution by replacing permits of types 1, . . . , k chosen so far for this
interval with a group permit of type k.

Input: (T,K, δ, γ, r,M)
1 S0 ← AlgMPP(T,K, δ, γ, r), Q0 ← ∅;
2 for k ← 1 to K do
3 Sk ← Sk−1, Qk ← Qk−1;

4 for t̂← 0 to T − 1 step δk do
5 if cost(Sk−1[k, t̂]) +M · cost(Qk−1[k, t̂]) ≥M · γk then
6 Sk ← Sk \ Sk−1[k, t̂];

7 Qk ← (Qk \Qk−1[k, t̂]) ∪ {(k, t̂)};

8 return (SK , QK);

Algorithm 1: Approximation algorithm for GPP.

The intuition behind this algorithm is the following: we collect contributions of permits in the solution
obtained by AlgMPP to decide when to buy a group permit in GPP. Single permits of types 1, . . . , k

7One such simple instance has T = 8, K = 4, δ = (1, 2, 4, 8), γ = (20, 39, 77, 152), r = (1, 1, 1, 1, 1, 12, 1, 1) and M = 10.
While the optimum solution under IM costs 336, the optimum fractional solution under IM costs 335 + 1/3.
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contribute to group permits of type k. However, we limit the contributions of types 1, . . . , k in a single
interval of type k to M · γk. This prevents us from buying a group permit of a larger type when most
contributions are clustered in an interval of smaller type. Note that the algorithm always returns a feasible
solution, since every time we replace a subsolution with a group permit, it covers all demands in that interval.
We illustrate the execution of the algorithm in Figure 5.

(a) (b) (c) (d)

Figure 5: An execution of Algorithm 1 on an instance with T = 4, K = 3, δ = (1, 2, 4), γ = (4, 6, 11), r = (2, 1, 3, 8) and M = 4.
(a) S0 is the optimum solution for the corresponding MPP instance. (b) In S1 we replace type-1 permits with type-1 group
permits because this improves the solution. (c) In S2 we replace permits of types 1 and 2 in S1 with group permits of type 2
because this improves the solution. (d) In this case S3 = S2 since cost(S2) = 39 and M · γ3 = 44. Note that cost(S0) = 47,
which costs more than a type-3 group permit, but we can obtain a better solution using intermediary group permits.

In order to analyze the algorithm, we define a modified version (Algorithm 2) in which we also receive a
set of group permits Q ⊆ [K]×Z+, and we only execute Lines 5-7 of Algorithm 1 if the considered interval
is contained in the interval defined by some group permit in Q. We present a pseudocode in Algorithm 2.
Note that Algorithm 1 is equivalent to running Algorithm 2 with Q = {(K, t) : t = c · δK , c ∈ Z+}.

Input: (T,K, δ, γ, r,M,Q)
1 S′

0 ← AlgMPP(T,K, δ, γ, r), Q0 ← ∅;
2 for k ← 1 to K do
3 S′

k ← S′
k−1, Q

′
k ← Q′

k−1;

4 for t̂← 0 to T − 1 step δk do
5 if k ≤ k′ and t̂ ∈ [t′, t′ + δk′) for some (k′, t′) ∈ Q then
6 if cost(S′

k−1[k, t̂]) +M · cost(Q′
k−1[k, t̂]) ≥M · γk then

7 S′
k ← S′

k \ S
′
k−1[k, t̂];

8 Q′
k ← (Q′

k \Q
′
k−1[k, t̂]) ∪ {(k, t̂)};

9 return (S′
K , Q′

K);

Algorithm 2: A modified version of Algorithm 1, which will be useful for our analysis.

Lemma 18. Given a GPP instance I, for any Q ⊆ [K]×Z+, the cost of the solution returned by running

Algorithm 1 on I is at most the cost of the solution returned by running Algorithm 2 on (I,Q).

Proof. Due to IM, if Algorithm 1 executes Lines 5-7 for some k and t̂, then it has executed Lines 5-7
before for each sub-interval. (The same holds for Lines 6-8 of Algorithm 2.) Thus it is easy to prove, by
induction on k, that for any pair (k, t̂) for which both Algorithm 1 and Algorithm 2 run this step, we have
that

cost(Sk[k, t̂]) = cost(S′
k[k, t̂]) and cost(Qk[k, t̂]) = cost(Q′

k[k, t̂]).

Note that an execution of Lines 5-7 in Algorithm 1 never increases the cost of the returned solution. Since
Algorithm 1 considers each interval that Algorithm 2 does, the lemma holds. �
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Our goal is to prove that Algorithm 1 is a 2-approximation for GPP under IM, which implies that
there exists an 8-approximation for arbitrary instances. Let I = (T,K, δ, γ, r,M) be a GPP instance, and
let (S,Q) be the solution returned by Algorithm 1 on I. Let (S∗, Q∗) be an optimum solution of I which
always utilizes the largest possible group permits, and let (S′, Q′) be the solution returned by Algorithm 2
on (I,Q∗). We claim that

cost(S) +M · cost(Q) ≤ cost(S′) +M · cost(Q′) ≤ cost(S∗) + 2M · cost(Q∗) ≤ 2 · opt(I).

The first inequality follows from Lemma 18, so it suffices to prove the second inequality.
We partition S′ in two multisets, S′

≤ and S′
>. Let S′

≤ :=
⋃

(k,t̂)∈Q∗ S′[k, t̂], i.e., S′
≤ is the multiset of

single permits that are contained in the interval defined by some group permit in Q∗. Let S′
> := S′ \ S′

≤.

(See Figure 6.) Since Algorithm 2 executes Lines 6-8 for each interval defined by a permit (k, t̂) ∈ Q∗, it
considers buying group permit (k, t̂). Moreover, every group permit in Q′ is contained in the interval defined
by some group permit in Q∗. Thus,

cost(S′
≤) +M · cost(Q′) ≤M · cost(Q∗).

It remains to prove that cost(S′
>) ≤ opt(I) = cost(S∗) +M · cost(Q∗). Before that, we need some auxiliary

definitions and results.
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(a)

S′
≤

S′
>

(b)

Figure 6: (a) Optimum solution; (b) Permits in S′
≤

are contained in the interval defined by some group permit in the optimum

solution.

Due to IM, there is no overlap in group permits in Q∗. In order to simplify our argument, we extend the
Hanoi tower ordering to include group permits and assume that, in the optimum solution, a group permit
never overlaps with a single permit. We can shift up a group permit so that it does not overlap with single
permits, as shown in Figure 7. Note that, due to IM, a group permit can only overlap with single permits
of larger length; otherwise, we could remove the single permit.

We say that a group permit in Q∗ and a permit in S′
> overlap if, after reorganizing both solutions in the

Hanoi tower ordering, those permits are used to cover some common demand. See Figure 8 for an example.

Lemma 19. A group permit in Q∗ overlaps with at most ⌈M⌉ − 1 permits in S′
>.

Proof. We assume that M is an integer; otherwise, it is possible to modify the proof to cover that case as
well, as we explain later.

Given a group permit (k, t̂) ∈ Q∗, let λS∗(k, t̂) be the number of permits in S∗ of type k̃ > k that cover
instant t̂; i.e., λS∗(k, t̂) := |{(k̃, t̃) ∈ S∗ : k̃ > k, t̂ ∈ [t̃, t̃+ δk̃)}|. Thus, given a group permit (k, t̂) ∈ Q∗, we
have that (k, t̂) is used to cover levels greater than λS∗(k, t̂). (See Figure 9(a).)

Suppose, by contradiction, that a permit (k, t̂) ∈ Q∗ overlaps with at least M permits in S′
>; if there is

more than one such permit in Q∗, consider one with smallest λS∗(k, t̂). Let (k′, t′) be the permit in S′
> that

overlaps with (k, t̂) at level λS∗(k, t̂) +M . (See Figure 9(a).) Note that k′ > k, and that only permits of
types smaller than k′ are used, in the optimum solution, in interval [t′, t′ + δk′) to cover demands at levels
greater than λS∗(k, t̂) (or those permits would overlap with (k, t̂)).
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Figure 7: (a) A solution of GPP; (b) Solution (a) reorganized so that group and single permits do not overlap.

x

y

(a)

a

b

c

d

e

f

(b)

Figure 8: (a) Optimum solution; (b) S>. Group permit x overlaps with permits a, b and c, and y overlaps with d, e and f .

We replace, in the optimum solution, each group permit in Q∗ with M single permits of the corresponding
type. Let Ŝ be the resulting multiset of permits; we have that cost(Ŝ) = opt(I) (see Figure 9(b)). Note
that all demands covered by (k′, t′) are covered by single permits in Ŝ, and thus the total cost of those
permits in Ŝ is at least γk′ , otherwise S′

0 would not be an optimum solution for the MPP instance in Line 1
of Algorithm 2. (If M is not an integer, we use a fraction M − ⌊M⌋ of a single permit (k, t̂) for level
λS∗(k, t̂) + ⌈M⌉, and this combined with the other permits in Ŝ that overlap with (k′, t′) must cost at least
(M − ⌊M⌋) · γk′ .) Due to the Hanoi tower ordering, for each of the other M − 1 lower levels, the total cost
of the permits in Ŝ at interval [t′, t′ + δk′ ) must also be at least γk′ . Therefore, we conclude that it is better
to buy a group permit of type k′, which costs M · γk′ , to cover this interval, but this contradicts the choice
of the optimum solution, which always buys the largest possible group permits. �

Lemma 20. cost(S′
>) ≤ opt(I).

Proof. We replace, in the optimum solution, each group permit in Q∗ with ⌈M⌉ − 1 single permits of
the corresponding type; let S̃ be the resulting multiset of permits, and note that cost(S̃) ≤ opt(I). Since
at most ⌈M⌉ − 1 permits in S′

> overlap some group permit in Q∗, every demand covered by some permit

in S′
> is covered by some permit in S̃. Also, note that S′

> is the optimum solution for the MPP instance
defined by the demands covered by those permits. Indeed, suppose by contradiction that there is a better
solution S∗

>; then S∗
> ∪ (S′

0 \ S
′
>) costs less than S′

0, a contradiction since S′
0 is optimum. Thus, we must

have that cost(S′
>) ≤ cost(S̃). �

Thus, we obtain the following theorem.
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(k, t̂)

λS∗(k, t̂)

(S∗, Q∗)

(k′, t′)

S′
>

(a)

M

λS∗(k, t̂)

Ŝ

(b)

Figure 9: (a) Suppose by contradiction that (k, t̂) overlaps at least M permits in S′
>; consider the M lower levels and let (k′, t′)

be the permit that overlaps with (k, t̂) at level λS∗(k, t̂) + M . (b) Replace each group permit with M single permits of the
corresponding type.

Theorem 21. Algorithm 1 is a 2-approximation for GPP under IM. There is an 8-approximation algorithm

for GPP with arbitrary instances.

To conclude this section, we present an instance which shows that Algorithm 1 has approximation
factor at least 4/3 under IM. Take an arbitrary K, M ≥ 2 integer, 0 < ǫ ≪ 1, δk = Mk−1, γk =
Mk−1 − (Mk−1 − 1)ǫ and demands such that AlgMPP buys M − 1 permits (k, 0), for k = 1, . . . ,K − 1,
plus one permit (K, 0). It is easy to check that Algorithm 1 does not buy any group permit; on the other
hand, the optimum buys a group permit of type K − 1 plus M − 1 single permits of type K − 1. We leave
to the reader to check that the approximation factor for this instance approaches 4/3. An open question is
whether Algorithm 1 has approximation factor smaller than 2 under IM. Experiments on random instances
never attained approximation factor greater than 4/3. Another open question is whether we can obtain
approximation factor better than 8 for the general case when we do not assume IM.

4.2. Online Group Parking Permit

In the online version of GPP, we are given K, δ, γ and M in advance, but the values of T and r are
unknown. We begin with an empty multiset of permits and, at each instant of time t ∈ {0, . . . , T − 1}, we
receive rt demands and we must buy some permits to ensure that a group permit or at least rt single permits
cover day t. We cannot remove any previously bought permits. In order to simplify our argumentation, given
an instance I = (T,K, δ, γ, r,M), we denote by It the instance up to day t, i.e., (t+1,K, δ, γ, (r0, . . . , rt),M).
In this section we denote a solution for It by (St, Qt); note that this is not the same as Sk and Qk as described
in Algorithms 1 and 2.

One obvious online algorithm is the following: at each instant t, we run a (pseudo-polynomial) offline
algorithm that obtains an optimum solution (S∗

t , Q
∗
t ) for It, and based on this we buy enough permits from
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(S∗
t , Q

∗
t ) to cover day t. However, we do not know how to bound the competitive factor of such algorithm.

Instead, we propose the following algorithm. We assume IM.

Algorithm AlgOGPP: for each day t = 0, . . . , T − 1,

Step 1. Run Algorithm 1 on It to obtain a solution (St, Qt);

Step 2. If Qt contains some group permit (k, t̂) such that no group permit (k∗, t∗) was bought until now
with k∗ ≥ k and t̂ ∈ [t∗, t∗ + δk∗) (i.e., (k, t̂) is contained in the interval defined by (k∗, t∗)), then
buy group permit (k, t̂);

Step 3. Let κt be the number of demands from day t that are covered by permits bought until now;

Step 4. Buy permits that, respecting the Hanoi tower ordering, are at levels κt+1, . . . , rt on day t in (St, Qt).

Step 4 can be implemented in polynomial time by representing St by a set of tuples in the form (t̂, ℓ, k, q),
where t̂ is a starting time, ℓ is the first demand level covered, k is a permit type and q is a multiplicity. A
tuple (t̂, ℓ, k, q) means that q copies of permit (k, t̂) are stacked to supply the demand of levels [ℓ, ℓ+ q). In
some sense, (t̂, ℓ) is the coordinate of the bottom-left corner of the tuple, and k and q encode their width and
height, respectively. (See Figure 10.) Due to HTO, permits of same k and t̂ are used to serve contiguous
levels, so we can ensure that we have at most one tuple for each pair (k, t̂). Thus, we can find which permits
cover levels κt + 1, . . . , rt in polynomial time.
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Figure 10: Consider an instance with δ = (1, 3, 6). (a) Given a multiset of permits with 5 copies of (2, 0), 2 copies of (1, 2), 2
copies of (2, 3) and 4 copies of (1, 5), (b) we represent them as tuples (0, 1, 2, 5), (2, 6, 1, 2), (3, 1, 2, 2) and (5, 3, 1, 4).

The main result of this section is the following. We claim that, under IM, for t = 0, . . . , T − 1,

cost(AlgOGPP(It)) ≤ 4K · opt(It). (2)

We actually prove the following stronger result:

cost(AlgOGPP(It)) ≤ 2K · (cost(St) +M · cost(Qt)), (3)

where (St, Qt) is the solution obtained by running Algorithm 1 on It. Thus, Equation (2) follows from
Theorem 21 and Equation (3).

The following notation will be useful. Assume permits in (St, Qt) are in the Hanoi tower ordering. We
represent a single permit (k, t̂) ∈ St that covers demands of level λ ∈ Z+ by (k, t̂, λ, SINGLE), and a group
permit (k, t̂) ∈ Qt that covers demands of levels λ, λ + 1, . . . by (k, t̂, λ,GROUP). Thus, we can represent
(St, Qt) by a set St of permits in this format. For each p = (k, t̂, λ, g) ∈ St, we denote its cost by

cost(p) :=

{

γk, if g = SINGLE,
M · γk, if g = GROUP.
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In order to simplify notation, given a set of permits S, we write cost(S) :=
∑

p∈S cost(p).
In order to prove Equation (3), we share the cost of AlgOGPP(It) among the permits in St. More

precisely, we define an assignment Φt : St → R+ such that
∑

p∈St
Φt(p) = cost(AlgOGPP(It)). In order

to simplify notation, given a set of permits S and an assignment Φ, we write Φ(S) :=
∑

p∈S Φ(p). We are
going to define Φt in such a way that Φt(p) ≤ 2K · cost(p) (Lemma 27) for every p ∈ St. This implies that

cost(AlgOGPP(It)) = Φt(St) ≤ 2K · cost(St),

and so Equation (3) holds. We define Φt in an inductive manner. For t = 0, take Φ0(p) := cost(p) for each
p ∈ S0. Since before Step 2 is executed for t = 0 no demand is covered yet, clearly AlgOGPP(I0) = S0, so
Φ0(S0) = cost(AlgOGPP(I0)). Now suppose Φt−1 is defined, and consider the solution S ′t−1 obtained by
running Algorithm 2 on (It−1, Qt). Before defining Φt, we define an assignment Φ′

t−1 : S ′t−1 → R+ which
satisfies Φ′

t−1(S
′
t−1) = Φt−1(St−1). We need a new concept first.

We say that a single permit p′ from a set S ′ is contained in a permit p from a set S, and we write p′ ⊆ p
if, after ordering both S and S ′ in HTO, we have that p covers every demand p′ covers. Also, we say that
a group permit p′ = (k′, t′, λ′,GROUP) from a set S ′ is contained in a group permit p = (k, t̂, λ,GROUP)
from a set S if k′ ≤ k and t′ ∈ [t̂, t̂ + δk), i.e., if the interval defined by p contains p′. In order to simplify
notation, we denote by S ′(p) := {p′ ∈ S ′ : p′ ⊆ p} the set of permits in S ′ that are contained in p. Note
that, due to HTO, if p ∈ S ′, then S ′(p) = {p}.

Fact 22. For t > 0, each permit in St−1 contains some permit in S ′t−1, and each permit in S ′t−1 is contained

in a unique permit in St−1.

Proof. For the first claim, note that both S ′t−1 and St−1 are built from the same MPP solution for It−1,

and Algorithm 1 executes Lines 5-7 for each pair (k, t̂) for which Algorithm 2 executes Lines 6-8. Then the
second claim follows simply from HTO. �

Now let us define Φ′
t−1. For each p ∈ St−1 and each p′ ∈ S ′t−1(p), let

Φ′
t−1(p

′) := Φt−1(p) ·
cost(p′)

cost(S ′t−1(p))
.

I.e., we split the cost share of p among the permits it contains in S ′t−1 in proportion to their cost. Due to
Fact 22, Φ′

t−1(S
′
t−1) = Φt−1(St−1), and since Φt−1(St−1) = cost(AlgOGPP(It−1)) by induction hypothesis,

we have that Φ′
t−1(S

′
t−1) = cost(AlgOGPP(It−1)).

Fact 23. For each p ∈ St−1 and every p′ ∈ S ′t−1(p), if Φt−1(p) ≤ α · cost(p) for some α ≥ 0, then we have

that Φ′
t−1(p

′) ≤ α · cost(p′).

Proof. We have that cost(p) ≤ cost(S ′t−1(p)), by a similar argument to the proof of Lemma 18. Thus,

Φ′
t−1(p

′) = Φt−1(p) ·
cost(p′)

cost(S ′t−1(p))
≤ α · cost(p) ·

cost(p′)

cost(S ′t−1(p))
≤ α · cost(p′).

�

Now we can relate S ′t−1 and St.

Fact 24. Every permit in S ′t−1 is contained in a unique permit in St.

Proof. First note, due to the definition of Algorithm 2, that S ′t−1 cannot have group permits where St
does not. Thus, every group permit in S ′t−1 is contained in some group permit in St. If a single permit
in S ′t−1 is not contained in a group permit in St, then it must be contained in some single permit in St
because, due to the optimality of AlgMPP, every permit in AlgMPP(It−1) is contained in some permit in
AlgMPP(It). The uniqueness simply follows from HTO. �
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Now we define Φt. For each p ∈ St,

Φt(p) :=

{

Φt−1(S ′t−1(p)) + cost(p), if AlgOGPP buys p at instant t,
Φt−1(S ′t−1(p)), otherwise.

Since Φ′
t−1(S

′
t−1) = cost(AlgOGPP(It−1)), clearly Φt(St) = cost(AlgOGPP(It)).

Fact 25. For each p ∈ St, we have that cost(S ′t−1(p)) ≤ cost(p).

Proof. If p is a group permit, then Algorithm 2 considers buying p, so cost(S ′t−1(p)) ≤ cost(p). If p is a
single permit, then the inequality follows from the optimality of AlgMPP. �

Fact 26. If St contains a single permit p = (k, t̂, λ, g), then AlgOGPP(It) has some permit that covers

level λ for the whole interval [t̂, t̂+ δk).

Proof. Let t̃ ≤ t be the first moment that AlgMPP(It̃) decides to buy p. Due to Lemma 14 and Equa-
tion (1), rt̃ ≥ λ and (t̃, λ) was not covered by AlgMPP(It′), for 0 ≤ t′ < t̃. If (t̃, λ) is covered by
AlgOGPP(It̃−1), it must be by a group permit that covers p (see Footnote 8 to understand why this
may happen). Thus, AlgOGPP(It̃) covers (t̃, λ) either by p or by a group permit that contains p.

Lemma 27. For each p ∈ St, we have that Φt(p) ≤ 2K · cost(p).

Proof. We actually prove a stronger claim8: for each p = (k, t̂, λ, g) ∈ St,

(i) Φt(p) ≤ 2k∗ · cost(p) for some k∗ ≥ k and, at some instant t̃ ≤ t, AlgOGPP bought a group permit
(k∗, t∗) such that t̂ ∈ [t∗, t∗ + δk∗); i.e., (k∗, t∗) contains p; or

(ii) Φt(p) ≤ (2k− 1) · cost(p), g = SINGLE and AlgOGPP(It) does not buy any group permit (k∗, t∗) with
k∗ ≥ k and t̂ ∈ [t∗, t∗ + δk∗).

We prove this claim by induction on t. The claim is trivial for t = 0. So assume that t > 0 and the claim
is valid for t − 1. We claim that the induction hypothesis implies that, for each p′ = (k′, t′, λ′, g′) ∈ S ′t−1,
we have that

(i’) Φ′
t−1(p

′) ≤ 2k∗ · cost(p′) for some k∗ ≥ k′ and, at some instant t̃ ≤ t− 1, AlgOGPP bought a group
permit (k∗, t∗) such that t′ ∈ [t∗, t∗ + δk∗); or

(ii’) Φ′
t−1(p

′) ≤ (2k′ − 1) · cost(p′), g′ = SINGLE and AlgOGPP(It−1) does not buy any group permit
(k∗, t∗) with k∗ ≥ k′ and t′ ∈ [t∗, t∗ + δk∗).

If g′ = GROUP, then (i’) holds for p′ from Facts 22 and 23. If g′ = SINGLE, let p̄ = (k̄, t̄, λ̄, ḡ) ∈ St−1

such that p′ ∈ St−1(p̄), which is unique due to Fact 22. If ḡ = GROUP, then (i’) holds for p′ from Facts 22
and 23. If ḡ = SINGLE, then k′ = k̄, since St−1 and S ′t−1 are built from AlgMPP(It−1), and thus (ii’) holds
for p′.

Now consider a permit p = (k, t̂, λ, g) ∈ St, and let us prove that one of (i) or (ii) holds. We divide the
proof in two cases.

1. Suppose there is some p′ = (k′, t′, λ′, g′) ∈ S ′t−1(p) which satisfies (i’) with one additional condition:
Φ′

t−1(p
′) ≤ 2k∗ · cost(p′) for some k∗ ≥ k′, at some instant t̃ ≤ t− 1 AlgOGPP bought a group permit

(k∗, t∗) such that t′ ∈ [t∗, t∗ + δk∗), and k∗ ≥ k. If there is more than one such permit in S ′t−1(p),
choose one with largest k∗. Note that AlgOGPP does not buy p at instant t, since group permit
(k∗, t∗) contains p. Furthermore, for any p′ ∈ S ′t−1(p), we have that Φ′

t−1(p
′) ≤ 2k∗ · cost(p′), since we

chose k∗ as large as possible. Then,

Φt(p) = Φ′
t−1(S

′
t−1(p)) ≤ 2k∗ · cost(S ′t−1(p)) ≤ 2k∗ · cost(p),

where the equality holds by definition of Φt, and the last inequality holds by Fact 25. Hence, (i) holds
for p since group permit (k∗, t∗) contains p.

8Although this claim seems too strong, it is necessary because, even though every single permit in St−1 is contained in
some permit in St, that is not true for group permits. Intuitively, a demand of level λ that is covered by a group permit of
type k∗ in St−1 may be covered by a permit of type k < k∗ in St, because AlgMPP(It) may decide to buy a permit of type
k′ > k∗ for some level λ′ < λ that was covered by the same group permit of type k∗ in St−1.
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2. So assume that each permit in S ′t−1(p) satisfies (ii’), or every k∗ for which it satisfies (i’) is such that
k∗ < k. We have two subcases.

(2a) If g = GROUP, then permits of type k in S ′t−1(p) satisfy (ii’). Permits of types 1, . . . , k − 1 can
satisfy (i’) or (ii’). Either way, for each p′ ∈ S ′t−1(p), we have that Φ′

t−1(p
′) ≤ (2k − 1) · cost(p′).

Since AlgOGPP has not bought any group permit that contains p, it buys p in Step 2. Therefore,

Φt(p) = Φ′
t−1(S

′
t−1(p)) + cost(p) ≤ (2k − 1) · cost(S ′t−1(p)) + cost(p)

≤ (2k − 1) · cost(p) + cost(p) = 2k · cost(p),

where the second inequality is due to Fact 25. So p satisfies (i) with (k∗, t∗) = (k, t̂) and t̃ = t.
(2b) If g = SINGLE, we have two more cases.

(2b.1) S ′t−1(p) = {p}. Then p satisfies (ii’) with k′ = k. Due to Facts 22 and 26, AlgOGPP(It−1)
has bought some permit that covers p, so AlgOGPP does not buy p at instant t, since at
Step 4 we ensure that we only buy permits for uncovered demands according to HTO.
So, Φt(p) = Φ′

t−1(p) ≤ (2k − 1) · cost(p) and p satisfies (ii).
(2b.2) S ′t−1(p) consists of single permits of types 1, . . . , k − 1 that satisfy (ii’), or every k∗ for

which they satisfy (i’) is such that k∗ < k. Either way, for each p′ ∈ S ′t−1(p), we have that
Φ′

t−1(p
′) ≤ 2(k − 1) · cost(p′). Thus,

Φt(p) ≤ Φ′
t−1(S

′
t−1(p)) + cost(p) ≤ 2(k − 1) · cost(S ′t−1(p)) + cost(p)

≤ 2(k − 1) · cost(p) + cost(p) = (2k − 1) · cost(p),

where the third inequality is due to Fact 25, so p satisfies (ii).

�

Theorem 28. Under IM, AlgOGPP is 4K-competitive for GPP.

Therefore, there exists a 16K-competitive online algorithm for arbitrary instances. This is asymptotically
optimal since the Ω(K) deterministic lower bound for PP [32] also applies to GPP. A 2K-competitive
online algorithm for GPP under IM can be obtained via the greedy algorithm for the covering problem by
Koufogiannakis and Young [27], which we discuss in Section 5.3. We obtained Theorem 28 independently,
and our analysis technique is rather different and relevant by itself.

An open question is whether there exists a randomized o(K)-competitive online algorithm for GPP.

5. The 2D Parking Permit Problem

In this section, we discuss 2DPP. This problem admits a O(K)-approximation algorithm and a O(K)-
competitive online algorithm, both by Koufogiannakis and Young [27], which we discuss in Section 5.3. We
show that this is an NP-hard problem via a reduction from the change-making problem (CM) [29], which
is a variant of the unbounded integer knapsack problem.9 Let us define CM: we are given a change value
R ∈ Z+, and K types of coins with values φ1, . . . , φK ∈ Z+ and weights γ1, . . . , γK ∈ R

∗
+. We wish to find a

minimum-weight multiset of coins, with as many coins of each type as we wish, whose value is at least R.10

Note that CM reduces to 2DPP by taking T = 1, r0 = R and δ1 = · · · = δK = 1. CM admits an FPTAS,
which was proposed for the unbounded knapsack problem [21].

An extension of IM can be defined for the 2D case, in order to give more structure to permits. In
addition to IM hypotheses, we assume that there is an ordering of the permits for which capacities divide

92DPP is a leasing variant of BaBND on a single edge, and Awerbuch and Azar [4] pointed that BaBND on a single edge
corresponds to CM.

10Note that this is the unbounded knapsack problem with inverted signs. Also note that we do not make the usual
requirement that the sum of the coins is exactly R.
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each other. The proof of Fact 30 is similar to that of Fact 8: we reorder permits in non-decreasing order
of capacity (which defines π), we round down each capacity to the closest power of 2, and we can cover a
permit in the optimum solution of the original problem with at most two permits of the new instance. The
proof of Lemma 32 is simply by composing Lemma 10 and Fact 30.

Hypothesis 29 (Hierarchical Capacity Property (HCP)). There is a permutation π : [K]→ [K] such
that φπ(k−1) divides φπ(k) for k = 2, . . . ,K.

Fact 30. If there is an α-competitive algorithm for 2DPP under HCP, then there is a 2α-competitive

algorithm for instances that do not satisfy HCP.

Hypothesis 31 (2D Interval Model (2DIM)). We assume IM and HCP.

Lemma 32. If there is an α-competitive algorithm for 2DPP under 2DIM, then there is an 8α-competitive

algorithm for arbitrary instances.

Note that Lemma 13 is true for 2DPP even if we do not assume HCP.
We can also define an extension of the Hanoi tower ordering for 2DPP under IM. For permits that

overlap in time, permits of larger length are under permits of smaller length. For permits of same length
that overlap in time, permits of larger capacity are under permits of smaller capacity. Again, demands are
assigned to permits in the lowest possible level.

For H2DPP under 2DIM, we can assume without loss of generality that

1 = δ1 · φ1 < δ2 · φ2 < · · · < δK · φK and γk/(δk · φk) < γk′/(δk′ · φk′) for k > k′.

For O2DPP under 2DIM, we can assume without loss of generality that Equation (1) holds and that

1 = φ1 < φ2 < · · · < φL and µℓ/φℓ < µℓ′/φℓ′ for ℓ > ℓ′.

Fact 33. CM is no longer NP-hard if we assume HCP.

Proof. Consider a greedy algorithm that chooses the largest-value coin which is at most the remaining
change. Suppose by contradiction that there exists some optimum solution S∗ which does not use a coin
of maximum value φk ≤ R. Since HCP requires that coin values divide each other, we can find a subset
of coins S′ ⊆ S∗ whose value is exactly φk. Under HCP, we can assume without loss of generality that
γk/φk < γk′/φk′ for k > k′ (otherwise, we can replace each coin of type k by φk/φk′ coins of type k′ and
obtain a lighter solution), so γ(S′) > γk. Thus, (S∗ \ S′) ∪ {k} is a solution which is lighter than S∗, a
contradiction. �

Note that the reduction from CM proves that both H2DPP and O2DPP are NP-hard, even if we as-
sume IM but do not assume HCP. We do not know how to reduce H2DPP to O2DPP (or vice versa) while
losing only a constant factor, so we believe the problems are independent. It turns out that O2DPP gener-
alizes GPP, but H2DPP only generalizes MPP. Note that, if GPP is proven weakly NP-hard under IM,
so is O2DPP even under 2DIM while, in Section 5.2, we present a polynomial-time algorithm for H2DPP

which is exact under 2DIM.
In the following sections, we show: (i) that the pseudo-polynomial approximation algorithm for H2DPP

by Hu et al., which they prove to be exact under 2DIM, works for generic 2DPP under IM; (ii) how to
turn that algorithm into polynomial time for H2DPP under 2DIM, turning their O(K)-competitive online
algorithm for H2DPP into polynomial time as well; (iii) how to obtain general results for 2DPP via the
work on the covering problem by Koufogiannakis and Young [27].
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5.1. A Pseudo-Polynomial Algorithm for Generic 2DPP

In this section we show that the pseudo-polynomial offline algorithm that Hu et al. [20] proposed for
H2DPP is indeed exact for generic 2DPP under IM. Moreover, our version of the algorithm is simpler,
and we present it in a clearer way. Note that this is also a pseudo-polynomial exact algorithm for GPP

under IM.
Let I = (T,K, δ, φ, γ, r) be an instance of 2DPP. For k ∈ [K], t̂ = c · δk for some c ∈ Z+, and λ ∈ Z+,

let I[k, t̂, r−λ] := (δk, k, δ, φ, γ, (r
′
t̂
, . . . , r′

t̂+δk−1
)), where r′t = max{rt − λ, 0}, be the corresponding instance

in which only permits of types 1, . . . , k can be used, we only consider interval [t̂, t̂ + δk) and we remove λ
from the demand of each day in this interval, as we illustrate in Figure 11.

t̂
δk

λ

I[k, t̂, r − λ]

Figure 11: Given an instance I, I[k, t̂, r − λ] is the sub-instance in which we only allow permits of types 1, . . . , k, we only
consider interval [t̂, t̂+ δk), and we remove λ from the demand of each day in this interval.

Under IM, we claim that 2DPP can be solved via the following recurrence. (Note that we do not require
HCP.) We sort permits in non-decreasing order of length of time, and permits of same length of time in
increasing order of capacity. Then,

opt(I[k, t̂, r − λ]) = min







γk + opt(I[k, t̂, r − λ− φk]),

δk/δk−1−1
∑

c=0

opt(I[k − 1, t̂+ c · δk−1, r − λ])







;

i.e., we either buy a permit of type k and combine that with an optimum solution for the remaining demand,
or we use an optimum solution that only uses permits of types 1, . . . , k − 1. The proof of this recurrence
follows from a standard optimal substructure argument that uses HTO.

In [20], Hu et al. show how to implement this recurrence in time O(T 2 ·R), where R = maxt=0,...,T−1 rt,
via dynamic programming by preprocessing the input. We point that it can be implemented in time O(K ·
T · R), which is usually better since K = o(T ) for typical inputs. Also, if δ1 < · · · < δK , the same
implementation consumes time O(T · R). This can be improved to O(K · T̄ · R), where T̄ is the number of
days with positive demand, by using linked lists. Note that this algorithm is pseudo-polynomial, since the
input can be encoded in O(K · lg(δK · φK · γK) + T̄ · lg(T · R)) bits.

Since this algorithm is exact under IM, then there exists a pseudo-polynomial 4-approximation for
arbitrary instances. Moreover, this algorithm implies that 2DPP is weakly NP-hard if we assume IM but
do not assume HCP.

5.2. Hierarchical 2D Parking Permit

In this section we show how to turn the algorithm of Section 5.1 into an exact polynomial-time algorithm
for H2DPP under 2DIM.

The algorithm uses the representation we discussed in Section 4.2: a multiset of permits is represented
as a set of tuples in the form (t, ℓ, k, q), where t is a starting time, ℓ is the first demand level covered, k is
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a permit type and q is a multiplicity. A tuple (t, ℓ, k, q) means that q copies of permit (k, t) are stacked to
supply the demand of levels [ℓ, ℓ+ q · φk). (See Figure 10.) This representation of the output is essential to
guarantee that the algorithm runs in polynomial time.

Let I = (T,K, δ, φ, γ, r) be an instance of the problem. We sort permit types in non-decreasing order
of capacity, breaking ties in increasing order of length. For k = 1, . . . ,K, let I[k] be the instance in
which only permits of types 1, . . . , k can be used. The algorithm finds an optimum solution for I[k] in the
following manner. For k = 1, we simply buy rt copies of permit (1, t), represented by a tuple (t, 1, 1, rt), for
t = 0, . . . , T − 1.

Now suppose k > 1 and that we have an optimum solution for I[k − 1]. We find the optimum solution
for each interval of length δk of I[k] independently. Note that, due to the optimal substructure presented
in Section 5.1, we can assume that the optimum solution for I[k] in the considered interval uses permits of
type k to supply levels 1, . . . , ℓ, together with the optimum solution of I[k − 1] for levels ℓ + 1, . . . , R, for
some ℓ ∈ {0, . . . , R} which is a multiple of φk. So, we just have to find the ℓ which minimizes the cost of
the total solution for the considered interval. Due to 2DIM, we can split the optimum solution of I[k − 1]
in layers of height φk (see Figure 12). Due to HTO, demand decreases as level increases, so we can perform

φk

φk

δk

Figure 12: We can split the optimum solution for I[k − 1] into layers of height φk. We may split a tuple in two or more parts
but, due to 2DIM, we never split a permit.

a binary search to find the highest layer for which the cost of the optimum for I[k − 1] is greater than γk.
Also due to HTO, permits of same k and t are used to serve contiguous levels, so we can ensure that we
have at most one tuple for each (k, t) and each subproblem. Thus, we can perform the following operations
in polynomial time: (i) compute the cost of a given layer of the optimum of I[k− 1], as well as (ii) separate
the solution in two halves by splitting a tuple evenly among the levels it covers. After we find the correct ℓ,
we merge tuples with same (k, t), to guarantee that we have only one tuple for each (k, t). This can be done
in polynomial time since the binary search splits the problem into O(lgR) subproblems. (See Figure 13.)

Thus, we have an algorithm that runs in polynomial time and is optimum under 2DIM, so there exists
an 8-approximation for arbitrary instances. Note that this algorithm is also a more efficient way to solve
MPP exactly if we can assume IM.

The online algorithm by Hu et al. [20] utilizes their offline algorithm as a black box and, at each
new instant t, it buys the permits bought by the offline solution for sequence r0, . . . , rt; this is similar
to Meyerson’s deterministic algorithm for PP. Under 2DIM, their algorithm is O(K)-competitive.11 By
simply replacing their offline algorithm with ours, we obtain a polynomial-time algorithm which is also O(K)-

11Indeed, it is K-competitive under 2DIM, so for MPP it has smaller constant hidden factor than the algorithm obtained
via the reduction we presented in Section 3.

22



level

time

0

1

1 2

2

3

3

4

4

5

5

6

7

(a)

level

time

0

1

1 2

2

3

3

4

4

5

5

6

7

(b)

level

time

0

1

1 2

3

3

4

4

5

5

6

7

ℓ = 2

(c)

level

time

0

1

1 2

3

3

4

4

5

5

6

7

ℓ = 2

(d)

Figure 13: Consider an instance with δ = (1, 3, 6) and φ = (1, 1, 1), and let (a) be an optimum solution for I[2]. In order to
compute the optimum for I[3], we begin by splitting the solution at level 4. (b) We obtain a solution with tuples (0, 1, 2, 3),
(3, 1, 2, 2) and (5, 3, 1, 1) for levels 1–3, tuples (0, 4, 2, 1) and (5, 4, 1, 1) for level 4, and tuples (0, 5, 2, 1), (2, 6, 1, 2) and (5, 5, 1, 2)
for levels 5–7. (c) Suppose that, at the end of the binary search we find ℓ = 2, so we buy a tuple (0, 1, 3, 2) for levels 1–2 and
the optimum of I[2] for levels 3–7. (d) Finally, we merge intermediate tuples after the binary search.

competitive. This result can also be obtained via the algorithm for the covering problem by Koufogiannakis
and Young [27], which we discuss in the next section.

Hu et al. [20] also discuss generalizing H2DPP to more dimensions. Their online algorithm is still K-
competitive for D dimensions under a D-dimension version of IM. Thus, if D is a constant, then there is a
O(K)-competitive algorithm for the problem. Moreover, the technique we presented in this section can be
extended to D dimensions, and the resulting algorithms run in polynomial time if D is a constant.

5.3. General Results via the Covering Problem

Some general results for 2DPP can be obtained via the greedy algorithm for the covering problem
by Koufogiannakis and Young [27]. We restrict our attention to what they call the problem of covering
linear programs with upper bounds on the variables, which are problems of the form min{c · x|x ∈
Z
n
+,A · x ≥ b,x ≤ u}, where ci, bj and Aij are non-negative for every i, j. They show that a simple greedy

algorithm is a ∆-approximation, where ∆ is the maximum number of positive coefficients in a constraint.
This greedy algorithm can also be used to solve the online version of the problem, thus it is a ∆-competitive
online algorithm.
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Consider the following formulation of 2DPP as an integer linear program, where R = maxt=0,...,T−1 rt.

minimize

K
∑

k=1

T−1
∑

t̂=0

xkt̂ · γk

subject to
K
∑

k=1

∑

t̂=0,...,T−1
t∈[t̂,t̂+δk)

xkt̂ · φk ≥ rt ∀t ∈ {0, . . . , T − 1},

xkt̂ ∈ Z+, xkt̂ ≤ R ∀k ∈ [K], t̂ ∈ {0, . . . , T − 1}.

Variable xkt̂ indicates how many copies of permit (k, t̂) we must buy. The first constraint ensures that each
day is covered by enough permits. Note that, if we assume IM, each constraint contains exactly K positive
coefficients, so the algorithm by Koufogiannakis and Young [27] yields a O(K)-approximation algorithm and
a O(K)-competitive online algorithm for 2DPP, thus generalizing the online results we obtained for GPP

and H2DPP, and also yielding a O(KL)-competitive online algorithm for O2DPP.

6. Consequences for Network Leasing Problems

In this section we discuss the consequences of our results for MPP, GPP and 2DPP on leasing variants
of SN, RoB and BaBND. Roughly speaking, each network leasing problem reduces to the corresponding
parking problem if the input metric is a tree. Using the technique of approximating a metric by a tree
metric [6, 11], a solution for a generic input can be obtained, losing some guarantee of quality. This idea
can be formalized as follows.12

Theorem 34 ([6, 11]). Given a minimization problem on a finite metric (V, d) whose objective function

is a non-negative linear combination of distances in d, if there is an α-competitive algorithm for the special

case of tree metrics, then there is a randomized O(α · lg |V |)-competitive algorithm for the general case.

Before we go into the leasing variants of the problems, let us list some literature for their traditional
versions.13 SN was proposed by Jain [23], who gave a 2-approximation algorithm. The online version
of the problem with n request pairs admits a O(lg n)-competitive algorithm, due to Umboh [37]. RoB

was proposed by Karger and Minkoff [25]. The best current results for RoB are a 3.55-approximation
for the single-source case [17] and a 5-approximation for the multi-source case [13], and there are O(lgn)-
competitive online algorithms [5, 37]. BaBND was proposed by Awerbuch and Azar [4], who gave a
O(lgn)-approximation algorithm and a O(lg |V |)-competitive online algorithm, based on the technique of
Theorem 34. For the single-source case of BaBND, Grandoni and Italiano [16] gave a 24.92-approximation
algorithm, and Gupta et al. [18] gave a deterministic O(lgn)-competitive online algorithm. All these prob-
lems are NP-hard and their online versions have competitive ratio Ω(lg n), since they are generalizations
of the Steiner tree problem, whose NP-hardness and online lower bound were proved in [15, 22], respec-

tively. Also, for multi-source BaBND, there is no O(lg
1

4
−ǫ n)-approximation for any constant ǫ > 0, unless

NP ⊆ ZPTIME(npolylog n) [2].

6.1. Steiner Network Leasing

The input for the Steiner network leasing problem (SNLe) consists of a complete graph G = (V,E),
a distance function d : V ×V → R+ satisfying symmetry and triangle inequality, K leasing types with lengths
of time δ1, . . . , δK and scaling costs γ1, . . . , γK , and a sequence of triples (u0, v0, r0), . . . , (uT−1, vT−1, rT−1)
in which ut, vt ∈ V and rt ∈ Z+ for every t. A solution consists of a multiset of edge leases S ⊆ E × [K]× Z+

12See [38, Sections 8.5 and 8.6] for a nice presentation of the technique and its application.
13We give a reference for the seminal paper and for the current best result for each problem; check the latter for a broader

literature review.
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such that, for t = 0, . . . , T − 1, the multigraph induced by multiset {e ∈ E : (e, k, t̂) ∈ S and t ∈ [t̂, t̂+ δk)}
contains rt edge-disjoint (ut, vt)-paths. The goal is to minimize

∑

(e,k,t̂)∈S mS(e, k, t̂) · de · γk.
If G is a tree, then there is a unique path between each pair of vertices. In this case, SNLe reduces to

solving MPP in each edge, in order to decide how many copies and which leasing types to use to serve each
input triple. Thus, we obtain a solution to a generic graph by approximating (V, d) by a tree metric. In
the offline setting, we can build a tree metric on the metric restricted to the n requested pairs, incurring
in a O(lg n) distortion factor. In the online setting, requested pairs are given in an online manner, edges
must be leased to connect pairs as they arrive, and no edge leases may be removed. Thus, we cannot
build a tree metric only on the requested pairs. Instead, we have to approximate the entire metric (V, d),
incurring in a O(lg |V |) distortion factor. Since we have a constant-approximation algorithm and an online
O(lgK)-competitive algorithm for MPP, we obtain the following result via Theorem 34.

Theorem 35. There are a randomized O(lg n)-approximation algorithm and a randomized O(lgK lg |V |)-
competitive online algorithm for SNLe.

6.2. Leasing Rent-or-Buy

In the leasing rent-or-buy problem (LeRoB), we are given a complete graph G = (V,E) with a
distance function d : V ×V → R+ satisfying symmetry and triangle inequality, K leasing types with lengths
of time δ1, . . . , δK and scaling costs γ1, . . . , γK , a constant M ≥ 1, and a sequence D0, . . . , DT−1 ⊆ V × V
of pairs of vertices. We wish to find a multiset of single edge leases S ⊆ E × [K] × Z+ and a set of
group edge leases Q ⊆ E × [K] × Z+ such that, for each (u, v) ∈ Dt with t ∈ {0, . . . , T − 1}, there exists
some (u, v)-path Puvt in G such that, for every t′ ∈ {0, . . . , T − 1} and every edge e ∈ G, we have that
∑

(e,k,t̂)∈S

t′∈[t̂,t̂+δk)

mS(e, k, t̂) ≥ |{(u, v) ∈ Dt′ : e ∈ Puvt′}|, i.e., we have a different single edge lease for each path

that uses e at instant t′, or we have some group edge lease (e, k, t̂) ∈ Q with t′ ∈ [t̂, t̂ + δk). We wish to
minimize

∑

(e,k,t̂)∈S

mS(e, k, t̂) · ce · γk +M ·
∑

(e,k,t̂)∈Q

ce · γk.

Note that, if |Dt| = 1 for every t, then it is never useful to obtain a group lease, and the problem reduces to
SLe. Also, LeRoB is equivalent to the variant in which a single pair of vertices and an integer demand are
received at each instant of time. Thus, SNLe is a particular case of LeRoB when M = ∞, even though
online SN is not a particular case of online RoB: in the former, edges are permanent while, in the latter,
rented edges are temporary.

LeRoB reduces to solve GPP in each edge if the input metric is a tree. Thus, by approximating the
input metric by a tree metric, we obtain a randomized O(lg n)-approximation algorithm and a randomized
O(K lg |V |)-competitive online algorithm. For the single-source case of LeRoB (in which one of the ver-
tices in every pair is a fixed vertex r), Anthony and Gupta presented a O(K)-approximation [3], which is
usually better than our result since the approximation factor does not depend on the temporal dimension.
However, for multiple sources, our result improves the previous best algorithm, which was their O(K lgn)-
approximation for orthogonal LeBaBND. Orthogonal LeBaBND generalizes LeRoB, and we discuss it in
Section 6.3.

6.3. Leasing Buy-at-Bulk Network Design

In the leasing buy-at-bulk network design problem (LeBaBND), we are given a distance function d
between the vertices in a complete graph G = (V,E), K types of cables with lengths of time δ1, . . . , δK ,
capacities φ1, . . . , φK and costs per unit of distance γ1, . . . , γK , and at every instant t we receive a pair
(ut, vt) of vertices with an associated demand rt. We must lease cables so that there is a path connecting ut

and vt in G whose edges have leased capacity at least rt at instant t. We wish to minimize the cost of
the leased cables, where leasing a cable of type k for edge e costs γk · de. The problem reduces to solve
2DPP in each edge if the input metric is a tree metric so, by approximating the input metric by a tree,
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we have a pseudo-polynomial O(lgn)-approximation algorithm, and there are a polynomial-time O(K lgn)-
approximation algorithm and a O(K lg |V |)-competitive online algorithm, where n is the number of requested
pairs.

As we did for 2DPP, we can define hierarchical and orthogonal versions of LeBaBND.
In the hierarchical version, we have that δ1 ≤ · · · ≤ δK and φ1 ≤ · · · ≤ φK , and the problem reduces to

solve H2DPP in each edge if the input metric is a tree. Thus, by approximating the input metric by a tree
metric, we obtain a randomized O(lg n)-approximation algorithm, and a randomized O(K lg |V |)-competitive
online algorithm.

In the orthogonal version, we have K ·L types of cables, each defined by a length of time and a capacity.
There are K lengths of time δ1, . . . , δK with corresponding time scaling costs γ1, . . . , γK , and L capacities
φ1, . . . , φL with corresponding capacity scaling costs µ1, . . . , µL. A cable with length of time δk and ca-
pacity φℓ for edge e costs γk · µℓ · de. This problem was addressed in the offline setting by Anthony and
Gupta14 [3], and they gave a O(K)-approximation algorithm for the case with a single source (if vt = r for
a fixed vertex r). For multiple sources, they gave a O(K)-approximation algorithm for the case in which
the input metric is a tree15; this yields a randomized O(K lgn)-approximation for arbitrary metrics by
Theorem 34. By combining the algorithm by Koufogiannakis and Young [27] with Theorem 34, we obtain
a O(KL lg |V |)-competitive online algorithm.

7. Discussion

In this paper we address generalizations of the parking permit problem [32] and their application to
leasing variants of some classical network design problems. In particular, the problems we study in this
paper combine time dynamicity, which is central to the parking permit problem, with the idea of capacity
dynamicity.

Our first guess, when we started this study, was that time dynamicity and capacity dynamicity were
independent issues. This would be true if we obtained a polynomial-time exact algorithm for GPP, and
an FPTAS and a O(K)-competitive online algorithm for O2DPP. Similarly, if this independency holds, it
would be possible to obtain randomized O(lgK)-competitive online algorithms for GPP and 2DPP, which
is an open question that seems to be difficult to answer.

Summary of Results. In Tables 1 and 2 we summarize known approximation and competitive online results
about the parking permit and network leasing problems we study.

Summary of Open Questions.

1. We do not know if, under IM, GPP is weakly NP-hard or can be solved in polynomial time. If the
former is true, then an open question is whether we can obtain an FPTAS under IM.

2. If GPP is weakly NP-hard under IM, it can still be strongly NP-hard if we do not assume IM, even
though the fact that MPP is polynomial is an evidence that this is not true. Another question is if
we can obtain a better approximation algorithm than 4(1 + ǫ) if we do not assume IM.

3. We do not know if Algorithm 1 has approximation factor better than 2 under IM. We have a lower
bound of 4/3, and experiments on random instances never attained approximation factor greater
than 4/3.

4. Note that, if GPP is weakly NP-hard under IM, then O2DPP is weakly NP-hard even under 2DIM.
NP-hardness and approximability questions analogue to those in items 1 and 2 apply to this problem.

5. Although H2DPP is weakly NP-hard if we assume IM but do not assume HCP, it is not clear whether
we can obtain a polynomial-time algorithm if we do not assume IM but assume HCP.

14They define the problem in terms of a sub-additive capacity scaling cost function; as we mentioned in Section 1, this is
equivalent to our definition up to a constant cost factor.

15Since this problem on a single edge corresponds to O2DPP, this turns out to be a O(K)-approximation for O2DPP.
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problem
offline setting online setting

NP-hard? general case under IM / 2DIM general case under IM / 2DIM

PP No 1 [32]
4K [32] K [32]
randomized O(lgK) [32]

MPP No 1 (Section 3)
4K K (Sec. 5.2), [27]

randomized O(lgK) (Sec. 3)

GPP ? 8 2 (Sec. 4.1)
16K 4K (Sec. 4.2)
8K 2K [27]

O2DPP Yes O(K) [3] 4KL KL [27]

H2DPP Yes
pseudo-8 [20] pseudo-1 [20] pseudo-(8K) [20] pseudo-K [20]

8 1 (Sec. 5.2) 4K K (Sec. 5.2), [27]

2DPP Yes
pseudo-4 pseudo-1 (Sec. 5.1)

4K K [27]
4K K [27]

Table 1: Summary of known approximation and competitive online results for parking permit problems. A ‘1’ means an exact
algorithm. A “pseudo-α” means a pseudo-polynomial α-approximation (α-competitive) algorithm. All online problems have
deterministic K/3 (under IM) and randomized Ω(lgK) lower bounds [32].

problem
offline setting online setting

single-source multi-source single-source multi-source

SLe O(K) [3] O(lgn) [32]
deterministic randomized
O(K lgn) [7] O(lgK lg |V |) [32]

SNLe O(K) [3] O(lg n) (Sec. 6.1) O(lgK lg |V |) (Sec. 6.1)
LeRoB O(K) [3] O(lg n) (Sec. 6.2) O(K lg |V |) (Sec. 6.2), [11, 27]

OLeBaBND O(K) [3] O(K lgn) [3] O(KL lg |V |) [11, 27]
HLeBaBND O(lgn) (Sec. 6.3) O(K lg |V |) (Sec. 6.3), [11, 27]

LeBaBND
pseudo-O(lgn) (Sec. 6.3)

O(K lg |V |) [11, 27]
O(K lg n) [11, 27]

Table 2: Summary of known approximation and competitive online results for network leasing problems. A “pseudo-α” means
a pseudo-polynomial α-approximation (α-competitive) algorithm. All offline problems are NP-hard [15], all offline multi-source

BaBND problems have lower bound Ω(lg1/4 n) [2], and all online problems have lower bound Ω(lgK + lgmin{n, δK}) [32, 1].

6. It would be very nice if we could extend the ideas we developed for GPP to obtain a constant-
approximation algorithm for O2DPP which runs in polynomial time. That would also improve the
approximation result for OLeBaBND by Anthony and Gupta [3].

7. We do not know a randomized o(K)-competitive online algorithm for GPP or H2DPP.

Further Research Directions. Another future research direction is to study generalizations such as GPP and
2DPP to other leasing models, such as those defined in [28, 12].
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