Decomposing Claw-free Subcubic Graphs and 4-Chordal Subcubic Graphs

Elham Aboomahigir ${ }^{\text {a }}$, Milad Ahanjideh ${ }^{\text {b,* }}$, Saieed Akbari ${ }^{\text {c }}$
${ }^{a}$ Farhangian University, Tehran, Iran
${ }^{b}$ No 22, 4/1 Alley, East Molavi St., Shahrekord, Chaharmahal and Bakhtiari , Iran
${ }^{c}$ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

Abstract

Hoffmann-Ostenhof's conjecture states that the edge set of every connected cubic graph can be decomposed into a spanning tree, a matching and a 2 regular subgraph. In this paper, we show that the conjecture holds for claw-free subcubic graphs and 4-chordal subcubic graphs.

Keywords: Subcubic graph, Hoffmann-Ostenhofs conjecture, Claw-free graph, 4-Chordal subcubic graph, Planar graph

2010 MSC: 05C70

1. Introduction

In this paper, all graphs are assumed to be finite without loops or multiple edges. Let G be a finite graph with the vertex set $V(G)$ and the edge set $E(G)$. For a vertex $v \in V(G)$, the degree of v in G and the maximum degree of G are denoted by $d_{G}(v)$ and $\triangle(G)$, respectively. Here $N_{G}(v)$ denotes the set of all neighbours of v. The complete graph of order n is denoted by K_{n}. The complete bipartite graph with partite sets of sizes m and n is denoted by $K_{m, n}$. A graph is called cubic if the degree of every vertex is 3 and it is called a subcubic graph if its maximum degree is at most 3. A graph is called claw-free if it has no induced subgraph isomorphic to $K_{1,3}$. A cycle is called chordless if it has no

[^0]chord. A graph G is called chordal if every cycle of G of length greater than 3 has a chord and a graph is 4 -chordal if it has no induced cycle of length greater than 4. A cut-edge of a connected graph G is an edge $e \in E(G)$ such that $G \backslash e$ is disconnected. A subdivision of a graph G is a graph obtained from G by replacing some of the edges of G by internally vertex-disjoint paths. An edge decomposition of a graph G is called a 3-decomposition, if the edges of G can be decomposed into a spanning tree, a matching and a 2-regular subgraph (the matching or the 2-regular subgraph may be empty).

Hoffmann-Ostenhof proposed the following conjecture in his thesis [5], this conjecture also was appeared as a problem of BCC22 [4].

Hoffmann-Ostenhof's conjecture. Every connected cubic graph admits a 3-decomposition.

Hoffmann-Ostenhof's conjecture is known to be true for some families of cubic graphs. Kostochka [7] showed that the Petersen graph, the prism over cycles, and many other graphs have 3-decompositions. Bachstein [3] proved that every 3-connected cubic graph embedded in torus or Klein-bottle has a 3-decomposition. Furthermore, Ozeki and Ye 8 proved that 3-connected plane cubic graphs have 3-decompositions. Akbari et. al. [2] showed that Hamiltonian cubic graphs have 3-decompositions. Also, it has been proved that the traceable cubic graphs have 3-decompositions [1]. In 2017, Hoffmann-Ostenhof et. al. [6] proved that planar cubic graphs have 3-decompositions. In this paper it is shown that the connected claw-free subcubic graphs and the connected 4-chordal subcubic graphs have 3-decompositions.

2. Connected Claw-free Subcubic Graphs Have 3-Decompositions

In this section, we show that Hoffmann-Ostenhof's conjecture holds even for claw-free subcubic graphs.

Theorem 1. If G is a connected claw-free subcubic graph, then G has a 3decomposition.

Proof. We apply by induction on $n=|V(G)|$. If $|V(G)| \leq 3$, then the assertion is trivial. Now, we consider the following two cases:

Case 1. Assume that the graph G has a cut-edge e. Indeed we would like to prove that a connected subcubic graph G (not necessarily claw-free) with a cut-edge e has a 3-decomposition if and only if each component of $G \backslash e$ has a 3-decomposition. Let H and K be the connected components of $G \backslash e$. By induction hypothesis, both H and K have 3-decompositions. Let $T_{i}, i=1,2$, be the spanning trees in the 3 -decompositions of H and K. Add e to $T_{1} \cup T_{2}$ and consider this tree as the spanning tree in a 3-decomposition of G. Note that we take the union of cycles and matchings obtained in two components H and K as the 2-regular subgraph and the matching in the 3 -decomposition of G. Now, if G has a 3-decomposition, then e is contained in the spanning tree T. Since $T \backslash e$ is union of two trees which one of them is a spanning tree of H and another is a spanning tree of K, so we are done.
Case 2. By Case 1 we may assume that G is 2 -edge connected. If G is trianglefree, then since G is claw-free, we conclude that $\triangle(G) \leq 2$. Thus G is a cycle and hence in this case the assertion is trivial.

Now, let $x y z x$ be a triangle in G. If $d_{G}(x)=d_{G}(y)=2$ and $d_{G}(z)=3$, then G has a cut-edge, a contradiction.

Assume that $d_{G}(x)=d_{G}(y)=d_{G}(z)=3$. If there is a vertex incident to all x, y and z, then $G=K_{4}$ which satisfied in the conjecture. Since G is 2-edge connected, $H=G \backslash\{x, y, z\}$ is connected. By induction hypothesis, H admits a 3-decomposition. Let e, f and g be the three edges with one end-point in $\{x, y, z\}$, and another end-point in $V(H)$. Add e, f and g to T_{1} to obtain a spanning tree for G, where T_{1} is the spanning tree in the 3-decomposition of H. Now, consider $x y z x$ as a cycle in the 3 -decomposition of G, as desired.

Finally assume that $d_{G}(x)=2$ and $d_{G}(y)=d_{G}(z)=3$. Assume that y and z have a common neighbour, say $b \neq x$. Clearly, if $d_{G}(b)=2$, then G has a 3decomposition. Now, if $d_{G}(b)=3$, then G has a cut-edge, a contradiction. Now, assume that $N_{G}(y) \cap N_{G}(z)=\{x\}$. Identify x, y and z. Call the new vertex a and denote the resulting graph by H^{\prime}. Clearly, H^{\prime} is a claw-free subcubic graph.

By induction hypothesis H^{\prime} has a 3 -decomposition. Let T_{1} be the spanning tree in the 3 -decomposition of H^{\prime}. If $d_{T_{1}}(a)=2$, then let T be the spanning tree of the 3 -decomposition of G formed by $T_{1} \cup\{x y, y z\}$. Also consider $x z$ as an edge of the matching in the 3 -decomposition of G. Finally, if $d_{T_{1}}(a)=1$, then the edge incident with z is contained in T_{1}. Let T be a spanning tree of G formed by $T_{1} \cup\{x y, y z\}$. Note that $x z$ is contained in the matching in the 3 -decomposition of G. The proof is complete.

3. Connected 4-Chordal Subcubic Graphs Have 3-Decompositions

In this section we show that every connected 4-chordal subcubic graph has a 3-decomposition.

Theorem 2. If G is a connected 4-chordal subcubic graph, then G has a 3decomposition.

Proof. We show that if G does not have a 3 -decomposition, then G is planar and so by Corollary 13 of [6], G has a 3-decomposition, as desired. To the contrary, suppose that G is not planar. By Kuratowski's Theorem [9, p.310], G either contains a subdivision of K_{5} or a subdivision of $K_{3,3}$. Since every vertex of K_{5} has degree $4, G$ cannot contain a subdivision of K_{5}. Now, suppose that G contains a subdivision of $K_{3,3}$.

First, we introduce some notation which we need for the rest of the proof.
Let $K_{3,3}^{*}$ be a subgraph of G which is a subdivision of $K_{3,3}$. For every edge $e \in E\left(K_{3,3}\right)$, let $L(e)$ be the set of all new added vertices on the edge e in G. For every $v \in V\left(K_{3,3}\right)$, denote the set of all edges incident with v by $\left\{e_{i}(v) \mid 1 \leq i \leq 3\right\}$. If for every $e \in E\left(K_{3,3}\right), L(e)=\varnothing$, then $G=K_{3,3}$ and so G has a 3-decomposition, as desired. The rest of the proof is based on the following three claims:

Claim 1. For every $e \in E\left(K_{3,3}\right),|L(e)| \geq 2$.

Proof of Claim. By contradiction, if there exists an edge $e \in E\left(K_{3,3}\right)$ such that $L(e)=\{p\}$ and e is incident with the vertex a in $K_{3,3}^{*}$, then let C be a

4-cycle of $K_{3,3}$ containing e. Let C^{*} be the subdivision of C in $K_{3,3}^{*}$. Assume that $\left\langle C^{*}\right\rangle$ denotes the induced subgraph of G on $V\left(C^{*}\right)$. If $\left\langle C^{*}\right\rangle$ is chordless, then G has an induced cycle of length at least 5, a contradiction. Now, let $w x$ be a chord of $\left\langle C^{*}\right\rangle$ in G such that the cycle $a \ldots w x \ldots$.... $u p a$ is chordless in G (note that there might exist some vertices between a and w and also between x and u), see Figure 1. So G contains an induced cycle of length at least 5, a contradiction. If $x=p$, then consider the path between p and w on C^{*} which contains a and remove all of its vertices except p and w. Similarly, one can see that the remaining graph has an induced cycle of length at least 5 , a contradiction. So the claim is proved.

Figure 1: The subdivision of a 4 -cycle in $K_{3,3}^{*}$

For every $v \in V\left(K_{3,3}\right)$, by Claim 1, let $M\left(e_{i}(v)\right)$ be the set of two vertices in $L\left(e_{i}(v)\right)$ which have the smallest distances from v. In particular, for $a \in$ $V\left(K_{3,3}\right)$, let $M\left(e_{1}(a)\right)=\{p, q\}, M\left(e_{2}(a)\right)=\{r, s\}$ and $M\left(e_{3}(a)\right)=\{t, z\}$, see Figure 2.

Figure 2: The subdivision of $K_{3,3}$ in G

Claim 2. If there exists $v \in\{a, b, c\} \quad$ (a, b, c are the vertices of one part of $K_{3,3}$)
and $y \in M\left(e_{i}(v)\right)$, for some $i, 1 \leq i \leq 3$, such that $N_{G}(y) \cap M\left(e_{j}(v)\right)=\varnothing$ for every $j \in\{1,2,3\} \backslash\{i\}, 1 \leq j \leq 3$, then G has a 3 -decomposition.

Proof of Claim. Assume that $v=a$ and $y=p$. Since $d_{G}(q) \leq 3$, there exists $j, j \in\{2,3\}$, such that $N_{G}(q) \cap M\left(e_{j}(a)\right)=\varnothing$. Now, consider a 4-cycle in $K_{3,3}$ containing $e_{1}(a)$ and $e_{j}(a)$ and call it by C. Without loss of generality, let $j=3$. Assume that C^{*} is the subdivision of C in $K_{3,3}^{*}$. If $\left\langle C^{*}\right\rangle$ is chordless, then by Claim $1, C^{*}$ is an induced cycle of length at least 12 , a contradiction. Now, suppose that the cycle $\left\langle C^{*}\right\rangle$ has at least one chord. Let $w x$ be that chord in $\left\langle C^{*}\right\rangle$ such that the cycle atz...wx ...qpa is chordless (note that $w \in\{t, z\}$ is possible). This implies that G has an induced cycle of length at least 5 , see Figure 3, a contradiction. The same conclusion can be deduced for the case $v=a$ and $y=q$.

Figure 3: The subdivision of a 4-cycle in $K_{3,3}^{*}$

Claim 3. If for every $v \in\{a, b, c\}$ (a, b, c are the vertices of one part of $K_{3,3}$) and any $y \in M\left(e_{i}(v)\right), i=1,2,3$,

$$
N_{G}(y) \cap\left(\cup_{j \in\{1,2,3\} \backslash\{i\}} M\left(e_{j}(v)\right) \neq \varnothing,\right.
$$

then G has a 3-decomposition.
Proof of Claim. Without loss of generality assume that $v=a$ and $N_{G}(p) \cap$ $M\left(e_{2}(a)\right)=\{r\}$. If $N_{G}(q) \cap M\left(e_{3}(a)\right)=\{z\}$, then G contains the induced 5-cycle apqzta, a contradiction. Now, assume that $N_{G}(q) \cap M\left(e_{3}(a)\right)=\{t\}$. Note that s and z are adjacent. In this case by considering the induced 5 -cycle arszta, we obtain a contradiction to the fact that G is 4 -chordal.

Thus G is planar and by Corollary 13 of [6], G has a 3 -decomposition.

References

[1] F. Abdolhosseini, S. Akbari, H. Hashemi, M.S. Moradian, Hoffmann-Ostenhofs conjecture for traceable cubic graphs, (2016), arXiv:1607.04768v1.
[2] S. Akbari, T.R. Jensen, M. Siggers, Decomposition of graphs into trees, forests, and regular subgraphs, Discrete Math. 338 (8)(2015), 1322-1327.
[3] A.C. Bachstein, Decomposition of Cubic Graphs on The Torus and Klein Bottle, A Thesis Presented to the Faculty of the Department of Mathematical Sciences Middle Tennessee State University, 2015.
[4] P.J. Cameron, Research problems from the BCC22, Discrete Math. 311 (2011), 1074-1083.
[5] A. Hoffmann-Ostenhof, Nowhere-zero Flows and Structures in Cubic Graphs, Ph.D. thesis (2011), University of Vienna.
[6] A. Hoffmann-Ostenhof, T. Kaiser, K. Ozeki, Decomposing planar cubic graphs, J. Graph Theory. 88 (2018), 631-640.
[7] A. Kostochka, Spanning trees in 3-regular graphs, REGS in Combinatorics, University of Illinois at Urbana Champaign, (2009). http://www.math.uiuc.edu/ west/regs/span3reg.html 52 (2016), 40-46.
[8] K. Ozeki, D. Ye, Decomposing plane cubic graphs, European J. Combin. 52 (2016), 40-46.
[9] D.B. West, Introduction to Graph Theory, Prentice-Hall (2001).

[^0]: * Corresponding author

 Email addresses: mahigir.elham@gmail.com (Elham Aboomahigir),
 ahanjidm@gmail.com (Milad Ahanjideh), s_akbari@sharif.edu (Saieed Akbari)

