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Spanning trees in complete bipartite graphs and resistance

distance in nearly complete bipartite graphs

Jun Ge* and Fengming Dong!

Abstract

Using the theory of electrical network, we first obtain a simple formula for the number of
spanning trees of a complete bipartite graph containing a certain matching or a certain tree.
Then we apply the effective resistance (i.e., resistance distance in graphs) to find a formula for
the number of spanning trees in the nearly complete bipartite graph G(m,n,p) = Km,n —pK2
(p < min{m,n}), which extends a recent result by Ye and Yan who obtained the effective
resistances and the number of spanning trees in G(n,n,p). As a corollary, we obtain the

Kirchhoff index of G(m,n, p) which extends a previous result by Shi and Chen.
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1 Introduction

Throughout this paper we assume that all graphs considered are loopless, while parallel edges are
allowed. Let G = (V, E) be a graph. For any e € E(G), let G — e be the graph obtained from
G by deleting e. Let G/e be the edge contraction of G by e, with loops deleted. For any vertex
set S C V(G), let G/S be the graph obtained from G by identifying all the vertices in S, with
resulting loops deleted. Similarly, for any edge set F' C E(G), let G/F be the graph obtained from
G by contracting all the edges in F, with resulting loops deleted.

Suppose G is a weighted graph with edge weight w, for each edge e. For any F C FE, define

wp = [] we. Let T(G) denote the set of spanning trees of G and let 7(G) = > wp. It is
cEF TET(G)
easy to see that for an unweighted graph G (weighted graph with unit weight on each edge), 7(G)

is the number of spanning trees. The first famous result for 7(G) is the Cayley’s formula.
Theorem 1.1 (Cayley’s formula, [1]).
7(K,) =n""2

For a subgraph H of G, let Ty (G) denote the set of spanning trees of G' containing all edges in

H and let 7y (G) = >, wyp. For unweighted graph G, 757(G) is the number of spanning trees
TeTu(G)
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of G containing H. The following beautiful formula due to Moon generalizes Cayley’s formula by

obtaining the number of spanning trees of K, containing a given spanning forest.

Theorem 1.2 ([11], also see Problem 4.4 in [I0]). For any spanning forest F of K,, if ¢ is the

number of components of F' and ni,ns,...,n. are the orders of those components, then
C
Tr(K,) = n¢2 H 7.
i=1

Note that Cayley’s formula is the special case of Theorem that F'is an empty graph.
It is also well known that 7(K,, ) = m™ In™~! for any complete bipartite graph K,, , by
Fiedler and Sedlacek [5]. In this paper, we prove the following two theorems as bipartite analogues

of Moon’s formula (Theorem [[2]).

Theorem 1.3. For any matching M of size k in K, »,

() = (4 0 4 b4

Theorem 1.4. Let T be any tree which is a subgraph of K, ,. Then
7 (Kmn) = (sn+tm — stymn i lpmes—l

where s = |[V(T)NX|, t = |V(T)NY|, and (X,Y) is the bipartition of K, , with |X| = m and
Y| =n.

Effective resistance is a concept used in electric circuit analysis to define the equivalent resis-
tance between two points in an electric network. In graph theory it is also known as the resistance
distance [9] between two vertices of a weighted connected graph. Here the graph considered can be
viewed as an electric network, where edge uv with edge weight w,, > 0 corresponds to a resistor

with resistance r,, = wl with a voltage source connected to a pair of vertices.

Recently, Ye and Yan [23] studied the resistance distance between any two vertices of the graph
K, —pKs (p < n). In this paper, we extend their results to any nearly complete bipartite graph
K —pKs (p < min{m,n}), that is, the graph obtained from the complete bipartite graph K,, »,
by deleting a matching of size p.

As a corollary, the number of spanning trees of any nearly complete bipartite graph is obtained

as follows.

Theorem 1.5. For any integer p < min{m,n},

n—p—1,_m—p—1

T(Kmvn_pKQ):(mn_m—n+p)(mn—m—n)p_1m n

Theorem [[.5] can be viewed as a “dual” result of Theorem [[3] since 7(K,, , — pK2) equals the
number of those spanning trees of K, , contain no edge of a fixed matching of size p.

Shi and Chen [I6] studied the problem of computing resistance distances and Kirchhoff index
(which will be introduced in the next section) of graphs with an involution and obtained the
Kirchhoff index of G(n,n,p) = K,, , — pK2. We extend their result to all nearly complete bipartite
graphs G(m,n,p) = Kp.n — pKa.



2 Electrical network

The main tool used in proving our results is the theory of electrical network. In this section, we
introduce some basics of the theory of electrical network and a nice relation between electrical
network and spanning trees of graphs.

For readers who are not familiar with basics of electricity, we refer to [7]. Doyle and Snell’s
book [4] provides rich materials on random walks and electric networks. Wagner’s excellent notes
[20] also contain further materials. Vos’s master thesis [I9] is a well written survey on how to
determining the effective resistance.

For any graph G, we view each edge as a resistor with some assigned resistance. If a voltage
source is connected to two vertices of (&, then each vertex receives an electric potential, each edge
receives a current flow (possibly 0 for some edges), and the graph becomes an electrical network.

Followings are some notations:
(i). the electric potential at point a is denoted by vg;

(ii). the voltage, electric potential difference, or electric pressure from a to b is denoted by Uy, =

Va — Ub;

(iii). the electric current through a conductor represented by the edge ab (from a to b) is denoted

by Iap;
(iv). the electrical resistance of a conductor represented by the edge ab is denoted by r4p.

Then we know Usp = —Upa, Iap = —Ipa, and 7ap = Tha-

Now we introduce some basic laws in the theory of electrical network.

Theorem 2.1 (Ohm’s law). For the conductor between two points a and b,
Uab = LapTap-

Theorem 2.2 (Kirchhoff’s current law). The algebraic sum of currents in a network of conductors

meeting at a point 1S zero.

Theorem 2.3 (Kirchhoff’s voltage law). The directed sum of the potential differences (voltages)

around any closed circle is zero.

Ohm’s law easily yields formulae for the equivalent resistance of resistors in series or in parallel.

Figure [l shows n resistors in series. If we view the resistors in series as one single resistor with
resistance r, then Uy, = Ir = I(r1 + 19 + -+ - + 1,,), implying that r = r; + 79 + -+ - + 7, which is
called the series law.

Figure [2 shows n resistors in parallel. If we view the resistors in parallel as one single resistor

with resistance r, then Uy = It = 411y = 1919 = - -+ = iy, 7y, implying that I = Qgil and 7; = %ﬁ
for all i = 1,2, ,n. Since I =iy + iy + -+ + in, we obtain Jab = Yab 4 Lar 4 ... 4 Dab that s,

% = % + % + -4 %, which is called the parallel law.
The basic idea of effective resistance is established by letting a voltage source connects vertices

u and v. Let I be the electric current from the voltage source to w (Kirchhoft’s current law
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Fig. 2: Resistors in parallel.

guarantees that it equals the electric current from v to the voltage source). The voltage source
effectively sees the network between w and v as a single resistor connecting u and v, through which

the electric current flows. The effective resistance is basically the resistance of that single resistor.

Definition 1. Let G be a graph with assigned resistances for edges. Connect a voltage source (a
battery) between vertices u and v. Let I be the electric current from the voltage source to u. The
effective resistance between vertices u and v, Ry, (G) (or Ry, if there is no confusion), is defined

by the following:

Remark 1. It is easy to see that R, is independent of the value of the voltage source we added.

In graph theory, sometimes we call Ry, the resistance distance [9] between u and v. This is
because the effective resistance function R is proved to be a metric on graphs [15]:

R:V(G) x V(G) — [0, +00) is a function that satisfies
(i). non-negativity: R,, > 0 for all z,y € V(G),
(ii). identity of indiscernibles: R,, = 0 if and only if © = v,
(iii). symmetry: Ry, = Ry, for all z,y € V(G),

(iv). triangle inequality: R,y < R,, + R, for all z,y,z € V(G).



In [9], after named R,, the resistance distance, Klein and Randié¢ defined the Kirchhoff index

K f(G) of G as the sum of resistance distances between each pair of vertices of G, that is,

Kf(@)= Y  Ru.

{u,v}:u,veV(G)

See [7, 16} [12] 211 23, 22] for some recent researches on effective resistance and Kirchhoff index.

Now we introduce a nice relation between electrical network and spanning trees of graphs.

Theorem 2.4 ([I4]). Let G = (V, E,{w.}) be a simple weighted graph with weight w;; = % if

ij € E, and w;; = 0 if ij ¢ E, where r;; is the resistance of edge ij € E. For any two vertices

u,v € V, the effective resistance between u and v is

7(G/{u,v})

Rypy = ———.

(@)

3 Spanning trees in K,,, containing a certain matching

In this section, we aim to prove Theorem

For any graph G and any F' C E(G), it is easy to see that 77(G) = 7(G/F). So for any two
matchings M7 and My in K, , with the same size, Tas, (Km,n) = Tas, (Kom,n) because Ky, /My
and K, ,/Ms are isomorphic. So Tas (K, ») only depend on the size of M. Now let 74(K,, ) be
the number of spanning trees of K, , containing any given matching of size k. Then 79(Kp n) =

T(Kmpn) =mn inm=1

Lemma 1. 7 (K, ) = % T (Kmn).

Proof. For any e € E(K,, ), we prove there are %T(Kmm) spanning trees contain e. Note
that K,,, has mn edges, and 7(K,, ) spanning trees. Construct a bipartite graph H with
bipartition (X,Y), where X is the set of edges in K,, , and Y is the set of spanning trees in K, .,
and with edge set {{e,T}:e € X, T € Y,e € E(T)}. By symmetry, H is a biregular graph. Each

vertex in X has degree 71 (K, ) and each vertex in Y has degree m + n — 1. Therefore, we have
X[ -7 (Kmn) = Y] (m+n—1).
By definition, | X| = mn and |Y| = 7(K, ). Thus,
mn -7 (Kpn)=m4+n—1) 7(Knn),

that is,

Theorem 3.1. For any 1 < k < min{m,n} — 1,

Trit1(Kmon) _ (m+n)(m+n—k—1)
Tk (Km.n) mn(m+n — k)




Proof. For any matching M with size k, we consider the graph K, ,/M. Assume that (X,Y) is
the bipartition of K, ,, where X = {s,z1,22,...,2m-1} and Y = {¢t,y1,92,...,Yn—1}, and that
M = {zpm—iyn—i : i = 1,2,...,k}. Then the vertex set of K, ,/M is {s,z1,%2,...,Zm—k—1} U
{t,y1,92, s Yn—k—1}U{z1, 22,..., 21}, where each z; is the vertex obtained after contracting edge

Tm—iYn—i for it =1,2,... k}. An example of K, ,,/M is shown in Figure 3l

Fig. 3: Kg,7/M, where M is a matching of size 3.

We view K, ,/M as an electrical network. Assume a unit current enters at s and leaves at ¢
and each edge has unit resistance.

Applying the parallel law, we replace the two parallel edges between z; and z; (i # j) by one
single edge z;z; with resistance %, and denote the resulting graph by G’. Then R (K, n/M) =
Rs:(G"). In what follows, we consider the electrical network G’ with a unit current enters at s and

leaves at t.

Write N =m + n — k. We assign a current to each edge as follows:

= w0 = 5+~ gy —
Isyi:uq:%—ﬁ*ﬁv, 1<i<n—k-1,

I, =wy = + — X, 1<i<k,

Ly, =ws = o+ L — L 1<i<m-—-k—1,

Iis, =wy = 5 — 4 1<i <k,

Ly, =ws = — =% — &, 1<i<m-k—-1,1<j<n—k-—1,
imy = W6 = =, 1<i<k1<j<m-k-1,

L.y, =wr = —=1, 1<i<k1<j<n-—-k-1,

L,.., =0, 1<i#j<k.



First we check Kirchhoff’s current law for each vertex:

at vertex s: —1+ Z Iy = —1+wo + (n—k — 1wy + kwy = 0;

atvertext:1+ZItu:1_w0+(m_k_1)w3+kw4:0;
uiu~t
at vertex x; (1<i<m—k—1): Z Iw = (n—k—1)ws —ws — kwg = 0;
atvertexyi (1§Z§n*k71) Z Ilu:w1+(mfk71)w5+kw7:0,
wu~Y;
at vertex z; (1 <i<k): Z L.=m-—k—1ws+ (n—k—1)w; —wy —wy =0.

Then we check Kirchhoff’s voltage law for cycles.

A cycle basis of a graph is a minimal set of cycles such that each Eulerian subgraph can be
expressed as a symmetric difference of cycles in this set.

It is easy to see that if cycle C' is the symmetric difference of k£ cycles, and the Kirchhoff’s
voltage law holds for all these k cycles, then the Kirchhoff’s voltage law also holds for C. That is
to say, we only need to check those cycles in a cycle basis.

Let T be a spanning tree of K,,,/M that T is the star with center vertex z;. For any e €
E(Kpn/M) — E(T), we have a unique cycle C, consisting of e together with the unique path in
T connecting the endpoints of e. All these cycles are called fundamental cycles and they form a
special basis for the cycle space called fundamental cycle basis. We check Kirchhoff’s voltage law
for all these fundamental cycles.

21 — 8 = t — z1 (the fundamental cycle corresponding to the edge st):

Uz1s + Ust + Utz1 - Iz1srzls + Istrst + Itzl Ttzq
= —ws-1l4+wy-1+wy-1
_ 1 n 1 1 1 1 1 1 1
N n nN m n mN nN mN m

21 — 8 = y; — 21 (the fundamental cycle corresponding to edge sy;):

Usis +Usy, + Uy,zy = Loystays + Loy Tsys + Lyizi Ty,
= —ws-l4w-1—wy-1
B 1 . 1 . 1 1 1 1
n n nN n mN nN mN
= 0.

21 — 8 — z; — 21 (the fundamental cycle corresponding to the edge sz;):
UZ1S + Uszi + Uzizl - IZ1Sr215 + Iszirszi + Izizlrzizl

= —ws-1l4wy-1—-0-1
= 0.



z1 =t — x; — 2z (the fundamental cycle corresponding to the edge tx;):

Uzlt + Utxi + Uz.;zl == Izltrzlt + Itmirtzi + Izizlrzizl
= —wyq-14+ws-1—ws-1
_o 11,111
B mN m mN nN m nN

z1 =t — z; — z1 (the fundamental cycle corresponding to the edge ¢z;):

UZ1t + Utzi + Uzizl - IZ1tr21t + Itzirtzi + IZ¢Z1TZZ'Z1

—wy-14+ws-1—-0-1

= 0.
21 — x; = y; — z1 (the fundamental cycle corresponding to the edge z;y;):

Uzﬂi + Uziyj + ijzl = IZNEiTZlIi =+ If”iyjrfbiyj + ijzlryjzl
= w6-1+w5-1—w7-1

21 — x; — zj — z1 (the fundamental cycle corresponding to the edge z;z;):

Uzlxi + U:EiZj + Uijl == Izlmirzlmi + Iz.;z]'Tz.;z]' + IZj21TZj21
= ws-l—ws-l—o-l

= 0.
21 — Y; — zj — z1 (the fundamental cycle corresponding to the edge vy;y;):

Usiye Y Uyizy; YUz = Lyyrary T LyzyTyzy + Loy 72z
w7~17w7~170~1

= 0.

21— z; = zj — 21,1 # j (the fundamental cycle corresponding to the edge z;z;):

Uzlzi + UZ,;Z]‘ + Uijl == Izlzirzlzi + IZ,;Z]‘ TZiZ]‘ + IZj21TZj21
1 1 1
0-240-=40-=
2 + 2 + 2
0.

Therefore, the resistances and currents we assigned satisfy the Kirchhoff’s laws. By the defini-

tion of effective resistance, we obtain

Us e —w _(mAn)m+n—k—1)
T osthst — 0 mn(m+n — k) '

Rst(Km,n/M) = Rst(Gl) =



Then, following from Theorem 4], we have

Tk+1(Km,n) _ T((Km,n/M)/St)
T (Km,n) T(Kmn/M)
(K M) s,
T(Kmn/M)
= Rst(Km,n/M)

(m+n)(m+n—Fk—1)
mn(m+n — k)

O
Proof of Theorem Since 7(Ky,.n) = m™ n™~ 1 Theorem [[3 holds when k = 0.
Lemma [I] shows that Theorem holds when k = 1.
When 2 < k < min{m,n}, by using Theorem [3I] we obtain
T™ (Km,n) = Tk (Km,n)
k-1
Ti-i-l(Km n)
- Kon) - Jit1\Amn)
Tl( ’ ) H Tz(Kmn)
i=1 ’
j— (m+n)(m+n—i—1)
— -1 n—2, m—2
(m+n—1)m""*n };[1 mn(m 1 —1)
— (m 4 n)kfl(m +n— k/,)mnfkflnmfkfl-
The proof is complete. O

4 Spanning trees in K,,, containing a certain tree

In this section, we aim to prove Theorem [[.4

Let (X,Y) be the bipartition of K,,, with |X| = m and |Y| = n. Note that for any F C
E(G), there exists 7p(G) = 7(G/F). We observe that for any two trees 71 and Ts in K, p, if
V() NX|=|V(Te) N X|, and |V(Th) NY| = |[V(T2) N Y|, then 7, (K n) = 71, (K ) since
Kp,n/T1 and Ky, ,/T> are isomorphic, where for a subgraph H in a graph G, G/H is the graph
G/E(H). So when we count the number of spanning trees in K, , containing a certain tree T,
the only thing matters is the pair of numbers s and ¢, where s = |V(T)N X| and t = |V(T) NY.

Now let 7y (Kpm,n) be the number of spanning trees of K, , containing any given T as a
subgraph such that [V(T) N X| = s and [V(T)NY| = ¢. Then 700(Km,n) = 71,0(Emn) =
70.1(Km.n) = 7(Km.pn). Lemma [ tells that 71 1 (K ) = 2L - 7(Kpp ).

mn
Theorem 4.1. (1) Forany1<s<m,1<t<n-1,

Tot+1 (Km.n) _ s +(m—s)(t+1)
Tst(Kmon) mlsn + (m —s)t]

(2) Forany1<s<m-—1,1<t<n,

Totr1.t(Km.n) _ tm+(n—1t)(s+1)
To.t (Kmn) nftm + (n — t)s]




Proof. We only prove part (1), after that, part (2) remains the same.

Let tree T' be a subgraph of K,, . Let s = |V(T) N X|, and ¢t = |V(T) NY|, where (X,Y)
is the bipartition of K, , with |X| = m and |Y| = n. Assume that X = {z1,22,...,Zm},
Y ={vo,v1,- s Yn—1}, and V(T) = {&m—st1, Tm—s+2,-- - Tm } U {Un—t, Yn—t4+1,-- -, Yn—1}. Now
we consider the graph K, /T, in which all vertices in V(T') are identified as a single vertex z, as

shown in Figure [

Yo Y1 Yn-t-1

Fig. 4: Graph Kp,,n /T, where |[V(T)NX| = s and |[V(T)NY| = t. Edges labelled by s or ¢t means they are multiple

edges with multiplicity s or t.

We view the K, /T as an electrical network. Assume a unit current enters at z and leaves
at yo and each edge of K,, /T has unit resistance. Our aim is to obtain the effective resistance
R.y,-

Applying the parallel law, we can replace ¢ parallel edges between two vertices v and v by a
single edge uv with resistance %. Thus, for any ¢ with 1 <7 < m — s, all ¢ parallel edges between z
and z; can be replaced by one single edge zx; with resistance %, and for any j with 0 < j <n—t—1,
all s parallel edges between z and y; can be replaced by one single edge zy; with resistance % We
denote the resulting graph by G”. Then R,y (K n/T) = Ry, (G"). In what follows, we consider
the electrical network G with a unit current enters at z and leaves at yq.

Write N = sn + tm — st. To each edge of G” we assign a current as follows:

Ly, = wy = 2029 1<i<n—t—1,

Lo, =w =+, 1<i<m-—s,
Iziyo:w3:%*mszva 1<i<m-—s,

Ipy, = ws = =255, 1<i<m-s5,1<j7<n-—t—1.

10



First we check Kirchhoff’s current law for each vertex:

at vertex z : 14+ Y Ly=-1+(m—8)ws+wo+ (n—t— 1w =0;
uu~z
at vertex yo : 1+ Y Iyu=1—wo— (m—s)ws=0;
wuu~Yo
at vertex x; (1 <i<m—s): S Lpju=—ws4ws+ (n—t— 1wy =0;
uuU~T;
at vertex y; (1<i<n—t—1): > I,,=—w;—(m—s)wy=0.
uu~Y;

Then we check Kirchhofl’s voltage law for cycles. Similar to the proof of Theorem Bl we only
need to check those cycles in a cycle basis.

Let T be a spanning tree of G” that is the star with z1 as its center. For any e € E(G")— E(T),
we have a unique cycle C¢ consisting of e and the unique path in 7" connecting the endpoints of e.
All these cycles form a a special basis for the cycle space. We check Kirchhoff’s voltage law for all
these cycles:

for the cycle Cly,yy (2 = i = yo — 2):

Uswi ¥ Uniyo + Uyoz = Lz,Taw; + LoiyTaiyo + LyozTyoz

and for the cycle C.p,y; (2 = 2; — y; — 2), where j # 0:

Uzri + Uziyj + ijz - IZ%‘TZM + If”iyjrfbiyj + ijzryjz

1 1
Wo -+ —+wy -1 —wy-—
t S

Therefore, the resistances and currents we assigned satisfy the Kirchhoft’s laws. By the defini-

tion of effective resistance, we obtain

U, 1 sn+(m—s)(t+1)
2yo (Kman/T) = R, ") = yOZIZ 2Yyo — L=
Reyo (K /T) = Ry (G") 1 yolzyo = Wo " T m[sn+ (m — s)1]
Then, following from Theorem 4], we have
Ts,tJrl(Km,n) _ T ((Km,n/T)/ZyO)
Ts,t(Km,n) T(K’mﬂl/T)
_ T (Eman/T)/{z y0})
T(Kmn/T)
= Rzyo (Km,n/T)

sn+(m—s)(t+1)
mlsn+ (m —s)t]

11



Proof of Theorem [[L4. When 1 < s <m, and 1 <t < n, by using Theorem [Tl we obtain

t—1

Ts,i I(Km,n)
TetEomn) = Toa(Bomn) - [] 225
i1 EX) m,n
5717__ (K ) t717_ ) (K )
- Km L) - i+1,1 m,n) s,1+1 m,n
1’1( ’ ) ];[ Ti,l(Km,n) H Ts,i(Km,n)
B m—l—n—l.T(K ).S_l—[lm—i-(n—l)(i—l—l).Iﬁsn—i-(m—s)(i—i-l)
a mn o i n[m + (n — 1) m[sn + (m — s)i]
m+n—1 (Kon) m+ (n—1)s sn+ (m— s)t
= - T mymn) " :
mn onsTi m4n—1) mt~l(sn+m —s)
sn+tm — st
= ). 1)
For s = m, t = n, [l) implies that 7y, (Kpm.n) = 777;(,]({;;221. Since Ty pn(Kim,pn) is the number of

spanning trees of K, , which contain a given spanning tree, obviously 7y, (K, n) = 1. It follows
immediately that 7(K,, ) = m" n™~!. By () again, when 2 < s < m, and 2 < t < n, we have
Tst(Kmn) = (sn+tm — stym™ 1= In™==1 Theorem [ 4 holds in this case.

Since 70,0(Km.n) = T1,0(Kmn) = 701 (Kmn) = T(Kpmn) = m" " In™71 it is easy to see that
Theorem [ holds for (s,t) € {(0,0),(1,0), (0,1)}. It is not possible for s = 0,t > 2 or s > 2,¢t = 0.

So Theorem [[4] holds for all remaining cases. The proof is complete. O

Remark 2. Tt is surprising that throughout the proof of Theorem [[L4] we do not need the exact
value of 7(K,, ) as the initial data. On the contrary, we can deduce the formula 7(K,,,) =

m"~In™=1 from the proof.

Theorem [ 4] can also be deduced from Kirchoff’s Matrix-Tree Theorem. Let G be a multigraph
without loops. Let A(G) be its adjacency matrix and D(G) its diagonal matrix. We call L(G) =
D(G) — A(G) the Laplacian of G. Let L(G); ; denote the matrix obtained from L(G) by deleting

the i-th row and j-th column. Sometimes we call this submatrix a reduced Laplacian of G.

Theorem 4.2 (Kirchoff’s Matrix-Tree Theorem, [§]).
7(G) = (—1)" det(L(G);5).

Lemma 2 (Schur’s determinant identity, [I3]). Suppose M is a square matriz that can be decom-

posed into blocks as

A B
¢ D

where A and D are square, and D is invertible. Then
det(M) = det(D) - det(A — BD™'C).

Second proof of Theorem [1.4l Let K,, /T be the graph show in Figure @ It is easy to see
that
D(K,,/T) = diag{tm + sn — 2st,n,...,n,m,...,m}, (2)

m—s n—t

12



and
0 1 1
AlBmn/T)= 11 O Lim—s)x(n—t)
1 1otyx(m—s) On—t
Therefore,
L(Kmn/T)11 = nlm—s —Lm—s)x(n—t)

_1(n7t)><(m75) ml,—

By Theorem and Lemma 2] we obtain

Ts,t(Km,n) = T(Kmﬁn/T)

nIm—s -1 m-—s n—
— et (m—s)x (n—t)

_1(n7t)><(mfs) mly,—

= det(mln—t) - det (nIm—s - (_1(m75)><(n7t))(mln—t)_1(_1(n7t)><(mfs)))

_ 1
= m" " det (”Ims = (Flm-syx(n-) * (l(n—t)x(m—s))>

—t
= m"tdet (n[ms — n—l(m_s)>
m

—t - )
= m""t. (n—n——l—(m—s—l)- (_n_)) -pmmsTl
m m

= (sn+tm—st)ym" T ipmosTL

The second-to-last equality above follows from the following identity:

a b b
b a --- b

det L = (a+(n—1)b)(a—b)""1.
b b a

nxn

5 Effective resistances in nearly complete bipartite graphs

In this section, we first introduce some known results on effective resistances, and then apply them
to obtain the effective resistances of nearly complete bipartite graphs. As applications, we obtain
the number of spanning trees (Theorem [[H) and the Kirchhoff indices of nearly complete bipartite
graphs.

5.1 Known results on effective resistances

Foster [6] obtained a famous result on the sum of effective resistances for all edges as follows.

Theorem 5.1 ([6]). Let G be a connected graph with n vertices in which each edge ij receives unit

resistance. Then

Z Rij =n—1.

iJEE(G)

13



Tetali [17, 18] gave two beautiful probabilistic proofs of Foster’s Theorem. It is natural to see
this fact by considering the relation between effective resistance and the number of spanning trees
of graphs. We give a short proof of Foster’s Theorem based on Theorem 2.4

Proof of Theorem [5.3l By Theorem 24 we have R;; = T(Ci/(gij}) = T(Tc(;éi)j) for each ij € E(G).
Then

7(GJe 1
S Ry= Y 5(4):7(0) S (@),

ijeE(G) e€E(G) e€E(G)

Since for any e € E(G), 7(G/e) is the number of spanning trees of G containing edgee, > 7(G/e)
e€E(G)
is the size of the following set:

O ={(e,T):e€ E(T),T is a spanning tree of G with e € F(T)}.

For each spanning tree T', ® contains exactly n — 1 elements, implying that |®| = 7(G) - (n — 1).
Thus
> 1(Glij) = (n - 1)7(G)
ij€EE(G)
and
Z Rij =n—1.
iJEE(G)

O

It was noted in [I8] that Foster’s Theorem can be extended to graphs with arbitrary resistances.

Theorem 5.2 ([6l [18]). Let G be a connected graph with n vertices. Each edge ij has resistance

rij. Then
R;j
Z L —p—1.
. Tij
iJEE(G)
Theorem [5.2] can also be proved by considering R;; = % The proof is almost the same.

We leave it to the readers.
We call Foster’s Theorem the global rule for the effective resistance of graphs. In 2008, Chen

and Zhang [3] proved a local sum rule for the resistance of graphs.

Theorem 5.3 ([3]). Let G be a simple connected graph with n vertices. Fach edge is assigned unit

resistance. For any two vertices u and v of G,
d(u)Ruv + Z (Ruz - sz) = 23
z€N (u)
where d(u) is the degree of vertex u and N(u) is the set of neighbors of u in G.

Theorem 5.3 offers a complete set of local rules that can determine all resistance distances of a

graph. The following two theorems can be viewed as special cases of Theorem

Theorem 5.4 ([7]). Let G be a graph with two non-adjacent vertices a and b such that N(a) =

N(b). Then Ry = |N?a)‘.

Theorem 5.5. Let G be a graph with two adjacent vertices a and b such that N(a) = N(b). Then

_ 2
R%b ~ |N(a)|4+1"

14



Similar to Foster’s Theorem, Chen and Zhang’s local rules can also be extended to graphs with

arbitrary resistances.

Theorem 5.6 ([2]). Let G be a simple connected graph with n vertices. Each edge ij has resistance
rij. For any two vertices u and v of G,

1 1
— | Ruw + Z _(Rux*va):2

)
T r
€N (u) e €N (u) ur

where N (u) is the set of neighbors of u in G.

5.2 Effective resistances and the number of spanning trees of G(m,n,p)

Let G(m,n,p) denote the nearly complete bipartite graph K, , — pKs with unit resistance on
each edge, where p < min{m,n}. Assume that the vertex set of G(m,n,p) is {x1,29,..., 2} U
{y1,¥2, ..., yn} and its edge set {z;y; : 1 <i<m,1 <j <np\{z1y1, 2292, ..., TpYp}-

For convenience, let [k] = {1,2,...,k} if k € NT and [k] =0 if &k = 0.

Now we state our main result of this section as follows.

Theorem 5.7. Assume that G(m,n,p) = Ky, ., — pKa has a unit resistance on each edge. Then

the following conclusions hold:

(1) for 1 <i,j <m,

Em—1) ifi#j andi,j e [p,
2n—1 p—1

n(n—1) + p(n—1)(mn—m—n) + pn(nfl)(;ll;zpfmfner)’ Zfl € [p]’-j € [m]\[p]
2) for1<4i,j<n,
( j
T ifi#j andi,j € [p]
Ry, =1 2, if i £ 4 and i,j € [n]\[p],

m— —1 m— . . .
7r12(m—11) + p(m—l):(nmn—m—n) + pm(m—l)(mnp—m—n+p)’ Zfl € [p]’-j € [n]\[p]

(3) for1<i<mand1<j<nmn,

m-+n mn e
mn—m—-n _ (mn—m—n)(mn—m—n+p)’ Zf@ =J€ [p]’

mn:zt7'rln772n B (mnfmfn)Tn?nfmfner)’ Zf@ 7&] and i,J € [p]’
Rey, =\ &+l o SOl ifi € [pl,j € n\[p);

Ll _lenl - dfie [ml\[pl,j € [p),

L4l pmemen if i € [m]\[p],j € [n]\[p].

15



Proof. By symmetry of G(m,n,p), we set

ﬁ
.
I

vy, for i # j and i,j € [p],

ﬁ
&)
|

yiy;» for i # j and 4,5 € [p],
vy, for i # j and i, € [m]\[p],

yiy;» for i # j and 4,5 € [n]\[p],

ﬁ
w
I

<
N
I

ziy:> Tor i € [p],

ﬁ
[=2)
I

vryys for i # j and i, j € [p],
w2, for i € [pl, j € [m]\[p],
aiy;> for i € [p], j € [n]\[p],
aiy;> for i € [m\[p], j € [p],

r10 = Ry,y,, fori € [p],j € [n]\[p],

ﬁ
3
|

& o
I I
o R~ v I~ B = I~ R~ B~ = =+

ﬁ
=)
I

= Rﬂﬁiij for i € [m]\[p]vj € [n]\[p]

Claim 1. r3 = %, ry = %
Proof. Claim 1 follows directly from Theorem [£.41 O
Claim 2. 7 = 21y — 202D

Proof. Applying Theorem B3] to {z1, 22} we obtain
(n—=1)r1 4+ (r¢ —rs) = 2. (3)

Applying Theorem 53 to {y1,y2} we obtain

(m —1)ra + (r¢ —15) = 2. (4)
From (@) and (@) we have
m—1
T = n—1 T9. (5)

Applying Theorem to {x1,y1} we obtain the following two equations.

(n—=1)rs + (p—1)(r¢ — r2) + (n — p)(rs —r10) = 2. (6)

(m—=1)rs + (p = 1)(re —71) + (m —p)(ro —r7) = 2. (7)
Applying Theorem to {x1,y2} leads to two equations, we choose the following one of them.
(n—=1)re+ (re —0) + (p — 2)(r6 —r2) + (n — p)(rs — 110) = 2. (8)
@) — (@) we obtain

(n—1)(r¢ —rs) +re =0. 9)

16



Combine @) and ([@) we have

2(n—1)
ro = —/——.
mn—m—n
Then from (B)) we can see that
2(m —1)
r=—

mn—m-—n

O

Now we turn to the rest effective resistances. Since we have known the exact value of 1 and

r2, @), @) and (@) become
2

s —Te = ’
mn-—m—n

(n—1rs+(p—1re + (n—p)(rs —r10) =2+ %’

and

2(m — (p—1)

mn—m—n

(m—1Drs+(p—Drg+ (m—p)(rg —r7) =2+
Applying Theorem 5.3 to {z1, zp+1} we obtain the following two equations.
(n—Drz+(p—1)(r¢ —r9) + (n—p)(rs —r11) = 2.

nry + (ro —rs) + (p— 1) (rg — re) + (n — p)(r11 —18) = 2.

Add them up we obtain
(2n —Dr7+1rg —rs = 4.
Applying Theorem to {y1, yp+1} we obtain the following two equations.
(m—1)rio+ (p—1)(r¢ —78) + (m —p)(rg —r11) = 2.

mrio+ (rs —rs) + (p— 1)(rs —r¢) + (m — p)(r11 — r9) = 2.
Add them up we obtain
(2m — 1)7‘10 +rg —1r5 = 4.
Applying Theorem 5.3l to {z1, yp+1} we obtain
m—Drs+(p—1)0¢—1r10)+(rs—0)+(n—p—1)(rg —r4) =2,
that is,
2(m+n—p—1)

(p—1)(re —r10) + (2n —p — 1)rg = = .

Foster’s Theorem (Theorem (B.1])) shows

p(p — 1)rg + p(n — p)rs + p(m — p)ro + (m — p)(n — p)ri1 =m +n — 1.

17
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Solving the system of linear equations consists of Eq. (8)—(14), we get the following results we

need:
re = m—+n o mn
5 = mn—m-n (mn—m—n)(mn—m—n+p)’
re = m+n—2
6 = mn—m—-n (mn—m—n)(mn—m—n+p)’

— 2n—1 p—1 n—p
e = n(nflz + ;n((nfl))(mnfnzfn) )—i(_ pn(;zfl)(mnfmfner)’
_ 1 p—1)(m—1 m—p)(m—1
8 = m + p(mn—m—n) + pm(mn—m—n+p)’
(p—D(n=1)_  __(n—p)(n—1)
p(mn—m—n) pn(mn—m—n+p)’
— _2m—1 p—1 m—p
10 = m(m—1) + p(m—1)(mn—m-—n) + pm(m—1)(mn—m—n+p)’

1,1
=+ o -

1
7“9:;—’—

mn—m—n
mn(mn—m—n-+p) "’

Now we turn to the number of spanning trees of G(m,n,p) and prove Theorem

Proof of Theorem Recall Theorem 24, we have T(G(m,np)/Tpr1ypr) ri1, implying that

7(G(m,n,p))
T(G(m,n,p+1))  _ 7(G(m,n,p)) = 7(Gm, n,p)/Tpr1Ypt1)
7(G(m,n,p)) 7(G(m,n,p))
= 1—-ry
_ 1 l - l mn—m-—mn

m n  mn(mn—m-—n+p)
(mn—m—n)(mn—m-—-n+p+1)

mn(mn —m —n+ p)

Therefore,

p—1 T(G(m,n,k+1)) (Gl
B (mn—mfn)p(mn—m—nqu).T
N mPnP(mn —m —n) (Km.n)

= (mn—m—n+p)(mn—m— n)P—lmn—p—lnm—p_1.

5.3 Kirchhoff indices of G(m,n,p)

In 2016, Shi and Chen obtained the Kirchhoff index of G(n,n,p) = K, , — pKs as follows.

Theorem 5.8 ([I6]). Let G be a graph constructed by removing p disjoint edges from the complete
bipartite graph Kp n(p <n). Then

np(2n? — 5n + 2p) (n —p)(2n? —5n +2p + 2)
(n—2)(n?—2n+p) n?—2n+p

Kf(G) = +2(n—1).

Particularly, if p = n, we have

Kf(G):%—i—zm—i— 1.

Since we have obtained effective resistances for G(m, n, p), the Kirchhoff index of G(m,n,p) is

an obvious corollary of Theorem [5.7] which extends Shi and Chen’s results.
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Corollary 3.

Gl — man 1y P02 42 n g 1) (0= 1)
B pmn p(m —p) (m—p)p—1)
(mn—m—n)(mn—m—n+p) n—1 (n—=1)(mn—m—mn)
(m —p)(n —p) p(n —p) (n—p)lp—1)
+n(n—1)(mn—m—n+p) m—1 +(m71)(mnfmfn)
. (m —p)(n—p)

m(m —1)(mn —m —n+p)

Proof.

K f(G(m,n,p))

> Ru

{u,v}:u,veV(G)

= Z Ru’u + Z Ruv

{u,v}:uveE(G) {u,v}:uvg E(G)

P P m-—p n—op
= +n—1+ + + + +
m-+n (2) 1 (2) ) ( 9 ) T3 ( 5 ) T4 4+ Drs

+p(m —p)r7 + p(n —p)rio
p20n+n—2)+2p+ (m=p)m=1)  (n=pn-1)

= mabn—l mn—m-—n n m
B pmn p(m —p) (m—p)(p—1)
(mn—m—n)(mn—m—n+p) n—1 (n—1)(mn—m—n)
(m —p)(n —p) p(n —p) (n—p)p-1)
jLn(n—1)(77171—771—71—1—]))jL m—1 Jr(m—l)(mn—m—n)
(m —p)(n —p)

+

m(m —1)(mn —m —n+p)
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