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Spanning trees in complete bipartite graphs and resistance

distance in nearly complete bipartite graphs

Jun Ge∗ and Fengming Dong†

Abstract

Using the theory of electrical network, we first obtain a simple formula for the number of

spanning trees of a complete bipartite graph containing a certain matching or a certain tree.

Then we apply the effective resistance (i.e., resistance distance in graphs) to find a formula for

the number of spanning trees in the nearly complete bipartite graph G(m,n, p) = Km,n −pK2

(p ≤ min{m,n}), which extends a recent result by Ye and Yan who obtained the effective

resistances and the number of spanning trees in G(n, n, p). As a corollary, we obtain the

Kirchhoff index of G(m,n, p) which extends a previous result by Shi and Chen.
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Mathematics Subject Classification (2010): 05C30, 05C05

1 Introduction

Throughout this paper we assume that all graphs considered are loopless, while parallel edges are

allowed. Let G = (V,E) be a graph. For any e ∈ E(G), let G − e be the graph obtained from

G by deleting e. Let G/e be the edge contraction of G by e, with loops deleted. For any vertex

set S ⊆ V (G), let G/S be the graph obtained from G by identifying all the vertices in S, with

resulting loops deleted. Similarly, for any edge set F ⊆ E(G), let G/F be the graph obtained from

G by contracting all the edges in F , with resulting loops deleted.

Suppose G is a weighted graph with edge weight we for each edge e. For any F ⊆ E, define

wF =
∏

e∈F

we. Let T (G) denote the set of spanning trees of G and let τ(G) =
∑

T∈T (G)

wT . It is

easy to see that for an unweighted graph G (weighted graph with unit weight on each edge), τ(G)

is the number of spanning trees. The first famous result for τ(G) is the Cayley’s formula.

Theorem 1.1 (Cayley’s formula, [1]).

τ(Kn) = nn−2.

For a subgraph H of G, let TH(G) denote the set of spanning trees of G containing all edges in

H and let τH(G) =
∑

T∈TH(G)

wT . For unweighted graph G, τH(G) is the number of spanning trees
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of G containing H . The following beautiful formula due to Moon generalizes Cayley’s formula by

obtaining the number of spanning trees of Kn containing a given spanning forest.

Theorem 1.2 ([11], also see Problem 4.4 in [10]). For any spanning forest F of Kn, if c is the

number of components of F and n1, n2, . . . , nc are the orders of those components, then

τF (Kn) = nc−2
c∏

i=1

ni.

Note that Cayley’s formula is the special case of Theorem 1.2 that F is an empty graph.

It is also well known that τ(Km,n) = mn−1nm−1 for any complete bipartite graph Km,n by

Fiedler and Sedláček [5]. In this paper, we prove the following two theorems as bipartite analogues

of Moon’s formula (Theorem 1.2).

Theorem 1.3. For any matching M of size k in Km,n,

τM (Km,n) = (m+ n)k−1(m+ n− k)mn−k−1nm−k−1.

Theorem 1.4. Let T be any tree which is a subgraph of Km,n. Then

τT (Km,n) = (sn+ tm− st)mn−t−1nm−s−1,

where s = |V (T ) ∩ X |, t = |V (T ) ∩ Y |, and (X,Y ) is the bipartition of Km,n with |X | = m and

|Y | = n.

Effective resistance is a concept used in electric circuit analysis to define the equivalent resis-

tance between two points in an electric network. In graph theory it is also known as the resistance

distance [9] between two vertices of a weighted connected graph. Here the graph considered can be

viewed as an electric network, where edge uv with edge weight wuv > 0 corresponds to a resistor

with resistance ruv = 1
wuv

, with a voltage source connected to a pair of vertices.

Recently, Ye and Yan [23] studied the resistance distance between any two vertices of the graph

Kn,n − pK2 (p ≤ n). In this paper, we extend their results to any nearly complete bipartite graph

Km,n− pK2 (p ≤ min{m,n}), that is, the graph obtained from the complete bipartite graph Km,n

by deleting a matching of size p.

As a corollary, the number of spanning trees of any nearly complete bipartite graph is obtained

as follows.

Theorem 1.5. For any integer p ≤ min{m,n},

τ(Km,n − pK2) = (mn−m− n+ p)(mn−m− n)p−1mn−p−1nm−p−1.

Theorem 1.5 can be viewed as a “dual” result of Theorem 1.3, since τ(Km,n − pK2) equals the

number of those spanning trees of Km,n contain no edge of a fixed matching of size p.

Shi and Chen [16] studied the problem of computing resistance distances and Kirchhoff index

(which will be introduced in the next section) of graphs with an involution and obtained the

Kirchhoff index of G(n, n, p) = Kn,n−pK2. We extend their result to all nearly complete bipartite

graphs G(m,n, p) = Km,n − pK2.
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2 Electrical network

The main tool used in proving our results is the theory of electrical network. In this section, we

introduce some basics of the theory of electrical network and a nice relation between electrical

network and spanning trees of graphs.

For readers who are not familiar with basics of electricity, we refer to [7]. Doyle and Snell’s

book [4] provides rich materials on random walks and electric networks. Wagner’s excellent notes

[20] also contain further materials. Vos’s master thesis [19] is a well written survey on how to

determining the effective resistance.

For any graph G, we view each edge as a resistor with some assigned resistance. If a voltage

source is connected to two vertices of G, then each vertex receives an electric potential, each edge

receives a current flow (possibly 0 for some edges), and the graph becomes an electrical network.

Followings are some notations:

(i). the electric potential at point a is denoted by va;

(ii). the voltage, electric potential difference, or electric pressure from a to b is denoted by Uab =

va − vb;

(iii). the electric current through a conductor represented by the edge ab (from a to b) is denoted

by Iab;

(iv). the electrical resistance of a conductor represented by the edge ab is denoted by rab.

Then we know Uab = −Uba, Iab = −Iba, and rab = rba.

Now we introduce some basic laws in the theory of electrical network.

Theorem 2.1 (Ohm’s law). For the conductor between two points a and b,

Uab = Iabrab.

Theorem 2.2 (Kirchhoff’s current law). The algebraic sum of currents in a network of conductors

meeting at a point is zero.

Theorem 2.3 (Kirchhoff’s voltage law). The directed sum of the potential differences (voltages)

around any closed circle is zero.

Ohm’s law easily yields formulae for the equivalent resistance of resistors in series or in parallel.

Figure 1 shows n resistors in series. If we view the resistors in series as one single resistor with

resistance r, then Uab = Ir = I(r1 + r2 + · · ·+ rn), implying that r = r1 + r2 + · · ·+ rn, which is

called the series law.

Figure 2 shows n resistors in parallel. If we view the resistors in parallel as one single resistor

with resistance r, then Uab = Ir = i1r1 = i2r2 = · · · = inrn, implying that I = Uab

r and ii =
Uab

ri

for all i = 1, 2, · · · , n. Since I = i1 + i2 + · · ·+ in, we obtain Uab

r = Uab

r1
+ Uab

r2
+ · · ·+ Uab

rn
, that is,

1
r = 1

r1
+ 1

r2
+ · · ·+ 1

rn
, which is called the parallel law.

The basic idea of effective resistance is established by letting a voltage source connects vertices

u and v. Let I be the electric current from the voltage source to u (Kirchhoff’s current law

3
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Fig. 1: Resistors in series.
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Fig. 2: Resistors in parallel.

guarantees that it equals the electric current from v to the voltage source). The voltage source

effectively sees the network between u and v as a single resistor connecting u and v, through which

the electric current flows. The effective resistance is basically the resistance of that single resistor.

Definition 1. Let G be a graph with assigned resistances for edges. Connect a voltage source (a

battery) between vertices u and v. Let I be the electric current from the voltage source to u. The

effective resistance between vertices u and v, Ruv(G) (or Ruv if there is no confusion), is defined

by the following:

Ruv(G) =
Uuv

I
.

Remark 1. It is easy to see that Ruv is independent of the value of the voltage source we added.

In graph theory, sometimes we call Ruv the resistance distance [9] between u and v. This is

because the effective resistance function R is proved to be a metric on graphs [15]:

R : V (G)× V (G) → [0,+∞) is a function that satisfies

(i). non-negativity: Rxy ≥ 0 for all x, y ∈ V (G),

(ii). identity of indiscernibles: Rxy = 0 if and only if x = y,

(iii). symmetry: Rxy = Ryx for all x, y ∈ V (G),

(iv). triangle inequality: Rxy ≤ Rxz +Ryz for all x, y, z ∈ V (G).
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In [9], after named Ruv the resistance distance, Klein and Randić defined the Kirchhoff index

Kf(G) of G as the sum of resistance distances between each pair of vertices of G, that is,

Kf(G) =
∑

{u,v}:u,v∈V (G)

Ruv.

See [7, 16, 12, 21, 23, 22] for some recent researches on effective resistance and Kirchhoff index.

Now we introduce a nice relation between electrical network and spanning trees of graphs.

Theorem 2.4 ([14]). Let G = (V,E, {we}) be a simple weighted graph with weight wij = 1
rij

if

ij ∈ E, and wij = 0 if ij /∈ E, where rij is the resistance of edge ij ∈ E. For any two vertices

u, v ∈ V , the effective resistance between u and v is

Ruv =
τ(G/{u, v})

τ(G)
.

3 Spanning trees in Km,n containing a certain matching

In this section, we aim to prove Theorem 1.3.

For any graph G and any F ⊆ E(G), it is easy to see that τF (G) = τ(G/F ). So for any two

matchings M1 and M2 in Km,n with the same size, τM1
(Km,n) = τM2

(Km,n) because Km,n/M1

and Km,n/M2 are isomorphic. So τM (Km,n) only depend on the size of M . Now let τk(Km,n) be

the number of spanning trees of Km,n containing any given matching of size k. Then τ0(Km,n) =

τ(Km,n) = mn−1nm−1.

Lemma 1. τ1(Km,n) =
m+n−1

mn · τ(Km,n).

Proof. For any e ∈ E(Km,n), we prove there are m+n−1
mn τ(Km,n) spanning trees contain e. Note

that Km,n has mn edges, and τ(Km,n) spanning trees. Construct a bipartite graph H with

bipartition (X,Y ), where X is the set of edges in Km,n and Y is the set of spanning trees in Km,n,

and with edge set {{e, T } : e ∈ X,T ∈ Y, e ∈ E(T )}. By symmetry, H is a biregular graph. Each

vertex in X has degree τ1(Km,n) and each vertex in Y has degree m+ n− 1. Therefore, we have

|X | · τ1(Km,n) = |Y | · (m+ n− 1).

By definition, |X | = mn and |Y | = τ(Km,n). Thus,

mn · τ1(Km,n) = (m+ n− 1) · τ(Km,n),

that is,

τ1(Km,n) =
m+ n− 1

mn
· τ(Km,n).

Theorem 3.1. For any 1 ≤ k ≤ min{m,n} − 1,

τk+1(Km,n)

τk(Km,n)
=

(m+ n)(m+ n− k − 1)

mn(m+ n− k)
.
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Proof. For any matching M with size k, we consider the graph Km,n/M . Assume that (X,Y ) is

the bipartition of Km,n, where X = {s, x1, x2, . . . , xm−1} and Y = {t, y1, y2, . . . , yn−1}, and that

M = {xm−iyn−i : i = 1, 2, . . . , k}. Then the vertex set of Km,n/M is {s, x1, x2, . . . , xm−k−1} ∪

{t, y1, y2, . . . , yn−k−1}∪{z1, z2, . . . , zk}, where each zi is the vertex obtained after contracting edge

xm−iyn−i for i = 1, 2, . . . , k}. An example of Km,n/M is shown in Figure 3.

s

t

x1 x2

y1 y2 y3

z1

z2

z3

Fig. 3: K6,7/M , where M is a matching of size 3.

We view Km,n/M as an electrical network. Assume a unit current enters at s and leaves at t

and each edge has unit resistance.

Applying the parallel law, we replace the two parallel edges between zi and zj (i 6= j) by one

single edge zizj with resistance 1
2 , and denote the resulting graph by G′. Then Rst(Km,n/M) =

Rst(G
′). In what follows, we consider the electrical network G′ with a unit current enters at s and

leaves at t.

Write N = m+ n− k. We assign a current to each edge as follows:







Ist = w0 = 1
m + 1

n − 1
mN − 1

nN ,

Isyi
= w1 = 1

n − 1
mN − 1

nN , 1 ≤ i ≤ n− k − 1,

Iszi = w2 = 1
n − 1

nN , 1 ≤ i ≤ k,

Itxi
= w3 = 1

mN + 1
nN − 1

m , 1 ≤ i ≤ m− k − 1,

Itzi = w4 = 1
mN − 1

m , 1 ≤ i ≤ k,

Ixiyj
= w5 = − 1

mN − 1
nN , 1 ≤ i ≤ m− k − 1, 1 ≤ j ≤ n− k − 1,

Izixj
= w6 = 1

nN , 1 ≤ i ≤ k, 1 ≤ j ≤ m− k − 1,

Iziyj
= w7 = − 1

mN , 1 ≤ i ≤ k, 1 ≤ j ≤ n− k − 1,

Izizj = 0, 1 ≤ i 6= j ≤ k.
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First we check Kirchhoff’s current law for each vertex:

at vertex s : −1 +
∑

u:u∼s

Isu = −1 + w0 + (n− k − 1)w1 + kw2 = 0;

at vertex t : 1 +
∑

u:u∼t

Itu = 1− w0 + (m− k − 1)w3 + kw4 = 0;

at vertex xi (1 ≤ i ≤ m− k − 1) :
∑

u:u∼xi

Ixiu = (n− k − 1)w5 − w3 − kw6 = 0;

at vertex yi (1 ≤ i ≤ n− k − 1) :
∑

u:u∼yi

Iyiu = w1 + (m− k − 1)w5 + kw7 = 0;

at vertex zi (1 ≤ i ≤ k) :
∑

u:u∼zi

Iziu = (m− k − 1)w6 + (n− k − 1)w7 − w2 − w4 = 0.

Then we check Kirchhoff’s voltage law for cycles.

A cycle basis of a graph is a minimal set of cycles such that each Eulerian subgraph can be

expressed as a symmetric difference of cycles in this set.

It is easy to see that if cycle C is the symmetric difference of k cycles, and the Kirchhoff’s

voltage law holds for all these k cycles, then the Kirchhoff’s voltage law also holds for C. That is

to say, we only need to check those cycles in a cycle basis.

Let T be a spanning tree of Kmn/M that T is the star with center vertex z1. For any e ∈

E(Kmn/M) − E(T ), we have a unique cycle Ce consisting of e together with the unique path in

T connecting the endpoints of e. All these cycles are called fundamental cycles and they form a

special basis for the cycle space called fundamental cycle basis. We check Kirchhoff’s voltage law

for all these fundamental cycles.

z1 → s → t → z1 (the fundamental cycle corresponding to the edge st):

Uz1s + Ust + Utz1 = Iz1srz1s + Istrst + Itz1rtz1

= −w2 · 1 + w0 · 1 + w4 · 1

= −
1

n
+

1

nN
+

1

m
+

1

n
−

1

mN
−

1

nN
+

1

mN
−

1

m

= 0.

z1 → s → yi → z1 (the fundamental cycle corresponding to edge syi):

Uz1s + Usyi
+ Uyiz1 = Iz1srz1s + Isyi

rsyi
+ Iyiz1ryiz1

= −w2 · 1 + w1 · 1− w7 · 1

= −
1

n
+

1

nN
+

1

n
−

1

mN
−

1

nN
+

1

mN

= 0.

z1 → s → zi → z1 (the fundamental cycle corresponding to the edge szi):

Uz1s + Uszi + Uziz1 = Iz1srz1s + Iszirszi + Iziz1rziz1

= −w2 · 1 + w2 · 1− 0 · 1

= 0.
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z1 → t → xi → z1 (the fundamental cycle corresponding to the edge txi):

Uz1t + Utxi
+ Uxiz1 = Iz1trz1t + Itxi

rtxi
+ Ixiz1rxiz1

= −w4 · 1 + w3 · 1− w6 · 1

= −
1

mN
+

1

m
+

1

mN
+

1

nN
−

1

m
−

1

nN

= 0.

z1 → t → zi → z1 (the fundamental cycle corresponding to the edge tzi):

Uz1t + Utzi + Uziz1 = Iz1trz1t + Itzirtzi + Iziz1rziz1

= −w4 · 1 + w4 · 1− 0 · 1

= 0.

z1 → xi → yj → z1 (the fundamental cycle corresponding to the edge xiyj):

Uz1xi
+ Uxiyj

+ Uyjz1 = Iz1xi
rz1xi

+ Ixiyj
rxiyj

+ Iyjz1ryjz1

= w6 · 1 + w5 · 1− w7 · 1

=
1

nN
−

1

mN
−

1

nN
+

1

mN

= 0.

z1 → xi → zj → z1 (the fundamental cycle corresponding to the edge xizj):

Uz1xi
+ Uxizj + Uzjz1 = Iz1xi

rz1xi
+ Ixizjrxizj + Izjz1rzjz1

= w6 · 1− w6 · 1− 0 · 1

= 0.

z1 → yi → zj → z1 (the fundamental cycle corresponding to the edge yiyj):

Uz1yi
+ Uyizj + Uzjz1 = Iz1yi

rz1yi
+ Iyizjryizj + Izjz1rzjz1

= w7 · 1− w7 · 1− 0 · 1

= 0.

z1 → zi → zj → z1, i 6= j (the fundamental cycle corresponding to the edge zizj):

Uz1zi + Uzizj + Uzjz1 = Iz1zirz1zi + Izizjrzizj + Izjz1rzjz1

= 0 ·
1

2
+ 0 ·

1

2
+ 0 ·

1

2

= 0.

Therefore, the resistances and currents we assigned satisfy the Kirchhoff’s laws. By the defini-

tion of effective resistance, we obtain

Rst(Km,n/M) = Rst(G
′) =

Ust

1
= Istrst = w0 =

(m+ n)(m+ n− k − 1)

mn(m+ n− k)
.
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Then, following from Theorem 2.4, we have

τk+1(Km,n)

τk(Km,n)
=

τ ((Km,n/M)/st)

τ(Km,n/M)

=
τ ((Km,n/M)/{s, t})

τ(Km,n/M)

= Rst(Km,n/M)

=
(m+ n)(m+ n− k − 1)

mn(m+ n− k)
.

Proof of Theorem 1.3. Since τ(Km,n) = mn−1nm−1, Theorem 1.3 holds when k = 0.

Lemma 1 shows that Theorem 1.3 holds when k = 1.

When 2 ≤ k ≤ min{m,n}, by using Theorem 3.1, we obtain

τM (Km,n) = τk(Km,n)

= τ1(Km,n) ·
k−1∏

i=1

τi+1(Km,n)

τi(Km,n)

= (m+ n− 1)mn−2nm−2 ·
k−1∏

i=1

(m+ n)(m+ n− i− 1)

mn(m+ n− i)

= (m+ n)k−1(m+ n− k)mn−k−1nm−k−1.

The proof is complete. �

4 Spanning trees in Km,n containing a certain tree

In this section, we aim to prove Theorem 1.4.

Let (X,Y ) be the bipartition of Km,n with |X | = m and |Y | = n. Note that for any F ⊆

E(G), there exists τF (G) = τ(G/F ). We observe that for any two trees T1 and T2 in Km,n, if

|V (T1) ∩ X | = |V (T2) ∩ X |, and |V (T1) ∩ Y | = |V (T2) ∩ Y |, then τT1
(Km,n) = τT2

(Km,n) since

Km,n/T1 and Km,n/T2 are isomorphic, where for a subgraph H in a graph G, G/H is the graph

G/E(H). So when we count the number of spanning trees in Km,n containing a certain tree T ,

the only thing matters is the pair of numbers s and t, where s = |V (T ) ∩X | and t = |V (T ) ∩ Y |.

Now let τs,t(Km,n) be the number of spanning trees of Km,n containing any given T as a

subgraph such that |V (T ) ∩ X | = s and |V (T ) ∩ Y | = t. Then τ0,0(Km,n) = τ1,0(Km,n) =

τ0,1(Km,n) = τ(Km,n). Lemma 1 tells that τ1,1(Km,n) =
m+n−1

mn · τ(Km,n).

Theorem 4.1. (1) For any 1 ≤ s ≤ m, 1 ≤ t ≤ n− 1,

τs,t+1(Km,n)

τs,t(Km,n)
=

sn+ (m− s)(t+ 1)

m[sn+ (m− s)t]
.

(2) For any 1 ≤ s ≤ m− 1, 1 ≤ t ≤ n,

τs+1,t(Km,n)

τs,t(Km,n)
=

tm+ (n− t)(s+ 1)

n[tm+ (n− t)s]
.

9



Proof. We only prove part (1), after that, part (2) remains the same.

Let tree T be a subgraph of Km,n. Let s = |V (T ) ∩ X |, and t = |V (T ) ∩ Y |, where (X,Y )

is the bipartition of Km,n with |X | = m and |Y | = n. Assume that X = {x1, x2, . . . , xm},

Y = {y0, y1, . . . , yn−1}, and V (T ) = {xm−s+1, xm−s+2, . . . , xm} ∪ {yn−t, yn−t+1, . . . , yn−1}. Now

we consider the graph Km,n/T , in which all vertices in V (T ) are identified as a single vertex z, as

shown in Figure 4.

z

x1 x2 Xm-s

y0 y1 yn-t-1

t

t

t

s

s
s

Fig. 4: Graph Km,n/T , where |V (T )∩X| = s and |V (T )∩Y | = t. Edges labelled by s or t means they are multiple

edges with multiplicity s or t.

We view the Km,n/T as an electrical network. Assume a unit current enters at z and leaves

at y0 and each edge of Km,n/T has unit resistance. Our aim is to obtain the effective resistance

Rzy0
.

Applying the parallel law, we can replace q parallel edges between two vertices u and v by a

single edge uv with resistance 1
q . Thus, for any i with 1 ≤ i ≤ m− s, all t parallel edges between z

and xi can be replaced by one single edge zxi with resistance 1
t , and for any j with 0 ≤ j ≤ n−t−1,

all s parallel edges between z and yj can be replaced by one single edge zyj with resistance 1
s . We

denote the resulting graph by G′′. Then Rzy0
(Km,n/T ) = Rzy0

(G′′). In what follows, we consider

the electrical network G′′ with a unit current enters at z and leaves at y0.

Write N = sn+ tm− st. To each edge of G′′ we assign a current as follows:







Izy0
= w0 = s

m + s(m−s)
mN ,

Izyi
= w1 = s(m−s)

mN , 1 ≤ i ≤ n− t− 1,

Izxi
= w2 = t

N , 1 ≤ i ≤ m− s,

Ixiy0
= w3 = 1

m − s
mN , 1 ≤ i ≤ m− s,

Ixiyj
= w4 = − s

mN , 1 ≤ i ≤ m− s, 1 ≤ j ≤ n− t− 1.

10



First we check Kirchhoff’s current law for each vertex:

at vertex z : −1 +
∑

u:u∼z
Izu = −1 + (m− s)w2 + w0 + (n− t− 1)w1 = 0;

at vertex y0 : 1 +
∑

u:u∼y0

Iy0u = 1− w0 − (m− s)w3 = 0;

at vertex xi (1 ≤ i ≤ m− s) :
∑

u:u∼xi

Ixiu = −w2 + w3 + (n− t− 1)w4 = 0;

at vertex yi (1 ≤ i ≤ n− t− 1) :
∑

u:u∼yi

Iyiu = −w1 − (m− s)w4 = 0.

Then we check Kirchhoff’s voltage law for cycles. Similar to the proof of Theorem 3.1, we only

need to check those cycles in a cycle basis.

Let T be a spanning tree of G′′ that is the star with z1 as its center. For any e ∈ E(G′′)−E(T ),

we have a unique cycle Ce consisting of e and the unique path in T connecting the endpoints of e.

All these cycles form a a special basis for the cycle space. We check Kirchhoff’s voltage law for all

these cycles:

for the cycle Czxiy0
(z → xi → y0 → z):

Uzxi
+ Uxiy0

+ Uy0z = Izxi
rzxi

+ Ixiy0
rxiy0

+ Iy0zry0z

= w2 ·
1

t
+ w3 · 1− w0 ·

1

s

=
1

N
+

1

m
−

s

mN
−

(
1

m
+

m− s

mN

)

= 0;

and for the cycle Czxiyj
(z → xi → yj → z), where j 6= 0:

Uzxi
+ Uxiyj

+ Uyjz = Izxi
rzxi

+ Ixiyj
rxiyj

+ Iyjzryjz

= w2 ·
1

t
+ w4 · 1− w1 ·

1

s

=
1

N
−

s

mN
−

s(m− s)

mN
·
1

s

= 0.

Therefore, the resistances and currents we assigned satisfy the Kirchhoff’s laws. By the defini-

tion of effective resistance, we obtain

Rzy0
(Km,n/T ) = Rzy0

(G′′) =
Uzy0

1
= Izy0

rzy0
= w0 ·

1

s
=

sn+ (m− s)(t+ 1)

m[sn+ (m− s)t]
.

Then, following from Theorem 2.4, we have

τs,t+1(Km,n)

τs,t(Km,n)
=

τ ((Km,n/T )/zy0)

τ(Km,n/T )

=
τ ((Km,n/T )/{z, y0})

τ(Km,n/T )

= Rzy0
(Km,n/T )

=
sn+ (m− s)(t+ 1)

m[sn+ (m− s)t]
.
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Proof of Theorem 1.4. When 1 ≤ s ≤ m, and 1 ≤ t ≤ n, by using Theorem 4.1, we obtain

τs,t(Km,n) = τs,1(Km,n) ·
t−1∏

i=1

τs,i+1(Km,n)

τs,i(Km,n)

= τ1,1(Km,n) ·
s−1∏

i=1

τi+1,1(Km,n)

τi,1(Km,n)
·
t−1∏

i=1

τs,i+1(Km,n)

τs,i(Km,n)

=
m+ n− 1

mn
· τ(Km,n) ·

s−1∏

i=1

m+ (n− 1)(i+ 1)

n[m+ (n− 1)i]
·
t−1∏

i=1

sn+ (m− s)(i + 1)

m[sn+ (m− s)i]

=
m+ n− 1

mn
· τ(Km,n) ·

m+ (n− 1)s

ns−1(m+ n− 1)
·

sn+ (m− s)t

mt−1(sn+m− s)

=
sn+ tm− st

msnt
· τ(Km,n). (1)

For s = m, t = n, (1) implies that τm,n(Km,n) =
τ(Km,n)

mn−1nm−1 . Since τm,n(Km,n) is the number of

spanning trees of Km,n which contain a given spanning tree, obviously τm,n(Km,n) = 1. It follows

immediately that τ(Km,n) = mn−1nm−1. By (1) again, when 2 ≤ s ≤ m, and 2 ≤ t ≤ n, we have

τs,t(Km,n) = (sn+ tm− st)mn−t−1nm−s−1. Theorem 1.4 holds in this case.

Since τ0,0(Km,n) = τ1,0(Km,n) = τ0,1(Km,n) = τ(Km,n) = mn−1nm−1, it is easy to see that

Theorem 1.4 holds for (s, t) ∈ {(0, 0), (1, 0), (0, 1)}. It is not possible for s = 0, t ≥ 2 or s ≥ 2, t = 0.

So Theorem 1.4 holds for all remaining cases. The proof is complete. �

Remark 2. It is surprising that throughout the proof of Theorem 1.4, we do not need the exact

value of τ(Km,n) as the initial data. On the contrary, we can deduce the formula τ(Km,n) =

mn−1nm−1 from the proof.

Theorem 1.4 can also be deduced from Kirchoff’s Matrix-Tree Theorem. Let G be a multigraph

without loops. Let A(G) be its adjacency matrix and D(G) its diagonal matrix. We call L(G) =

D(G) −A(G) the Laplacian of G. Let L(G)i,j denote the matrix obtained from L(G) by deleting

the i-th row and j-th column. Sometimes we call this submatrix a reduced Laplacian of G.

Theorem 4.2 (Kirchoff’s Matrix-Tree Theorem, [8]).

τ(G) = (−1)i+j det(L(G)ij).

Lemma 2 (Schur’s determinant identity, [13]). Suppose M is a square matrix that can be decom-

posed into blocks as

M =




A B

C D



 ,

where A and D are square, and D is invertible. Then

det(M) = det(D) · det(A−BD−1C).

Second proof of Theorem 1.4. Let Km,n/T be the graph show in Figure 4. It is easy to see

that

D(Km,n/T ) = diag{tm+ sn− 2st, n, . . . , n
︸ ︷︷ ︸

m−s

,m, . . . ,m
︸ ︷︷ ︸

n−t

}, (2)
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and

A(Km,n/T ) =







0 1 1

1 0m−s 1(m−s)×(n−t)

1 1(n−t)×(m−s) 0n−t






.

Therefore,

L(Km,n/T )1,1 =




nIm−s −1(m−s)×(n−t)

−1(n−t)×(m−s) mIn−t



 .

By Theorem 4.2 and Lemma 2, we obtain

τs,t(Km,n) = τ(Km,n/T )

= det








nIm−s −1(m−s)×(n−t)

−1(n−t)×(m−s) mIn−t









= det(mIn−t) · det
(
nIm−s − (−1(m−s)×(n−t))(mIn−t)

−1(−1(n−t)×(m−s))
)

= mn−t det

(

nIm−s −
1

m
(−1(m−s)×(n−t)) · (−1(n−t)×(m−s))

)

= mn−t det

(

nIm−s −
n− t

m
1(m−s)

)

= mn−t ·

(

n−
n− t

m
+ (m− s− 1) ·

(

−
n− t

m

))

· nm−s−1

= (sn+ tm− st)mn−t−1nm−s−1.

The second-to-last equality above follows from the following identity:

det





















a b · · · b

b a · · · b
...

...
. . .

...

b b · · · a











n×n











= (a+ (n− 1)b) (a− b)n−1.

�

5 Effective resistances in nearly complete bipartite graphs

In this section, we first introduce some known results on effective resistances, and then apply them

to obtain the effective resistances of nearly complete bipartite graphs. As applications, we obtain

the number of spanning trees (Theorem 1.5) and the Kirchhoff indices of nearly complete bipartite

graphs.

5.1 Known results on effective resistances

Foster [6] obtained a famous result on the sum of effective resistances for all edges as follows.

Theorem 5.1 ([6]). Let G be a connected graph with n vertices in which each edge ij receives unit

resistance. Then
∑

ij∈E(G)

Rij = n− 1.
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Tetali [17, 18] gave two beautiful probabilistic proofs of Foster’s Theorem. It is natural to see

this fact by considering the relation between effective resistance and the number of spanning trees

of graphs. We give a short proof of Foster’s Theorem based on Theorem 2.4.

Proof of Theorem 5.1. By Theorem 2.4, we have Rij =
τ(G/{i,j})

τ(G) = τ(G/ij)
τ(G) for each ij ∈ E(G).

Then
∑

ij∈E(G)

Rij =
∑

e∈E(G)

τ(G/e)

τ(G)
=

1

τ(G)

∑

e∈E(G)

τ(G/e).

Since for any e ∈ E(G), τ(G/e) is the number of spanning trees ofG containing edge e,
∑

e∈E(G)

τ(G/e)

is the size of the following set:

Φ = {(e, T ) : e ∈ E(T ), T is a spanning tree of G with e ∈ E(T )}.

For each spanning tree T , Φ contains exactly n − 1 elements, implying that |Φ| = τ(G) · (n − 1).

Thus
∑

ij∈E(G)

τ(G/ij) = (n− 1)τ(G)

and
∑

ij∈E(G)

Rij = n− 1.

�

It was noted in [18] that Foster’s Theorem can be extended to graphs with arbitrary resistances.

Theorem 5.2 ([6, 18]). Let G be a connected graph with n vertices. Each edge ij has resistance

rij . Then
∑

ij∈E(G)

Rij

rij
= n− 1.

Theorem 5.2 can also be proved by considering Rij =
τ(G/{i,j})

τ(G) . The proof is almost the same.

We leave it to the readers.

We call Foster’s Theorem the global rule for the effective resistance of graphs. In 2008, Chen

and Zhang [3] proved a local sum rule for the resistance of graphs.

Theorem 5.3 ([3]). Let G be a simple connected graph with n vertices. Each edge is assigned unit

resistance. For any two vertices u and v of G,

d(u)Ruv +
∑

x∈N(u)

(Rux −Rvx) = 2,

where d(u) is the degree of vertex u and N(u) is the set of neighbors of u in G.

Theorem 5.3 offers a complete set of local rules that can determine all resistance distances of a

graph. The following two theorems can be viewed as special cases of Theorem 5.3.

Theorem 5.4 ([7]). Let G be a graph with two non-adjacent vertices a and b such that N(a) =

N(b). Then Ra,b =
2

|N(a)| .

Theorem 5.5. Let G be a graph with two adjacent vertices a and b such that N(a) = N(b). Then

Ra,b =
2

|N(a)|+1 .
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Similar to Foster’s Theorem, Chen and Zhang’s local rules can also be extended to graphs with

arbitrary resistances.

Theorem 5.6 ([2]). Let G be a simple connected graph with n vertices. Each edge ij has resistance

rij . For any two vertices u and v of G,




∑

x∈N(u)

1

rux



Ruv +
∑

x∈N(u)

1

rux
(Rux −Rvx) = 2,

where N(u) is the set of neighbors of u in G.

5.2 Effective resistances and the number of spanning trees of G(m,n, p)

Let G(m,n, p) denote the nearly complete bipartite graph Km,n − pK2 with unit resistance on

each edge, where p ≤ min{m,n}. Assume that the vertex set of G(m,n, p) is {x1, x2, . . . , xm} ∪

{y1, y2, . . . , yn} and its edge set {xiyj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}\{x1y1, x2y2, . . . , xpyp}.

For convenience, let [k] = {1, 2, . . . , k} if k ∈ N
+ and [k] = ∅ if k = 0.

Now we state our main result of this section as follows.

Theorem 5.7. Assume that G(m,n, p) = Km,n − pK2 has a unit resistance on each edge. Then

the following conclusions hold:

(1) for 1 ≤ i, j ≤ m,

Rxixj
=







2(m−1)
mn−m−n , if i 6= j and i, j ∈ [p],

2
n , if i 6= j and i, j ∈ [m]\[p],

2n−1
n(n−1) +

p−1
p(n−1)(mn−m−n) +

n−p
pn(n−1)(mn−m−n+p) , if i ∈ [p], j ∈ [m]\[p].

(2) for 1 ≤ i, j ≤ n,

Ryiyj
=







2(n−1)
mn−m−n , if i 6= j and i, j ∈ [p],

2
m , if i 6= j and i, j ∈ [n]\[p],

2m−1
m(m−1) +

p−1
p(m−1)(mn−m−n) +

m−p
pm(m−1)(mn−m−n+p) , if i ∈ [p], j ∈ [n]\[p].

(3) for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

Rxiyj
=







m+n
mn−m−n − mn

(mn−m−n)(mn−m−n+p) , if i = j ∈ [p],

m+n−2
mn−m−n − mn

(mn−m−n)(mn−m−n+p) , if i 6= j and i, j ∈ [p],

1
m + (p−1)(m−1)

p(mn−m−n) +
(m−p)(m−1)

pm(mn−m−n+p) , if i ∈ [p], j ∈ [n]\[p],

1
n + (p−1)(n−1)

p(mn−m−n) +
(n−p)(n−1)

pn(mn−m−n+p) , if i ∈ [m]\[p], j ∈ [p],

1
m + 1

n − mn−m−n
mn(mn−m−n+p) , if i ∈ [m]\[p], j ∈ [n]\[p].
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Proof. By symmetry of G(m,n, p), we set

r1 = Rxixj
, for i 6= j and i, j ∈ [p],

r2 = Ryiyj
, for i 6= j and i, j ∈ [p],

r3 = Rxixj
, for i 6= j and i, j ∈ [m]\[p],

r4 = Ryiyj
, for i 6= j and i, j ∈ [n]\[p],

r5 = Rxiyi
, for i ∈ [p],

r6 = Rxiyj
, for i 6= j and i, j ∈ [p],

r7 = Rxixj
, for i ∈ [p], j ∈ [m]\[p],

r8 = Rxiyj
, for i ∈ [p], j ∈ [n]\[p],

r9 = Rxiyj
, for i ∈ [m]\[p], j ∈ [p],

r10 = Ryiyj
, for i ∈ [p], j ∈ [n]\[p],

r11 = Rxiyj
, for i ∈ [m]\[p], j ∈ [n]\[p].

Claim 1. r3 = 2
n , r4 = 2

m .

Proof. Claim 1 follows directly from Theorem 5.4.

Claim 2. r1 = 2(m−1)
mn−m−n , r2 = 2(n−1)

mn−m−n .

Proof. Applying Theorem 5.3 to {x1, x2} we obtain

(n− 1)r1 + (r6 − r5) = 2. (3)

Applying Theorem 5.3 to {y1, y2} we obtain

(m− 1)r2 + (r6 − r5) = 2. (4)

From (3) and (4) we have

r1 =
m− 1

n− 1
r2. (5)

Applying Theorem 5.3 to {x1, y1} we obtain the following two equations.

(n− 1)r5 + (p− 1)(r6 − r2) + (n− p)(r8 − r10) = 2. (6)

(m− 1)r5 + (p− 1)(r6 − r1) + (m− p)(r9 − r7) = 2. (7)

Applying Theorem 5.3 to {x1, y2} leads to two equations, we choose the following one of them.

(n− 1)r6 + (r6 − 0) + (p− 2)(r6 − r2) + (n− p)(r8 − r10) = 2. (8)

(8)− (6) we obtain

(n− 1)(r6 − r5) + r2 = 0. (9)
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Combine (4) and (9) we have

r2 =
2(n− 1)

mn−m− n
.

Then from (5) we can see that

r1 =
2(m− 1)

mn−m− n
.

Now we turn to the rest effective resistances. Since we have known the exact value of r1 and

r2, (3), (6) and (7) become

r5 − r6 =
2

mn−m− n
, (10)

(n− 1)r5 + (p− 1)r6 + (n− p)(r8 − r10) = 2 +
2(n− 1)(p− 1)

mn−m− n
, (11)

and

(m− 1)r5 + (p− 1)r6 + (m− p)(r9 − r7) = 2 +
2(m− 1)(p− 1)

mn−m− n
. (12)

Applying Theorem 5.3 to {x1, xp+1} we obtain the following two equations.

(n− 1)r7 + (p− 1)(r6 − r9) + (n− p)(r8 − r11) = 2.

nr7 + (r9 − r5) + (p− 1)(r9 − r6) + (n− p)(r11 − r8) = 2.

Add them up we obtain

(2n− 1)r7 + r9 − r5 = 4. (13)

Applying Theorem 5.3 to {y1, yp+1} we obtain the following two equations.

(m− 1)r10 + (p− 1)(r6 − r8) + (m− p)(r9 − r11) = 2.

mr10 + (r8 − r5) + (p− 1)(r8 − r6) + (m− p)(r11 − r9) = 2.

Add them up we obtain

(2m− 1)r10 + r8 − r5 = 4. (14)

Applying Theorem 5.3 to {x1, yp+1} we obtain

(n− 1)r8 + (p− 1)(r6 − r10) + (r8 − 0) + (n− p− 1)(r8 − r4) = 2,

that is,

(p− 1)(r6 − r10) + (2n− p− 1)r8 =
2(m+ n− p− 1)

m
. (15)

Foster’s Theorem (Theorem (5.1)) shows

p(p− 1)r6 + p(n− p)r8 + p(m− p)r9 + (m− p)(n− p)r11 = m+ n− 1. (16)
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Solving the system of linear equations consists of Eq. (8)–(14), we get the following results we

need: 





r5 = m+n
mn−m−n − mn

(mn−m−n)(mn−m−n+p) ,

r6 = m+n−2
mn−m−n − mn

(mn−m−n)(mn−m−n+p) ,

r7 = 2n−1
n(n−1) +

p−1
p(n−1)(mn−m−n) +

n−p
pn(n−1)(mn−m−n+p) ,

r8 = 1
m + (p−1)(m−1)

p(mn−m−n) +
(m−p)(m−1)

pm(mn−m−n+p) ,

r9 = 1
n + (p−1)(n−1)

p(mn−m−n) +
(n−p)(n−1)

pn(mn−m−n+p) ,

r10 = 2m−1
m(m−1) +

p−1
p(m−1)(mn−m−n) +

m−p
pm(m−1)(mn−m−n+p) ,

r11 = 1
m + 1

n − mn−m−n
mn(mn−m−n+p) .

Now we turn to the number of spanning trees of G(m,n, p) and prove Theorem 1.5.

Proof of Theorem 1.5. Recall Theorem 2.4, we have
τ(G(m,n,p)/xp+1yp+1)

τ(G(m,n,p)) = r11, implying that

τ(G(m,n, p + 1))

τ(G(m,n, p))
=

τ(G(m,n, p)) − τ(G(m,n, p)/xp+1yp+1)

τ(G(m,n, p))

= 1− r11

= 1−
1

m
−

1

n
+

mn−m− n

mn(mn−m− n+ p)

=
(mn−m− n)(mn−m− n+ p+ 1)

mn(mn−m− n+ p)
.

Therefore,

τ(G(m,n, p)) =

(
p−1
∏

k=0

τ(G(m,n, k + 1))

τ(G(m,n, k))

)

· τ(G(m,n, 0))

=
(mn−m− n)p(mn−m− n+ p)

mpnp(mn−m− n)
· τ(Km,n)

= (mn−m− n+ p)(mn−m− n)p−1mn−p−1nm−p−1.

�

5.3 Kirchhoff indices of G(m,n, p)

In 2016, Shi and Chen obtained the Kirchhoff index of G(n, n, p) = Kn,n − pK2 as follows.

Theorem 5.8 ([16]). Let G be a graph constructed by removing p disjoint edges from the complete

bipartite graph Kn,n(p ≤ n). Then

Kf(G) =
np(2n2 − 5n+ 2p)

(n− 2)(n2 − 2n+ p)
+

(n− p)(2n2 − 5n+ 2p+ 2)

n2 − 2n+ p
+ 2(n− 1).

Particularly, if p = n, we have

Kf(G) =
5n− 6

(n− 1)(n− 2)
+ 4n+ 1.

Since we have obtained effective resistances for G(m,n, p), the Kirchhoff index of G(m,n, p) is

an obvious corollary of Theorem 5.7, which extends Shi and Chen’s results.
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Corollary 3.

Kf(G(m,n, p)) = m+ n− 1 +
p2(m+ n− 2) + 2p

mn−m− n
+

(m− p)(m− 1)

n
+

(n− p)(n− 1)

m

−
pmn

(mn−m− n)(mn−m− n+ p)
+

p(m− p)

n− 1
+

(m− p)(p− 1)

(n− 1)(mn−m− n)

+
(m− p)(n− p)

n(n− 1)(mn−m− n+ p)
+

p(n− p)

m− 1
+

(n− p)(p− 1)

(m− 1)(mn−m− n)

+
(m− p)(n− p)

m(m− 1)(mn−m− n+ p)
.

Proof.

Kf(G(m,n, p)) =
∑

{u,v}:u,v∈V (G)

Ruv

=
∑

{u,v}:uv∈E(G)

Ruv +
∑

{u,v}:uv/∈E(G)

Ruv

= m+ n− 1 +

(
p

2

)

r1 +

(
p

2

)

r2 +

(
m− p

2

)

r3 +

(
n− p

2

)

r4 + pr5

+p(m− p)r7 + p(n− p)r10

= m+ n− 1 +
p2(m+ n− 2) + 2p

mn−m− n
+

(m− p)(m− 1)

n
+

(n− p)(n− 1)

m

−
pmn

(mn−m− n)(mn−m− n+ p)
+

p(m− p)

n− 1
+

(m− p)(p− 1)

(n− 1)(mn−m− n)

+
(m− p)(n− p)

n(n− 1)(mn−m− n+ p)
+

p(n− p)

m− 1
+

(n− p)(p− 1)

(m− 1)(mn−m− n)

+
(m− p)(n− p)

m(m− 1)(mn−m− n+ p)
.
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