On the conjecture of bijection between perfect matching and sub-hypercube in folded hypercubes *

Huazhong Lü ${ }^{1 \dagger}$ and Tingzeng Wu^{2}
${ }^{1}$ School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
E-mail: lvhz08@lzu.edu.cn
${ }^{2}$ School of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, P.R. China
E-mail: mathtzwu@163.com

Abstract

Dong and Wang in [Theor. Comput. Sci. 771 (2019) 93-98] conjectured that the resulting graph of the n-dimensional folded hypercube $F Q_{n}$ by deleting any perfect matching is isomorphic to the hypercube Q_{n}. In this paper, we show that the conjecture holds when $n=2,3$, and it is not true for $n \geq 4$.

Key words: Hypercube; Folded hypercube; Perfect matching; Sub-hypercube; Isomorphic
Mathematics Subject Classification: 05C60, 68R10

1. Introduction

Let $G=(V(G), E(G))$ be a graph, where $V(G)$ is the vertex-set of G and $E(G)$ is the edge-set of G. A matching of G is a set of pairwise nonadjacent edges.

[^0]

Fig. 1. The 3-dimensional folded hypercube $F Q_{3}$.

A perfect matching of G is a matching with size $|V(G)| / 2$. A k-factor of G is a k-regular spanning subgraph of G. Clearly, a perfect matching, together with end vertices of its edges, forms a 1 -factor of $G . G$ is k-factorable if it admits a decomposition into k-factors. The distance between two vertices u and v is the number of edges in a shortest path joining u and v in G, denoted by $d(u, v)$. For any two edges $u v$ and $x y$, the distance of $u v$ and $x y$, denoted by $d(u v, x y)$, is $\min \{d(u, x), d(u, y), d(v, x), d(v, y)\}$. For other standard graph notations not defined here please refer to [1].

The well-known n-dimensional hypercube is a graph Q_{n} with 2^{n} vertices and $n 2^{n-1}$ edges. Each vertex is labelled by an n-bit binary string. Two vertices are adjacent if their binary string differ in exactly one bit position. The folded hypercube, denoted by $F Q_{n}$, is first introduced by El-Amawy and Latifi [3] as a variant of the hypercube. $F Q_{n}$ is obtained from the hypercube Q_{n} by adding 2^{n-1} independent edges, called complementary edges, each of which is between $x_{1} x_{2} \cdots x_{n}$ and $\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n}$, where $\bar{x}_{i}=1-x_{i}, i=1, \cdots, n$. For convenience, the set of complementary edges of $F Q_{n}$ are denoted by E_{c} and the set of i-dimensional edges in Q_{n} are denoted by E^{i} for each $1 \leq i \leq n$, where an edge $u v$ is i-dimensional in Q_{n} if u and v differ only in the i-th position. We illustrate $F Q_{3}$ in Fig. [1.

Some attractive properties of the folded hypercube are widely studied in the literature, such as, pancyclicity [8], conditional connectivity [9], stochastic edge-fault-tolerant routing algorithm [7], conditional diagnosability [6] and conditional cycle embedding [5]. Recently, Dong and Wang [2] conjectured the following:

Conjecture 1. An subset E^{m} of 2^{n-1} edges of $F Q_{n}$ is a perfect matching if and only if $F Q_{n}-E^{m}$ is isomorphic to Q_{n}.

We solve this conjecture in Section 2. Conclusions are given in Section 3.

2. Main results

The affirmative answer to Dong's conjecture for $n=2,3$ are shown as follows.
Theorem 2. For any perfect matching M of $F Q_{n}, n=2,3, F Q_{n}-M$ is isomorphic to Q_{n}.

Proof. Clearly, $F Q_{2}$ is the complete graph K_{4} and Q_{2} is a 4-cycle, so the statement holds when $n=2$. Let M be a perfect matching of $F Q_{3}$. If $M=E_{c}$, the lemma is obviously true. Therefore, we assume that $M \neq E_{c}$. For convenience, we label each vertex of $F Q_{3}$ by $u_{i}, i \in\{0, \cdots, 7\}$, respectively (see Fig. (1). We distinguish the following cases.
Case 1. M contains no complementary edges. By symmetry of $F Q_{3}$, we may assume that $u_{0} u_{2} \in M$. Then the subgraph induced by the hypercube edges of $F Q_{3}-\left\{u_{0}, u_{2}\right\}$, say H, is a 2×1-grid with six vertices. Clearly, H has three perfect matchings $M_{1}=\left\{u_{1} u_{5}, u_{3} u_{7}, u_{4} u_{6}\right\}, M_{2}=\left\{u_{1} u_{3}, u_{4} u_{5}, u_{6} u_{7}\right\}$ and $M_{3}=$ $\left\{u_{1} u_{3}, u_{4} u_{6}, u_{5} u_{7}\right\}$. Thus, $M=\left\{u_{0} u_{2}\right\} \cup M_{j}, j=1,2,3$. By direct checking, $F Q_{3}-M$ is isomorphic to Q_{3}.
Case 2. M contains exactly one complementary edge. Suppose w.l.o.g. that $u_{0} u_{7} \in M$. Then the subgraph induced by the hypercube edges of $F Q_{3}-\left\{u_{0}, u_{7}\right\}$, say C, is a 6 -cycle. Clearly, C has two perfect matchings $M_{1}=\left\{u_{1} u_{5}, u_{2} u_{3}, u_{4} u_{6}\right\}$ and $M_{2}=\left\{u_{1} u_{3}, u_{2} u_{6}, u_{4} u_{5}\right\}$. Thus, $M=\left\{u_{0} u_{7}\right\} \cup M_{1}$ or $\left\{u_{0} u_{7}\right\} \cup M_{2}$. By direct checking, $F Q_{3}-M$ is isomorphic to Q_{3}.
Case 3. M contains exactly two complementary edges. By symmetry of $F Q_{3}$, we may assume that $A \subset M$ or $B \subset M$, where $A=\left\{u_{0} u_{7}, u_{2} u_{5}\right\}$ and $B=$ $\left\{u_{0} u_{7}, u_{3} u_{4}\right\}$. Then A (resp. B) can be uniquely extended to a perfect matching of $F Q_{3}$ by adding two hypercube edges. Thus, $M=\left\{u_{0} u_{7}, u_{2} u_{5}, u_{1} u_{3}, u_{4} u_{6}\right\}$ or $\left\{u_{0} u_{7}, u_{3} u_{4}, u_{1} u_{5}, u_{2} u_{6}\right\}$. By direct checking, $F Q_{3}-M$ is isomorphic to Q_{3}.
Case 4. M contains exactly three complementary edges. In this condition, exactly six vertices of $F Q_{3}$ are saturated by the complementary edges of M and the remaining two vertices are diagonal, which can not be saturated by any hypercube edge. So there exist no perfect matchings containing exactly three complementary edges. This completes the proof.

The following lemma is useful.
Lemma 3 [10]. Any two vertices in $V\left(F Q_{n}\right)$ exactly have two common neighbors for $n \geq 4$ if they have.

For $n \geq 4$, in fact, we prove the following theorem which characterizes the relationship between a perfect matching and the sub-hypercube of $F Q_{n}$.

Theorem 4. Let $n \geq 4$ be an integer and let M be a perfect matching of $F Q_{n}$. Then $F Q_{n}-M$ is isomorphic to Q_{n} if and only if $M=E_{c}$ or E^{i} for any $i \in\{1,2, \cdots, n\}$.

Proof. Sufficiency. By the definition of $F Q_{n}$, if $M=E_{c}$, the statement is obviously true. Therefore, let $M=E^{i}$ for some $i \in\{1,2, \cdots, n\}$. We shall show that $F Q_{n}-E^{i}$ is isomorphic to Q_{n}. One may consider the graph $F Q_{n}-E^{i} \cup E_{c}$ since $F Q_{n}-E^{i} \cup E_{c}$ is two disjoint copies of Q_{n-1}. For convenience, let $G=F Q_{n}-E^{i}$. The vertices of G are still labelled by n-tuple binary strings. We define a bijection $\varphi: V(G) \rightarrow V\left(Q_{n}\right)$ as follows: (1) $\varphi(u)=u$ if the i-th bit of u is 0 ; (2) $\varphi(u)=\bar{u}_{1} \cdots \bar{u}_{i-1} u_{i} \bar{u}_{i+1} \cdots \bar{u}_{n}$ if the i-th bit of u is 1 , where $u=u_{1} \cdots u_{i-1} u_{i} u_{i+1} \cdots u_{n}$. Let $u v \in E(G)$ be an arbitrary edge. We shall verify that φ is an isomorphism.
Case 1. $u v$ is a j-dimensional edge of $G, j \in\{1, \cdots, n\} \backslash\{i\}$. Then u and v differ only in the j-th position. We may assume that $u=u_{1} \cdots u_{i} \cdots u_{j} \cdots u_{n}$ and $v=u_{1} \cdots u_{i} \cdots \bar{u}_{j} \cdots u_{n}$. If $u_{i}=0$, then $\varphi(u)=u$ and $\varphi(v)=v$, yielding that $\varphi(u) \varphi(v) \in E\left(Q_{n}\right)$. If $u_{i}=1$, then $\varphi(u)=\bar{u}_{1} \cdots \bar{u}_{i-1} u_{i} \bar{u}_{i+1} \cdots \bar{u}_{j} \cdots \bar{u}_{n}$ and $\varphi(v)=\bar{u}_{1} \cdots \bar{u}_{i-1} u_{i} \bar{u}_{i+1} \cdots u_{j} \cdots \bar{u}_{n}$. Again, $\varphi(u) \varphi(v) \in E\left(Q_{n}\right)$.
Case 2. $u v \in E_{c}$. For convenience, let $u=u_{1} \cdots u_{i} \cdots u_{n}$ and $v=\bar{u}_{1} \cdots \bar{u}_{i} \cdots \bar{u}_{n}$. We may assume that $u_{i}=0$. Thus, $\varphi(u)=u$ and $\varphi(v)=u_{1} \cdots \bar{u}_{i} \cdots u_{n}$. Therefore, $\varphi(u) \varphi(v) \in E\left(Q_{n}\right)$. By above, it follows that $F Q_{n}-M$ is isomorphic to Q_{n}.

Necessity. Suppose on the contrary that $M \neq E_{c}$ and $M \neq E^{i}$ for each $i \in$ $\{1,2, \cdots, n\}$. We consider the following two cases.
Case 1. $M \cap E_{c} \neq \emptyset$. We claim that there exists a vertex u such that the complementary edge $u v \in E_{c}$ and one of its neighbors, say v_{1}, is saturated by a hypercube edge $v_{1} u_{1}$ in M. Suppose not. If all the neighbors of any vertex u in $F Q_{n}$ are saturated by complementary edges, then $M=E_{c}$. So the claim holds. Thus, there exists a 4-cycle $u v_{1} u_{1} v_{2} u$ in $F Q_{n}$, where v_{1} and v_{2} are two neighbors of u. Obviously, $u v_{1}, u v_{2} \notin M$. Note that $u_{1} v_{1} \in M$, then $u_{1} v_{2} \notin M$. This implies that u and u_{1} have exactly one common neighbor in $F Q_{n}-M$, contradicting the well-known fact that every two vertices in Q_{n} have zero or exactly two common neighbors.
Case 2. $M \cap E_{c}=\emptyset$. Our objective is to show that there exists a 4-cycle C of $F Q_{n}$ containing exactly one edge of M. Accordingly, two diagonal vertices of C have exactly one common neighbor, which contradicts the fact that every two vertices in Q_{n} have zero or exactly two common neighbors. Note that $M \cap E_{c}=\emptyset$ and $M \neq E^{i}$

Fig. 2. Illustration for Theorem 4 .
for each $i \in\{1, \cdots, n\}$, then there exists two edges $e, f \in M$ with $e \in E^{i}$ and $f \in E^{j}$ such that $d_{F Q_{n}}(e, f)=1$, where $1 \leq i<j \leq n$. For clarity, let $C=u x v y u$ and $e=u x$. Suppose w.l.o.g. that all edges of C are hypercube edges. So there exists an edge $x w$ connecting e and f, where w is an end vertex of f.

By Lemma 3, u and v have exactly two common neighbors x and y in $F Q_{n}$, and vice versa. Note that $e \notin E\left(F Q_{n}-M\right), u$ and v have at most one common neighbor in $F Q_{n}-M$. If u and v have exactly one common neighbor, say y, then we are done. So we assume that u and v have no common neighbors in $F Q_{n}-M$, namely $v y \in M$.

If $x v, u y \in E^{j}$, then there exists a 4 -cycle $C^{\prime}=x w z v x$ such that $f=w z$. Clearly, $x w, z v, v x \notin M$ and $w z \in M$, then we have a 4-cycle that contains exactly one edge in M, yielding that x and z have exactly one common neighbor. So we assume that $x v, u y \notin E^{j}$ and $f=w a \in M$. Accordingly, $x w \in E^{k}$, where $k \neq i, j$. Thus, there exists a cycle $C^{\prime \prime}=x w a b x$ in $F Q_{n}$. Recall that $e=u x$ and $e \in M$, thus, $b x \notin M$. Similarly, $a b, x w \notin M$. So a and x have exactly one common neighbor in G, a contradiction (see Fig. [2). Hence, the theorem holds.

By the above theorem, we have the following corollary, which disproves Dong's conjecture for $n \geq 4$.

Corollary 5. There exists a perfect matching M of $F Q_{n}$ with $n \geq 4$ such that $F Q_{n}-M$ is not isomorphic to Q_{n}.

Proof. Obviously, there exists a perfect matching M of Q_{n} such that $M \neq E^{i}$ for each $1 \leq i \leq n$. Note that Q_{n} is a spanning subgraph of $F Q_{n}$, then $M \neq E_{c}$. By Theorem [4, the statement follows immediately.

3. Conclusions

In this paper, we characterize the relationship between the resulting graph of $F Q_{n}$ by deleting a perfect matching and the sub-hypercube. It is interesting to study the similar property in hypercube variants which include the hypercube as their spanning subgraphs.

References

[1] J.A. Bondy, U.S.R. Murty, Graph theory, Springer, New York, 2007.
[2] Q. Dong, X. Wang, How many triangles and quadrilaterals are there in an n-dimensional augmented cube?, Theor. Comput. Sci. 771 (2019) 93-98.
[3] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst. 2 (1991) 31-42.
[4] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30.
[5] C.-N Kuo, Y.-H Cheng, Cycles embedding in folded hypercubes with conditionally faulty vertices, Discrete Appl. Math. 220 (2017) 55-59.
[6] A. Liu, S. Wang, J. Yuan, On g-extra conditional diagnosability of hypercubes and folded hypercubes, Theor. Comput. Sci. 704 (2017) 62-73.
[7] B.T. Thuan, L.B. Ngoc, K. Kaneko, A stochastic link-fault-tolerant routing algorithm in folded hypercubes, J. Supercomput. 74 (2018) 5539-5557.
[8] J.-M. Xu, M. Ma, Cycles in folded hypercubes, Appl. Math. Lett. 19 (2006) 140-145.
[9] S. Zhao, W. Yang, Conditional connectivity of folded hypercubes, Discrete Appl. Math. 257 (2019) 388-392.
[10] Q. Zhu, J. Xu, X. Hou, M. Xu, On reliability of the folded hypercubes, Inform. Sci. 177 (2007) 1782-1788.

[^0]: *This research was partially supported by the National Natural Science Foundation of China (Nos. 11801061 and 11761056), the Chunhui Project of Ministry of Education (No. Z2017047) and the Fundamental Research Funds for the Central Universities (No. ZYGX2018J083)
 ${ }^{\dagger}$ Corresponding author.

