
ar
X

iv
:1

81
1.

00
44

4v
3

 [
m

at
h.

O
C

]
 2

7
Ju

n
20

19

A Polyhedral Model for Enumeration and Optimization over

the Set of Circuits

Steffen Borgwardt1 and Charles Viss2

1
steffen.borgwardt@ucdenver.edu; University of Colorado Denver
2 charles.viss@ucdenver.edu; University of Colorado Denver

Abstract. Circuits play a fundamental role in polyhedral theory and linear programming.
For instance, circuits are used as step directions in various augmentation schemes for solving
linear programs or to leave degenerate vertices while running the simplex method. However,
there are significant challenges when implementing these approaches: The set of circuits of
a polyhedron may be of exponential size and is highly sensitive to the representation of the
polyhedron.
In this paper, we provide a universal framework for enumerating the set of circuits and opti-
mizing over sets of circuits of a polyhedron in any representation—we propose a polyhedral
model in which the circuits of the original polyhedron are encoded as extreme rays or vertices.
Many methods in the literature and software assume that a polyhedron is in standard form;
our framework is a direct generalization. We demonstrate its value by showing that the con-
version of a general representation to standard form may introduce exponentially many new
circuits.
We then discuss the main advantages of the generalized polyhedral model. It enables the direct
enumeration of useful subsets of circuits such as strictly feasible circuits or sign-compatible
circuits, as well as optimization over these sets. In particular, this leads to the efficient compu-
tation of a steepest-descent circuit, which can be used in an augmentation scheme for solving
linear programs or the construction of sign-compatible circuit walks with additional properties.

Keywords: circuits, linear programming, polyhedra

MSC: 52B05, 90C05, 90C08, 90C10

1 Introduction

In his seminal paper [16], Jack Graver formalized the concept of universal test sets for families of
integer and linear programs. These test sets can be used to either verify the optimality of a given
solution or find a strictly improving search direction. In the context of integer programming, such
a set has become known as the Graver basis of an integer matrix. In this paper, our interest lies in
the enumeration and optimization over Graver’s universal test set for a linear program: the so-called
circuits (Definition 1) of the underlying polyhedron.

Circuits were first introduced by Rockafellar [29] as the elementary vectors of a subspace, high-
lighting their role in matroid theory. Namely, the circuits of a linear matroid correspond to the
inclusion-minimal sets of linearly dependent columns of a matrix. In the field of mathematical biol-
ogy, circuits appear as elementary modes and are used to describe and analyze pathways in metabolic
networks [13,17,24,26]. Additionally, circuits are relevant to the study of the diameters of polyhedra
and the efficiency of the simplex method [5,6]. As potential edge directions of a polyhedron, circuits
provide a scheme for walking between vertices of a polyhedron in a manner that generalizes edge
walks. Although the famous Hirsch conjecture bounding the combinatorial diamter of polyhedra is
false in general [30], the related Circuit Diameter Conjecture [5] remains an open area of research.

Recently, circuits have been used to develop augmentation schemes for solving integer and linear
programs [10,20,21]. For instance, the so-called steepest-descent augmentation scheme of [10] general-
izes the minimum-mean cycle canceling algorithm and can be applied to any bounded linear program
[15]. The deepest-descent augmentation scheme of [10] is guaranteed to take only polynomially many
steps [21]. However, although several of these algorithms yield promising convergence bounds, a
major challenge in implementing them is actually computing the required circuit directions.

http://arxiv.org/abs/1811.00444v3
mailto:steffen.borgwardt@ucdenver.edu
mailto:charles.viss@ucdenver.edu

To address this challenge, we are interested in both the enumeration and optimization over sets
of circuits. Since a polyhedron may have exponentially many circuits, complete circuit enumeration
is hard in general. However, it is open whether or not the problem is solvable in polynomial total-time
[23], i.e., if the output can be generated in time that is polynomial in both the input and output
sizes. On the other hand, methods to directly optimize over circuits could provide implementations
of these circuit augmentation schemes without needing to completely enumerate the set of circuits.

1.1 Circuit Enumeration

Several ways to enumerate circuits appear in the literature. For instance, as the universal test set
for linear programs proposed by Graver [16], the set of circuits is also known as the LP Graver test
set of a polyhedron and is a subset of the related IP Graver basis. Thus, methods for enumerating
Graver bases may also be used to enumerate circuits [19]. Such algorithms are typically variations of
Pottier’s geometric completion procedure [28], an n-dimensional generalization of Euclid’s algorithm.
The goal is to find a generating set of vectors for an integer lattice that is minimal with respect to a
certain partial order, where the order depends on whether the LP or IP Graver test set is desired [19].
To do this, the algorithms first compute generating sets containing all minimal elements and then
remove those elements which are not minimal. Other algorithms enumerate these sets by computing
the Gröbner bases of certain toric or lattice ideals [31]; these approaches can also be translated into
Pottier’s algorithm [9]. A significant challenge when implementing these schemes is the sheer size of
the initially computed generating sets [27]. Although significant speed-up can be achieved using a
project-and-lift approach [18], we seek a more direct algorithm for enumerating only the LP Graver
test set of a polyhedron.

Since circuits correspond to the elementary modes of a metabolic network, the circuit enumeration
problem is also of interest in the field of mathematical biology [13,17,24,26]. When a metabolic
network is formulated as a polyhedral cone, elementary modes appear as extreme rays. Hence, most
current methods for enumerating elementary modes are variations of the Double Description method
[13]; implementations are available through the efmtool [33] software package.

A significant challenge that arises when enumerating circuits—one that has remained largely
unaddressed in the literature—is the fact that the set of circuits is highly sensitive to the representa-
tion of the polyhedron. Most current methods for enumerating circuits, such as the state-of-the-art
software package 4ti2 [1], the LP Graver test set enumeration approaches of [19,31], and the Double
Description methods for elementary mode enumeration from [13,33], assume that the input is a poly-
hedron in standard form: P = {x ∈ Rn : Ax = b, x ≥ 0}. Additionally, the circuit augmentation
schemes of [10,20,21] are described only for polyhedra in standard form. However, as we demonstrate
in Section 2, simply converting a general polyhedron to standard form can introduce exponentially
many unwanted directions to its set of circuits, making the already difficult computational task of
circuit enumeration even harder. Thus, we are interested in generalized schemes for enumerating the
circuits of a polyhedron in any representation.

1.2 Main Results

In this paper, we provide a universal framework for the enumeration and optimization over circuits
of a general polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}. We begin in Section 2 with a discussion
on the relationship between the set of circuits of a polyhedron and its representation. First, we recall
the definition of the set of circuits C(A,B) of P as given in [5]:

Definition 1 The set of circuits C(A,B) of a polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d} consists
of all g ∈ ker(A) \ {0} normalized to coprime integer components for which Bg is support-minimal
over {Bx : x ∈ ker(A) \ {0}}.

This definition suggests a naive algorithm for enumerating C(A,B), which we provide in Algorithm 1
as a baseline approach for the general circuit enumeration problem.

Next, we explore the effect that a change in representation has on the set of circuits of P . Recall
that current methods for enumerating circuits assume that the input polyhedron is in standard
form [1,13,19,31,33]. We demonstrate in Algorithm 2 how to use existing software to enumerate

2

C(A,B) as a subset of the circuits of a related standard form polyhedron. However, we show that a
shortcoming of this approach is that it can require the enumeration and processing of exponentially
many unwanted directions.

For a general polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}, a conversion to standard form P ′

involves both the introduction of slack variables and the split of free variables into their positive and
negative parts:

P ′ = {(x+,x−, s) ∈ R2n+mB : A(x+ − x−) = b, B(x+ − x−) + Is = d, x+,x−, s ≥ 0}.

In Theorem 1, we prove that in a worst-case scenario, performing this conversion increases the
number of circuits of the polyhedron by more than a factor of 2n. A smarter approach—taken
by Algorithm 2—is to only consider a particular submatrix of the constraint matrix from this
standard form representation. In doing so, the original circuits of P are preserved while many fewer
unwanted circuits are introduced. Nevertheless, we prove in Theorem 2 that this still may require
the computation and post-processing of exponentially many additional directions.

To provide an alternative to the naive Algorithm 1 and the indirect Algorithm 2, we propose
in Section 3 a polyhedral model for representing the set of circuits of the general polyhedron P .
Specifically, we prove in Theorem 3 that the circuits of P appear as extreme rays of the following
cone CA,B:

CA,B = {(x,y+,y−) ∈ Rn+2mB : Ax = 0, Bx = y+ − y−, y+,y− ≥ 0}.

By intersecting CA,B with a normalizing hyperplane, we show in Theorem 4 that the circuits of P
therefore appear as vertices in the polytope PA,B:

PA,B = {(x,y+,y−) ∈ Rn+2mB : Ax = 0, Bx = y+ − y−, ||y+||1 + ||y−||1 = 1, y+,y− ≥ 0}.

These results generalize previous standard form models in the literature used to enumerate elemen-
tary modes of a metabolic network [13] and to compute augmenting search directions at degenerate
vertices in linear programs [15]. In this generalization, we take into account the more technical details
of circuits of general polyhedra compared to standard form.

The polyhedral models CA,B and PA,B may be used to directly enumerate C(A,B) via any ex-
treme ray or vertex enumeration scheme. We formally outline the procedure in Algorithm 3. This
result has important theoretical implications regarding the computational complexity of circuit enu-
meration: the existence of a polynomial total-time extreme ray or vertex enumeration algorithm
would immediately imply the existence a polynomial total-time algorithm for general circuit enu-
meration. Although vertex enumeration is provably hard for unbounded polyhedra, it is open whether
or not a polynomial total-time enumeration scheme exists for bounded polytopes such as PA,B [23].

In Section 4, we describe some powerful applications of the polyhedral model CA,B. First, we show
that certain faces of the model can be used to represent specific subsets of C(A,B) (Section 4.1). In
particular, given a point x0 ∈ P , we show in Section 4.1.1 that the model may be used to represent
only those circuits which are strictly feasible at x0 with respect to P (Theorem 5). Similarly, given
a direction u ∈ ker(A) \ {0}, we show in Section 4.1.2 that a face of CA,B may be used to represent
only those circuits which are sign-compatible with u (Theorem 6). Hence, the model may be used
to directly enumerate only those circuits of P which exhibit either feasibility or sign-compatibility.
This is a vast improvement over a naive approach of enumerating all such circuits in which one uses
Algorithm 1 or Algorithm 2 to enumerate all of C(A,B) and then removes those circuits which do
not exhibit the desired property via post-processing.

Another advantage of the polyhedral model is that it enables direct optimization over sets of
circuits (Section 4.2). We show in Section 4.2.1 that this allows for the efficient computation of a
generalized steepest-descent circuit (Definition 2) at any given point in the polyhedron (Theorem 7).
Thus, the model may be used to implement a generalization of the steepest-descent augmentation
scheme from [10] for solving linear programs. While the original scheme in [10] applies only to
standard form polyhedra and relies on an oracle for providing steepest-descent circuits, our gener-
alized approach can be applied to polyhedra in any representation. We note that this approach also
generalizes the framework of [15] for computing augmenting search directions when solving linear
programs.

3

We prove that our generalized steepest-descent augmentation algorithm exhibits the same desir-
able behaviors as that of [10] (Lemmas 2 to 4). In particular, the scheme is guaranteed to take at
most |C(A,B)| augmenting steps (Corollary 5). Using our polyhedral model to compute the required
steepest-descent circuits, it follows that the algorithm terminates in strongly polynomial time when
applied to a general polyhedron defined by a totally unimodular matrix (Theorem 8).

Finally, in Section 4.2.2, we show how the polyhedral model can be used in the construction of
sign-compatible circuit walks between pairs of points in a polyhedron. In the context of combinatorial
optimization, such walks correspond to short, intuitive sequences of transitions between solutions
of a linear or integer program. A general framework for constructing these walks is outlined in
Algorithm 4. By using our polyhedral model to compute steepest-descent sign-compatible circuits, we
can use this algorithm to efficiently construct c-steepest sign-compatible circuit walks (Definition 3)
with respect to a given c ∈ Rn (Corollary 6). In the case where the polyhedron is given by a totally
unimodular matrix, we show that all such walks visit only integral points (Corollary 7).

Proof-of-concept implementations of our algorithms for circuit enumeration, steepest-descent aug-
mentation, and sign-compatible circuit walk construction can be found at https://github.com/charles-
viss/circuits. We also provide small programs to test the enumeration algorithms on randomly gen-
erated polyhedra and on dual transportation polyhedra. In such tests, a conversion to standard form
(Algorithm 2) is generally not competitive with the naive Algorithm 1 or our polyhedral model ap-
proach of Algorithm 3. Furthermore, the naive algorithm is outperformed by our polyhedral model
when enumerating only those circuits which are sign-compatible with a random direction. Lastly,
the repository contains small toy examples which illustrate how the computation of steepest-descent
circuits via our model can be used to solve general linear programs and construct c-steepest sign-
compatible circuit walks.

2 Circuits and Polyhedra Representation

Consider a general polyhedron of the form P = {x ∈ Rn : Ax = b, Bx ≤ d} where A ∈ RmA×n and
B ∈ RmB×n. We assume rank

(

A
B

)

= n, so that P is pointed. The set of circuits C(A,B) of P , as
defined in [5], is dependent on the constraint matrices A and B.

Definition 1. The set of circuits C(A,B) of a polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d} consists
of all g ∈ ker(A) \ {0} normalized to coprime integer components for which Bg is support-minimal
over {Bx : x ∈ ker(A) \ {0}}.

When mA = 0, it is assumed that ker(A) = Rn and we denote the set of circuits C≤(B). For a
polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0} in standard form, the set of circuits is denoted C(A) and
simply consists of support-minimal vectors in ker(A) \ {0}.

Geometrically, circuits correspond to the directions of one-dimensional subspaces obtained by
intersecting any subset of dim(P)− 1 facets of P with linearly independent outer normals. It follows
that C(A,B) consists of all potential edge directions of P as the right-hand side vectors b and d vary
[16]. Thus, the set of circuits of a polyhedron is symmetric: g is a circuit if and only if −g is a circuit.
Also, note that the normalization used in Definition 1 is rather arbitrary—circuits correspond to
directions, so for general purposes, any normalization that results in a unique representative modulo
positive scalar multiplication can be used. For this reason, we call any positive scalar multiple of a
circuit g ∈ C(A,B) a circuit direction of P .

2.1 A Naive Circuit Enumeration Algorithm

The fact that circuits correspond to one-dimensional intersections of facets immediately implies
the following naive Algorithm 1 for enumerating C(A,B) which requires only Gaussian elimination.
Informally, the algorithm computes the intersections of all subsets of facets of P with size dim(P)−
1, obtaining a pair of opposite circuit directions for each intersection with dimension one. The
correctness of Algorithm 1 is implied by the following lemma, which can be derived from Proposition
1 in [22]. We include a simple proof for the sake of completeness.

4

Algorithm 1 Naive Circuit Enumeration

1: procedure NaiveCircuits(A,B) ⊲ Computes C(A,B)
2: S ← ∅
3: for each I ⊆ {1, ..., mB} where |I | = n− rank(A)− 1 do

4: BI ← the row submatrix of B indexed by I
5: if rank

(

A

BI

)

= n− 1 then

6: g← any x ∈ ker
(

A

BI

)

\ {0} normalized to coprime integer components

7: if g /∈ S then

8: S ← S ∪ {g,−g}
9: end if

10: end if

11: end for

12: return S
13: end procedure

Lemma 1. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron, let g ∈ ker(A) \ {0}
be given, and let B′ be the maximal row-submatrix of B satisfying B′g = 0. Then g is a circuit
direction of P if and only if rank

(

A
B′

)

= n− 1.

Proof. Note first that since P is pointed, rank
(

A
B′

)

≤ n− 1 for any g ∈ ker(A) \ {0}.

Suppose that g is a circuit direction of P . If rank
(

A
B′

)

< n − 1, there exist rows of B that

can be added to B′ in order to form a new row-submatrix B′′ of B such that rank
(

A
B′′

)

= n − 1.

However, there then exists some nonzero y ∈ ker
(

A
B′′

)

which must satisfy supp(By) (supp(Bg),
contradicting the fact that g is a circuit direction of P .

Conversely, if rank
(

A
B′

)

= n − 1, it holds that ker
(

A
B′

)

is one-dimensional and generated by g.
Thus, any y ∈ ker(A)\{0} satisfying supp(By) ⊆ supp(Bg) must be a scalar multiple of g, implying
that g is a circuit direction of P . �

Significant speed-up of Algorithm 1 can be achieved by performing the necessary row-reduction
operations in a strategic manner such as a variant of the Double Description method [12] or the binary
approach proposed in [13]. Of course, the best-case running time for Algorithm 1 is exponential, but
it serves as a baseline approach for the general circuit enumeration problem.

2.2 Enumeration via Standard Form Representation

An often neglected issue in circuit enumeration is the fact that the set of circuits is sensitive to
the representation of a polyhedron. Current state-of-the-art software packages used to enumerate
circuits [1] and elementary modes [33], as well as the other discussions on circuit enumeration in the
literature [13,19,31] are restricted to standard form representation: P = {x ∈ Rn : Ax = b, x ≥ 0}.
In this situation, the procedure of Algorithm 1 corresponds to finding the inclusion-minimal sets of
linearly dependent columns of A.

It is indeed possible to enumerate the set of circuits of a general polyhedron as a subset of the
circuits of a related standard form polyhedron—simply test whether or not each standard form
circuit satisfies the condition of Lemma 1 with respect to the original representation. This yields
Algorithm 2 for general circuit enumeration which can take advantage of existing software packages
for computing circuits. The correctness of the algorithm follows from Lemma 1 and Theorem 2, given
at the end of the section. After enumerating an initial set of standard form circuits, the algorithm
includes a post-processing step in which a rank computation is performed for each element of C

(

A 0

B I

)

.
However, by introducing new facets to the polyhedron, the conversion to standard form required

by Algorithm 2 increases the number of circuits computed from |C(A,B)| to
∣

∣

∣C
(

A 0

B I

)

∣

∣

∣, making the

already difficult task of circuit enumeration even harder. To illustrate this phenomenon, consider
a full-dimensional polyhedron P = {x ∈ Rn : Bx ≤ d}. Unless the constraint matrix B has many
subdeterminants equal to zero, converting P to standard form by adding slack variables and splitting
up original variables into positive and negative parts will introduce exponentially many unwanted
circuits.

5

Algorithm 2 Circuit Enumeration via Standard Form Conversion

1: procedure StandardFormCircuits(A,B) ⊲ Computes C(A,B)
2: S ← ∅
3: Use any standard form circuit enumeration algorithm to compute C

(

A 0

B I

)

4: for each (g, Bg) ∈ C
(

A 0

B I

)

do

5: B′ ← the maximal row-submatrix B′ of B such that B′g = 0

6: if rank
(

A

B′

)

= n− 1 then

7: S ← S ∪ {g}
8: end if

9: end for

10: return S
11: end procedure

Theorem 1. Let P = {x ∈ Rn : Bx ≤ d} be a polyhedron in which all subdeterminants of B ∈
RmB×n are nonzero, and let

P ′ = {(x+,x−, s) ∈ R2n+mB : B(x+ − x−) + Is = d, x+,x−, s ≥ 0}

be the standard form representation of P . Then

|C(P ′)| = 2n+ 2

n
∑

d=1

(

n

d

)(

mB

d− 1

)

2d = 2n|C≤(B)| + 2n+ 2

n−1
∑

d=1

(

n

d

)(

mB

d− 1

)

2d,

where C(P ′) := C(B −B I) is the set of circuits of P ′.

Proof. Lemma 1 implies that a circuit direction of P corresponds to the one-dimensional kernel of
an (n − 1) × n submatrix of B. Since all subdeterminants of B are nonzero, each such submatrix
has full row rank and thus has a one-dimensional kernel generated by a circuit of P . Furthermore,
all such kernels are distinct, else B would contain an n× n singular submatrix. Therefore, each set
of n− 1 rows of B yields a pair of opposite circuit directions, implying

|C≤(B)| = 2

(

mB

n− 1

)

.

Now consider the standard form representation P ′. The set of circuits of P ′ consists of those
(g+,g−, s) ∈ R2n+mB (normalized to coprime integer components) for which B(g+ − g−) = −s
and (g+,g−, s) is support-minimal over all such vectors. If (g+,g−, s) is a circuit of P ′ and there
exists an index i such that g+

i ,g
−
i are both nonzero, the support of (g+,g−, s) can be reduced while

maintaining B(g+−g−) = −s by shifting g+
i ,g

−
i in the appropriate directions (decreasing one while

increasing the other by the same value) so that at least one is equal to zero. Therefore, any circuit
with both g+

i ,g
−
i 6= 0 must have g+

i = g−
i = ±1 with all other components equal to zero. This yields

2n circuits of P ′. If we set g := g+−g−, all other circuits of P ′ then correspond to vectors g ∈ Rn for
which (g, Bg) is support-minimal. (Note the contrast with the original circuits C≤(B)—the support
of g is now taken into account along with the support of Bg.)

Clearly the unit vectors ei correspond to circuits of P ′ since no g ∈ Rn \ {0} has strictly smaller
support and each Bei has only nonzero entries. Each ei can be represented in two ways as the
difference g+ − g− by selecting one of g+

i or g−
i to be nonzero. Counting both members of opposite

pairs, this yields another 2n · 2 circuits of P ′.
Now let B′ be a (d − 1) × d submatrix of B for d ∈ 2, ..., n. Since B′ has only nonzero sub-

determinants, it has full row rank and its kernel is generated by some g′ ∈ Rd. Additionally, each
component of g′ must be nonzero, else a proper subset of the columns of B′ would form a singular
matrix. Now consider the natural augmentation g ∈ Rn of g′, where the components of g that do
not correspond to columns of B′ are equal to zero and the remaining components are equal to those
of g′. Then (g, Bg) corresponds to a circuit of P ′. To see this, note that any y′ ∈ Rd \ {0} with
supp(y′) (supp(g′) must satisfy B′y′ 6= 0. Hence, supp((y, By)) 6⊆ supp((g, Bg)) for the natural
augmentation y ∈ Rn of y′.

6

We now show that each such g found in the previous paragraph is distinct. If g′ generates the
kernel of a (d−1)×d submatrix B′ of B, then B′

ig
′ 6= 0 for any other sub-row B′

i of B corresponding
to the columns of B′. Otherwise, we could add this row to B′ to form a singular d × d submatrix
of B. Hence, if g ∈ Rn is the natural augmentation of g′, the only components of Bg that are zero
are those corresponding to rows of B′. This implies that each (d − 1) × d submatrix of B yields a
distinct direction (g, Bg). Furthermore, as g has exactly d nonzero entries, each resulting g can be
represented in 2d ways as the difference g+ − g−. Therefore, since all possible supports of (g, Bg)
have been accounted for, we have:

|C(P ′)| = 2n+ 2n · 2 + 2

n
∑

d=2

(

n

d

)(

mB

d− 1

)

2d

= 2n+ 2
n
∑

d=1

(

n

d

)(

mB

d− 1

)

2d

= 2n|C≤(B)|+ 2n+ 2

n−1
∑

d=1

(

n

d

)(

mB

d− 1

)

2d.

�

Note that almost all real matrices B ∈ RmB×n satisfy the subdeterminant condition of Theo-
rem 1—while B has a subdeterminant equal to 0, perturb an entry in B to change the determinant of
a smallest singular submatrix of B while maintaining the nonzero status of other subdeterminants.
However, most integer matrices in combinatorial optimization have many subdeterminants equal to
zero, so the number of circuits introduced via standard form conversion will not necessarily be the
amount stated in Theorem 1. Nevertheless, the potential to compute a set whose size is more than
2n times the number of actual circuits implies that this conversion should be avoided.

An alternative is to compute the much smaller set of circuits C(B I) instead of C(B − B I).
This is the approach taken in Algorithm 2. Namely, in the case of a full-dimensional polyhedron
P = {x ∈ Rn : Bx ≤ d}, we avoid splitting variables into their positive and negative parts by
considering the standard form polyhedron

P ′′ = {(x, s) ∈ Rn+mB : Bx+ Is = d, x, s ≥ 0}.

Although P ′′ may no longer be equivalent to the original polyhedron P , the circuits of P still appear
as a subset of the circuits of P ′′, which now correspond to support-minimal vectors of the form
(g, Bg). The exponential term 2d in Theorem 1 associated with the splitting of g into g+ − g− is
avoided, and we obtain the following bound on the number of introduced circuits.

Corollary 1. Let P = {x ∈ Rn : Bx ≤ d} be a polyhedron in which all subdeterminants of B ∈
RmB×n are nonzero. Then

|C(B I)| = 2

n
∑

d=1

(

n

d

)(

mB

d− 1

)

= |C≤(B)|+ 2

n−1
∑

d=1

(

n

d

)(

mB

d− 1

)

.

However, we still obtain exponentially many circuits that do not correspond to circuits of C≤(B).
In the case where mB is close to n (for example mB = n+ 1), the number of introduced circuits is
again an exponential multiple of the original number of circuits. For a general polyhedron, we obtain
the following bound on the number of circuits introduced using this approach of Algorithm 2.

Theorem 2. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron and let r := rank(A).
Then g ∈ C(A,B) only if (g, Bg) ∈ C

(

A 0

B I

)

. Furthermore,

|C(A,B)| ≤

∣

∣

∣

∣

C

(

A 0

B I

)∣

∣

∣

∣

≤ |C(A,B)|+ 2

n−1
∑

d=r+1

(

n

d

)(

mB

d− r − 1

)

,

where either bound may be sharp.

7

Proof. The elements of C(A,B) are those of g ∈ ker(A) \ {0} such that Bg is support-minimal over
{Bg : g ∈ ker(A) \ {0}}, while C(A,B) consists of g ∈ ker(A) \ {0} such that (g, Bg) is support-
minimal over {(g, Bg) : g ∈ ker(A) \ {0}}. Clearly if g ∈ C(A,B) then (g, Bg) ∈ C

(

A 0

B I

)

, which
implies the stated lower bound of the theorem. In fact, if B = I or if B contains I as a row-
submatrix, then g ∈ C(A,B) if and only if (g, Bg) ∈ C

(

A 0

B I

)

, which implies that the lower bound
may be sharp.

On the other hand, the maximum size of C
(

A 0

B I

)

is

2

n
∑

d=r+1

(

n

d

)(

mB

d− r − 1

)

,

which is achieved when all subdeterminants of
(

A
B

)

are nonzero. To see this, choose d ∈ {r+1, ..., n},
choose a set of d columns of A to form a column-submatrix A′, and choose d − r − 1 rows of B.

Form the matrix
(

A′

B′

)

, where B′ consists of the chosen d− 1 rows of B restricted to the columns A′.

Then rank
(

A′

B′

)

= d − 1 and ker
(

A′

B′

)

is generated by some g′ ∈ Rd. As in the proof of Theorem 1,

extend g′ to the corresponding g ∈ Rn so that (g, Bg) is a circuit direction of C
(

A 0

B I

)

. This follows
from the fact that all subdeterminants are nonzero, which also implies that each such g is unique.

This accounts for all possible supports of (g, Bg), yielding the stated value for
∣

∣

∣C
(

A 0

B I

)

∣

∣

∣.

The circuits (g, Bg) formed by choosing d = n in the procedure of the previous paragraph satisfy
g ∈ C(A,B) by Lemma 1. Any other circuit of C

(

A 0

B I

)

must result from a choice of d ∈ {r+1, ..., n−1},

and we obtain the stated upper bound for general
(

A
B

)

. �

Hence, as described in Algorithm 2, any software that enumerates C
(

A 0

B I

)

, the set of circuits
of a standard form polyhedron, may be used to enumerate C(A,B). However, this can require the
enumeration and post-processing of exponentially many unwanted directions.

To complete the discussion on the relationship between the representation of a polyhedron and
its set of circuits, consider the conversion of a general polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}
to its canonical form: P ′ = {x ∈ Rn : Ax ≤ b,−Ax ≤ −b, Bx ≤ d}. The set of circuits of P ′ is

C≤

A
−A
B

 = C≤

(

A
B

)

,

which contains directions that leave ker(A). In the case where
(

A
B

)

has only nonzero subdeterminants,

it holds by Lemma 1 that any subset of n− 1 rows of
(

A
B

)

yields a circuit of C≤
(

A
B

)

instead of only
those subsets containing all of A. If we let d denote the number of rows from A to be included in
such a subset, it then follows that

∣

∣

∣

∣

C≤

(

A

B

)∣

∣

∣

∣

= 2

(

mA +mB

n− 1

)

= 2

mA
∑

d=0

(

mA

d

)(

mB

n− 1− d

)

= |C(A,B)|+ 2

mA−1
∑

d=0

(

mA

d

)(

mB

n− 1− d

)

.

Hence, converting to canonical form may again introduce exponentially many unwanted circuits.

3 A Polyhedral Model for the Set of Circuits

In this section, we propose a polyhedral model for the set of circuits of a general polyhedron.
It may be used to directly enumerate or optimize over either the entire set of circuits or certain
useful subsets (see Section 4). As a generalization of the results in [13], where elementary modes
of a metabolic network are computed as extreme rays of a polyhedral cone, the support-minimality
property of Definition 1 yields a method to model the circuits of any polyhedron—regardless of
representation—as extreme rays or vertices of a related polyhedron. First, for a general polyhedron
P = {x ∈ Rn : Ax = b, Bx ≤ d}, we show that the circuits of P appear as extreme rays of the
related cone CA,B.

8

Theorem 3. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron. The pointed cone

CA,B = {(x,y+,y−) ∈ Rn+2mB : Ax = 0, Bx = y+ − y−, y+,y− ≥ 0}.

is generated by the set of extreme rays S ∪ T ′, where:

1. The set S := {(g,y+,y−) : g ∈ C(A,B), y+
i = max{(Bg)i, 0}, y−

i = max{−(Bg)i, 0}} gives
the circuits of P .

2. The set T ′ is a subset of T := {(0,y+,y−) : y+
i = y−

i = 1 for some i ≤ mB, y+
j = y−

j =
0 for j 6= i} and has size at most mB.

Proof. Since P is pointed, it holds that rank
(

A
B

)

= n and that CA,B is a pointed cone. In particular,
there does not exist (x,y+,y−) ∈ CA,B such that x 6= 0 and y+ − y− = 0. We characterize the
extreme rays of CA,B. To do this, consider a canonical representation: CA,B = {r ∈ Rn+2mB : Mr ≥
0}, where

M =

A 0 0
−A 0 0
B −I I

−B I −I
0 I 0
0 0 I

and r =

x
y+

y−

 .

For any r ∈ CA,B , let Z(r) denote the zero set for r: the set of indices for which the corresponding
inequalities in the systemMr ≥ 0 are satisfied with equality. A useful characterization of the extreme
rays of a pointed cone, given by [12] and used in [13], implies that r is an extreme ray of CA,B if
and only if any nonzero r′ ∈ CA,B with Z(r′) ⊇ Z(r) satisfies r′ = αr for some α > 0, and thus
Z(r′) = Z(r). For any r ∈ CA,B, the only inequalities of Mr ≥ 0 that may not be active are those
corresponding to the constraints y+,y− ≥ 0. Therefore, a nonzero r := (x,y+,y−) ∈ CA,B is an
extreme ray of CA,B if and only if any nonzero r′ := (x′,y′+,y′−) ∈ CA,B with supp((y′+,y′−)) ⊆
supp((y+,y−)) satisfies r′ = αr for some α > 0. We show that the vectors of S satisfy this property
and that all such rays belong to S ∪ T .

First, let r := (g,y+,y−) ∈ S be given. Since g ∈ ker(A) and Bg = y+ −y−, we have r ∈ CA,B.
Let some nonzero r′ := (x′,y′+,y′−) ∈ CA,B such that supp((y′+,y′−)) ⊆ supp((y+,y−)) be given.
Then supp(Bx′) ⊆ supp(Bg). Note that x′ must be nonzero since r′ 6= 0. Therefore, if supp(Bx′) (
supp(Bg), the fact that g is a circuit is contradicted. Hence, we have supp(Bx′) = supp(Bg).

It then must hold that x′ = αg for some α ∈ R [16]. To see this, consider an index i such that

(Bg)i 6= 0 and hence (Bx′)i 6= 0, and let z := g − (Bg)i
(Bx′)i

x′. It follows that (Bz)i = 0, and by the

support-minimality of Bg, this implies z = 0. Thus, x′ = αg with α := (Bx
′)i

(Bg)i
.

Since supp((y′+,y′−)) ⊆ supp((y+,y−)), the vectors Bx′ and Bg belong to the same orthant of
RmB . Hence, α > 0 and r′ = αr. Therefore, any r ∈ S is an extreme ray of CA,B.

On the other hand, it need not hold that all vectors of T are extreme rays of CA,B. To see this, let
r := (0,y+,y−) ∈ T be given and let i be the index such that y+

i = y−
i = 1. Then supp((y+,y−))

consists of two elements. It is possible for there to exist a circuit g ∈ ker(A) such that supp(Bg)
consists of only the single index i. In this case, there exists a vector r′ := (g,y′+,y′−) ∈ S where
the support of (y′+,y′−) consists of only one of the two elements of supp((y+,y−)). Hence, r′ is an
extreme ray of CA,B while r is not.

For the reverse direction, we show that any extreme ray of CA,B has a positive scalar multiple
in S ∪ T . Let r := (x,y+,y−) be an extreme ray of CA,B: a nonzero vector in CA,B such that any
r′ := (x′,y′+,y′−) ∈ CA,B \ {0} with supp((y′+,y′−)) ⊆ supp((y+,y−)) satisfies r′ = αr for some
α > 0, implying supp((y′+,y′−)) = supp((y+,y−)). Note again that both y+ and y− cannot be
zero since CA,B is pointed.

Suppose there exists an index i ≤ mB such that both y+
i and y−

i are positive. Assume first
that y+

i > y−
i . Consider the translated vector r′ := (x,y′+,y′−), where y′+ is obtained from y+

by shifting its i’th component: y′+
i := y+

i − y−
i ; and similarly, y′− obtained from y− by setting its

9

i’th component equal to zero. Thus, we maintain Bx = y′+ − y′− and r′ 6= 0, but the support of
(y′+,y′−) is strictly contained in that of (y+,y−), a contradiction. The case where y+

i < y−
i can be

treated similarly.
Hence, assume y+

i = y−
i for any index i such that both y+

i and y−
i are nonzero. If there exists

any other index j such that y+
j or y−

j are nonzero, then we may again reduce the support of (y+,y−)

while retaining the feasibility and nonzero status of r by setting both y+
i and y−

i equal to zero. Thus,
if there exists any index i with both y+

i and y−
i nonzero, we have y+ − y− = 0, implying x = 0.

Therefore, r must be positive multiple of a vector in T .
Thus we may assume that for each index i ≤ mB, at most one of y+

i ,y
−
i is nonzero. Then x is

nonzero with y+
i = max{(Bx)i, 0} and y−

i = max{−(Bx)i, 0} for i ≤ mB. Suppose that x is not a
circuit direction of P . Then there exists a circuit g ∈ ker(A) \ {0} such that supp(Bg) (supp(Bx).
However, this implies that there exists some nonzero r′ := (g,y′+,y′−) ∈ S such that (y′+,y′−) (
(y+,y−), contradicting the choice of r. Therefore, x is a circuit direction of P and hence r has a
positive scalar multiple in S. �

Since (y+,y−) consists of nonnegative entries for any (x,y+,y−) ∈ CA,B, a normalizing con-
straint ||y+||1 + ||y−||1 = 1 can be introduced to CA,B by intersecting the cone with a single hyper-
plane. The extreme rays of CA,B then become vertices of the resulting polytope PA,B—a polyhedral
model in which the circuits of the original polyhedron P appear as vertices.

Theorem 4. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron. The set of vertices of
the polytope

PA,B = {(x,y+,y−) ∈ Rn+2mB : Ax = 0, Bx = y+ − y−, ||y+||1 + ||y−||1 = 1, y+,y− ≥ 0}.

is S1 ∪T ′
1, where S1 consists of the scaled extreme rays from S of CA,B and T ′

1 consists of the scaled
extreme rays from T ′.

Proof. Since y+ and y− contain only nonnegative variables, the constraint ||y+||1 + ||y−||1 = 1
corresponds to the hyperplane

∑mB

i=1 y
+
i +

∑mB

i=1 y
−
i = 1. Each extreme ray of CA,B intersects this

hyperplane exactly once. The convex hull of these intersection points gives the polytope PA,B. �

Theorems 3 and 4 imply that the set of circuits of P may be enumerated via enumeration over
either the extreme rays of CA,B or the vertices of PA,B. At most mB of the directions computed
during this approach may belong to the set T and hence will not correspond to circuits of P , but
these are easily identified. The remaining directions from S will be in one-to-one correspondence
with the circuits of P . Hence, we obtain Algorithm 3 for enumerating C(A,B) using our polyhedral
model.

Algorithm 3 Circuit Enumeration via Polyhedral Model

1: procedure PolyhedralModelCircuits(A,B) ⊲ Computes C(A,B)
2: S ← ∅
3: Use any vertex enumeration algorithm to compute the set V of vertices of PA,B .
4: for each (x,y+,y−) ∈ V do

5: if (y+ − y−) 6= 0 then

6: g← x scaled to coprime integer components
7: S ← S ∪ {g}
8: end if

9: end for

10: return S
11: end procedure

Although the algorithm requires enumeration over a polytope in Rn+2mB—whereas P originally
belongs to Rn—the advantage of Algorithm 3 lies in the fact that any vertex enumeration scheme

10

may be used to compute the vertices of PA,B. Currently, most vertex enumeration schemes are vari-
ations the Double Description method [12] and the Avis-Fukuda method of pivoting using reverse
search [2]. While most current methods for enumerating circuits are also variants of the Double
Description method [13], Theorem 4 implies that Avis-Fukuda pivoting methods for vertex enu-
meration can be used to enumerate circuits as well. In both degenerate and non-degenerate cases,
pivoting methods often outperform Double Description methods—especially when parallelization is
utilized—and require significantly less memory [3].

Algorithm 3 also has important theoretical implications. For both the circuit enumeration prob-
lem and the vertex enumeration problem for polytopes, it is open whether or not there exists a
polynomial total-time algorithm [23]—one whose running time is polynomial in both the input and
the output sizes. However, Theorem 4 implies that a polynomial total-time algorithm for vertex
enumeration would immediately yield a polynomial total-time scheme for circuit enumeration.

For a polyhedron P = {x ∈ Rn : Ax = b,x ≥ 0} in standard form, the results of Theorems 3
and 4 can be simplified by reducing the number of variables in the polyhedral model.

Corollary 2. Let P = {x ∈ Rn : Ax = b,x ≥ 0} be a polyhedron in standard form. The pointed
cone

CA = {(y+,y−) ∈ R2n : A(y+ − y−) = 0, y+,y− ≥ 0}.

is generated by the set of extreme rays S ∪ T ′, where:

1. The set S := {(y+,y−) : y+
i = max{gi, 0}, y−

i = max{−gi, 0}, g ∈ C(A)} gives the circuits of
P .

2. The set T ′ is a subset of T := {(y+,y−) : y+
i = y−

i = 1 for some i ≤ n, y+
j = y−

j = 0 for j 6= i}
and has size at most n.

Proof. The system of inequality constraints Bx ≥ d for P consists of B = I and d = 0. (Switching
the direction of inequality constraints does not change the set of circuits of a polyhedron.) Hence,
P is pointed and we apply Theorem 3. Furthermore, we may eliminate the x variables using the
substitution x := y+ − y−. It holds that the set of extreme rays of CA contains S and is a subset
of S ∪ T . In fact, unless A contains a null column, the extreme rays of CA will be precisely S ∪ T
since no unit vector will belong to ker(A). Each null column of A corresponds to one element of T
that is not an extreme ray of CA. �

Again, by intersecting the pointed cone CA with a normalizing hyperplane, the circuits of P
appear as vertices of the resulting polytope PA.

Corollary 3. Let P = {x ∈ Rn : Ax = b,x ≥ 0} be a polyhedron in standard form. The set of
vertices of the polytope

PA = {(y+,y−) ∈ R2n : A(y+ − y−) = 0, ||y+||1 + ||y−||1 = 1, y+,y− ≥ 0}

is S1 ∪ T ′
1, where S1 consists of the scaled extreme rays from S of CA and T ′

1 consists of the scaled
extreme rays from T ′.

We note that modified versions of the polyhedral models CA and PA from Corollaries 2 and 3
appear in the literature. For instance, CA is used in [13] to enumerate the elementary modes of a
metabolic network modeled by the cone {x ∈ Rn : Ax = 0,x ≥ 0}. Versions of PA are used in [14]
and [15] to compute strictly improving search directions at degenerate vertices when solving a linear
program. Corollary 3 implies that these directions, in fact, are circuits of the underlying polyhedron.

4 Applications of the Polyhedral Model

In this section, we describe key advantages of using the polyhedral model from Section 3. Namely, in
addition to complete enumeration, the model may be used to directly enumerate desirable subsets
of circuits (Section 4.1) and optimize over these sets of circuits (Section 4.2).

11

4.1 Modeling Subsets of Circuits

Certain faces of the polyhedral model from Section 3 enable the direct enumeration of useful subsets
of circuits. Specifically, we show how to use the model to represent only those circuits which are
strictly feasible at a given point in a polyhedron (Section 4.1.1) or only those which are sign-
compatible with a given direction (Section 4.1.2).

4.1.1 Strictly Feasible Circuits In an augmentation algorithm for solving linear programs, as
in [10,15,21], a strictly feasible improving search direction is required at each iteration. Given a
point x0 in a polyhedron P , a direction u is said to be strictly feasible at x0 if x0 + αu ∈ P for
some α > 0. The algorithms of [14] and [15] solve a pricing problem over a modified version of the
polytope of Corollary 3 in order to find such a direction in a standard form polyhedron. Thus, the
search directions used by these algorithms are in fact circuits.

In the following theorem, we generalize the methods of [14,15] by using a face of the polyhedral
model CA,B from Theorem 3 to model all strictly feasible directions at a given point in any general
polyhedron. This face may then be used either to enumerate all strictly feasible circuits at a given
point or to compute a single search direction as required by an augmentation algorithm.

Theorem 5. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron and let x0 ∈ P be given.
Consider the face CA,B,x0

formed by intersecting the cone

CA,B = {(x,y+,y−) ∈ Rn+2mB : Ax = 0, Bx = y+ − y−, y+,y− ≥ 0}

with the hyperplanes y+
i = 0 for each i ≤ mB such that (Bx0)i = di. The extreme rays of CA,B,x0

(with the exception of those at most mB rays for which y+ − y− = 0) give the strictly feasible
circuit directions at x0 in P . Furthermore, each feasible direction u at x0 in P has a representative
(u,y+,y−) in CA,B,x0

.

Proof. As a face of CA,B, the extreme rays of CA,B,x0
are a subset of the extreme rays of CA,B.

Recall that the extreme rays of CA,B can be partitioned into the sets S and T ′ ⊆ T as defined in
Theorem 3. We show that an extreme ray (g,y+,y−) ∈ S is an extreme ray of CA,B,x0

if and only if
g is a strictly feasible circuit at x0. Hence, these extreme rays of CA,B,x0

correspond to the strictly
feasible circuits at x0 in P . The remaining at most mB extreme rays of CA,B,x0

must come from T .
First, suppose (g,y+,y−) is an extreme ray of CA,B,x0

that belongs to the set S of Theorem 3.
Then (Bg)i ≤ 0 for each i such that (Bx0)i = di. If the exists no i ≤ mB such that (Bg)i > 0, we
have x0 + αg ∈ P for any α > 0 since g ∈ ker(A). Therefore, assume there exists at least one index
i such that (Bg)i > 0, and set α := min{ 1

(Bg)i
(di − (Bx0)i) : (Bg)i > 0}. Then α > 0 and for each

i ≤ mB such that (Bg)i > 0:

(B(x0 + αg))i = (Bx0)i + α(Bg)i ≤ di.

Hence, x0+αg ∈ P , so g is a strictly feasible circuit. All extreme rays of CA,B,x0
that do not belong

to the set T of Theorem 3 must correspond to such a circuit.
Conversely, if g is a strictly feasible circuit at x0, it must hold that the corresponding extreme

ray (g,y+,y−) ∈ S of CA,B satisfies (Bg)i ≤ 0 and subsequently y+
i = 0 for each i ≤ mB where

(Bx0)i = di. Therefore, (g,y
+,y−) belongs to CA,B,x0

and must be an extreme ray of CA,B,x0
.

Finally, we show that any strictly feasible direction u at x0 has a representative in CA,B,x0
. Using

results from the upcoming Section 4.1.2, we obtain a short proof. Namely, since u belongs to ker(A),
it holds by Proposition 1 that u can be expressed as a sum of sign-compatible circuits: u =

∑t

i=1 λigi

with λ ≥ 0. Corollary 4 implies that each gi used in this sum is a strictly feasible circuit at x0 and
hence corresponds to an extreme ray ri ∈ S of CA,B,x0

. Thus, the conic combination
∑t

i=1 λiri of
these extreme rays yields a representative (u,y+,y−) of u in CA,B,x0

where y+
i = max{(Bu)i, 0}

and y−
i = max{−(Bu)i, 0}. �

Theorem 5 implies that the augmentation algorithms of [14,15] may be generalized to a poly-
hedron P of any form since the cone CA,B,x0

models all feasible directions at a point x0 ∈ P .
Furthermore, the set of all strictly feasible circuits at x0 may be directly enumerated via an extreme
ray enumeration scheme on CA,B,x0

or a vertex enumeration scheme on the corresponding polytope
PA,B,x0

formed by intersecting CA,B,x0
with the hyperplane ||y+||1 + ||y−||1 = 1.

12

4.1.2 Sign-compatible Circuits The model from Theorem 3 can also be used to represent only
those circuits which are sign-compatible with a given target direction. Two vectors x,y ∈ Rn are
said to be sign-compatible if they belong to the same orthant of Rn—that is, if xi · yi ≥ 0 for
i = 1, ..., n. As in [6], we then say that x and y are sign compatible with respect to a matrix B if the
corresponding vectors Bx and By are sign-compatible.

An important property of the set of circuits of a polyhedron is the so-called conformal sum
property [27], due to Graver. For a polyhedron P = {x ∈ Rn : Ax = b,x ≥ 0} in standard form,
the property states that any direction u ∈ ker(A) can be expressed as a conformal sum of circuits:
u =

∑t

i=1 λigi where λ ≥ 0 and the circuits g1, ...,gt ∈ C(A) are sign-compatible with each other
and with u. In fact, the set of circuits is the unique inclusion-minimal set of directions that has
this property [16], which is the basis of several algorithms used to enumerate the set of circuits of a
standard form polyhedron [19]. In the following Proposition 1, we state this property generalized to
a polyhedron in any form.

Proposition 1 ([16]). Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a polyhedron with circuits C(A,B).
Any vector u ∈ ker(A) is a sum of sign-compatible circuits. That is, u =

∑t

i=1 λigi where gi ∈
C(A,B), λi ≥ 0, and gi is sign-compatible with u with respect to B for each i ≤ t.

In addition, it can be shown that there exists a sign-compatible sum u =
∑t

i=1 λigi in which
supp(Bgi) 6⊆

⋃

j>i supp(Bgj) for each i, implying linear independence of the the Bgi’s and hence
t ≤ n− rank(A) [27].

We show that Proposition 1 is a direct consequence of Theorem 3. Namely, a face of the cone
CA,B can be used to model the complete subset of circuits which are sign-compatible with respect
to a given direction u ∈ ker(A).

Theorem 6. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron and let u ∈ ker(A) be
given. Consider cone CA,B,u formed by intersecting

CA,B = {(x,y+,y−) ∈ Rn+2mB : Ax = 0, Bx = y+ − y−, y+,y− ≥ 0}

with the following hyperplanes for each i ≤ mB:

1. y−
i = 0 if (Bu)i ≥ 0

2. y+
i = 0 if (Bu)i ≤ 0.

Then CA,B,u is a face of CA,B whose extreme rays correspond to the circuits of P which are sign-
compatible with u with respect to B.

Proof. The set R of extreme rays of CA,B,u is a subset of the extreme rays of CA,B. Let S and T
be the sets of extreme rays of CA,B given by Theorem 3. Clearly no ray of T can belong to R since
either y+

i = 0 or y−
i = 0 for each i ≤ mB in each vector of CA,B,u. Any (g,y+,y−) ∈ S belongs

to CA,B,u if and only if Bg is sign-compatible with Bu. Finally, as a face of CA,B , a ray of CA,B,u

belongs to R if and only if it is also an extreme ray of CA,B,u. �

Hence, for any u ∈ ker(A), Theorem 6 implies that the subset of C(A,B) that is sign-compatible
with u with respect to B can be directly enumerated via extreme ray enumeration over CA,B,u or via
vertex enumeration over the corresponding polytope PA,B,u. This approach is a vast improvement
over a naive approach for enumerating all such circuits: compute every g ∈ C(A,B) satisfying
supp(Bg) ⊆ supp(Bu) and then remove those which are not sign-compatible. Another possible way
to enumerate sign-compatible circuits would be to use a variation of Pottier’s algorithm to find a
minimal generating set of ker(A) intersected with the appropriate cone of Rn (see Lemma 2 in [6]).
However, this approach also requires the computation of a generating set initially larger than the
desired subset of circuits [19].

Additionally, while previous proofs of the conformal sum property rely on induction or an algo-
rithmic approach (see for instance the proof of Theorem 9), Theorem 6 provides an immediate proof
of Proposition 1.

13

Proof (of Proposition 1). Any u ∈ ker(A) has a corresponding vector r := (u,y+,y−) ∈ CA,B such
that y+

i = max{(Bu)i, 0} and y−
i = max{−(Bu)i, 0}} for each i ≤ mB. It follows that r ∈ CA,B,u,

implying that r can be expressed as a conic combination of extreme rays of CA,B,u:

(u,y+,y−) =

t
∑

i=1

λi(gi, (y
+)i, (y−)i), λ ≥ 0.

Thus, u =
∑t

i=1 λigi, where each gi is sign-compatible with u with respect to B by Theorem 6. In
addition, the bound t ≤ n− rank(A) follows from Carathéodory’s theorem. �

Note that this proof is non-constructive, i.e., it does not provide the circuits which are used in the
sign-compatible sum. We will discuss methods for using the polyhedral model to actually construct
such a sum in Section 4.2.2.

We can also use CA,B,u to immediately see that sign-compatible circuit directions are strictly
feasible. Specifically, let x1,x2 be distinct points in a polyhedron and set u := x2−x1. It follows from
Theorem 5 that all directions modeled by CA,B,u are strictly feasible at x1. Hence, in this situation,
sign-compatible circuits can be interpreted as a specific subset of strictly feasible directions. We
show how to use these circuits to construct walks between x1 and x2 in Section 4.2.2.

Corollary 4. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron and let x1,x2 be distinct
points in P . Set u := x2 − x1 and consider CA,B,u as defined in Theorem 6. The sign-compatible
circuits corresponding to the extreme rays of CA,B,u provide strictly feasible circuit directions at x1

in P .

Proof. Note that u ∈ ker(A) \ {0}, so CA,B,u is well-defined. Any index i such that (Bx1)i = di

must also satisfy (Bu)i ≤ 0, else we would have (Bx2)i = B(x1)i + (Bu)i > di. Therefore, the
hyperplane y+

i = 0 is included in the definition of CA,B,u whenever (Bx1)i = di. Hence, CA,B,u is
a face of CA,B,x1

as defined in Theorem 5, and all of its extreme rays give strictly feasible circuit
directions at x1 in P . �

4.2 Optimization over Circuits

Since circuits appear as vertices in the polyhedral model PA,B of Theorem 4, we can efficiently
optimize over the set of normalized circuits of a polyhedron via linear programming. Additionally,
by considering certain faces of the model as in Sections 4.1.1 and 4.1.2, we may optimize over only
the subset of strictly feasible or sign-compatible circuits. We show in Section 4.2.1 how this enables
the efficient computation of a steepest-descent circuit in an augmentation scheme for solving general
linear programs. In Section 4.2.2, we show how optimization over sign-compatible circuits can be
used in the construction of walks between given points of a polyhedron.

4.2.1 Steepest-descent Circuit Augmentation In [10], De Loera et al. describe an augmen-
tation scheme for solving linear programs in standard form that uses a steepest-descent circuit at
each step. Namely, for a linear program LP = min{cTx : Ax = b, x ≥ 0} with feasible solution
x0, the authors define a steepest-descent circuit to be a strictly feasible circuit g ∈ C(A) at x0 that
minimizes cTg/||g||1 over all such circuits. They proceed to show that an augmentation scheme using
only maximal steepest-descent circuit augmentations will never repeat a circuit direction, implying
that the algorithm terminates in at most |C(A)| steps [10]. However, the scheme relies on an oracle
to provide the required steepest-descent circuits.

Independently, Gauthier et al. [15] describe an algorithmic framework for solving linear programs
in standard form in which augmenting directions are computed by fixing subsets of dual variables
and then optimizing over a polyhedral oracle. In the special case where no dual variables are fixed (a
generalization of the minimum-mean cycle-cancelling algorithm for bounded linear programs [14]),
the authors compute an augmenting direction by minimizing cT (y+−y−) over a face of the polytope
of Corollary 3 (see Equation (7) in [15] or Equation (15) in [14]). Since the vertices of this polytope
correspond to normalized circuits of C(A), the computed augmenting direction is in fact a circuit

14

that minimizes cTg/||g||1. Thus, the augmenting direction of [14,15], which is computed by solving
a linear program, is equivalent to a steepest-descent circuit proposed in [10].

However, both [10] and [15] describe augmentation schemes only for polyhedra in standard form.
As seen in Section 2, simply converting a general polyhedron to standard form can introduce expo-
nentially many circuits. Since the bound given in [10] on the number of steps for the steepest-descent
augmentation scheme is |C(A)|, these added circuits may significantly affect the performance of the
algorithm. Therefore, we generalize the scheme for a polyhedron in general form.

We first generalize the definition of a steepest-descent circuit in order to take into account the
differences between circuits of a standard form polyhedron and circuits of a general polyhedron.

Definition 2. Consider the general linear program LP = min{cTx : Ax = b, Bx ≤ d} with a
feasible solution x0. A steepest-descent circuit at x0 is a strictly feasible circuit g ∈ C(A,B) that
minimizes cTg/||Bg||1 over all such circuits.

Note that this definition uses the norm of the vector Bg rather than the norm of the circuit g.
In the remainder of this section, we show that such a circuit exhibits the same desirable properties

as the steepest-descent circuits of [10], implying that an augmentation scheme using these generalized
directions terminates in at most |C(A,B)| steps. Furthermore, we may use the polyhedral model for
strictly feasible circuits from Section 4.1.1 to compute a steepest-descent circuit in polynomial time.

Theorem 7. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron, let x0 ∈ P , and
let c ∈ Rn. A steepest-descent circuit direction at x0 with respect to c can be computed in weakly
polynomial time.

Proof. Consider the following linear program:

min cTx

s.t. Ax = 0

Bx = y+ − y−

y+
i = 0 ∀i : (Bx0)i = di

||y+||1 + ||y−||1 = 1

y+,y− ≥ 0.

(steepest)

A vertex solution (g,y+,y−) can be computed in weakly polynomial time. If the optimal objective
is zero, then no feasible descent directions exist at x0. If the objective is nonzero, Theorem 4 implies
that g is a circuit direction of P with ||Bg||1 = 1. Let α ∈ R+ denote the unique positive scalar
such that αg ∈ C(A,B). By Theorem 5, αg is a strictly feasible circuit at x0 and any other strictly
feasible circuit g′ at x0 has a representative g′/||Bg′||1 in the domain of LP (steepest). It follows
that

cT (αg)

||B(αg)||1
=

α(cTg)

|α| · ||Bg||1
=

cTg

||Bg||1
= cTg ≤

cTg′

||Bg′||1
.

Therefore, g is a steepest-descent circuit direction at x0 with respect to c. �

Thus, LP (steepest) in the proof of Theorem 7 serves as an oracle in an actual implementation
of the generalized steepest-descent augmentation scheme. To prove the bound on the number of
augmentations, we mirror the arguments of De Loera et al. (Lemmas 4-6 and Corollary 7 in [10])
in our more general setting. The proof of the following lemma, which states that a steepest-descent
circuit minimizes cTu/||Bu||1 over all feasible directions u at x0, becomes much simpler using our
polyhedral model. The other proofs become a bit more technical since Bg must be considered instead
of g for norming and support-minimality.

Lemma 2. For a linear program LP = min{cTx : Ax = b, Bx ≤ d} over a pointed polyhedron
with feasible solution x0, a steepest-descent circuit direction g satisfies cTg/||Bg||1 ≤ cTu/||Bu||1
for any feasible direction u at x0.

15

Proof. As in the proof of Theorem 7, solve LP (steepest) to obtain a vertex solution (g,y+,y−)
which yields a steepest-descent circuit direction g at x0. By Theorem 5, any other feasible direction
u at x0 has a representative u/||Bu||1 in the domain of the LP. It follows that cTg/||Bg||1 = cTg ≤
cTu/||Bu||1. �

This lemma then implies that the steepness of consecutive steepest-descent augmentations is
non-increasing.

Lemma 3. Let LP = min{cTx : Ax = b, Bx ≤ d} be a linear program over a pointed polyhedron
with feasible solution xk, let xk+1 := xk + αkgk be a steepest-descent augmentation relative to
xk, and let αk+1gk+1 be a steepest-descent augmentation relative to xk+1. Then cTgk/||Bgk||1 ≤
cTgk+1/||Bgk+1||1.

Proof. Suppose for the purpose of contradiction that cTgk/||Bgk||1 > cTgk+1/||Bgk+1||1. Then by
expansion, substitution, sorting, and properties of the 1-norm, we obtain:

cT (αkgk + αk+1gk+1) = αk||Bgk||1
cTgk

||Bgk||1
+ αk+1||Bgk+1||1

cTgk+1

||Bgk+1||1

< αk||Bgk||1
cTgk

||Bgk||1
+ αk+1||Bgk+1||1

cTgk

||Bgk||1

= (αk||Bgk||1 + αk+1||Bgk+1||1)
cTgk

||Bgk||1

≤ ||αkBgk + αk+1Bgk+1||1
cTgk

||Bgk||1
.

It follows that

cT (αkgk + αk+1gk+1)

||αkBgk + αk+1Bgk+1||1
<

cTgk

||Bgk||1
.

Since αkgk + αk+1gk+1 is itself a feasible direction at xk, this inequality contradicts Lemma 2. �

Next, a change of orthants of Bgk implies a change in the steepness of the augmentation step.

Lemma 4. Let LP = min{cTx : Ax = b, Bx ≤ d} be a linear program over a pointed polyhedron
with feasible solution x0, and let α1g1, ..., αjgj correspond to a sequence of steepest-descent augmen-
tations applied beginning at x0. If Bg1 and Bgj do not belong to the same orthant of RmB , then

cTg1/||Bg1||1 < cTgj/||Bgj ||1.

Proof. Suppose for the purpose of contradiction that cTg1/||Bg1||1 ≥ cTgj/||Bgj ||1. By Lemma 3,
it then must hold that

cTg1

||Bg1||1
=

cTg2

||Bg2||1
= · · · =

cTgj

||Bgj ||1
.

Therefore,

cT

(

j
∑

i=1

αigi

)

=

j
∑

i=1

αi||Bgi||1
cTgi

||Bgi||1
=

(

j
∑

i=1

αi||Bgi||1

)

cTg1

||Bg1||1

<

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

j
∑

i=1

αiBgi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

cTg1

||Bg1||1
,

where the last inequality holds because Bg1 and Bgj belong to different orthants of RmB . Thus

cT
(

∑j

i=1 αigi

)

∣

∣

∣

∣

∣

∣B
(

∑j

i=1 αigi

)∣

∣

∣

∣

∣

∣

1

<
cTg1

||Bg1||1
,

16

and since
∑j

i=1 αigi is itself a feasible direction at x0, this again contradicts the choice of g1 by
Lemma 2. �

It now follows that no circuit will be repeated as a steepest-descent direction, and the number
of augmentations required in the generalized steepest-descent scheme is at most |C(A,B)|.

Corollary 5. Let LP = min{cTx : Ax = b, Bx ≤ d} be a linear program over a pointed polyhedron
with feasible solution x0. In a steepest-descent circuit augmentation scheme using maximal steps
starting at x0, no circuit will be used more than once. It follows that the number of augmentations
needed is at most |C(A,B)|.

Proof. Let α1g1, ..., αjgj be a sequence of steepest-descent augmentations starting at x0. Without

loss of generality, it will suffice to show g1 6= gj . Assume the contrary. Then cTg1/||Bg1||1 =

cTgj/||Bgj ||1, and by Lemma 4, each Bgi must belong to the same orthant as Bg1. However, by
properties of conformal sums, this implies that x0+α1g1+αjgj is a feasible point of the polyhedron,
contradicting the maximality of α1. �

Hence, the generalized steepest-descent augmentation algorithm behaves the same as the stan-
dard form scheme of [10]. Since we can efficiently compute a steepest-descent direction at each
iteration using the polyehdral model, it follows that the algorithm runs in strongly polynomial time
over a general polyhedron defined by a totally unimodular matrix. (See Corollary 4 and the following
discussion in [10].)

Theorem 8. Let LP = min{cTx : Ax = b, Bx ≤ d} be a linear program over a pointed polyhedron
where the constraint matrix

(

A
B

)

is totally unimodular. Given a feasible solution x0, the steepest-
descent augmentation algorithm terminates in strongly polynomial time.

Proof. A consequence of Lemma 4 is that the number of iterations of the steepest-descent augmen-
tation algorithm is bounded by mB times the number of different values of −cTg/||Bg||1 over all cir-
cuits g ∈ C(A,B). If

(

A
B

)

is totally unimodular, it holds that g ∈ {0, 1,−1}n and Bg ∈ {0, 1,−1}mB

for each circuit [8]. Hence, since |cTg| ≤ ||c||1 and ||Bg||1 ≤ mB, the number of augmentation steps
is at most ||c||1(mB)

2. Using Diophantine approximation [11], we may replace c with an objective
function c′ whose entries are sufficiently small to define an equivalent problem whose corresponding
bound ||c′||1(mB)

2 on the number of steps is strongly polynomial. Furthermore, this new objective
c′ can be found in strongly polynomial time [11].

Finally, a steepest-descent circuit can be computed at each iteration by finding a vertex solution
to LP (steepest) with objective c′. Since

(

A
B

)

is totally unimodular, Tardos’ strongly polynomial
algorithm for combinatorial linear programs [32] yields an optimal solution in strongly polynomial
time. If this solution is not a vertex, a reduction process analogous to that in the proof of Theorem
0.2 from [25] can be used obtain a vertex optimal solution in strongly polynomially many steps.
Therefore, the steepest-descent augmentation algorithm terminates in strongly polynomial time. �

4.2.2 Constructing Sign-compatible Sums and Circuit Walks In this section, we show how
to use the polyhedral model from Section 4.1.2 together with the methods from Section 4.2.1 in the
construction of sums of sign-compatible circuits. A particularly useful application of these sums is
the construction of sign-compatible circuit walks between solutions of an optimization problem that
take steps in steepest-descent directions.

Given two vertices v1,v2 of a polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}, a circuit walk
v1 = y0,y1, ...,yk = v2 of length k from v1 to v2 is a sequence of k steps in which each step
direction is a circuit of P : yi+1 = yi + αigi where gi ∈ C(A,B) and αi > 0. For i = 0, ..., k, if
yi ∈ P , the walk is said to be feasible, and if yi + αgi /∈ P for any α > αi, the walk is maximal.
Finally, a circuit walk is said to be sign-compatible if each circuit gi used in the walk is sign-
compatible with the target direction v2−v1 with respect to B. See [6] for an exposition on different
types of certain walks and their implications on the resulting circuit diameter.

17

An important open question in the study of circuit walks is whether or not the Circuit Diameter
Conjecture [7], a relaxation of the famous Hirsch Conjecture, is true. That is, if P is a polyhedron
with f facets, must there exist a maximal, feasible circuit walk between any pair of vertices with
length at most f−dim(P)? Although open in general, the conjecture is in fact true if the maximality
requirement of the circuit walk is relaxed [6]. Given v1,v2 ∈ P , a sum of sign-compatible circuits
v2 − v1 =

∑t

i=1 λigi with t ≤ n − rank(A) yields a desired feasible, sign-compatible circuit walk

v1 = y0,y1, ...,yt = v2 by setting yj = v1 +
∑j

i=1 λigi for j = 0, ..., t. Furthermore, the steps of
this walk may be permuted in any order and the walk will remain feasible [6].

Thus, Proposition 1 implies that between any pair of vertices v1,v2 of a polyhedron P , there
exists a sign-compatible circuit walk with length at most n − rank(A). Actually constructing such
a walk would yield a short sequence of transitions from v1 to v2 using only the circuits of P .
As seen in [6,8], circuit walks in polyhedra from combinatorial optimization often have intuitive
interpretations in terms of the underlying problem. Sign-compatible circuit walks exhibit additional
desirable properties. For instance, in a standard form polyhedron, a sign-compatible circuit walk
only ever increases (decreases) each variable if it needs to be increased (decreased) to reach the
destination v2. In the context of the partition polytopes of [4,8], for example, this means that any
item is exchanged at most once when transitioning between given clusterings of a set.

By generalizing proofs of Proposition 1 given in the literature [16] for polyhedra in standard
form, we obtain Algorithm 4 for constructing sums of sign-compatible circuits—or equivalently,
sign-compatible circuit walks—in any general polyhedron. Informally, given a target direction u ∈
ker(A) \ {0}, the algorithm selects any circuit gi sign-compatible with u, takes a longest step with
length λi in the direction of gi such that the remaining difference u− λigi remains sign-compatible
with u, and then repeats with the direction u−λigi until the remaining difference is zero. We prove
the correctness of Algorithm 4 in Theorem 9.

Algorithm 4 Constructing Sign-compatible Sums

1: procedure SignCompatibleSum(A,B,u) ⊲ Assumes u ∈ ker(A)
2: Initialize: w← u, i← 1, and D ←

(

A

B

)

3: Z(w)← {j : (Dw)j = 0}
4: if rank(DZ(w)) = n− 1 then

5: gi ← the circuit of C(A,B) corresponding to circuit direction w

6: λi ←
||w||
||gi||

7: return g1, ..., gi, λ1, ..., λi

8: else

9: gi ← any g ∈ C(A,B) where supp(Bg) (supp(Bw) and Bg is sign-compatible with Bw

10: λi ← min{(Bw)j/(Bgi)j : (Bw)j(Bgi)j > 0}
11: w← w − λigi

12: i← i+ 1
13: go to 3
14: end if

15: end procedure

Theorem 9. For a pointed polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d} and a given u ∈ ker(A) \
{0}, Algorithm 4 can be used to construct a sign-compatible sum of circuits u =

∑t

i=1 λigi with
t ≤ n− rank(A) in polynomial time.

Proof. By Lemma 1, a vectorw ∈ ker(A)\{0} is a circuit direction of P if and only if it generates the
kernel of a row-submatrix ofD =

(

A
B

)

with rank n−1; equivalently, we must have rank(DZ(w)) = n−1
where Z(w) is the set of indices j such that (Dw)j = 0. Thus, if rank(DZ(w)) = n − 1, we have

w = ||w||
||g|| g for some circuit g ∈ C(A,B).

On the other hand, if w is not a circuit direction of P , we seek a circuit g ∈ C(A,B) sign-
compatible with w such that Z(g)) Z(w). Since we must have rank(DZ(w)) ≤ n − 2, there
exist indices j, k /∈ Z(w) such that rank(DZ(w)∪{j,k}) = rank(DZ(w)) + 2, which can be found

18

via Gaussian elimination. Furthermore, Gaussian elimination on this system will yield some y ∈
ker(DZ(w)∪{k}) \ ker(DZ(w)∪{j}). Without loss of generality, we may assume (Bw)j(By)j > 0.

By setting α := min{(Bw)ℓ/(By)ℓ : (Bw)ℓ(By)ℓ > 0} and subtracting αy from w, we obtain a
vector z that is nonzero since (Bz)k 6= 0. Additionally, by choice of α, Bz is sign-compatible with
Bw and the support of Bz is strictly contained in that of Bw. This implies that rank(DZ(z)) >
rank(DZ(w)). Repeat this process at most n−rank(A) times until rank(DZ(z)) = n−1. Then z must
be the direction of a circuit g ∈ C(A,B) that is sign-compatible with w and satisfies Z(g)) Z(w),
as desired.

Given such a circuit g, subtract a suitable multiple of g fromw to reduce the support of Bw while
preserving sign-compatibility, i.e., set λ := min{(Bw)j/(Bg)j : (Bw)j(Bg)j > 0} and w := w−λg.
This increases the rank of DZ(w). Hence, we may repeat this process at most n − rank(A) times
until w is itself a circuit direction of P . �

The only open-ended step of Algorithm 4 is finding a sign-compatible circuit g ∈ C(A,B) in line
9. Although computing such a circuit in the naive manner of the above proof allows the algorithm
to terminate in polynomial time, in applications we can be more deliberate when choosing a circuit.
For example, suppose v1 is an initial solution and v2 is a known optimal solution to the linear
program min{cTx : Ax = b, Bx ≤ d}. We may wish to construct a sign-compatible circuit walk
from v1 to v2 in which the objective function decreases as quickly as possible. For instance, when
transitioning between the clusterings of a set given by the partition polytopes of [4,8], such a walk
would correspond to a sequence of exchanges in which each individual exchange reduces the objective
function by a maximum possible value per item moved. We will call such a circuit walk a c-steepest
sign-compatible circuit walk.

Definition 3. Let c ∈ Rn. Given two points v1,v2 of a polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d},
let v1 = y0,y1, ...,yk = v2 be a sign-compatible circuit walk from v1 to v2 where yi+1 = yi + αigi

for i = 0, ..., k− 1. The walk is a c-steepest sign-compatible circuit walk if for i = 0, ..., k− 1, circuit
gi minimizes cTu/||Bu||1 over all directions u that are sign-compatible with the remaining difference
v2 − yi with respect to B and satisfy supp(u) ⊆ supp (v2 − yi).

Consider such a c-steepest sign-compatible circuit walk v1 = y0,y1, ...,yk = v2 that uses circuits
g0, ...,gk−1 as step directions. At each yi, the next step direction gi is a steepest-descent circuit that
is sign-compatible with the remaining difference v2−yi. Furthermore, the steepness −cTgi/||Bgi||1
of the circuits used in the walk is non-increasing. By using the method from Section 4.2.1 for
computing steepest-descent circuits in conjunction with Algorithm 4, these walks can be constructed
in polynomial time.

Corollary 6. Let v1,v2 be any two points in a pointed polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d},
and let c ∈ Rn. A c-steepest sign-compatible circuit walk from v1 to v2 with at most n − rank(A)
steps can be constructed in polynomial time.

Proof. Use Algorithm 4 to construct a sum of sign-compatible circuits v2−v1 =
∑t

i=1 λigi with t ≤
n−rank(A). However, at line 9 during each loop of the algorithm, compute a sign-compatible circuit
by finding a vertex solution (g,y+,y−) to the linear program LP (w) = min{cTx : (x,y+,y−) ∈
PA,B,w}. Since PA,B,w contains a representative (u,y+,y−) for each direction u with supp(u) ⊆
supp(w) that is sign-compatible with w, the circuit g minimizes cTu/||Bu||1 over all such directions.
It follows that the resulting circuit walk v1 = y0,y1, ...,yt = v2 formed by setting yj = v1 +
∑j

i=1 λigi for j = 0, ..., t is a c-steepest sign-compatible circuit walk. �

When a polyhedron is defined by a totally unimodular matrix, we can ensure that these c-
steepest sign-compatible circuit walks satisfy an additional useful property. A circuit walk v1 =
y0,y1, ...,yt = v2 is said to be integral if each yj has integer components. In the context of com-
binatorial optimization, a circuit walk should be integral in order to have a natural interpretation
in terms of the underlying problem. It is shown in [8] that a totally unimodular constraint ma-
trix implies that any maximal circuit walk in the associated polyhedron is integral. However, a
sign-compatible circuit walk constructed via Algorithm 4 need not be maximal. In fact, for some

19

polyhedra there exist pairs of vertices which are not joined by any maximal sign-compatible cir-
cuit walk [6]. Nevertheless, a totally unimodular constraint matrix implies that any sign-compatible
circuit walk constructed by Algorithm 4 is indeed integral.

Corollary 7. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be an integral pointed polyhedron where
(

A
B

)

is
totally unimodular. Given any integral points v1,v2 in P , an integral, sign-compatible circuit walk
from v1 to v2 with at most n− rank(A) steps can be constructed via Algorithm 4 in polynomial time.

Proof. Let u := v2 − v1, so that u is integral. Use Algorithm 4 to construct a sign-compatible sum
u =

∑t

i=1 λigi of at most n− rank(A) circuits of P . Since
(

A
B

)

is totally unimodular, it holds that
Bgi ∈ {0, 1,−1}mB for i = 1, ..., t [8]. It follows inductively that each λi from line 10 of Algorithm 4

is an integer. Setting yj = v1 +
∑j

i=1 λigi for j = 0, ..., t thus yields an integral, sign-compatible
circuit walk from v1 to v2. �

Acknowledgments

We would like to thank Tamon Stephen for the helpful discussions. We also gratefully acknowledge
support through the Collaboration Grant for Mathematicians Polyhedral Theory in Data Analytics
of the Simons Foundation.

References

1. 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces.
Available online at www.4ti2.github.io.

2. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. Discrete and Computational Geometry, 8(1):295–313, 1992.

3. D. Avis and C. Jordan. Comparative computational results for some vertex and facet enumeration
codes. arXiv eprints, arXiv:1510.02545v3, 2015.

4. S. Borgwardt. On the diameter of partition polytopes and vertex-disjoint cycle cover. Mathematical

Programming, Ser. A, 141(1):1–20, 2013.
5. S. Borgwardt, E. Finhold, and R. Hemmecke. On the circuit diameter of dual transportation polyhedra.

SIAM Journal on Discrete Mathematics, 29(1):113–121, 2016.
6. S. Borgwardt, J. A. De Loera, and E. Finhold. Edges vs circuits: a hierarchy of diameters in polyhedra.

Advances in Geometry, 16(4):511–530, 2016.
7. S. Borgwardt, T. Stephen, and T. Yusun. On the circuit diameter conjecture. Discrete & Computational

Geometry, 60(3):558–587, 2018.
8. S. Borgwardt and C. Viss. Circuit Walks in Integral Polyhedra. arXiv eprints, arXiv:1712.01933v3,

2017.
9. J. A. De Loera, R. Hemmecke, and M. Köppe. Algebraic and geometric ideas in the theory of discrete

optimization, volume 14 of MOS-SIAM Series on Optimization. Society for Industrial and Applied
Mathematics, 2013.

10. J. A. De Loera, R. Hemmecke, and J. Lee. On augmentation algorithms for linear and integer-linear
programming: from Edmonds-Karp to Bland and beyond. SIAM Journal on Optimization, 25(4):2494–
2511, 2015.

11. A. Frank and E. Tardos. An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica, 7(1):49–65, 1987.

12. K. Fukuda and A. Prodon. Double description method revisited. In Combinatorics and Computer

Science, pages 91–111. Springer, 1996.
13. J. Gagneur and S. Klamt. Computation of elementary modes: a unifying framework and the new binary

approach. BMC Bioinformatics, 5(1):175, 2004.
14. J. B. Gauthier, J. Desrosiers, and M. Lübbecke. Decomposition theorems for linear programs. Operations

Research Letters, 42(8):553–557, 2014.
15. J. B. Gauthier, J. Desrosiers, and M. Lübbecke. Vector space decomposition for solving large-scale linear

programs. Operations Research, 66(5):1376–1389, 2018.
16. J. E. Graver. On the foundation of linear and integer programming I. Mathematical Programming,

9:207–226, 1975.
17. U. Haus, S. Klamt, and T. Stephen. Computing knock-out strategies in metabolic networks. Journal of

Computational Biology, 15(3):259–268, 2008.

20

18. R. Hemmecke. On the computation of Hilbert bases of cones. In Mathematical Software, ICMS 2002,
pages 307–317. World Scientific, 2002.

19. R. Hemmecke. On the positive sum property and the computation of Graver test sets. Mathematical

Programming, Ser. B, 96:247–269, 2003.
20. R. Hemmecke, S. Onn, and L. Romanchuk. N-fold integer programming in cubic time. Mathematical

Programming, Ser. A, 137:325–341, 2013.
21. R. Hemmecke, S. Onn, and R. Weismantel. A polynomial oracle-time algorithm for convex integer

minimization. Mathematical Programming, Ser. A, 126:97–117, 2011.
22. S. Kafer, K. Pashkovich, and L. Sanità. On the circuit diameter of some combinatorial polytopes. SIAM

Journal on Discrete Mathematics, 33(1):1–25, 2017.
23. L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices of a polyhedron

is hard. Discrete & Computational Geometry, 39(1):174–190, 2008.
24. S. Klamt, G. Regensburger, M. P. Gerstl, C. Jungreuthmayer, S. Schuster, R. Mahadevan, J. Zanghellini,

and S. Müller. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with
arbitrary linear flux constraints. PLOS Computational Biology, 13(4):1–22, 2017.

25. N. Megiddo. On finding primal- and dual-optimal bases. ORSA Journal on Computing, 3(1):63–65,
1991.

26. S. Müller and G. Regensburger. Elementary vectors and conformal sums in polyhedral geometry and
their relevance for metabolic pathway analysis. Frontiers in Genetics, 7:90, 2016.

27. S. Onn. Nonlinear Discrete Optimization. Zurich Lectures in Advanced Mathematics. European Math-
ematical Society, 2010.

28. L. Pottier. The Euclidean algorithm in dimension n. In Proceedings of the 1996 International Symposium

on Symbolic and Algebraic Computation, ISSAC ’96, pages 40–42. ACM, 1996.
29. R. T. Rockafellar. The elementary vectors of a subspace of RN . In Combinatorial Mathematics and its

Applications, pages 104–127. University of North Carolina Press, 1969.
30. F. Santos. A counterexample to the Hirsch conjecture. Annals of Mathematics, 176(1):383–412, 2011.
31. B. Sturmfels and R. Thomas. Variation of cost functions in integer programming. Mathematical Pro-

gramming, 77:357–388, 1997.
32. E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research,

34(2):250–256, 1986.
33. M. Terzer and J. Stelling. Elementary flux mode tool (efmtool). Available online at

www.csb.ethz.ch/tools/efmtool.

21

	A Polyhedral Model for Enumeration and Optimization over the Set of Circuits

