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Abstract

Dong and Wang in [Theor. Comput. Sci. 771 (2019) 93–98] conjectured

that the resulting graph of the n-dimensional folded hypercube FQn by delet-

ing any perfect matching is isomorphic to the hypercube Qn. In this paper,

we show that the conjecture holds when n = 2, 3, and it is not true for n ≥ 4.
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1. Introduction

Let G = (V (G), E(G)) be a graph, where V (G) is the vertex-set of G and

E(G) is the edge-set of G. A matching of G is a set of pairwise nonadjacent edges.
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Fig. 1. The 3-dimensional folded hypercube FQ3.

A perfect matching of G is a matching with size |V (G)|/2. A k-factor of G is

a k-regular spanning subgraph of G. Clearly, a perfect matching, together with

end vertices of its edges, forms a 1-factor of G. G is k-factorable if it admits a

decomposition into k-factors. The distance between two vertices u and v is the

number of edges in a shortest path joining u and v in G, denoted by d(u, v). For

any two edges uv and xy, the distance of uv and xy, denoted by d(uv, xy), is

min{d(u, x), d(u, y), d(v, x), d(v, y)}. For other standard graph notations not defined

here please refer to [1].

The well-known n-dimensional hypercube is a graph Qn with 2n vertices and

n2n−1 edges. Each vertex is labelled by an n-bit binary string. Two vertices are

adjacent if their binary string differ in exactly one bit position. The folded hyper-

cube, denoted by FQn, is first introduced by El-Amawy and Latifi [3] as a variant

of the hypercube. FQn is obtained from the hypercube Qn by adding 2n−1 indepen-

dent edges, called complementary edges, each of which is between x1x2 · · ·xn and

x1x2 · · ·xn, where xi = 1− xi, i = 1, · · · , n. For convenience, the set of complemen-

tary edges of FQn are denoted by Ec and the set of i-dimensional edges in Qn are

denoted by Ei for each 1 ≤ i ≤ n, where an edge uv is i-dimensional in Qn if u and

v differ only in the i-th position. We illustrate FQ3 in Fig. 1.

Some attractive properties of the folded hypercube are widely studied in the

literature, such as, pancyclicity [8], conditional connectivity [9], stochastic edge-

fault-tolerant routing algorithm [7], conditional diagnosability [6] and conditional

cycle embedding [5]. Recently, Dong and Wang [2] conjectured the following:

Conjecture 1. An subset Em of 2n−1 edges of FQn is a perfect matching if and

only if FQn − Em is isomorphic to Qn.

We solve this conjecture in Section 2. Conclusions are given in Section 3.
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2. Main results

The affirmative answer to Dong’s conjecture for n = 2, 3 are shown as follows.

Theorem 2. For any perfect matching M of FQn, n = 2, 3, FQn−M is isomorphic

to Qn.

Proof. Clearly, FQ2 is the complete graph K4 and Q2 is a 4-cycle, so the statement

holds when n = 2. Let M be a perfect matching of FQ3. If M = Ec, the lemma is

obviously true. Therefore, we assume that M 6= Ec. For convenience, we label each

vertex of FQ3 by ui, i ∈ {0, · · · , 7}, respectively (see Fig. 1). We distinguish the

following cases.

Case 1. M contains no complementary edges. By symmetry of FQ3, we may

assume that u0u2 ∈ M . Then the subgraph induced by the hypercube edges of

FQ3 − {u0, u2}, say H , is a 2 × 1-grid with six vertices. Clearly, H has three

perfect matchings M1 = {u1u5, u3u7, u4u6}, M2 = {u1u3, u4u5, u6u7} and M3 =

{u1u3, u4u6, u5u7}. Thus, M = {u0u2}∪Mj , j = 1, 2, 3. By direct checking, FQ3−M

is isomorphic to Q3.

Case 2. M contains exactly one complementary edge. Suppose w.l.o.g. that

u0u7 ∈ M . Then the subgraph induced by the hypercube edges of FQ3 − {u0, u7},

say C, is a 6-cycle. Clearly, C has two perfect matchings M1 = {u1u5, u2u3, u4u6}

and M2 = {u1u3, u2u6, u4u5}. Thus, M = {u0u7} ∪M1 or {u0u7} ∪M2. By direct

checking, FQ3 −M is isomorphic to Q3.

Case 3. M contains exactly two complementary edges. By symmetry of FQ3,

we may assume that A ⊂ M or B ⊂ M , where A = {u0u7, u2u5} and B =

{u0u7, u3u4}. Then A (resp. B) can be uniquely extended to a perfect match-

ing of FQ3 by adding two hypercube edges. Thus, M = {u0u7, u2u5, u1u3, u4u6} or

{u0u7, u3u4, u1u5, u2u6}. By direct checking, FQ3 −M is isomorphic to Q3.

Case 4. M contains exactly three complementary edges. In this condition, exactly

six vertices of FQ3 are saturated by the complementary edges of M and the remain-

ing two vertices are diagonal, which can not be saturated by any hypercube edge.

So there exist no perfect matchings containing exactly three complementary edges.

This completes the proof.

The following lemma is useful.

Lemma 3 [10]. Any two vertices in V (FQn) exactly have two common neighbors

for n ≥ 4 if they have.
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For n ≥ 4, in fact, we prove the following theorem which characterizes the

relationship between a perfect matching and the sub-hypercube of FQn.

Theorem 4. Let n ≥ 4 be an integer and letM be a perfect matching of FQn. Then

FQn−M is isomorphic to Qn if and only if M = Ec or E
i for any i ∈ {1, 2, · · · , n}.

Proof. Sufficiency. By the definition of FQn, if M = Ec, the statement is obviously

true. Therefore, let M = Ei for some i ∈ {1, 2, · · · , n}. We shall show that FQn−Ei

is isomorphic to Qn. One may consider the graph FQn−Ei∪Ec since FQn−Ei∪Ec

is two disjoint copies of Qn−1. For convenience, let G = FQn−Ei. The vertices of G

are still labelled by n-tuple binary strings. We define a bijection ϕ : V (G) → V (Qn)

as follows: (1) ϕ(u) = u if the i-th bit of u is 0; (2) ϕ(u) = u1 · · ·ui−1uiui+1 · · ·un

if the i-th bit of u is 1, where u = u1 · · ·ui−1uiui+1 · · ·un. Let uv ∈ E(G) be an

arbitrary edge. We shall verify that ϕ is an isomorphism.

Case 1. uv is a j-dimensional edge of G, j ∈ {1, · · · , n} \ {i}. Then u and

v differ only in the j-th position. We may assume that u = u1 · · ·ui · · ·uj · · ·un

and v = u1 · · ·ui · · ·uj · · ·un. If ui = 0, then ϕ(u) = u and ϕ(v) = v, yielding

that ϕ(u)ϕ(v) ∈ E(Qn). If ui = 1, then ϕ(u) = u1 · · ·ui−1uiui+1 · · ·uj · · ·un and

ϕ(v) = u1 · · ·ui−1uiui+1 · · ·uj · · ·un. Again, ϕ(u)ϕ(v) ∈ E(Qn).

Case 2. uv ∈ Ec. For convenience, let u = u1 · · ·ui · · ·un and v = u1 · · ·ui · · ·un.

We may assume that ui = 0. Thus, ϕ(u) = u and ϕ(v) = u1 · · ·ui · · ·un. Therefore,

ϕ(u)ϕ(v) ∈ E(Qn). By above, it follows that FQn −M is isomorphic to Qn.

Necessity. Suppose on the contrary that M 6= Ec and M 6= Ei for each i ∈

{1, 2, · · · , n}. We consider the following two cases.

Case 1. M ∩ Ec 6= ∅. We claim that there exists a vertex u such that the comple-

mentary edge uv ∈ Ec and one of its neighbors, say v1, is saturated by a hypercube

edge v1u1 in M . Suppose not. If all the neighbors of any vertex u in FQn are

saturated by complementary edges, then M = Ec. So the claim holds. Thus, there

exists a 4-cycle uv1u1v2u in FQn, where v1 and v2 are two neighbors of u. Obviously,

uv1, uv2 6∈ M . Note that u1v1 ∈ M , then u1v2 6∈ M . This implies that u and u1

have exactly one common neighbor in FQn −M , contradicting the well-known fact

that every two vertices in Qn have zero or exactly two common neighbors.

Case 2. M ∩Ec = ∅. Our objective is to show that there exists a 4-cycle C of FQn

containing exactly one edge of M . Accordingly, two diagonal vertices of C have

exactly one common neighbor, which contradicts the fact that every two vertices in

Qn have zero or exactly two common neighbors. Note that M ∩Ec = ∅ and M 6= Ei
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Fig. 2. Illustration for Theorem 4.

for each i ∈ {1, · · · , n}, then there exists two edges e, f ∈ M with e ∈ Ei and

f ∈ Ej such that dFQn
(e, f) = 1, where 1 ≤ i < j ≤ n. For clarity, let C = uxvyu

and e = ux. Suppose w.l.o.g. that all edges of C are hypercube edges. So there

exists an edge xw connecting e and f , where w is an end vertex of f .

By Lemma 3, u and v have exactly two common neighbors x and y in FQn, and

vice versa. Note that e 6∈ E(FQn−M), u and v have at most one common neighbor

in FQn − M . If u and v have exactly one common neighbor, say y, then we are

done. So we assume that u and v have no common neighbors in FQn −M , namely

vy ∈ M .

If xv, uy ∈ Ej , then there exists a 4-cycle C ′ = xwzvx such that f = wz. Clearly,

xw, zv, vx 6∈ M and wz ∈ M , then we have a 4-cycle that contains exactly one edge

in M , yielding that x and z have exactly one common neighbor. So we assume

that xv, uy 6∈ Ej and f = wa ∈ M . Accordingly, xw ∈ Ek, where k 6= i, j. Thus,

there exists a cycle C ′′ = xwabx in FQn. Recall that e = ux and e ∈ M , thus,

bx 6∈ M . Similarly, ab, xw 6∈ M . So a and x have exactly one common neighbor in

G, a contradiction (see Fig. 2). Hence, the theorem holds.

By the above theorem, we have the following corollary, which disproves Dong’s

conjecture for n ≥ 4.

Corollary 5. There exists a perfect matching M of FQn with n ≥ 4 such that

FQn −M is not isomorphic to Qn.

Proof. Obviously, there exists a perfect matching M of Qn such that M 6= Ei for

each 1 ≤ i ≤ n. Note that Qn is a spanning subgraph of FQn, then M 6= Ec. By

Theorem 4, the statement follows immediately.
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3. Conclusions

In this paper, we characterize the relationship between the resulting graph of

FQn by deleting a perfect matching and the sub-hypercube. It is interesting to

study the similar property in hypercube variants which include the hypercube as

their spanning subgraphs.
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