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Embedding 5-planar graphs in three pages
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Abstract. A book-embedding of a graph G is an embedding of vertices of G along the spine

of a book, and edges of G on the pages so that no two edges on the same page intersect. the

minimum number of pages in which a graph can be embedded is called the page number. The

book-embedding of graphs may be important in several technical applications, e.g., sorting with

parallel stacks, fault-tolerant processor arrays design, and layout problems with application to

very large scale integration (VLSI). Bernhart and Kainen firstly considered the book-embedding

of the planar graph and conjectured that its page number can be made arbitrarily large [JCT,

1979, 320-331]. Heath [FOCS84] found that planar graphs admit a seven-page book embedding.

Later, Yannakakis proved that four pages are necessary and sufficient for planar graphs in

[STOC86]. Recently, Bekos et al. [STACS14] described an O(n2) time algorithm of two-page

book embedding for 4-planar graphs. In this paper, we embed 5-planar graphs into a book of

three pages by an O(n2) time algorithm.
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1 Introduction

The concept of a book-embedding of a graph was introduced by Ollmann and Kainen. A book

consists of a line called spine and some half-planes called pages, sharing the spine as a common

boundary. Book-embedding of a graph G = (V,E) consists of a (linear) layout L of its notes along

the spine ℓ of a book(i.e., a one-to-one function from V to {1, . . . , n} ) and the assignment of each

edge on the pages so that two edges embedded on the same page do not intersect. We say that

two edges (a, b) and (c, d) on the same page cross in the layout L if L(a) < L(c) < L(b) < L(d)

or L(c) < L(a) < L(d) < L(b). A central goal in the study of book embedding is to find the

minimum number of pages in which a graph can be embedded, this is called the page number or

book thickness of the graph. We denote by pn(G) the page number of G. However, determining

the page number is a very hard problem. It remains a difficult problem even when the layout is

fixed, since determining if a given layout admits a k-page book embedding is NP-complete [10].

The book-embedding plays an important role in VLSI design, matrix computation, parallel

processing, and permutation sorting. Kapoor et al. in [14] surveyed several applications, as

follows (we do not describe the details here): Direct Interconnection Networks [14], Fault-

Tolerant Processor Arrays [6], Sorting with Parallel Stacks [7], Single-Row Routing [20], Ordered

Sets [17].

The book embedding of graphs has been discussed for a variety of graph families, for examples

on complete graphs [3,4], complete bipartite graphs [8,15] and so on (see for examples [13,16,23]).

The most famous one of them is the problem determining the page number of planar graphs

which has been studied for over 40 years. Bernhart and Kainen [3] firstly characterized the

graphs with page number one as the outerplanar graphs and the graphs with page number two

as the sub-Hamiltonian planar graphs. They also found that triangulated (maximal) planar

graphs requiring at least three pages exist. Moveover, they conjectured that planar graphs have

unbounded page number, but this was disproved in [5] and [11]. Buss and Shor [5] investigated

a nine-page algorithm based on Whitney’s theorem. Heath [11] used a method of “peeling” the

graph into levels to reduce the number to seven. Istrail [18] found an algorithm that embeds

all planar graphs in six pages. Later, Yannakakis [21] showed that the planar graph admits a

four-page book embedding, which can be constructed in linear-time. Since Yannakakis [22] also
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proved that there are planar graphs that can not be embedded in three pages, four pages are

necessary and sufficient for general planar graphs.

One natural question is to consider the page number for specific planar graphs. A pla-

nar graph of maximum degree k is called a k-planar graph. Heath [12] showed that 3-planar

graphs are sub-Hamiltonian, i.e., the 3-planar graph can be embedded into a book of two pages.

However, it is NP-complete to decide if a planar graph is sub-Hamiltonian. Bekos et al. [1, 2]

described an O(n2) algorithm to embed the 4-planar graph into a book of two pages, that is,

the page number of 4-planar graphs is 2. Bekos et al. also raised a question whether the result

can be extended to 5-planar graphs. The page number of 5-planar graphs is clearly at most 4.

In this paper, we extend the algorithm in [1, 2] to embed 5-planar graphs into three pages, and

thus the page number of 5-planar graphs is either 3 or 2.

The rest of the paper is organized as follows. Section 2 gives an algorithm that every 5-planar

graph admits a three-page book embedding and its correctness is proved in Section 3.

2 The Algorithm

In this section, we describe an algorithm to embed 5-planar graphs in a three-page book. Simi-

larly to that of Bekos [1,2], the algorithm is given by a recursive combinatorial construction. It

is well known that the page number of a graph equals the maximum of the page number of its

biconnected components [3], we therefore assume that G is biconnected. The general idea of our

algorithm is as follows. First remove from G cycle Cout delimiting the outer boundary of G and

contract each bridgeless-subgraph of the remaining graph into a single vertex(say block-vertex).

We denote the implied graph by F . Note that F is a forest (since F is not necessarily connected).

Then, cycle Cout is embedded, such that (i) the order of the vertices of Cout along the spine ℓ is

fixed, (ii) all edges of Cout are on the same page, except for the edge that connects its outermost

vertices. Next, we describe how to assign without crossings: (i) the chords of Cout, (ii) the edges

between Cout and F , (iii) the forest F . Finally, we replace each block-vertex of F with a cycle

C delimiting the outer boundary of the bridgeless-subgraph it corresponds to in G− Cout, and

recursively embed its internal vertices and edges similarly to Cout.
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To formalize the idea mentioned above, we consider an arbitrary bridgeless-subgraph, and

suppose its outer boundary is a simple cycle C. Let v1, v2, . . . , vk be the vertices of C in the

counterclockwise order around C. We denote the subgraph of G contained in C by Gin(C)

and the subgraph of G outside C by Gout(C), and let Gout(C) = G − Gin(C) and Gin(C) =

G−Gout(C). For the recursive step, we assume the following invariant properties:

IP-1: Gout(C) has already been completed a three-page book embedding, in which no edge

crosses the spine.

IP-2: The combinatorial embedding of Gout(C) is consistent with a given planar combina-

torial embedding of G. In other words, the order of the edges in Gout(C) is consistent with the

order of edges in G (the planar embedding) around vertex v.

IP-3: The vertices of C are placed in the order v1, . . . , vk along ℓ, i.e., L(v1) < L(v2) < . . . <

L(vk), and all edges of C are on the same page, except for the edge (v1, vk). Without loss of

generality, we put edges (vi, vi+1) (1 ≤ i < k) of C in the page p1 and edge (v1, vk) in page p3

(see Fig.1).

IP-4: If C is not the cycle Cout delimiting the outer boundary of G, the degree of either v1

or vk is at most 4 in Gin(C) since C should be incident to at least one edge of Gout(C). Without

loss of generality, we assume degGin(C)(vk) ≤ 4.

IP-5: If deg(v1) = 4 in Gin(C) , then it is incident to zero or two chords of C. If deg(v1) = 5

in Gin(C), then it is incident to zero or three chords of C. This is to assure that v is placed at

the right of v1, where v ∈ Gin(C).

Note that the combinatorial embedding specified in IP-2 is maintained throughout the whole

4



a1 a2va1 a2 a3v va1 a2

Fig. 2.1 Fig. 2.2 Fig. 2.3

a1a2 va1 a2 v v a1 a2

Fig. 2.4 Fig. 2.5 Fig. 2.6

embedding process. Furthermore, it combined with IP-1 is sufficient to ensure planarity.

Again, we describe how to assign the chords of C and the edges between C and F . Let

vi be a vertex of C, i = 1, . . . , k. Since G is a planar graph with maximum degree five, vi is

incident to at most three non-embedded edges. We denote the edges incident to vi that follow

(vi, v(i+1) mod k) in the clockwise order of the edges around vi (as defined by the combinatorial

embedding specified by IP-2) by e1, e2 and e3, respectively. Block-vertices that are adjacent

to vertices of cycle C are referred to as anchors, and block-vertices that are adjacent to other

block-vertices only are referred to as ancillaries.

Consider an anchor a, let vl,a be the leftmost vertex of C adjacent to a along ℓ. If there is

exactly one edge between a and vl,a (i.e., (a, vl,a) is simple), we mark this edge. Otherwise, we

mark the edge with the largest subscript. Hence, each anchor is incident to exactly one marked

edge and each vertex of C is incident to at most three marked edges. Let v be a vertex of C,

we distinguish four cases for the assignment of the chords and the edges between C and F (i.e.,

the edges adjacent to C).

Case 1. v is adjacent to three anchors a1, a2 and a3 through three marked edges e1, e2 and

e3, respectively.

Then, a1, a2 and a3 are placed from left to right and directly to the right of v along ℓ.

Moreover, e1, e2 and e3 are on the page p3 (see Fig.2.1). Note that v cannot be the rightmost

vertex of C due to IP-4.
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Case 2. v is adjacent to two anchors a1 and a2 through two marked edges ei and ej ,

respectively.

If deg(v) = 4 in Gin(C), i.e., two marked edges ei and ej are edges e1 and e2, respectively.

Then L(a1) < L(a2) and edges e1 and e2 are on the page p3. Furthermore, we distinguish two

sub-cases for the exact placements of a1 and a2. If v 6= vk, then a1 and a2 are placed directly to

the right of v (see Fig.2.2); Otherwise a1 and a2 are placed directly to the left of v (see Fig.2.3).

If deg(v) = 5 in Gin(C), v 6= vk due to degree restriction of vk. In this case, e1, e2 and e3

are placed on the page p3. We distinguish three sub-cases for the exact placements of a1 and a2:

(i) If two marked edges ei and ej are edges e2 and e3, a1 and a2 are placed from left to right

along l and directly to the left of v (see Fig.2.4);

(ii) If two marked edges ei and ej are edges e1 and e3, we place a1 directly to the right of v

and a2 directly to the left of v (see Fig.2.5);

(iii) If two marked edges ei and ej are edges e1 and e2, a1 and a2 are placed directly to the

right of v and L(a1) < L(a2) (see Fig.2.6).

Case 3. v is adjacent to one anchor a through the marked edge e.
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Suppose that deg(v) = 3 in Gin(C), then e is on the page p3. If v = vk, then a is placed

directly to the left of v (see Fig.2.7); Otherwise, a is placed directly to the right of v (see Fig.2.8).

Assume deg(v) = 4 in Gin(C). If v = vk, then a is placed directly to the left of v. We

distinguish two sub-cases for the placements of edges: e1 is marked edge, then e1 is on the page

p3 and e2 is on the page p2 (see Fig.2.9); Otherwise, both e1 and e2 are on the page p3 (see

Fig.2.10). If v 6= vk, e1 and e2 are placed on the page p3. If e1 is marked edge, a is placed directly

to the right of v (see Fig.2.11); Otherwise, a is placed directly to the left of v (see Fig.2.12).

Now we assume deg(v) = 5 in Gin(C). It follows that v is not the rightmost vertex of C by

IP-4. In this case, we distinguish three sub-cases.

(i) e1 is the marked edge, then a is placed directly to the right of v and e1, e2 and e3 are on

the page p3 (see Fig.2.13).

(ii) e2 is the marked edge, then a is placed directly to the left of v. Moreover, e3 is on the

page p2 and e1 and e2 are on the page p3 (see Fig.2.14).

(iii) e3 is the marked edge, then a is placed directly to the left of v and all edges incident to

v of C are on the page p3 (see Fig.2.15).

Case 4. v is not incident to any marked edge and deg(v) 6= 2 in Gin(C), then the edges

incident to v are on the page p2.

Up to now, we have drawn the chords of C and the edges between C and F in pages. We

next describe how to embed the edges of F . Let T be a tree of the forest of ancillaries (ancillaries

form a new forest). We denoted by T the tree (anchored tree) formed by T and anchors adjacent

to some ancillary of T .

Suppose that T is rooted at the anchor, we assign the vertices of T in the order implied by

the specific Death First Search (DFS) traversal of T . If the children a′ and a′′ of a are in the

counterclockwise order of edges around a, when strating from edge (a, p(a)) (where p(a) is the

parent of a), then L(a′) < L(a′′).
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To define the order of the trees in the forest of ancillaries, we create an auxiliary digraph

GT
aux whose vertices correspond to trees and there is a directed edge (vT 1

, vT 2
) in GT

aux if and

only if T 1 has an anchor that is between two consecutive anchors of T 2.

Lemma 2.1 ( [1, 2]). Auxiliary digraph GT
aux is a directed acyclic graph.

Lemma 2.1 implies an embedding of the trees in the order defined by a topological sorting of

GT
aux. In other words, if T 1 has an anchor that is between two consecutive anchors of T 2 along

ℓ, then the tree T 1 will be embedded before T 2.

Up to now, Gin(C) has been embedded, s.t., every bridgeless-subgraph of Gin(C) is con-

tracted into a single vertex along ℓ and each edge is assigned to one of page p1, page p2 and

page p3. Next, we describe how to recursively proceed. Let a be a block-vertex of Gin(C) with

outer boundary ̥a: w0 → w1 → . . . → wm → w0. We consider two cases:

Case 1. a is an anchor and w0 is incident to a marked edge e.

We place w0 as the rightmost vertex of ̥a on ℓ, w1 as the leftmost vertex of ̥a on ℓ, and

wi on the left of wi+1 for i = 1, . . . ,m− 1 and there are no vertices between them (see Fig.3.1).

Assign (w0, w1) on the page p1 and remaining edges on the page p2. This placement is infeasible

when there is an edge or two edges incident to w0 between (w0, w1) and the marked edge e in

the counterclockwise order of the edges around w0 when starting from (w0, w1). In this case, w0

is to the left of w1, . . . , wm, i.e. w0 is the leftmost vertex of ̥a on ℓ. This is not possible if there

is also an edge (w0, w′) incident to w0 between (w0, w1) and the marked edge e in the clockwise

order of the edges around w0 when starting from (w0, w1). We shall address the problem if

(w0, w′) is placed on the page p2.

Lemma 2.2 ( [1,2]). Ancillary a can be repositioned on ℓ such that: (i) a is placed between two

consecutive anchors of T. (ii) The combinatorial embedding specified by IP-2 is preserved and
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the edges (w0, w), (w0, w
′) and (a,w′′) are on the page p2 and crossing-free. (iii) w0 is leftmost

vertex of ̥a and wi to the left of wi+1 for i = 1, . . . ,m− 1; All edges of ̥a are on the page p3,

except for (w0, wm).

Case 2. a is an ancillary and w is its parent in the labeled anchored tree T in which a belong

to.

We place w0 to the leftmost vertex of ̥a on ℓ, w1 to the rightmost vertex of ̥a on ℓ, and wi

to the left of wi+1 for i = 1, . . . ,m− 1 and there are no vertices in between. Moreover, (w0, w)

is on the page p1 and remaining edges are on the page p2. This placement is infeasible in two

cases. One case is that there are two edges or only one edge incident to w0 between (w0, wm)

and (w0, w) in the counterclockwise order of the edges around w0 when starting from (w0, wm),

say (w0, w
′) (and (w0, w

′′)). By Lemma 2.2, the vertices of subtrees of T rooted at w′ and w′′

are placed to the left of w0 and right of w. The other case is that there is an edge e′ (and edge

e′′) incident to w0 between (w0, wm) and (w0, w) in the counterclockwise(clockwise, respectively)

order when starting from (w0, wm). In this case, we place the vertices of subtrees of T rooted

at w′ to right of w and place w′′ to the left of w0 and the right of w.
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We assume ̥a consisting of simple cycles (each of them is called a subcycle). Note that any

two subcycles share at most one vertex of ̥a and any vertex of ̥a is incident to at most two

subcycles. We create a tangency graph Gtan whose vertices correspond to subcycles and there

is an edge between every pair of subcycles that share a vertex, then Gtan is a tree. Let Gtan be

rooted at the cycle containing w0. Since the degree of w0 is at most 5, w0 lies in at most two

subcycles. We firstly suppose that w0 lies in a subcycle, then we place the subcycles of ̥a in

the order implied by the Breadth First Search (BFS) traversal of Gtan. Assume w0 lies in two

subcycles, say C1 and C2 that correspond to vertices c1 and c2 of Gtan, respectively. We place

the subcycles of ̥a to the left (right) of w0 in the order by the Breadth First Search (BFS)

traversal of the subtree rooted at c1 (c2 respectively).

Remark. For Gin(C), the edges assigned to the page p1 are the edges on C (except for

(v1, vk)). The edges on the page p2 consist of the edges on F , the edges in Case 4 and the

partially edges adjacent to C in Fig.2.9 and Fig.2.14. The edges embedded to the page p3 are

edges incident to the vertices of C and (v1, vk).

3 Proof of Correctness

In this section, we shall show that the algorithm is correct, i.e., no two edges intersect on the

same page and IP-1 up to IP-5 are satisfied for arbitrary simple cycle C.

Lemma 3.1 ( [1, 2]). For each ancillary a of a labeled anchored tree T there is (i) at least an

anchor of T with label smaller than that of a and (ii) at least another with label greater than

that of a.

Lemma 3.2. If v ∈ Gin(C), then v lies on the left of vk and the right of v1, where C =

〈v1, . . . vk〉.

Proof. (i) If v is a vertex on C, then v must be on the right of v1 and the left of vk due to IP-3.

(ii) Suppose that v is an anchor. According to the placement of anchors, we have L(v1) <

L(a) < L(vk) for each anchor a in Gin(C), i.e., all anchors are placed between v1 and vk.

(iii) Assume that v is an ancillary. Lemma 3.1 implies that there is at least an anchor ai and
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an anchor aj , such that L(ai) < L(v) < L(aj). Then v is placed between v1 and vk according

to (ii).

Lemma 3.3 ( [1, 2]). The placement of the anchored tree T is planar.

Lemma 3.4. There is no conflict between edges assigned to the pages p1, p2, and p3 in Gin(C).

Proof. We firstly consider the edges embedded on p1 in Gin(C): all edges on C except for the

one that connects to its outermost vertices. Clearly, the edges assigned on p1 have no crossings.

We now show that all edges assigned to p2 can be embedded in the interior of Gin(C) without

crossings. Lemma 3.3 implies that the edges of T has no crossings. Note that there is a path P

consisting of edges in p2 joining a pair of consecutive anchors (say u1 and ul+1) of T and our

algorithm must place an ancillary a of T between them. Since c is nested by an edge of P and

all edges of T belong to p2, an edge connecting a to an ancillary of T placed between another

pair of consecutive anchors of T would cross P .

By an argument similar to that of Lemma 11 in [1], it can be seen that there is a path

P (u0 → ul+1): u0 → uj1 . . . ujp → ul+1 consisting of vertices of {u0, . . . , ul+1}, whose edges

belong to p2 and for each edge of P (u0 → ul+1) there is no edges in p2 with endpoints in

{u0, . . . , ul+1} that nests it. Next, P (u0 → ul+1) contains at least one vertex of C. According

to the placement of edges, there is only one edge incident to C in Gin(C), a contradiction. This

give a planar embedding of F . Hence, there is no crossings between edges assigned in the page

p2.

Finally, each edge in p3 is incident to some vertex v on C. Note that G is a planar graph and

the order of edges incident to v is consistent with the counterclockwise order of edges around v

on C. Therefore, the edges assigned to page p3 do not cross each other due to IP-2 and IP-1.

According to Lemma 3.2, the edges of Gin(C) do not cross the edges of Gout(C) on the same

page. There is no conflict between edges in the same page for Gout(C) and Gin(C) due to IP-1

and Lemma 3.4, respectively. Therefore, no edges intersect in the same page. We are now ready

to describe that IP-1 up to IP-5 hold when a simple cycle Cs is recursively drawn. Firstly, we

prove that IP-1 up to IP-5 are satisfied for Cout, i.e., the first step of recursion holds.

11



Lemma 3.5 ( [1,2]). Any planar graph G admits a planar drawing Γ(G) with a chordless outer

boundary.

IP-1, IP-2 and IP-3 are clearly satisfied. Since Gout(Cout) = Cout for Cout. Lemma 3.5

implies IP-5. If there is a vertex v ∈ V (Cout) with degGin(Cout)
(v) ≤ 4, then it is chosen as vk

and all invariant properties of our algorithm are satisfied. However, if such a vertex does not

exist, i.e., each vertex v ∈ V (Cout) has degGin(Cout)
(v) = 5, this violates IP-4. This case will be

addressed by the following lemma.

Lemma 3.6. If C = Cout, then IP-4 does not necessarily hold.

Proof. If C = Cout and IP-4 is not satisfied, then there is no vertex v of Cout with degGin(Cout)
(v) ≤

4. Suppose vk is adjacent to vertices b1, b2 and b3 through edges e1, e2 and e3, where b1, b2 and

b3 belong to the bridgeless-subgraphs corresponding to anchors a1, a2 and a3 (or simply, b1, b2

and b3 belong to anchors a1, a2 and a3), respectively. The vertices of Gin(C) should be on the

left of vm. We therefore consider the following four cases.

Case 1. All the edges incident to vk are marked edges.

Case 2. e1 and e2 are marked edges and e3 is non-marked edge.

Case 3. e1 and e3 are marked edges and e2 is non-marked edge.

Case 4. e1 is marked edge and e3 and e2 are non-marked edges.

For Case 1 and Case 2, b1, b2 and b3 belong to the distinct anchors. We augment G by

introducing three vertices (say vm+1, vm+2 and vm+3) to the right of vm(see Fig.6.1). Then

IP-4 holds for the augmented graph Gaug. We claim that b1, b2 and b3 are on the left of

vm in the placement of the augmented graph Gaug. Let Caug be the outer boundary of the

augmented graph Gaug, and a
aug
1 , aaug2 and a

aug
3 be the block-vertices belonging to b1, b2 and

b3 in Gaug − Caug, respectively. Since b1 is adjacent to vm+3, and vm+3 is the rightmost vertex

in Gaug, b1 is placed to the left of vm according to Fig.2.7. Note that (vm, vm+2) is a chord

and the arguments in Fig.2.4 (Fig.2.14) in Case 1 (Case 2, respectively), see Fig.6.2 (Fig.6.4 ,

respectively). We have b2 and b3 are placed to the left of vm. Between vm and vm+3 no vertices

of Gaug exist, except for vm+1 and vm+2. Hence, all vertices of Gaug − Caug are to the left of

12



vm. If we contract vm, vm+1, vm+2 and vm+3 back into vm, we obtain a valid embedding of G

(see Fig. 6.3 and Fig.6.5).

For Case 3 and Case 4, a1 6= a2 and a1 6= a3, but a3 = a2 is possible. We augment G by

introducing a vertex vm+1, such that vm+1 is adjacent to a3, a2 and wm (see Fig.6.6). If a3 6= a2,

then vm+1 belongs to another block-vertex (containing only vm+1) and is adjacent to vm. Note

that both a
aug
2 and a

aug
3 are ancillaries. Since vm+1 is adjacent to exactly one vertex of Cout

(i.e., vm), then , vm+1 is to the right of a1 and the left of vm according to Fig.2.3. Furthermore,

(vm, vm+1) is placed on the page p3 and the (aaug2 , vm) and (aaug3 , vm) on the page p2 (see Fig.6.7).

There is no anchors between vm+1 and vm due to degGaug
(vk) = 4. Therefore, the rightmost

anchor of Gaug − Caug is vm+1. Then, all vertices of Gaug − Caug are to the left of vm+1. We

obtain a valid embedding of G by contracting vm and vm+1 back into vm (see Fig.6.8).

Suppose a3 = a2 = a, then vm+1 must belong to a, and b2, vm+1 and b3 appear in the

counterclockwise traversal of the outer boundary Ca of a. For Case 3, since a is adjacent to vm

through a marked edge e3 in G and through an edge (vm, vm+1) in Gaug, respectively. Then,

(vm, vm+1) is a marked edge, a is directly to the right of a1 and the left of vm, with vm+1 being

the rightmost vertex of Ca due to Fig.2.3(see Fig.6.9). There is no vertices between vm+1 and

vm of Gaug, since deg(vm) = 4 in Gaug. So, the rightmost anchor of Gaug −Caug has vm+1 as its

rightmost vertex. Then all vertices of Gaug−Caug are to the left of vm+1. If we contract vertices

vm and vm+1 back to vm, and place (b3, vm) on the page p2 and (b2, vm) and (b1, vm) on the page

p3, we obtain a valid drawing of G (see Fig.6.10). For Case 4, (vm, vm+1) is a non-marked edge

in Gaug, since the edges incident to a (e2 and e3) are non-marked edges in G. a is directly to

the right of vi(vi is incident to a thought a marked edge) and the left of vm due to Fig.2.9 (see

Fig.6.11). Hence, we obtain a valid embedding of G by removing vm+1 and embedding (b3, vm)

and (b2, vm) on the page p2 (see Fig.6.12).

Lemma 3.7 ( [1,2]). Assume that all trees that precede T in a topological sorting of GT
aux have

been drawn on the page p2 without crossings by preserving the combinatorial embedding specified

by IP-2. When T is drown, the combinatorial embedding specified by IP-2 is also preserved.

Lemma 3.8. Let v be a vertex of C with degree 3 or 2 in Gin(C) that is not the left/right-most

vertex of C. Let also vr (vl) be its next neighbor on C to its right (left). Our algorithm places

(v, vr) on the page p1. In fact, it can also be placed on the page p3 without crossings, while the
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Fig.6.11 Fig.6.12

w1 w1
w2 w2wm wm

wm−1 wm−1

wm+1 b1b1b2 b2
wm+1b3 b3. . .. . . . . .. . . . . . . . . . . . . . .. . . . . . . . .. . .

combinatorial embedding specified by IP-2 is maintained.

Proof. Suppose deg(v) = 2 in Gin(C), then Lemma holds according to Lemma 13 in [1].

Suppose deg(v) = 3 in Gin(C), if v is incident to non-marked edge e, then (v, vr) can be

placed on the page p3 without crossings by the arguments similar to Lemma 13 in [1]. If v

is adjacent to an anchor a through a marked edge e, then we will move a to the right of vr

and (v, vr) can be placed on the page p3 without crossings by the proof similar to Lemma 13

in [1].

We are ready to describe how the recursive step holds as following: IP-1 up to IP-5 hold

for an arbitrary simple cycle Cs. Each edge is embedded on one of the three pages: page p1,

page p2, and page p3, and no two edges intersect on the same page. Therefore, IP-1 is satisfied.

Lemma 3.7 implies IP-2. If Cs is the outer boundary of a block-vertex or a leaf of the tangency

tree, then IP-3 trivially holds. If Cs is the outer boundary of a non-leaf of the tangency tree,

it contains at least one edge on the page p3. This violates IP-3. In this case, we re-embedding

it on the page p1 using Lemma 3.8. IP-4 holds, since suppose that Cs is the outer boundary of

a block-vertex or root of the tangency tree of a non-simple outer boundary, then at least one

vertex of Cs is adjacent to Gout(Cs). Assume that Cs is the outer boundary of internal node

of the tangency tree of a non-simple outer boundary, then its leftmost vertex has two edges in

Gout(Cs). The following lemma implies that IP-5 does not necessarily hold for simple cycle Cs.

Lemma 3.9. IP-5 does not necessarily hold for arbitrary cycle C.

Proof. If IP-5 does not hold for some simple cycle Cs: w1 → w2 → . . . → wm , then we may

distinguish three cases.
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Case 1. degGin(C)(w1) = 4 and w1 is incident to a chord of C.

Case 2. deg(w1) = 5 in Gin(C) and w1 is incident to a chord of C.

Case 3. deg(w1) = 5 in Gin(C) and w1 is incident to exactly two chords of C (say (w1, wi1)

and (w1, wi2), where i1 ∈ {3, . . . ,m− 1} and i1 < i2).

For Case 1 and Case 2, w1 is incident to exactly one chord (say (w1, wi), i ∈ {3, . . . ,m− 1})

of C. In general, (w1, wi) ∈ P (w1 → wj), where P (w1 → wj) is a path of chords from w1 to

wj on the page p3. Suppose wq ∈ P (w1 → wj) , (wq, wx) and (wq, wy) are chords, x < y, we

chose (wq, wy) ∈ P (w1 → wj). The restriction implies that P (w1 → wj) is uniquely defined(see

Fig.7.1). We refer to it as the separating path of chords of Cs, since it splits Gin(Cs) into two

subgraphs: (i) Gin(Cl) with outer boundary Cl consists of the edges (w1, w2), (w2, w3), . . . ,

(wj−1, wj) and the edges of P (w1 → wj) (see Fig.7.2), and (ii) Gin(Cr) with outer boundary Cr

consists of the edges (wj , wj+1), . . . , (wm−1, wm), (wm, w1) and the edges of P (w1 → wj) (see

Fig.7.3).

We now describe how the two sub-instances Gin(Cl) and Gin(Cr) can be recursively solved.

Since v must be the right of v1, where v is a vertex of Gin(C). According to the assignment of

anchors, we consider the following sub-cases.

Sub-case 1.1: degGin(C)(w1) = 4 and w1 is incident to exactly one chord e1 of C.

Sub-case 2.1: deg(w1) = 5 in Gin(C) and w1 is incident to exactly one chord e2 of C.

Sub-case 2.2: deg(w1) = 5 in Gin(C) and w1 is incident to exactly one chord e1 of C.

Observe that if i 6= j, then Cl is not simple, i.e., Cl consists of smaller simple subcycles, for

which IP-5 holds (hence they can be recursively drawn), except for the first one, that is leftmost

embedded along ℓ. Note that j 6= m. If j = m and deg(w1) = 3 (deg(w1) = 4) in Gin(Cr), then

e3 is a bridge according to the placement of chords or e2 is not a chord for some vertex vs(vs

belong to P (w1 → wj)). If e3 is a bridge, a contradiction since G is biconnected. If e2 is not

a chord for some vertex vs, a contradiction since vs belongs to P (w1 → wj). Since (i) e2 is a

marked edge, then e3 is on the page p2 for vs due to Fig.2.14; (ii) e2 is a non-marked edge, then

the edges incident to vs are placed to page p2 due to Case 4 in placement of edges incident to

C.
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In Sub-case 1.1, deg(w1) = 2 in Gin(Cl), i.e., deg(w1) = 3 in Gin(Cr). We modify Gin(Cl) as

follows. Remove w1 and join the edges (w2, wi) and (w2, wm). Then Gin(C
′

l) (see Fig.7.4) has

fewer vertices than Gin(C). We can benefit from this by proceeding recursively, as we initially

did with Gin(C). Eventually, IP-5 should hold for some vertex wp, otherwise a graph with at

most 3 vertices on its outer boundary should have a chord, a contradiction. To complete the

embedding of Gin(C), we remove (w2, wi) and (w2, wm), and connect wj to its neighbors in

Gin(C
′

r) with its copy in Gin(C
′

l) (no crossings are introduced, since the two copies of wj in

Gin(C
′

l) and Gin(C
′

r) are consecutive on ℓ). It remains to replace the copy of wj in Gin(C
′

r) with

w1, and add (w1, w2) and (w1, wi) (see Fig.7.6).

In Sub-case 2.1, deg(w1) = 3 in Gin(Cl) and deg(w1) = 3 in Gin(Cr). We modify Gin(Cl)

similarly to that of Subcase 1.1, we obtain a valid placement by placing exactly w1 and a1 to

the right of wj and a2 to the right of wp, where a1 and a2 are incident to w1 through marked

edges e1 and e2, respectively (see Fig.7.7).

In Sub-case 2.2, deg(w1) = 2 in Gin(Cl) and deg(w1) = 4 in Gin(Cr). Similarly to Subcase1.1,

w1, a1 and a2 are placed to the right of wj and the left of wj+1, where a1 and a2 are incident

to w1 through marked edges e1 and e2, respectively. Hence, we obtain a valid embedding (see

Fig.7.8).

For Case 3, we consider two subcases due to the placement of anchors.

Sub-case 3.1: deg(w1) = 5 in Gin(C) and w1 is incident to exactly two chords e1 and e3 of

C.

In this case, P (w1 → wj) is defined on the page p3: (w1, wi1) belongs to P (w1 → wj), if

wq ∈ P (w1 → wj) , (wq, wx) and (wq, wy) are chords, x < y, then (wq, wy) ∈ P (w1 → wj). An

analogous argument in Subcase 1.1 implies that w1 and a are placed directly to the right of wj

(see Fig.7.9).

Sub-case 3.2: deg(w1) = 5 in Gin(C) and w1 is incident to exactly two chords e1 and e2 of

C.

In this case, we choose (w1, wi2) ∈ P (w1 → wj). If wq ∈ P (w1 → wj) , (wq, wx) and (wq, wy)

are chords, x < y, then (wq, wy) ∈ P (w1 → wj). Hence, P (w1 → wj) is uniquely defined, and w1

and a are placed directly to the right of wj with the same way of Subcase 1.1 (see Fig.7.10).
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Theorem 3.10. There is a quadratic-time algorithm to construct book embedding for planar

graphs of maximum degree 5 on 3 pages.

Proof. Given the planar graph of maximum degree 5 of n vertices. The computation of the

bridgeless-subgraphs, the topological sorting of GT
aux, BFS-traversals on the tangency trees Gtan

and DFS-traversals on the anchored tree T can be obtained in linear time. Hence the algorithm

runs in O(n2) time.

4 Conclusions and Open Problems

There are planar graphs of maximum degree 8 requiring at least three pages in [3]. This paper

has presented an algorithm for embedding a 5-planar graph in three pages. The algorithm can

be shown to have time performance O(n2), so that it is efficient. The natural open problem is

whether 2 pages suffices for 5-planar graphs?
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