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Abstract

Hoffmann-Ostenhof’s conjecture states that the edge set of every connected

cubic graph can be decomposed into a spanning tree, a matching and a 2-

regular subgraph. In this paper, we show that the conjecture holds for claw-free

subcubic graphs and 4-chordal subcubic graphs.
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1. Introduction

In this paper, all graphs are assumed to be finite without loops or multiple

edges. Let G be a finite graph with the vertex set V (G) and the edge set E(G).

For a vertex v ∈ V (G), the degree of v in G and the maximum degree of G are

denoted by dG(v) and 4(G), respectively. Here NG(v) denotes the set of all

neighbours of v. The complete graph of order n is denoted by Kn. The complete

bipartite graph with partite sets of sizes m and n is denoted by Km,n. A graph

is called cubic if the degree of every vertex is 3 and it is called a subcubic graph

if its maximum degree is at most 3. A graph is called claw-free if it has no

induced subgraph isomorphic to K1,3. A cycle is called chordless if it has no
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chord. A graph G is called chordal if every cycle of G of length greater than 3

has a chord and a graph is 4-chordal if it has no induced cycle of length greater

than 4. A cut-edge of a connected graph G is an edge e ∈ E(G) such that G \ e

is disconnected. A subdivision of a graph G is a graph obtained from G by

replacing some of the edges of G by internally vertex-disjoint paths. An edge

decomposition of a graph G is called a 3-decomposition, if the edges of G can

be decomposed into a spanning tree, a matching and a 2-regular subgraph (the

matching or the 2-regular subgraph may be empty).

Hoffmann-Ostenhof proposed the following conjecture in his thesis [5], this

conjecture also was appeared as a problem of BCC22 [4].

Hoffmann-Ostenhof’s conjecture. Every connected cubic graph admits a

3-decomposition.

Hoffmann-Ostenhof’s conjecture is known to be true for some families of

cubic graphs. Kostochka [7] showed that the Petersen graph, the prism over

cycles, and many other graphs have 3-decompositions. Bachstein [3] proved

that every 3-connected cubic graph embedded in torus or Klein-bottle has a

3-decomposition. Furthermore, Ozeki and Ye [8] proved that 3-connected plane

cubic graphs have 3-decompositions. Akbari et. al. [2] showed that Hamiltonian

cubic graphs have 3-decompositions. Also, it has been proved that the traceable

cubic graphs have 3-decompositions [1]. In 2017, Hoffmann-Ostenhof et. al.

[6] proved that planar cubic graphs have 3-decompositions. In this paper it is

shown that the connected claw-free subcubic graphs and the connected 4-chordal

subcubic graphs have 3-decompositions.

2. Connected Claw-free Subcubic Graphs Have 3-Decompositions

In this section, we show that Hoffmann-Ostenhof’s conjecture holds even for

claw-free subcubic graphs.

Theorem 1. If G is a connected claw-free subcubic graph, then G has a 3-

decomposition.
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Proof. We apply by induction on n = |V (G)|. If |V (G)| ≤ 3, then the assertion

is trivial. Now, we consider the following two cases:

Case 1. Assume that the graph G has a cut-edge e. Indeed we would like

to prove that a connected subcubic graph G (not necessarily claw-free) with a

cut-edge e has a 3-decomposition if and only if each component of G \ e has

a 3-decomposition. Let H and K be the connected components of G \ e. By

induction hypothesis, both H and K have 3-decompositions. Let Ti, i = 1, 2,

be the spanning trees in the 3-decompositions of H and K. Add e to T1 ∪ T2

and consider this tree as the spanning tree in a 3-decomposition of G. Note

that we take the union of cycles and matchings obtained in two components H

and K as the 2-regular subgraph and the matching in the 3-decomposition of

G. Now, if G has a 3-decomposition, then e is contained in the spanning tree

T . Since T \ e is union of two trees which one of them is a spanning tree of H

and another is a spanning tree of K, so we are done.

Case 2. By Case 1 we may assume that G is 2-edge connected. If G is triangle-

free, then since G is claw-free, we conclude that 4(G) ≤ 2. Thus G is a cycle

and hence in this case the assertion is trivial.

Now, let xyzx be a triangle in G. If dG(x) = dG(y) = 2 and dG(z) = 3, then G

has a cut-edge, a contradiction.

Assume that dG(x) = dG(y) = dG(z) = 3. If there is a vertex incident to all

x, y and z, then G = K4 which satisfied in the conjecture. Since G is 2-edge

connected, H = G \ {x, y, z} is connected. By induction hypothesis, H admits

a 3-decomposition. Let e, f and g be the three edges with one end-point in

{x, y, z}, and another end-point in V (H). Add e, f and g to T1 to obtain a

spanning tree for G, where T1 is the spanning tree in the 3-decomposition of H.

Now, consider xyzx as a cycle in the 3-decomposition of G, as desired.

Finally assume that dG(x) = 2 and dG(y) = dG(z) = 3. Assume that y and z

have a common neighbour, say b 6= x. Clearly, if dG(b) = 2, then G has a 3-

decomposition. Now, if dG(b) = 3, then G has a cut-edge, a contradiction. Now,

assume that NG(y) ∩NG(z) = {x}. Identify x, y and z. Call the new vertex a

and denote the resulting graph by H ′. Clearly, H ′ is a claw-free subcubic graph.
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By induction hypothesis H ′ has a 3-decomposition. Let T1 be the spanning tree

in the 3-decomposition of H ′. If dT1
(a) = 2, then let T be the spanning tree of

the 3-decomposition of G formed by T1 ∪ {xy, yz}. Also consider xz as an edge

of the matching in the 3-decomposition of G. Finally, if dT1
(a) = 1, then the

edge incident with z is contained in T1. Let T be a spanning tree of G formed by

T1∪{xy, yz}. Note that xz is contained in the matching in the 3-decomposition

of G. The proof is complete.

3. Connected 4-Chordal Subcubic Graphs Have 3-Decompositions

In this section we show that every connected 4-chordal subcubic graph has

a 3-decomposition.

Theorem 2. If G is a connected 4-chordal subcubic graph, then G has a 3-

decomposition.

Proof. We show that if G does not have a 3-decomposition, then G is planar

and so by Corollary 13 of [6], G has a 3-decomposition, as desired. To the

contrary, suppose that G is not planar. By Kuratowski’s Theorem [9, p.310], G

either contains a subdivision of K5 or a subdivision of K3,3. Since every vertex

of K5 has degree 4, G cannot contain a subdivision of K5. Now, suppose that

G contains a subdivision of K3,3.

First, we introduce some notation which we need for the rest of the proof.

Let K∗3,3 be a subgraph of G which is a subdivision of K3,3. For every edge

e ∈ E(K3,3), let L(e) be the set of all new added vertices on the edge e in

G. For every v ∈ V (K3,3), denote the set of all edges incident with v by

{ei(v) | 1 ≤ i ≤ 3}. If for every e ∈ E(K3,3), L(e) = ∅, then G = K3,3 and

so G has a 3-decomposition, as desired. The rest of the proof is based on the

following three claims:

Claim 1. For every e ∈ E(K3,3), |L(e)| ≥ 2.

Proof of Claim. By contradiction, if there exists an edge e ∈ E(K3,3) such

that L(e) = {p} and e is incident with the vertex a in K∗3,3, then let C be a
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4-cycle of K3,3 containing e. Let C∗ be the subdivision of C in K∗3,3. Assume

that 〈C∗〉 denotes the induced subgraph of G on V (C∗). If 〈C∗〉 is chordless,

then G has an induced cycle of length at least 5, a contradiction. Now, let wx

be a chord of 〈C∗〉 in G such that the cycle a . . . wx . . . upa is chordless in G

(note that there might exist some vertices between a and w and also between

x and u), see Figure 1. So G contains an induced cycle of length at least 5,

a contradiction. If x = p, then consider the path between p and w on C∗

which contains a and remove all of its vertices except p and w. Similarly, one

can see that the remaining graph has an induced cycle of length at least 5, a

contradiction. So the claim is proved.

Figure 1: The subdivision of a 4-cycle in K∗
3,3

For every v ∈ V (K3,3), by Claim 1, let M(ei(v)) be the set of two vertices

in L(ei(v)) which have the smallest distances from v. In particular, for a ∈

V (K3,3), let M(e1(a)) = {p, q}, M(e2(a)) = {r, s} and M(e3(a)) = {t, z}, see

Figure 2.

Figure 2: The subdivision of K3,3 in G

Claim 2. If there exists v ∈ {a, b, c} (a, b, c are the vertices of one part of K3,3)
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and y ∈ M(ei(v)), for some i, 1 ≤ i ≤ 3, such that NG(y) ∩M(ej(v)) = ∅ for

every j ∈ {1, 2, 3} \ {i}, 1 ≤ j ≤ 3, then G has a 3-decomposition.

Proof of Claim. Assume that v = a and y = p. Since dG(q) ≤ 3, there

exists j, j ∈ {2, 3}, such that NG(q) ∩M(ej(a)) = ∅. Now, consider a 4-cycle

in K3,3 containing e1(a) and ej(a) and call it by C. Without loss of generality,

let j = 3. Assume that C∗ is the subdivision of C in K∗3,3. If 〈C∗〉 is chordless,

then by Claim 1, C∗ is an induced cycle of length at least 12, a contradiction.

Now, suppose that the cycle 〈C∗〉 has at least one chord. Let wx be that chord

in 〈C∗〉 such that the cycle atz . . . wx . . . qpa is chordless (note that w ∈ {t, z}

is possible). This implies that G has an induced cycle of length at least 5, see

Figure 3, a contradiction. The same conclusion can be deduced for the case

v = a and y = q.

Figure 3: The subdivision of a 4-cycle in K∗
3,3

Claim 3. If for every v ∈ {a, b, c} (a, b, c are the vertices of one part of K3,3)

and any y ∈M(ei(v)), i = 1, 2, 3,

NG(y) ∩ (∪j∈{1,2,3}\{i}M(ej(v)) 6= ∅,

then G has a 3-decomposition.

Proof of Claim. Without loss of generality assume that v = a and NG(p) ∩

M(e2(a)) = {r}. If NG(q) ∩ M(e3(a)) = {z}, then G contains the induced

5-cycle apqzta, a contradiction. Now, assume that NG(q) ∩M(e3(a)) = {t}.

Note that s and z are adjacent. In this case by considering the induced 5-cycle

arszta, we obtain a contradiction to the fact that G is 4-chordal.
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Thus G is planar and by Corollary 13 of [6], G has a 3-decomposition.
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