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a b s t r a c t

A graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has
non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every
clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph.
We present here two infinite families of counterexamples to this conjecture.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A set family F satisfies the Helly property if the intersection of all the members of every pairwise intersecting subfamily
of F is non-empty. This property, originated in the famous work of Eduard Helly on convex sets in the Euclidean space,
has been widely studied in diverse areas of theoretical and applied mathematics such as extremal hypergraph theory,
logic, optimization, theoretical computer science, computational biology, databases, image processing and graph theory.
A few surveys have been written on the Helly property, see for instance [2,4–6,8].

From the computational and algorithmic point of view, the relevance of the Helly property has been highlighted in the
survey [5]. In the section Proposed Problems of that work, the authors posed the following open question:

Conjecture 1.1 (Dourado, Protti and Szwarcfiter [5]). Every clique–Helly graph contains a vertex whose removal maintains it
as a clique–Helly graph.

In this work, we prove the conjecture is false: we will exhibit two infinite families of clique–Helly graphs G such that
G − x (the graph obtained from G by removing vertex x) is not clique–Helly for every vertex x of G. Moreover, the family
in Section 3 contains only self-clique graphs and the family in Section 4 contains only 2-self-clique graphs. It is a classic
result that any clique–Helly graph without dominated vertices is either self-clique or 2-self-clique (Escalante 1973, [7]),
and any counterexample to the conjecture cannot contain dominated vertices (since the removal of a dominated vertex
from a clique–Helly graph, preserves clique–Hellyness).

A preliminary version of this work appeared in [1] where we showed that one counterexample to the conjecture exists.
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Fig. 1. A partial drawing of a locally Cd graph.

2. Preliminaries

Our graphs are finite and simple. We identify induced subgraphs with their vertex set, in particular we usually write
x ∈ G instead of x ∈ V (G). Also, for a vertex x ∈ G, we write G− x instead of G−{x}. The open and the closed neighborhood
of a vertex x ∈ G are denoted by N(x) and N[x] respectively. The degree of x is the cardinality of N(x). We write x ≃ y
when x is adjacent-or-equal to y.

The complete graph on n vertices is denoted by Kn. A clique is a maximal complete subgraph. Let C(G) be the family of
all cliques of G. When C(G) satisfies the Helly property, we say that G is a clique–Helly graph.

Definition 2.1. A graph G is critical clique–Helly if G is clique–Helly and G − x is not clique–Helly for every x ∈ G.

Notice that in terms of the previous definition the conjecture of Dourado, Protti and Szwarcfiter postulates that there
are no critical clique–Helly graphs.

The clique graph K (G) of G is the intersection graph of C(G): the vertices of K (G) are the cliques of G and two different
cliques of G are adjacent in K (G) if and only if they have non-empty intersection. The second clique graph of G is
K 2(G) = K (K (G)). Then the vertices of K 2(G) are the cliques of K (G) which are said to be cliques of cliques of G. Given a
vertex v of a graph G, the star of v is the set of all the cliques of G which contain v, i.e. v∗

= {q ∈ V (K (G)) : v ∈ q}. Stars
of G are not always vertices of K 2(G): They are always complete subgraphs of K (G), but not always maximal. Any clique
of cliques of G which is not a star will be said to be a necktie. An example of a necktie is Q = {q0, q1, q2, q3}, where qi
is the clique formed by the vertices of the corresponding triangles in Fig. 1. We say that G is self-clique if K (G) ∼= G, and
that it is 2-self-clique whenever K 2(G) ∼= G ̸∼= K (G).

A cycle in G is a sequence of at least three distinct vertices v1, v2, . . . , vd of G such that two of them are adjacent in G
if and only if they are consecutive in the sequence or they are v1 and vd. The positive integer d is the length of the cycle.
The cycle of length d is denoted by Cd. A graph G is locally cyclic if each open neighborhood in G induces a cycle, and G
is a locally Cd graph if N(v) induces a Cd for every v ∈ G. The girth g(G) of G is the length of a shortest cycle in G (if G has
no cycles, then g(G) = ∞). The local girth of G at a vertex v ∈ G, lgv(G), is the girth of the subgraph induced by the open
neighborhood of v in G, i.e. lgv(G) = g(N(v)). The minimum of these local girths is denoted by lg(G) and is called the local
girth of G, i.e.

lg(G) = min{lgv(G) : v ∈ G}.

Theorem 2.2 ([10]). If the local girth of the graph G is greater than 6 (i.e. lg(G) ≥ 7) then K (G) is clique–Helly.

For d ≥ 7 and G a locally Cd graph, a detailed analysis of the cliques and cliques of cliques of G was done in [10]. We
transcribe here the most relevant properties for our purposes (which can all be verified straightforwardly):
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Remark 2.3 ([10], Section 3.1). If d ≥ 7, and G is a locally Cd graph, then:

1. All the cliques of G are triangles.
2. For every vertex v ∈ G, v∗ is a clique of cliques of G.
3. For every triangle T = {v1, v2, v3} of G, there is a necktie QT = {q ∈ K (G) : |q ∩ T | ≥ 2}, which is a clique of cliques

of G and it is always of the form QT = {q0, q1, q2, q3} (see Fig. 1).
4. Every clique of cliques of G is either a star v∗ or a necktie QT .
5. In K 2(G), v∗

1 ≃ v∗

2 if and only if v1 ≃ v2 in G.
6. In K 2(G), QT ≃ QT ′ if and only if either T and T ′ share an edge, or they share a vertex and there is an edge joining

a vertex of T \ T ′ with a vertex of T ′
\ T .

7. In K 2(G), v∗
≃ QT if and only if v ∈ ∪QT = ∪

3
i=0qi where QT = {q0, q1, q2, q3}.

Brown and Connelly proved in [3] that there exists at least one finite locally Cd graph for each d ≥ 3. Larrión,
Neumann–Lara and Pizaña obtained the next theorem extending the result of Brown and Connelly for d ≥ 7.

Theorem 2.4 ([10]). Let d be any integer greater than or equal to 7. Then there are infinitely many non-isomorphic locally Cd
graphs.

In the strong product of graphs, G ⊠ H , two vertices (g1, h1), (g2, h2) ∈ V (G ⊠ H) = V (G) × V (H) are adjacent-or-equal
whenever g1 ≃ g2 in G and h1 ≃ h2 in H . We refer the reader to [9] for the known results on the strong product. A
classic result on clique graphs (Neumann–Lara, 1978) states that the clique operator distributes over the strong product
of graphs:

Theorem 2.5 ([11]). K (G ⊠ H) ∼= K (G) ⊠ K (H).

3. The self-clique family

Let r, s, t ≥ 4. Take G(r, s, t) = Cr ⊠ Cs ⊠ Ct . We claim that these graphs are the sought self-clique counterexamples:

Theorem 3.1. All the graphs G(r, s, t) are self-clique critical clique–Helly graphs.

Proof. Certainly they are all self-clique since, by Theorem 2.5, we have K (G(r, s, t)) = K (Cr ⊠ Cs ⊠ Ct ) ∼= K (Cr ) ⊠ K (Cs) ⊠
K (Ct ) ∼= Cr ⊠ Cs ⊠ Ct = G(r, s, t).

Evidently, every Cd is clique–Helly. Let us see that the strong product of clique–Helly graphs is again clique–Helly:
Suppose X and Y are clique–Helly graphs. The cliques of X⊠Y are of the form q = q1×q2 with q1 ∈ C(X) and q2 ∈ C(Y ).

Now assume you have a pairwise intersecting family of cliques of X ⊠ Y , namely: q1 = q11 × q12, q
2

= q21 × q22, . . . , q
m

=

qm1 × qm2 . It follows that q11, q
2
1, . . . , q

m
1 are pairwise intersecting cliques in X and q12, q

2
2, . . . , q

m
2 are pairwise intersecting

cliques in Y . Since X and Y are clique–Helly, there are some vertices x ∈ ∩
m
i=1q

i
1 ⊆ X and y ∈ ∩

m
i=1q

i
2 ⊆ Y . Clearly, (x, y)

belongs to the total intersection of q1, q2, . . . , qm and therefore X ⊠ Y is clique–Helly.
It follows that G(r, s, t) = Cr ⊠ Cs ⊠ Ct is clique–Helly.
Now we will show that G(r, s, t) − x is not clique–Helly for every vertex x. Since G(r, s, t) is clearly vertex-transitive,

it is sufficient for us to prove it for any particular vertex x. Assume the vertices of each cycle Cd are numbered as
{1, 2, . . . , d} for d ∈ {r, s, t} and take x = (2, 2, 2) ∈ G(r, s, t). Define H = G(r, s, t) − x. Now in G(r, s, t) take the
cliques q1 = {2, 3}× {1, 2}× {1, 2}, q2 = {1, 2}× {2, 3}× {1, 2}, q3 = {1, 2}× {1, 2}× {2, 3}. The corresponding cliques in
H , q̄i = qi ∩H = qi − (2, 2, 2) for i = 1, 2, 3, are pairwise intersecting (each qi ∩ qj contains one of the following vertices:
(1, 2, 2), (2, 1, 2) or (2, 2, 1)) but have no common total intersection: the only vertex in q1 ∩ q2 ∩ q3 in G(r, s, t) is (2, 2, 2)
which is not present in H . It follows that H is not clique–Helly. □

4. The 2-self-clique family

Theorem 4.1. Let G be a locally Cd graph with d ≥ 7. Then K (G) is a critical clique–Helly graph.

Proof. Since G is locally Cd graph, the local girth of G equals d ≥ 7, therefore, by Theorem 2.2, K (G) is clique–Helly.
Let q0 be any vertex of K (G) (a clique of G). We will prove that K (G) − q0 is not clique–Helly. By Remark 2.3(1) every

clique in G is a triangle. Without loss of generality assume q0 = {v1, v2, v3} as in Fig. 1.
Consider the following cliques of K (G) − q0: v∗

1 − q0, v∗

2 − q0 and v∗

3 − q0. We claim these three cliques are pairwise
intersecting but the intersection of all three of them is empty: indeed, the vertices of K (G) − q0 corresponding to the
cliques q1, q2 and q3 of G (as in Fig. 1) belong to v∗

1 ∩ v∗

2 , v∗

2 ∩ v∗

3 and v∗

3 ∩ v∗

0 , respectively. Finally, assume in order to
obtain a contradiction that a vertex q of K (G) − q0 belongs to v∗

1 ∩ v∗

2 ∩ v∗

3 , then, by definition of these sets, q is a clique
of G such that vi ∈ q for i ∈ {1, 2, 3}. Thus, q = {v1, v2, v3} = q0 which contradicts our assumption that q is a vertex of
K (G) − q0. Hence K (G) − q0 is not clique–Helly. □
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Theorem 4.2. Let G1 and G2 be two non-isomorphic locally Cd graphs. Then K (G1) and K (G2) are also non-isomorphic.

Proof. Assume, by way of contradiction, that K (G1) ∼= K (G2). Then we also have K 2(G1) ∼= K 2(G2). Now, by Remark 2.3(4),
the vertices of K 2(G1) (and those of K 2(G2)) are either stars or neckties. By Remark 2.3(5–7), stars have degree 3d (d of
the neighbors are stars and 2d are neckties) and neckties have degree 15 (6 stars and 9 neckties), see Fig. 1. Hence, any
isomorphism φ : K 2(G1) → K 2(G2) must map stars onto stars bijectively. Let S1 and S2 be the subgraphs of K 2(G1) and
K 2(G2) induced by the stars of G1 and G2 (respectively). Hence the restriction of φ, φ′

: S1 → S2, is still an isomorphism.
But, by Remark 2.3(5), G1 ∼= S1 and G2 ∼= S2. It follows that G1 ∼= S1 ∼= S2 ∼= G2, contrary to our hypothesis. □

Theorem 4.3. There are infinitely many 2-self-clique critical clique–Helly graphs.

Proof. Let G be a locally Cd graph and H = K (G). It follows by Theorem 4.1, that H is a critical clique–Helly graph. By
Theorem 2.4, there are infinitely many such examples, all of them non-isomorphic to each other by Theorem 4.2.

The fact that these examples are not self-clique follows from vertex degree comparisons: As in the proof of Theorem 4.2,
the vertices of K (H) = K 2(G) have a degree which is either 3d or 15, but the degree of all vertices of H = K (G) is 3d−6 (see
Fig. 1 and Remark 2.3(1)). It follows that K (H) ̸∼= H and hence H is not self-clique. By the result of Escalante mentioned
in the introduction, H is 2-self-clique. □
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