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a b s t r a c t

This paper introduces and analyzes a procedural egalitarian solution for nontransferable
utility games. This concept is based on an egalitarian procedure in which egalitarian
opportunities of coalitions are explicitly taken into account. We formulate conditions
under which the new solution prescribes a core element and derive a direct expression
on the class of bargaining games and the class of bankruptcy games.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Egalitarianism plays a central role in fundamental principles of justice and is widely applied within several disciplines.
The interpretation of egalitarianism, and which notions should exactly be equated, depends on the underlying model
and its characteristics. In a general payoff space where individual utility is represented in incompatible measures,
egalitarianism cannot be applied straightforwardly. To do so, it is necessary to impose assumptions which allow to
compare utility not only intrapersonally, but to some extent also interpersonally.

This paper focuses on egalitarianism in the context of nontransferable utility games. Shapley and Shubik [20]
introduced this model to extend the standard definition of cooperative games by dropping two substantial restrictions
on the nature of utility: linearity and transferability. The economic possibilities of coalitions are now expressed in a
set of attainable utility allocations. The players are assumed to cooperate in the grand coalition and a main question
is to determine the utility allocation that the players agree upon or that an arbitrator recommends, while taking the
opportunities of subcoalitions into account. To allow for an adequate egalitarian comparison of subcoalitions, it is required
to consistently apply a fixed interpretation of egalitarianism across coalitions.

Inspired by the Kalai [11] solution for bargaining problems (cf. Nash [14]), Kalai and Samet [12] introduced egalitarian
solutions for nontransferable utility games which recursively allocate payoffs in an equal way or according to exogenous
weights. Inspired by the Kalai and Smorodinsky [13] solution for bargaining problems, we take a relative egalitarian
approach and define a procedure which iteratively allocates payoffs according to endogenous weights determined by the
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utopia values of the players in the game, i.e. the maximal payoffs within the attainable individually rational allocations of
the grand coalition. Contrary to Kalai and Samet [12], this approach ensures that all notions are covariant under individual
rescaling of utility.

Assuming that utility is normalized in such a way that all maximal individually attainable utility levels equal zero, we
consistently interpret the utopia vector as a relative egalitarian direction from the zero vector within any subcoalition.
The egalitarian procedure starts assigning to any coalition the weakly Pareto efficient allocation in this direction. Players
can claim their allocated payoff in a coalition if no member is allocated a higher payoff in any other coalition. In a next
iteration, these players claim these payoffs in each coalition and the other members are assigned egalitarian payoffs in
the utopia direction. This procedure continues and eventually all players acquire an egalitarian claim attainable in at least
one coalition.

Subsequently, we introduce a procedural egalitarian solution for nontransferable utility games which takes the result of
this egalitarian procedure into account to prescribe a unique egalitarian allocation for the grand coalition. The egalitarian
claims can be interpreted as aspiration levels for such allocation. Players which are member of all inclusion-wise maximal
egalitarian admissible coalitions are called strong egalitarian claimants. The procedural egalitarian solution prioritizes
strong claimants over the other players and aims to allocate the egalitarian claims according to this priority. The possible
infeasibility is modeled as a bankruptcy problem (cf. Orshan et al. [15]) in which the egalitarian claims are adopted. The
constrained relative equal awards rule (cf. Dietzenbacher et al. [5]), which allocates payoffs relatively equal subject to
claims boundedness, is used to solve this bankruptcy problem.

In the context of transferable utility games, the utopia values of all players coincide and the procedural egalitarian
solution boils down to the Dietzenbacher et al. [4] solution, which in turn coincides with the Dutta and Ray [6] solution
on the class of convex transferable utility games. On the class of bargaining games, the procedural egalitarian solution
coincides with the Kalai and Smorodinsky [13] solution. On the class of bankruptcy games (cf. Dietzenbacher [3]), the
procedural egalitarian solution coincides with the constrained relative equal awards rule.

This paper is organized in the following way. Section 2 formally describes nontransferable utility games. Section 3
introduces a procedural egalitarian solution and the underlying egalitarian procedure. Sections 4 and 5 analyze the
procedural egalitarian solution on the class of bargaining games and on the class of bankruptcy games, respectively.

2. Preliminaries

Let N be a nonempty and finite set of players. The collection of all coalitions is denoted by 2N
= {S | S ⊆ N}. For any

x, y ∈ RN , x ≤ y denotes xi ≤ yi for all i ∈ N , and x < y denotes xi < yi for all i ∈ N . For any x ∈ RN and any S ∈ 2N ,
xS ∈ RS denotes (xi)i∈S . For any S ∈ 2N , 0S ∈ RS denotes the zero vector. For any A, B ⊆ RN , A ⊂ B denotes A ⫋ B. For any
A ⊆ RN ,

• the comprehensive hull is comp(A) = {x ∈ RN
| ∃y ∈ A : y ≥ x};

• the weak upper contour set is WUC(A) = {x ∈ RN
| ¬∃y ∈ A : y > x};

• the weak Pareto set is WP(A) = {x ∈ A | ¬∃y ∈ A : y > x};
• the strong Pareto set is SP(A) = {x ∈ A | ¬∃y ∈ A, y ̸= x : y ≥ x}.

Note that SP(A) ⊆ WP(A) ⊆ WUC(A). A set A ⊆ RN is comprehensive if A = comp(A), and nonleveled if SP(A) = WP(A).
A nontransferable utility game is a pair (N, V ) in which V assigns to each nonempty coalition S ∈ 2N

\ {∅} a nonempty,
closed, and comprehensive set of payoff allocations V (S) ⊆ RS such that

• V ({i}) is bounded from above for all i ∈ N;
• {x ∈ V (S) | ∀i ∈ N : xi ≥ max V ({i})} is bounded for all S ∈ 2N

\ {∅};
• (max V ({i}))i∈N /∈ WUC(V (N)).

Let NTUN denote the class of all NTU-games for which max V ({i}) = 0 for all i ∈ N . For convenience, such an NTU-game
is denoted by V ∈ NTUN .

3. The procedural egalitarian solution

In this section, we introduce the procedural egalitarian solution as an egalitarian solution concept for nontransferable
utility games. The procedural egalitarian solution is based on an egalitarian procedure in which coalitional opportunities
are explicitly taken into account. This egalitarian procedure interprets the utopia values, the maximal payoffs within the
attainable individually rational allocations of the grand coalition, as an egalitarian direction. The egalitarian distribution of
the procedure starts assigning to any coalition the weakly Pareto efficient egalitarian allocation. Coalitions are called
egalitarian admissible if all members are there allocated their highest payoff concerning the egalitarian distribution.
The players of these egalitarian admissible coalitions are the egalitarian claimants and the corresponding payoffs in
the egalitarian admissible coalitions are their egalitarian claims. In a next iteration, the egalitarian distribution allocates
in each coalition the egalitarian claims to the members which are egalitarian claimants, and allocates weakly Pareto
efficient egalitarian payoffs to the other members. The egalitarian admissible coalitions, the egalitarian claimants, and
their corresponding egalitarian claims are determined in the same way in all further iterations. The egalitarian procedure
is formally defined after an example.
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Example 1 (cf. Roth [16]). Let N = {1, 2, 3} and consider the game V p
∈ NTUN which is for all p ∈ (0, 1

2 ) given by

V p({1, 2}) =
{
x ∈ R{1,2}

⏐⏐ (x1, x2) ≤ ( 12 ,
1
2 )

}
;

V p({i, 3}) =
{
x ∈ R{i,3}

⏐⏐ (xi, x3) ≤ (p, 1 − p)
}

for i ∈ {1, 2};

V p({1, 2, 3}) = comp(conv({( 12 ,
1
2 , 0), (p, 0, 1 − p), (0, p, 1 − p)})),

where conv(A) denotes the convex hull of the set A ⊆ RN . The utopia values, the maximal payoffs within the grand
coalition, are given by uVp

= ( 12 ,
1
2 , 1 − p). The following table presents the egalitarian distribution of the egalitarian

procedure.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

χVp,1(S) 0 0 0 ( 12 ,
1
2 , ·) (p, ·, 2p(1 − p)) (·, p, 2p(1 − p)) λVp,1(N)uVp

χVp,2(S) 1
2

1
2 0 ( 12 ,

1
2 , ·) ( 12 , ·, 0) (·, 1

2 , 0) ( 12 ,
1
2 , 0)

χVp,3(S) 1
2

1
2 0 ( 12 ,

1
2 , ·) ( 12 , ·, 0) (·, 1

2 , 0) ( 12 ,
1
2 , 0)

χVp,...(S) . . . . . . . . . . . . . . . . . . . . .

In the first iteration, the egalitarian distribution χV P ,1 assigns to any coalition S ∈ 2N
\ {∅} the weakly Pareto efficient

egalitarian allocation, i.e. χV ,k(S) ∈ WP(V (S)) proportional to the utopia vector. The collection of egalitarian admissible
coalitions AVp,1

= {{1, 2}} consists of the coalitions in which all members are allocated their highest payoff concerning
the egalitarian distribution. The members of these coalitions PVp,1

= {1, 2} are the egalitarian claimants and their
claims γ Vp,1

= ( 12 ,
1
2 , ·) equal their allocated payoffs in the egalitarian admissible coalitions. In the second iteration,

the egalitarian distribution χV P ,2 assigns in any coalition to all claimants PVp,1
= {1, 2} their claims γ Vp,1

= ( 12 ,
1
2 , ·) and

assigns the weakly Pareto efficient egalitarian payoffs to the other members if possible, zero otherwise. In the egalitarian
admissible coalitions AVp,2

= {{3}, {1, 2}, {1, 2, 3}}, all members PVp,2
= N can obtain their highest allocated payoffs

γ Vp,2
= ( 12 ,

1
2 , 0). In the third iteration, the egalitarian distribution χV P ,3 assigns in any coalition to all claimants PVp,2

= N
their claims γ Vp,2

= ( 12 ,
1
2 , 0). The egalitarian admissible coalitions, the egalitarian claimants, and their corresponding

egalitarian claims are the same for all further iterations. △

Definition 1 (Egalitarian Procedure). Let V ∈ NTUN be a nontransferable utility game. The vector of utopia values uV
∈ RN

++

is given by uV
i = max{xi | x ∈ V (N) ∩ RN

+
} for all i ∈ N . The set of 0-egalitarian claimants is given by PV ,0

= ∅. Let k ∈ N.
The k-egalitarian distribution χV ,k assigns to each S ∈ 2N

\ {∅} the payoff allocation χV ,k(S) ∈ RS given by

χV ,k(S) =

(
γ

V ,k−1
S∩PV ,k−1 , λ

V ,k(S)uV
S\PV ,k−1

)
,

where λV ,k assigns to each S ∈ 2N
\ {∅} for which S ̸⊆ PV ,k−1 the scalar λV ,k(S) ∈ R given by

λV ,k(S) =

⎧⎨⎩max
{
t ∈ R

⏐⏐⏐ (
γ

V ,k−1
S∩PV ,k−1 , tuV

S\PV ,k−1

)
∈ V (S)

}
if

(
γ

V ,k−1
S∩PV ,k−1 , 0S\PV ,k−1

)
∈ V (S);

0 if
(
γ

V ,k−1
S∩PV ,k−1 , 0S\PV ,k−1

)
/∈ V (S).

The collection of k-egalitarian admissible coalitions is given by

AV ,k
=

{
S ∈ 2N

\ {∅}
⏐⏐ χV ,k(S) ∈ WP(V (S)), ∀i ∈ S ∀T ∈ 2N , i ∈ T : χ

V ,k
i (T ) ≤ χ

V ,k
i (S)

}
.

The set of k-egalitarian claimants PV ,k
∈ 2N

\{∅} is given by PV ,k
=

⋃
S∈AV ,k S. The vector of k-egalitarian claims γ V ,k

∈ RPV ,k
+

is given by γ
V ,k
i = χ

V ,k
i (S) for all i ∈ PV ,k, where S ∈ AV ,k and i ∈ S.

Lemma 3.1. Let V ∈ NTUN and let S ∈ 2N
\ {∅}. Then χV ,k(S) ∈ WUC(V (S)) for all k ∈ N.

Proof. We show the statement by induction on k. Suppose that χV ,1(S) /∈ WUC(V (S)). Then there exists an x ∈ V (S)
for which x > χV ,1(S). Since V (S) is comprehensive, this means that there exists a y ∈ V (S) with y > χV ,1(S) for which
y = tuV

S for some t ∈ R. Using PV ,0
= ∅, this means that t > λV ,1(S), which contradicts the definition of λV ,1(S). Hence,

χV ,1(S) ∈ WUC(V (S)).
Let k ∈ N and assume that χV ,k(S) ∈ WUC(V (S)). If S ⊆ PV ,k, then χV ,k+1(S) = γ

V ,k
S ≥ χV ,k(S), so χV ,k+1(S) ∈

WUC(V (S)). Assume that S ̸⊆ PV ,k and suppose that χV ,k+1(S) /∈ WUC(V (S)). Then there exists an x ∈ V (S) for which
x > χV ,k+1(S). Since V (S) is comprehensive, this means that there exists a y ∈ V (S) with y ≥ χV ,k+1(S) and y ̸= χV ,k+1(S)
for which y = (γ V ,k

S∩PV ,k , tuV
S\PV ,k ) for some t ∈ R. This means that t > λV ,k+1(S), which contradicts the definition of λV ,k+1(S).

Hence, χV ,k+1(S) ∈ WUC(V (S)). □
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Lemma 3.1 shows that the egalitarian distribution assigns an element of the weak upper contour set to each coalition.
Only coalitions which are assigned an element of the weak Pareto set can be egalitarian admissible. This can only be
achieved when it is possible to allocate to the members which are egalitarian claimants their corresponding egalitarian
claims. Formally, for all S ∈ 2N

\ {∅} and any k ∈ N, we have χV ,k(S) ∈ WP(V (S)) if and only if (γ V ,k−1
S∩PV ,k−1 , 0S\PV ,k−1 ) ∈ V (S).

To an egalitarian admissible coalition, the egalitarian distribution assigns a weakly Pareto efficient allocation for which
no member is allocated a higher payoff in any other coalition. This suggests that the payoff allocation is an element of
the core. The core of any V ∈ NTUN is given by

C(V ) =
{
x ∈ V (N) | ∀S ∈ 2N

\ {∅} : xS ∈ WUC(V (S))
}
.

Indeed, for each egalitarian admissible coalition, the corresponding vector of egalitarian claims is a core element of the
induced subgame. For any V ∈ NTUN , the subgame VS ∈ NTUS on S ∈ 2N

\ {∅} is given by VS(R) = V (R) for all R ∈ 2S
\ {∅}.

Proposition 3.2. Let V ∈ NTUN and let k ∈ N. Then γ
V ,k
S ∈ C(VS) for all S ∈ AV ,k.

Proof. Let S ∈ AV ,k. By definition, we have γ
V ,k
S = χV ,k(S) and χV ,k(S) ∈ VS(S). Suppose that γ

V ,k
S /∈ C(VS). Then there

exists an R ∈ 2S
\ {∅} for which γ

V ,k
R ∈ VS(R) \ WP(VS(R)). We can write

γ
V ,k
R = χ

V ,k
R (S) ≥ χV ,k(R).

Since VS(R) is comprehensive, this means that χV ,k(R) ∈ VS(R) \ WP(VS(R)). This contradicts Lemma 3.1. Hence, γ
V ,k
S

∈ C(VS). □

The question arises whether egalitarian admissible coalitions and egalitarian claimants exist in every game. Are players
always able to acquire an egalitarian claim? The answer turns out to be affirmative.

Lemma 3.3. Let V ∈ NTUN and let k ∈ N. Then AV ,k
⊆ AV ,k+1. Moreover, if PV ,k−1

̸= N, then PV ,k−1
⊂ PV ,k.

Proof. Let S ∈ AV ,k. Then we have χV ,k(S) ∈ WP(V (S)) and S ⊆ PV ,k. We can write χV ,k+1(S) = γ
V ,k
S = χV ,k(S). This

means that χV ,k+1(S) ∈ WP(V (S)) and for all i ∈ S we have χ
V ,k+1
i (T ) = γ

V ,k
i ≤ χ

V ,k+1
i (S) for all T ∈ 2N for which i ∈ T ,

so S ∈ AV ,k+1. Hence, AV ,k
⊆ AV ,k+1.

Assume that PV ,k−1
̸= N . Let S ∈ 2N with S ̸⊆ PV ,k−1 and (γ V ,k−1

S∩PV ,k−1 , 0S\PV ,k−1 ) ∈ V (S) be a coalition such that
λV ,k(S) equals the maximum λV ,k(R) over all coalitions R ∈ 2N with R ̸⊆ PV ,k−1. Then we have χV ,k(S) ∈ WP(V (S))
and χ

V ,k
i (T ) ≤ χ

V ,k
i (S) for all i ∈ S and all T ∈ 2N for which i ∈ T . This means that S ∈ AV ,k and S ⊆ PV ,k. Hence,

PV ,k−1
⊂ PV ,k. □

Lemma 3.3 shows that the nonempty collection of egalitarian admissible coalitions weakly extends in each iteration
and eventually covers all players. The structure of this collection depends on the structure of the underlying game. An
NTU-game V ∈ NTUN is

• superadditive if V (S) × V (T ) ⊆ V (S ∪ T ) for all S, T ∈ 2N
\ {∅} for which S ∩ T = ∅;

• ordinal convex (cf. Vilkov [21]) if V is superadditive and for all S, T ∈ 2N
\ {∅} for which S ∩ T ̸= ∅ and any x ∈ RN

for which xS ∈ V (S) and xT ∈ V (T ), we have xS∪T ∈ V (S ∪ T ) or xS∩T ∈ V (S ∩ T );
• coalitional merge convex (cf. Hendrickx et al. [10]) if V is superadditive and for all R ∈ 2N

\ {∅} and S, T ∈ 2N\R
\ {∅}

for which S ⊂ T , and any s ∈ WP(V (S)), t ∈ WP(V (T )), and x ∈ V (S ∪ R) for which xS ≥ s, there exists a y ∈ V (T ∪ R)
for which yT ≥ t and yR ≥ xR;

• balanced (cf. Scarf [18]) if for all balanced collections B ⊆ 2N
\ {∅}, we have x ∈ V (N) if xS ∈ V (S) for all S ∈ B. Here,

a collection of coalitions B ⊆ 2N
\ {∅} is balanced if there exists a function δ : B → R++ for which

∑
S∈B:i∈S δ(S) = 1

for all i ∈ N .

Interestingly, all these properties have implications for the relation of the collections of egalitarian admissible coalitions
in two subsequent iterations.

Proposition 3.4. Let V ∈ NTUN and let k ∈ N.

(i) If V is superadditive, then S ∪ T ∈ AV ,k+1 for all S, T ∈ AV ,k with S ∩ T = ∅.
(ii) If V is ordinal convex, then S ∪ T ∈ AV ,k+1 or S ∩ T ∈ AV ,k+1 for all S, T ∈ AV ,k.
(iii) If V is coalitional merge convex, then S ∪ T ∈ AV ,k+1 for all S, T ∈ AV ,k.
(iv) If V is balanced, then N ∈ AV ,k+1 if there exists a balanced collection B ⊆ AV ,k.

Proof. (i) Assume that V is superadditive. Let S, T ∈ AV ,k with S ∩ T = ∅. Then we have γ
V ,k
S ∈ V (S) and γ

V ,k
T ∈ V (T ).

Since V is superadditive, this means that γ
V ,k
S∪T ∈ V (S ∪ T ). From Lemma 3.1 we know that χV ,k+1(S ∪ T ) ∈ WUC(V (S ∪ T )).

Since χV ,k+1(S ∪ T ) = γ
V ,k
S∪T , this implies that χV ,k+1(S ∪ T ) ∈ WP(V (S ∪ T )). Hence, S ∪ T ∈ AV ,k+1.
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(ii) Assume that V is ordinal convex. Let S, T ∈ AV ,k with S ∩ T ̸= ∅. Then we have γ
V ,k
S ∈ V (S) and γ

V ,k
T ∈ V (T ).

Since V is ordinal convex, this means that γ
V ,k
S∪T ∈ V (S ∪ T ) or γ

V ,k
S∩T ∈ V (S ∩ T ). From Lemma 3.1 we know that

χV ,k+1(S ∪ T ) ∈ WUC(V (S ∪ T )) and χV ,k+1(S ∩ T ) ∈ WUC(V (S ∩ T )). Since χV ,k+1(S ∪ T ) = γ
V ,k
S∪T and χV ,k+1(S ∩ T ) = γ

V ,k
S∩T ,

this implies that χV ,k+1(S ∪ T ) ∈ WP(V (S ∪ T )) or χV ,k+1(S ∩ T ) ∈ WP(V (S ∩ T )). Hence, S ∪ T ∈ AV ,k+1 or S ∩ T ∈ AV ,k+1.
(iii) Assume that V is coalitional merge convex. Let S, T ∈ AV ,k with S ∩ T ̸= ∅, S ̸⊆ T and T ̸⊆ S. Then we have

γ
V ,k
S ∈ V (S) and γ

V ,k
T ∈ V (T ). Since V is coalitional merge convex, there exists a y ∈ V (S ∪ T ) for which yS ≥ γ

V ,k
S and

yT\S ≥ γ
V ,k
T\S , i.e. y ≥ γ

V ,k
S∪T . Since V (S ∪ T ) is comprehensive, this means that γ

V ,k
S∪T ∈ V (S ∪ T ). From Lemma 3.1 we know

that χV ,k+1(S ∪ T ) ∈ WUC(V (S ∪ T )). Since χV ,k+1(S ∪ T ) = γ
V ,k
S∪T , this implies that χV ,k+1(S ∪ T ) ∈ WP(V (S ∪ T )). Hence,

S ∪ T ∈ AV ,k+1.
(iv) Assume that V is balanced. Let B ⊆ AV ,k be a balanced collection. Then we have γ

V ,k
S ∈ V (S) for all S ∈ B. Since V is

balanced, this means that γ V ,k
∈ V (N). From Lemma 3.1 we know that χV ,k+1(N) ∈ WUC(V (N)). Since χV ,k+1(N) = γ V ,k,

this implies that χV ,k+1(N) ∈ WP(V (N)). Hence, N ∈ AV ,k+1. □

The egalitarian procedure reaches a steady state when all players have acquired an egalitarian claim. Lemma 3.3 shows
that the number of iterations needed to converge to this steady state is bounded by the number of players. Players which
are member of all inclusion-wise maximal egalitarian admissible coalitions are called strong claimants.

Definition 2. Let V ∈ NTUN be a nontransferable utility game. The iteration nV
∈ {1, . . . , |N|} is given by nV

= min{k ∈

N | PV ,k
= N}. The vector of egalitarian claims γ̂ V

∈ RN
+

is given by γ̂ V
= γ V ,nV . The collection ÂV

⊆ 2N
\ {∅} is given by

ÂV
=

{
S ∈ 2N

\ {∅} | γ̂ V
S ∈ V (S), ∀T ∈ 2N

\ {∅}, γ̂ V
T ∈ V (T ) : S ̸⊂ T

}
.

The set of strong egalitarian claimants DV
∈ 2N is given by DV

=
⋂

S∈ÂV S.

The egalitarian claims can be interpreted as aspiration levels for a payoff allocation for the grand coalition. The
procedural egalitarian solution prioritizes the strong egalitarian claimants over the other players to prescribe such an
allocation, i.e. it allocates the egalitarian claims to the corresponding players according to this priority. The possibly
resulting infeasibility is modeled as a bankruptcy problem in which the egalitarian claims are adopted.

A bankruptcy problem with nontransferable utility (cf. Orshan et al. [15]) is a triple (N, E, c) in which E ⊆ RN
+

is
a nonempty, closed, bounded, and comprehensive estate and c ∈ WUC(E) is a vector of claims. For convenience, an
NTU-bankruptcy problem is denoted by (E, c). The constrained relative equal awards rule CREA (cf. Dietzenbacher et al.
[5]) assigns to any bankruptcy problem (E, c) the payoff allocation

CREA(E, c) =
(
min

{
ci, αE,cuE

i

})
i∈N ,

where uE
i = max{xi | x ∈ E} and αE,c

= max{t ∈ [0, 1] | (min{ci, tuE
i })i∈N ∈ WP(E)}.

To prescribe a payoff allocation for the grand coalition, the procedural egalitarian solution solves the possibly resulting
infeasibility using the constrained relative equal awards rule, i.e. prioritizing the strong egalitarian claimants, it allocates
payoffs as relatively equal as possible provided that players cannot get more than their egalitarian claims. In Section 5,
we further comment on the choice of this specific bankruptcy rule.

Definition 3 (Procedural Egalitarian Solution). The procedural egalitarian solution Γ : NTUN
→ RN

+
assigns to any game

V ∈ NTUN the payoff allocation

Γ (V ) =

⎧⎨⎩
(
γ̂ V
DV , CREA

({
x ∈ RN\DV

+

⏐⏐ (
γ̂ V
DV , x

)
∈ V (N)

}
, γ̂ V

N\DV

))
if

(
γ̂ V
DV , 0N\DV

)
∈ V (N);(

CREA
({

x ∈ RDV
+

⏐⏐ (
x, 0N\DV

)
∈ V (N)

}
, γ̂ V

DV

)
, 0N\DV

)
if

(
γ̂ V
DV , 0N\DV

)
/∈ V (N).

This generalizes the procedural egalitarian solution for TU-games (cf. Dietzenbacher et al. [4]), which in turn generalizes
the Dutta and Ray [6] solution for convex TU-games.

Example 2. Let N = {1, 2, 3} and consider the game V p
∈ NTUN from Example 1. We have nVp

= 2, γ̂ Vp
= ( 12 ,

1
2 , 0),

ÂVp
= {N}, and DVp

= N . Consequently, Γ (V p) = ( 12 ,
1
2 , 0). Besides, the Shapley [19] solution equals ( 13 ,

1
3 ,

1
3 ), and

the Harsanyi [7] solution and the Kalai and Samet [12] solution both equal ( 12 −
1
3p,

1
2 −

1
3p,

2
3p). Note that, contrary to

the procedural egalitarian solution, these solutions do not belong to the core.
This example initiated an interesting and extensive discussion on the interpretation of solutions for nontransferable

utility games. Roth [16] argues that the payoff allocation prescribed by the procedural egalitarian solution is the unique
outcome of this game which is consistent with the hypothesis that the players are rational utility maximizers, since this
payoff allocation is strictly preferred by both players 1 and 2, and it can be achieved without player 3. For more details,
we refer to Harsanyi [8], Aumann [1], Hart [9], Roth [17], and Aumann [2]. △
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The procedural egalitarian solution satisfies

• weak Pareto efficiency: it prescribes a weakly Pareto efficient allocation of the grand coalition;
• symmetry: it allocates equal payoffs to symmetric players;
• scale covariance: it is covariant under individual rescaling of utility;
• individual rationality: it allocates at least the maximal individually attainable payoffs;
• restricted monotonicity: it allocates nondecreasing payoffs when the set of attainable allocations of the grand coalition

expands but the utopia values remain equal.

The procedural egalitarian solution does not generally satisfy coalitional rationality, i.e. it does not necessarily prescribe a
core element. In order to better understand the trade-off between relative egalitarianism and coalitional rationality, the
games in which these principles do not conflict are particularly interesting. This is for instance the case in Example 2,
where the grand coalition is egalitarian admissible. Consequently, all players are strong egalitarian claimants, there is no
infeasibility, and the procedural egalitarian solution allocates to all players their egalitarian claims. Such games are called
egalitarian stable.

Definition 4 (Egalitarian Stability). A game V ∈ NTUN is egalitarian stable if ÂV
= {N}.

Proposition 3.2 shows that the procedural egalitarian solution prescribes a core element for all egalitarian stable games,
i.e. egalitarian stability is a sufficient condition for coalitional rationality. The following example shows that this condition
is not necessary.

Example 3. Let N = {1, 2, 3} and consider the game V ∈ NTUN given by

V ({1, i}) =
{
x ∈ R{1,i}

⏐⏐ (x1, xi) ≤ (4, 4)
}

for i ∈ {2, 3};

V ({2, 3}) =
{
x ∈ R{2,3}

⏐⏐ (x2, x3) ≤ (0, 0)
}
;

V ({1, 2, 3}) =
{
x ∈ R{1,2,3}

⏐⏐ x1 + x2 + x3 ≤ 6
}
.

We have uV
= (6, 6, 6). The following table illustrates the egalitarian distribution in the first iteration of the egalitarian

procedure.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

χV ,1(S) (0, ·, ·) (·, 0, ·) (·, ·, 0) (4, 4, ·) (4, ·, 4) (·, 0, 0) (2, 2, 2)

We have AV ,1
= {{1, 2}, {1, 3}}, PV ,1

= N , and γ V ,1
= (4, 4, 4). This means that nV

= 1, γ̂ V
= (4, 4, 4), ÂV

=

{{1, 2}, {1, 3}}, and DV
= {1}. Consequently,

Γ (V ) =

(
4, CREA

({
x ∈ R{2,3}

+ | x2 + x3 ≤ 2
}

, (·, 4, 4)
))

= (4, 1, 1).

Note that Γ (V ) ∈ C(V ). △

In Example 3, the sets of payoff allocations V ({1, 2}) and V ({1, 3}) are not nonleveled. Note that for nontransferable
utility games V ∈ NTUN for which V (S) ∩ RN

+
is nonleveled for all S ∈ 2N

\ {∅}, egalitarian stability is a necessary and
sufficient condition for coalitional rationality. The question arises which games are egalitarian stable. From Proposition 3.4
we know that coalitional merge convex games are egalitarian stable. In the next sections we show that bargaining games
and bankruptcy games are egalitarian stable as well.

4. Bargaining games

In this section, we analyze the procedural egalitarian solution on the class of bargaining games. A bargaining problem
(cf. Nash [14]) is a triple (N, F , d) in which F ⊆ RN is a nonempty, closed, and comprehensive feasible set and d ∈ RN is
a disagreement point such that

• {x ∈ F | x ≥ d} is bounded;
• d /∈ WUC(F ).

Let BGN denote the class of all bargaining problems (N, F , d) for which d = 0N . For convenience, such a bargaining problem
is denoted by F ∈ BGN .

Any bargaining problem F ∈ BGN gives rise to the corresponding bargaining game V F
∈ NTUN which is for all S ∈ 2N

\{∅}

given by

V F (S) =

{
F if S = N;
comp({0S}) if S ∈ 2N

\ {∅,N}.
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The core of a bargaining game is given by C(V F ) = WP(F )∩RN
+
. Note that bargaining games are coalitional merge convex,

which implies that bargaining games are egalitarian stable and that the procedural egalitarian solution prescribes a core
element.

The Kalai and Smorodinsky [13] solution KS : BGN
→ RN

+
assigns to any bargaining problem F ∈ BGN the payoff

allocation

KS(F ) = κFuV F
,

where κF
= max{t ∈ [0, 1] | tuV F

∈ WP(F )}.

Theorem 4.1. The procedural egalitarian solution of a bargaining game coincides with the Kalai and Smorodinsky [13] solution
of the underlying bargaining problem.

Proof. Let F ∈ BGN be a bargaining problem. In the first iteration of the egalitarian procedure, we have

χV F ,1(S) =

{
λV F ,1(N)uV F

if S = N;
0S if S ∈ 2N

\ {∅,N},

where λV F ,1(N) ∈ R++ is such that λV F ,1(N)uV F
∈ WP(F ). This means that N ∈ AV F ,1, PV F ,1

= N , and γ V F ,1
= λV F ,1(N)uV F

,
which implies that nV F

= 1, γ̂ V F
= λV F ,1(N)uV F

, ÂV F
= {N}, and DV F

= N . Consequently, Γ (V F ) = λV F ,1(N)uV F
. Since

Γ (V F ) ∈ WP(F ) and KS(F , d) ∈ WP(F ), the assumptions on F imply that λV F ,1(N) = κF . Hence, Γ (V F ) = KS(F ). □

5. Bankruptcy games

In this section, we analyze the procedural egalitarian solution on the class of bankruptcy games. Let BRN denote the
class of all bankruptcy problems (E, c) for which E ̸= {0N} is nonleveled and (cN\{i}, 0) ∈ WUC(E) for all i ∈ N . Any
bankruptcy problem (E, c) ∈ BRN gives rise to the corresponding bankruptcy game V E,c

∈ NTUN (cf. Dietzenbacher [3])
which is for all S ∈ 2N

\ {∅} given by

V E,c(S) =

{
comp({x ∈ RS

| (x, cN\S) ∈ E}) if (0S, cN\S) ∈ E;
comp({0S}) if (0S, cN\S) /∈ E.

The core of a bankruptcy game is given by C(V E,c) = {x ∈ WP(E) | x ≤ c}.
In the next theorem, we show that bankruptcy games are egalitarian stable, which means that the procedural

egalitarian solution allocates to all players their egalitarian claims without having to rely on the constrained relative
equal awards rule in its definition. Interestingly, the procedural egalitarian solution for bankruptcy games corresponds to
the constrained relative equal awards rule for bankruptcy problems. This illustrates the strong connection between the
procedural egalitarian solution and the constrained relative equal awards rule, and justifies the use of the latter in the
definition of the procedural egalitarian solution for games which are not egalitarian stable.

Theorem 5.1. All bankruptcy games are egalitarian stable and the procedural egalitarian solution of a bankruptcy game
coincides with the constrained relative equal awards rule of the underlying bankruptcy problem.

Proof. Let (E, c) ∈ BRN . First, we show that γ̂ V E,c
≤ c . Suppose that there exists an i ∈ N such that γ̂ V E,c

i > ci. Let k ∈ N
be such that i ∈ PV E,c ,k

\ PV E,c ,k−1 and let S ∈ AV E,c ,k be such that i ∈ S. Then S ̸= {i} since γ̂ V E,c

i /∈ V E,c({i}). We have
χV E,c ,k(S) ∈ WP(V E,c(S)), i.e.(

λV E,c ,k(S)uV E,c

S\PVE,c ,k−1 , γ
V E,c ,k−1

S∩PVE,c ,k−1

)
∈ WP(V E,c(S)).

Since E is comprehensive and nonleveled,(
λV E,c ,k(S)uV E,c

S\PVE,c ,k−1 , γ
V E,c ,k−1

S∩PVE,c ,k−1
, cN\S

)
∈ SP(E).

Since E is comprehensive,(
λV E,c ,k(S)uV E,c

S\(PVE,c ,k−1∪{i})
, γ

V E,c ,k−1

S∩PVE,c ,k−1
, ci, cN\S

)
∈ E \ SP(E).

Since E is nonleveled,(
λV E,c ,k(S)uV E,c

S\(PVE,c ,k−1∪{i})
, γ

V E,c ,k−1

S∩PVE,c ,k−1

)
∈ V E,c(S \ {i}) \ WP(V E,c(S \ {i})).

Since we know from Lemma 3.1 that χV E,c ,k(S \ {i}) ∈ WUC(V E,c(S \ {i})), we can write

χ
V E,c ,k

S\(PVE,c ,k−1∪{i})
(S \ {i}) = λV E,c ,k(S \ {i})uV E,c

S\(PVE,c ,k−1∪{i})
> λV E,c ,k(S)uV E,c

S\(PVE,c ,k−1∪{i})
= χ

V E,c ,k

S\(PVE,c ,k−1∪{i})
(S).
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This contradicts that S ∈ AV E,c ,k. Hence, γ̂ V E,c
≤ c.

Suppose that c ∈ E. Then we have χV E,c ,nV
E,c

(N) ≤ γ V E,c ,nV
E,c

= γ̂ V E,c
≤ c. From Lemma 3.1 we know that

χV E,c ,nV
E,c

(N) ∈ WUC(E). Since c ∈ WP(E) and E is nonleveled, this means that γ̂ V E,c
= c , ÂV E,c

= {N}, and DV E,c
= N .

Consequently, V E,c is egalitarian stable and Γ (V E,c) = c = CREA(E, c).
Now suppose that c /∈ E. First, we show that χV E,c ,1(S) ≤ αE,cuE

S for all S ∈ 2N
\{∅}. Suppose there exists an S ∈ 2N

\{∅}

such that χ
V E,c ,1
i (S) > αE,cuE

i for some i ∈ S. Then we have χV E,c ,1(S) ∈ WP(V E,c(S)) and

χV E,c ,1(S) = λV E,c ,1(S)uV E,c

S = λV E,c ,1(S)uE
S > αE,cuE

S ≥ CREAS(E, c).

This means that (χV E,c ,1(S), cN\S) ∈ WP(E). Moreover, (χV E,c ,1(S), cN\S) ≥ CREA(E, c) and (χV E,c ,1(S), cN\S) ̸= CREA(E, c).
Since E is nonleveled, this contradicts CREA(E, c) ∈ WP(E). Hence, χV E,c ,1(S) ≤ αE,cuE

S for all S ∈ 2N
\ {∅}.

Next, define HE,c
∈ 2N

\ {∅} by

HE,c
=

{
i ∈ N | CREAi(E, c) = αE,cuE

i

}
.

We have χV E,c ,1(HE,c) ∈ WP(V E,c(HE,c)) and

χV E,c ,1(HE,c) = λV E,c ,1(HE,c)uV E,c

HE,c = λV E,c ,1(HE,c)uE
HE,c = αE,cuE

HE,c = CREAHE,c (E, c).

This means that HE,c
∈ AV E,c ,1, HE,c

⊆ PV E,c ,1, and γ̂ V E,c

HE,c = γ
V E,c ,1
HE,c = CREAHE,c (E, c). We have

χV E,c ,nV
E,c

(N) ≤ γ V E,c ,nV
E,c

= γ̂ V E,c
≤

(
CREAHE,c (E, c), cN\HE,c

)
= CREA(E, c).

From Lemma 3.1 we know that χV E,c ,nV
E,c

(N) ∈ WUC(E). Since CREA(E, c) ∈ WP(E) and E is nonleveled, this means that
γ̂ V E,c

= CREA(E, c), ÂV E,c
= {N}, and DV E,c

= N . Consequently, V E,c is egalitarian stable and Γ (V E,c) = CREA(E, c). □
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