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Abstract

In this paper we define the (edge-weighted) Cayley graph associated to a gen-
eralized Boolean function, introduce a notion of strong regularity and give several
of its properties. We show some connections between this concept and generalized
bent functions (gbent), that is, functions with flat Walsh-Hadamard spectrum. In
particular, we find a complete characterization of quartic gbent functions in terms
of the strong regularity of their associated Cayley graph.

1 (Generalized) Boolean functions background

Let Vn be the vector space of dimension n over the two element field F2, and for a

positive integer q, let Zq be the ring of integers modulo q. Let us denote the addition,

respectively, product operators over F2 by “⊕”, respectively, “·”. A Boolean function

f on n variables is a mapping from Vn into F2, that is, a multivariate polynomial over

F2,

f(x1, . . . , xn) = a0 ⊕
n∑
i=1

aixi ⊕
∑

1≤i<j≤n
aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn, (1)

where the coefficients a0, ai, aij , . . . , a12...n ∈ F2. This representation of f is called

the algebraic normal form (ANF) of f . The number of variables in the highest order

product term with nonzero coefficient is called the algebraic degree, or simply the degree

of f .

For a Boolean function on Vn, the Hamming weight of f , wt(f), is the cardinality

of Ωf = {x ∈ Vn : f(x) = 1} (this is extended to any vector, by taking its weight to
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be the number of nonzero components of that vector). The Hamming distance between

two functions f, g : Vn → F2 is d(f, g) = wt(f ⊕ g). A Boolean function f(x) is called

an affine function if its algebraic degree is 1. If, in addition, a0 = 0 in (1), then f(x) is

a linear function (see [8] for more on Boolean functions). In Vn = Fn2 , the vector space

of the n-tuples over F2, we use the conventional dot product u · x as an inner product.

For a generalized Boolean function f : Vn → Zq we define the generalized Walsh-

Hadamard transform to be the complex valued function

H(q)
f (u) =

∑
x∈Vn

ζf(x)
q (−1)u·x,

where ζq = e
2πı
q (we often use ζ, Hf , instead of ζq, respectively, H(q)

f , when q is fixed).

The inverse is given by ζf(x) = 2−n
∑

uHf (u)(−1)u·x. For q = 2, we obtain the usual

Walsh-Hadamard transform

Wf (u) =
∑
x∈Vn

(−1)f(x)(−1)u·x,

which defines the coefficients of character form of f with respect to the orthonormal ba-

sis of the group characters χw(x) = (−1)w·x. In turn, f(x) = 2−n
∑

wWf (w)(−1)u·x.

We use the notation as in [10, 11, 12, 15, 16] (see also [14, 17]) and denote the

set of all generalized Boolean functions by GBqn and when q = 2, by Bn. A function

f : Vn → Zq is called generalized bent (gbent) if |Hf (u)| = 2n/2 for all u ∈ Vn. We recall

that a function f for which |Wf (u)| = 2n/2 for all u ∈ Vn is called a bent function, which

only exist for even n since Wf (u) is an integer. Let f ∈ GBqn, where 2k−1 < q ≤ 2k,

then we can represent f uniquely as

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x)

for some Boolean functions ai, 0 ≤ i ≤ k − 1 (this representation comes from the

binary representation of the elements in the image set Z2k). For results on classical

bent functions and related topics, the reader can consult [5, 8, 13, 18].

2 Unweighted strongly regular graphs

A graph is regular of degree r (or r-regular) if every vertex has degree r (number of edges

incident to it). We say that an r-regular graph G is a strongly regular graph (srg) with

parameters (v, r, e, d) if there exist nonnegative integers e, d such that for all vertices

u,v the number of vertices adjacent to both u,v is d, e, if u,v are adjacent, respectively,

nonadjacent (see for instance [9]). The complementary graph Ḡ of the strongly regular

graph G is also strongly regular with parameters (v, v− r− 1, v− 2r+ e− 2, v− 2r+ d)

(see [9]).

Since the objects of this paper are edge-weighted graphsG = (V,E,w) (with vertices

V , edges E and weight function w defined on E with values in some set, which in our

case it will be either the set of integers modulo q, Zq with q = 2k, or the complex
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numbers set C), we define the weighted degree d(v) of a vertex v to be the sum of the

weights of its incident edges, that is, d(v) =
∑

u,(u,v)∈E

w(u, v) (later, we will introduce yet

another degree or strength concept). Certainly, one can also define the combinatorial

degree r(v) of a vertex to be the number of such incident edges. For more on graph

theory the reader can consult [4, 9] or one’s favorite graph theory book.

Let f be a Boolean function on Vn. We define the Cayley graph of f to be the

graph Gf = (Vn, Ef ) whose vertex set is Vn and the set of edges is defined by

Ef = {(w,u) ∈ Vn × Vn : f(w ⊕ u) = 1}.

For some fixed (but understood from the context) positive integer s, let the canonical

injection ι : Vs → Z2s be defined by ι(c) = c · (1, 2, . . . , 2s−1) =
∑s−1

j=0 cj2
j , where

c = (c0, c1, . . . , cs−1). For easy writing, we denote by j := ι−1(j).

The adjacency matrix Af is the matrix whose entries are Ai,j = f(i ⊕ j) (here

ι is defined on Vn). It is simple to prove that Af has the dyadic property: Ai,j =

Ai+2k−1,j+2k−1 . Also, from its definition, we derive that Gf is a regular graph of degree

wt(f) = |Ωf | (see [9, Chapter 3] for further definitions).

Given a graph f and its adjacency matrix A, the spectrum, with notation Spec(Gf ),

is the set of eigenvalues of A (called also the eigenvalues of Gf ). We assume throughout

that Gf is connected (in fact, one can show that all connected components of Gf are

isomorphic).

It is known (see [9, pp. 194–195]) that a connected r-regular graph is strongly

regular iff it has exactly three distinct eigenvalues λ0 = r, λ1, λ2 (so e = r+λ1λ2+λ1+λ2,

d = r + λ1λ2).

The following result is known [9, Th. 3.32, p. 103] (the second part follows from a

counting argument and is also well known).

Proposition 1. The following identity holds for a strongly r-regular graph:

A2 = (d− e)A+ (r − e)I + eJ,

where J is the all 1 matrix. Moreover, r(r − d− 1) = e(v − r − 1).

In [1, 2] it was shown that a Boolean function f is bent if and only if the Cayley

graph Gf is strongly regular with e = d. We shall refer to this as the Bernasconi-

Codenotti correspondence.

3 The Cayley graph of a generalized Boolean function

We now let f : Vn → Zq be a generalized Boolean function. We define the (generalized)

Cayley graph Gf to be the graph where vertices are the elements of Vn and two vertices

u,v are connected by a weighted edge of (multiplicative) weight ζf(u⊕v) (respectively,

additive weight f(u ⊕ v)). Certainly, the underlying unweighted graph is a complete

pseudograph (every vertex also has a loop). We sketch in Figure 1 such an example.
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Figure 1: Cayley graph associated to the gbent f(x) = x1 + 2(x1x2 ⊕ x3x4)

Certainly, one can define a modified (generalized) Cayley graph G′f where two ver-

tices are connected if and only if f(u ⊕ v) 6= 0 with weights given by ζf(u⊕v). We

sketch in Figure 2 such a graph (it is ultimately the above graph with all weight 1

edges removed).

In Example 2, we give an example of a generalized Cayley graph, and its spectrum.

Example 2. Let f : Vn → Z4 defined by f(x1, x2) = x1x2 + 2x1. The truth table is

(0 0 2 3)T (using the lexicographical order x1, x2). Then, the adjacency matrix (with

multiplicative weights) is

Af =


1 1 −1 −i
1 1 −i −1
−1 −i 1 1
−i −1 1 1

 .

A basis for its eigenspace is {~v1, ~v2, ~v3, ~v4}, where ~v1 = (1 1 1 1)T with χ1(x) = (−1)0

~v2 = (1 − 1 1 − 1)T with χ2(x) = (−1)x2, ~v3 = (1 1 − 1 − 1)T with χ3(x) = (−1)x1,

~v4 = (1 − 1 − 1 1)T with χ4(x) = (−1)x1+x2, having respective eigenvalues λ0 =

4



Figure 2: Modified Cayley graph associated to gbent f(x) = x1 + 2(x1x2 ⊕ x3x4)

1− i, λ1 = −1 + i, λ2 = 3 + i, λ3 = 1− i. We can see that the eigenvalues Af are

λ0 = i0χ1(00) + i0χ1(01) + i2χ1(10) + i3χ1(11) = 1 + 1 + i2 + i3 = 1− i = H(4)
f (0),

λ1 = i0χ2(00) + i0χ2(01) + i2χ2(10) + i3χ2(11) = 1− 1 + i2 − i3 = −1 + i = H(4)
f (1),

λ2 = i0χ3(00) + i0χ3(01) + i2χ3(10) + i3χ3(11) = 1 + 1− i2 − i3 = 3 + i = H(4)
f (2),

λ3 = i0χ4(00) + i0χ4(01) + i2χ4(10) + i3χ4(11) = 1− 1− i2 + i3 = 1− i = H(4)
f (3).

Although, we do not use it in this paper, we define the strength of the vertex a

in the Cayley graph Gf as the sum of the additive weights of incident edges, that is,

s(a) =
∑

b f(a⊕ b).

Remark 3. If f ∈ GBqn and Gf is its Cayley graph, we observe that all vertices are

adjacent of multiplicative (respectively, additive) weights in Uq = {1, ζ, ζ2, . . . , ζq−1}
(respectively, in Zq = {0, 1 . . . , q − 1}).

We next show that the eigenvalues of the Cayley graph Gf (with multiplicative

weights) are precisely the (generalized) Walsh-Hadamard coefficients.

Theorem 4. Let f : Vn → Zq, q = 2k, and let λi, 0 ≤ i ≤ 2n − 1 be the eigenvalues of

its associated (multiplicative) edge-weighted graph Gf . Then,

λi = H(q)
f (i) (recall that i = ι−1(i)).

Proof. Let χ : Vn → C be a character of Vn, and for each such character, let xχ =

(xj)0≤j≤2n−1 ∈ C2n , where xj = χ(j). We claim (and show) that xχ is an eigenvector
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of A = Af (for simplicity, we use A in lieu of Af in this proof), with eigenvalue
q−1∑
k=0

∑
sk∈Sk

ζkχ(sk), where Sk = {sk : f(sk) = k}. (Observe that the characters of Vn are

χw(x) = (−1)u·x, and thus the eigenvalues are exactly the Walsh–Hadamard transform

coefficients).

The i-th entry of Ax is

(Ax)i =
∑
j

Ai,jxj =
∑
j

Ai,jχ(j) =

q−1∑
k=0

∑
i⊕j∈Sk

ζkχ(j)

If i⊕ j ∈ Sk, then i⊕ j = sk, for some sk ∈ Sk, and so, j = i⊕sk. Since χ is a character,

χ(j) = χ(i⊕ sk) = χ(i)χ(sk) = xiχ(sk)

Then,

(Ax)i =

q−1∑
k=0

∑
sk∈Sk

ζkxiχ(sk) = xi

q−1∑
k=0

∑
sk∈Sk

ζkχ(sk),

which shows our theorem.

4 Generalized bents and their Cayley graphs

We recall that a q-Butson Hadamard matrix [6] (q-BH) of dimension d is a d×d matrix

H with all entries q-th roots of unity such that HH∗ = dId, where H∗ is the conjugate

transpose of H. When q = 2, q-BH matrices are called Hadamard matrices (where the

entries are ±1). Recall that the crosscorrelation function is defined by

Cf,g(z) =
∑
x∈Vn

ζf(x)−g(x⊕z),

and the autocorrelation of f ∈ GBqn at u ∈ Vn is Cf,f (u) above, which we denote by

Cf (u).

Theorem 5. Let f ∈ GBqn. Then f is gbent if and only if the adjacency matrix Af of

the (multiplicative) edge-weighted Cayley graph associated to f is a q-Butson Hadamard

matrix.

Proof. Let Af =
(
ζf(a+b)

)
a,b

. Then, the (a,b)-entry of Af · Āf is(
Af · Āf

)
a,b

=
∑
c∈Vn

ζf(a⊕c)ζ f̄(c⊕b) =
∑
c∈Vn

ζf(a⊕c)−f(c⊕b) = Cf (a⊕ b). (2)

Now, recall from [15] that if f, g ∈ GBqn, then∑
u∈Vn

Cf,g(u)(−1)u·x = 2−nHf (x)Hg(x),

Cf,g(u) = 2−n
∑
x∈Vn

Hf (x)Hg(x)(−1)u·x.
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Thus, equation (2) becomes(
Af · Āf

)
a,b

= 2−n
∑
x∈Vn

Hf (x)Hf (x)(−1)(a⊕b)·x = 2−n
∑
x∈Vn

‖Hf (x)‖2(−1)(a⊕b)·x.

By Parseval’s identity, if a = b, then
(
Af · Āf

)
a,a

= 2n. Assume now that a 6= b and

we shall show that
(
Af · Āf

)
a,b

= 0 for some a 6= b if and only if f is gbent. Certainly,

if f is gbent then ‖Hf (x)‖2 = 2n, and since
∑

x∈Vn(−1)(a⊕b)·x = 0, for a ⊕ b 6= 0,

we have that implication. We can certainly show it directly, but the converse follows

from [15, Theorem 1 (iv)].

For the remaining of the paper, for simplicity, we shall only consider additive

weights, namely, our edge-weighted graphs (V,E,w) will have the weight function w :

E → Zq, q = 2k.

Next, we say that a weighted graph G = (V,E,w), V ⊆ Vn, w : E → Zq, q = 2k,

is a weighted regular graph (wrg) of parameters (v; r0, r1, . . . , rq−1) if every vertex will

have exactly rj neighbors of edge weight j. We denote by Nj(a) the set of all neighbors

of a vertex a of corresponding edge weight j.

Proposition 6. Given a generalized Boolean function f ∈ GBqn, the associated Cayley

graph is weighted regular (of some parameters), that is, every vertex will have the same

number of incident edges with a fixed weight.

Proof. Fix a weight j and a vertex x0, and consider the equation f(x0 ⊕ y) = j with

solutions y1,y2, . . . ,yt, say. For any other vertex x1, the equation f(x1 ⊕ y) = j will

have solutions y1 ⊕ x1 ⊕ x0,y2 ⊕ x1 ⊕ x0, . . . ,yt ⊕ x1 ⊕ x0. The proof of the lemma is

done.

We will define our first concept of strong regularity here. Let X, X̄ be a fixed

bisection of the weights Zq = X∪X̄,X∩X̄ = ∅, |X| = |X̄| = 2k−1, and let Y ⊆ Zq. We

say that a weighted regular (of parameters (v; r0, r1, . . . , rq−1)) graph G = (V,E,w),

V ⊆ Vn, w : E → Zq, q = 2k, is a (generalized) (X;Y )-strongly regular (srg) of

parameters (v; r0, r1, . . . , rq−1; eX , dX) if and only if the number of vertices c adjacent

to both a,b, with w(a, c) ∈ Y,w(b, c) ∈ Y , is exactly eX if w(a,b) ∈ X, respectively,

dX if w(a,b) ∈ X̄. One can weaken the condition and define a (X1, X2;Y )-srg notion,

where X1 ∩ X2 = ∅, not necessarily a bisection, and require the number of vertices c

adjacent to both a,b, with w(a, c) ∈ Y,w(b, c) ∈ Y , to be exactly eX if w(a,b) ∈ X1,

respectively, dX if w(a,b) ∈ X2; or even allowing a multi-section, and all of these

variations can be fresh areas of research for graph theory experts.

Note that our definition (see also [7] for an alternative concept, which we mention

in the last section) is a natural extension of the classical definition: Let q = 2, and

X = {1}. A classical strongly regular graph is then equivalent to an (X;X)-strongly

regular graph.

We first show that (part of) Proposition 1 can be adapted to this notion, as well,

in some cases, and we deal below with one such instance.
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Proposition 7. Let G = (V,E,w) be a weighted (X;X)-strongly regular graph of

parameters (v; r0, r1, . . . , rq−1; eX , dX), where X ⊆ Zq, v = |V |. Then,

rX(rX − eX − 1) = dX(v − rX − 1),

where rX =
∑

i∈X ri.

Proof. Without loss of generality we assume that the weights are additive, that is, they

belong to Zq. Fix a vertex u ∈ V and let A be the set of vertices adjacent to u with

connecting edges of weight in X, and B = V \{A,u}. Observe that |A| =
∑

i∈X ri = rX
and |B| = v − rX − 1. We somewhat follow the combinatorial method of the classical

case, and we shall count the number of vertices between A and B in two different ways.

For any vertex a ∈ A, there are exactly eX vertices in A adjacent to both u,a of edge

weights in X, and so, exactly rX − eX − 1 neighbors in B whose connecting edges

have weight in X. Therefore, the number of edges of weight in X between A and B is

rX(rX − eX − 1).

On the other hand, any vertex b ∈ B is adjacent to dX vertices in A of connecting

edge with weight in X (since u,b must share dX common vertices of connecting edges

of weight in X) and so, the total number of edges of weight in X between A and B is

dX(v − rX − 1). The proposition follows.

Let G = (V,E,w) (w : E → Zq) be a weighted graph, where w(E) ⊆ Zq (or

w(E) ⊆ Uq). We define the complement of G, denoted by Ḡ the graph of vertex set V

with an edge between two vertices a,b having weight q−1−f(a⊕b) (or, multiplicatively,

ζq−1−f(a⊕b). This is a natural definition, since if G is the Cayley graph associated to

f = a0 + 2a1, a0, ai ∈ Bn, then we observe that Ḡ is the Cayley graph associated to

f̄ = ā0 + 2ā1 + · · · + 2k−1āk−1, where āi is the binary complement of ai (that follows

from 2k−1−f = (1−a0)+2(1−a1)+ · · ·+2k−1(1−ak−1) = ā0 +2ā1 + · · ·+2k−1āk−1).

Lemma 8. Let G = (V,E,w) (w : E → Zq) be a weighted regular graph of parameters

(v; r0, r1, . . . , rq−1). Then the complement Ḡ is a weighted regular graph of parameters

(v; r̄0, . . . , r̄q−1), where r̄q−1−j = rj.

Proof. Let a be an arbitrary vertex. Recall that we denote by Nj(a) the set of all

neighbors of a vertex a of corresponding edge weight j. Since G is weighted regular,

then |Nj(a)| = rj . In the graph Ḡ, the weight j will transform into q− 1− j, therefore

r̄q−1−j = rj and the lemma is shown.

Let A ⊂ B and x ∈ B. As it is customary, we will denote by x + A the set

{x+ a : a ∈ A}.

Theorem 9. Let G = (V,E,w) (V ⊆ Fn2 , w : E → Zq) be an (X;Y )-strongly regular,

for some X,Y ⊆ Zq with |X| = 2k−1, q = 2k, of parameters (v; r0, r1, . . . , rq−1; eX , dX)

such that q − 1 − X = X or X̄, and q − 1 − Y = Y . Then, the complement Ḡ is a

(q − 1 − X;Y )-strongly regular graph of parameters (v; r̄0, . . . , r̄q−1; ēq−1−X , d̄q−1−X),

where r̄q−1−j = rj, ēq−1−X = eX and d̄q−1−X = dX , if q − 1 − X = X, respectively,

r̄q−1−j = rj, ēq−1−X = dX and d̄q−1−X = eX , if q − 1−X = X̄.
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Proof. The first claim follows from Lemma 8. We consider the two cases q−1−X = X,

or X̄, separately. As before, for any two vertices a,b we denote by NY (a,b) the set of

all vertices c adjacent to both a,b such that w(a, c) ∈ Y,w(b, c) ∈ Y .

Case 1. Let q − 1 − X = X. For any two vertices a,b with w(a,b) ∈ X, then

|NY (a,b)| = eX , since the weight of the edge between a,b remains in X. Similarly, for

two vertices a,b with w(a,b) ∈ X̄, then |NY (a,b)| = dX .

Case 2. Let q−1−X = X. For any two vertices a,b with w(a,b) ∈ X, then the weight

of the edge between a,b in Ḡ is now in X̄, and we know that in that case NY (a,b) = dX .

Similarly, for two vertices a,b with w(a,b) ∈ X̄, then |NY (a,b)| = eX .

In the next theorem, we shall show a strong regularity theorem (a Bernasconi-

Codenotti correspondence) for gbents f ∈ GB4
n when n even and k = 2. For two

vertices a,b of the associated Cayley graph, for i, j ∈ {0, 1, 2, 3}, let N{i,j}(a,b) be the

set of all “neighbor” vertices w to both a,b such that the edges have additive weights

f(w ⊕ a) ∈ {i, j}, f(w ⊕ b) ∈ {i, j}.

Theorem 10. Let f ∈ GB4
n, n even. Then f is gbent if and only if the associated

generalized Cayley graph is (X; X̄)-strongly regular with eX = dX , for both X = {0, 1},
and X = {0, 3}, that is, if and only if the following two conditions are satisfied:

(i) For any two pairs of vertices {a,b}, {c,d}, then |N{2,3}(a,b)| = |N{2,3}(c,d)|.

(ii) For any two pairs of vertices {a,b}, {c,d}, then |N{1,2}(a,b)| = |N{1,2}(c,d)|.

Proof. We know that f = a0 + 2a1, where a0, a1 ∈ Bn, is gbent if and only if a1, a1⊕a0

are both bent (see [14, 15]). Let u ∈ Vn. We have that:

1. f(u) = 0⇔ a0(u) = 0, (a1 ⊕ a0)(u) = 0

2. f(u) = 1⇔ a0(u) = 1, (a1 ⊕ a0)(u) = 1

3. f(u) = 2⇔ a0(u) = 0, (a1 ⊕ a0)(u) = 1

4. f(u) = 3⇔ a0(u) = 1, (a1 ⊕ a0)(u) = 1

If f is gbent, then a1, a1 ⊕ a0 are both bent. Then, by [1], their respective graphs

are srg with respective parameters e = d, e′ = d′. We consider the following cases:

(a) Let any a,b, c such that f(a ⊕ c) ∈ {1, 2} and f(b ⊕ c) ∈ {1, 2}, then (a1 ⊕
a0)(a⊕ c) = 1 = (a1⊕a0)(b⊕ c). Since the graph corresponding to a1⊕a0 is srg

with e′ = d′, then |{c : (a1 ⊕ a0)(a⊕ c) = 1 = (a1 ⊕ a0)(b⊕ c)}| = e′. Therefore,

|N{1,2}(a,b)| = e′.

(b) Let any a,b, c such that f(a⊕c) ∈ {2, 3} and f(b⊕c) ∈ {2, 3}, then a1(a⊕c) =

1 = a1(b ⊕ c). Since the graph corresponding to a1 is srg with e = d, then

|{c : a1(a⊕ c) = 1 = a1(b⊕ c)}| = e. Therefore, |N{2,3}(a,b)| = e′.
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Conversely, let the generalized Cayley graph be such that, for any two pairs of vertices

{a,b}, {c,d}, then |N{2,3}(a,b)| = |N{2,3}(c,d)|, and |N{1,2}(a,b)| = |N{1,2}(c,d)|.
As seen in the first part of the proof, |N{2,3}(a,b)| = |{c : a1(a⊕ c) = 1 = a1(b⊕ c)}|.
This number is a constant, regardless of the value of a1(a⊕ b). This implies that the

Cayley graph corresponding to a1 is srg with e = d, where e = |N{2,3}(a,b)|.
Similarly, |N{1,2}(a,b)| = |{c : (a1 ⊕ a0)(a ⊕ c) = 1 = (a1 ⊕ a0)(b ⊕ c)}|. This

number is a constant, regardless of the value of (a1⊕ a0)(a⊕b). This implies that the

Cayley graph corresponding to a1 ⊕ a0 is srg with e′ = d′, where e′ = |N{1,2}(a,b)|.
Since both a1 and a1 ⊕ a0 are therefore bent, we conclude that f is gbent.

It is not hard to show that in some instances a “uniform” strong regularity will

hold.

Corollary 11. Let S be a bent set (see [3]), that is, every element of S is a bent

function and the sum of any two such is also a bent function. Let a0, a1 ∈ S. Then,

the generalized edge-weighted Cayley graph of f = a0 + 2a1 is (X; X̄)-strongly regular

for any X with |X| = 2.

Remark 12. One certainly could inquire whether a similar result holds for a gbent for n

odd. Since the answer depends on a characterization (not currently known) of classical

semibents in terms of their Cayley graphs, we leave that question for a subsequent

project of an interested reader.

While we cannot find a necessary and sufficient condition on a gbent in GBqn, q = 2k,

we can follow a similar approach as in Theorem 10 to find a necessary condition on the

Cayley graph of a generalized bent in GBqn. As in the previous result, for X ⊆ Zq and

two vertices u,v, let NX(u,v) be the set of vertices w such that f(u ⊕ w) ∈ X and

f(v⊕w) ∈ X. As usual, c̄ is the complement of the vector c, and for two vectors a =

(a1, . . . , at),b = (b1, . . . , bt), the notation a � b means that ai ≤ bi, for all 1 ≤ i ≤ t.

Recall that the canonical injection ι : Vs → Z2s , ι(c) = c·(1, 2, . . . , 2s−1) =
∑s−1

j=0 cj2
j ,

where c = (c0, c1, . . . , cs−1).

Theorem 13. Let n be even, and f = a0 + 2a1 + · · · + 2k−1ak−1, k ≥ 2, ai ∈ Bn, be

a generalized Boolean function. If f is gbent then the associated edge-weighted Cayley

graph is (X0
c ;X1

c)-strongly regular with eX0
c

= dX0
c
, where Xi

c = {ι(c̃) + ι(d) : c̃ �
(c, 1), wt(c̃) ≡ i (mod 2),d � c̄}, i = 0, 1, for all c ∈ Vk−1; that is, for all c ∈ Vk−1,

and for any two pairs of vertices (u,v), (x,y),∣∣NX1
c
(u,v)

∣∣ =
∣∣NX1

c
(x,y)

∣∣ .
Proof. The weighted regularity of f follows from Proposition 6. If f is gbent then by

[10, Theorem 8], we know that for each c ∈ Vk−1, the Boolean function fc defined as

fc(x) = c0a0(x)⊕ c1a1(x)⊕ · · · ⊕ ck−2ak−2(x)⊕ ak−1(x)

is a bent function with Wfc(a) = (−1)c·ι
−1(g(a))+s(a)2

n
2 , for some g : Vn → Z2k−1 ,

s : Vn → F2.
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While we cannot control in a simple manner the Walsh-Hadamard spectra conditions

of fc on the Cayley graph of a gbent f , we can derive some necessary conditions for

f to be gbent. Let c ∈ Vk−1 and fc bent. Consider u ∈ Vn. Certainly, the condition

that fc(u) = 1 means that an odd number of functions aj , occurring (that is, the

corresponding coefficient is nonzero) in fc will output 1 at u. The aj ’s corresponding to

entries that are 0 in c can be taken either 0 or 1 (hence the condition in the definition

of Xi
c that d � c̄). We see that the set of values of f when fc(u) = 1 is exactly

X1
c = {ι(c̃) + ι(d) : c̃ � (c, 1), wt(c̃) ≡ 1 (mod 2),d � c̄}. Similarly, the set of values

for f when fc(u) = 0 is X0
c = {ι(c̃) + ι(d) : c̃ � (c, 1), wt(c̃) ≡ 0 (mod 2),d � c̄}.

Since fc is bent, then any two vertices, u,v, will have the same number of adjacent

w with fc(u⊕w) = fc(v ⊕w) = 1, regardless of the value of fc(u⊕ v). This implies

that
∣∣NX1

c
(u,v)

∣∣ is constant for all u,v.

5 Further comments

We follow the notation of [7] and define yet another strong regularity concept here. Let

Γ be an edge-weighted graph (with no loops) with vertices V , edges E, and weight set

W (in [7], W was taken to be Z∗q , although it could be arbitrary). As before, for each

u ∈ V and a ∈W ∪{0}, the weighted a-neighborhood of u, Na(u), is defined as follows:

• Na(u) = the set of all neighbors v of u in Γ for which the edge (u,v) ∈ E has

weight a (for each a ∈W ).

• N0(u) = the set of all nonadjacent v of u in Γ (i.e., the set of v such that

(u,v) /∈ E), that is, N0(u) = V \ ∪a∈WNa(u). In particular, u ∈ N0(u).

In [7], the following definition of weighted strongly regular graph is given. Let Γ

be a connected edge-weighted graph which is regular as a simple (unweighted) graph.

Let W be the set of edge-weights of Γ. The graph Γ is called an edge-weighted local

strongly regular (to distinguish it from our definition we inserted the adjective “lo-

cal”) with parameters v, k = (ka)a∈W , λ = (λa)a∈W 3 , and µ = (µa)a∈W 2 , denoted

SRGW (v, k, λ, µ), if Γ has v vertices, and there are constants ka, λa1,a2,a3 , and µa1,a2 ,

for a, a1, a2, a3 ∈W , such that

|Na(u)| = ka for all vertices u,

and for vertices u1 6= u2 we have

|Na1(u1) ∩Na2(u2)| =

{
λa1,a2,a3 if ∃ a3 ∈W with u1 ∈ Na3(u2);

µa1,a2 if u1 /∈ Na3(u2) for all a3.

As was observed in [7] for functions f : Fpn → Fp, where several questions were

posed, it is not clear what the connection between this concept and generalized (or

p-ary) bentness is. Our strong regularity definition does allow us to show such a con-

nection and in the case k = 2, we have a complete Bernasconi–Codenotti correspon-

dence [1, 2].

11



References

[1] A. Bernasconi, B. Codenotti, Spectral Analysis of Boolean Functions as a Graph

Eigenvalue Problem, IEEE Trans. on Computers 48:3 (1999), 345–351.

[2] A. Bernasconi, B. Codenotti, J. M. VanderKam, A Characterization of Bent Func-

tions in terms of Strongly Regular Graphs, IEEE Trans. on Computers, 50:9

(2001), 984–985.

[3] C. Bey, G. M. Kyureghyan, On Boolean functions with the sum of every two of

them being bent, Des. Codes Cryptogr. 49 (2008), 341–346.

[4] N. Biggs, Algebraic Graph Theory (2nd ed.), Cambridge Univ. Press, 1993.

[5] L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer-

Verlag, 2014.

[6] A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc. 13 (1962),

894–898.

[7] C. Celerier, D. Joyner, C. Melles, D. Phillips, S. Walsh, Edge-weighted Cayley

Graphs and p-ary Bent Functions, Integers 16, A35, 2016.
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[12] T. Martinsen, W. Meidl, P. Stănică, Partial spread and vectorial generalized bent

functions, Des. Codes Crypt. 85:1 (2017), 1–13.

[13] S. Mesnager, Bent functions: fundamentals and results, Springer Verlag, 2016.
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