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Abstract

A graph is sub-unicyclic if it contains at most one cycle. We also say that a graph G is k-apex
sub-unicyclic if it can become sub-unicyclic by removing k of its vertices. We identify 29 graphs
that are the minor-obstructions of the class of 1-apex sub-unicyclic graphs, i.e., the set of all
minor minimal graphs that do not belong in this class. For bigger values of k, we give an exact
structural characterization of all the cactus graphs that are minor-obstructions of k-apex sub-
unicyclic graphs and we enumerate them. This implies that, for every k, the class of k-apex
sub-unicyclic graphs has at least 0.34 · k−2.5(6.278)k minor-obstructions.

Keywords: Graph Minors, Obstruction set, Sub-unicyclc graphs.

1 Introduction

A graph is called unicyclic [17] if it contains exactly one cycle and is called sub-unicyclic if it
contains at most one cycle. Notice that sub-unicyclic graphs are exactly the subgraphs of unicyclic
graphs.

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained by some
subgraph of G after a series of contractions. We say that a graph class G is minor-closed if every
minor of every graph in G also belongs in G. We also define obs(G), called the minor-obstruction
set of G, as the set of minor-minimal graphs not in G. It is easy to verify that if G is minor-closed,
then G ∈ G iff G excludes all graphs in obs(G) as a minor. Because of Roberson and Seymour
theorem [26], obs(G) is finite for every minor-closed graph class. That way, obs(G) can be seen as
a complete characterization of G via a finite set of forbidden graphs. The identification of obs(G)
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for distinct minor-closed classes has attracted a lot of attention in Graph Theory (see [1, 22] for
related surveys).

There are several ways to construct minor-closed graph classes from others (see [22]). A popular
one is to consider the set of all k-apices of a graph class G, denoted by Ak(G), that contains all
graphs that can give a graph in G, after the removal of at most k vertices. It is easy to verify that
if G is minor closed, then the same holds for Ak(G) as well, for every non-negative integer k. It
was also proved in [2] that the construction of obs(Ak(G)), given obs(G) and k, is a computable
problem.

A lot of research has been oriented to the (partial) identification of the minor-obstructions of
the k-apices, of several minor-closed graph classes. For instance, obs(Ak(G)) has been identified
for k ∈ {1, . . . , 7} when G is the set of edgeless graphs [5, 10, 11], and for k ∈ {1, 2} when G is the
set of acyclic graphs [9]. Recently, obs(A1(G)) was identified when G is the class of outerplanar
graphs [7] and when G is the class of cactus graphs (as announced in [14]). A particularly popular
problem is identification of obs(Ak(G)) when G is the class of planar graphs (see e.g., [21, 22, 29]).
The best advance on this question was done recently by Jobson and Kézdy [18] who identified all
2-connected minor-obstructions of 1-apex planar graphs (see also [23, 25]). Another recent result
is the identification of obs(A1(P)) where P is the class of all pseudoforests, i.e., graphs where all
connected components are sub-unicyclic [20].

A different direction is to upper-bound the size of the graphs obs(Ak(G)) by some function of
k. In this direction, it was proved in [16] that the size of the graphs in obs(Ak(G)) is bounded
by a polynomial on k in the case where the obs(G) contains some planar graph (see also [30]).
Another line of research is to prove lower bounds to the size of obs(Ak(G)). In this direction
Michael Dinneen proved in [8] that, if all graphs in obs(G) are connected, then |obs(Ak(G))| is
exponentially big. To show this, Dinneen proved a more general structural theorem claiming that,
under the former connectivity assumption, every connected component of a non-connected graph
in obs(Ak(G)) is a graph in obs(Ak′(G)), for some k′ < k. Another way to prove lower bounds to
|obs(Ak(G))| is to completely characterize, for every k, the set obs(Ak(G)) ∩ H, for some graph
class H, and then lower bound |obs(Ak(G))| by counting (asymptotically or exactly) all the graphs
in obs(Ak(G))∩H. This last approach has been applied in [28] when G is the class of acyclic graphs
and H is the class of outerplanar graphs (see also [13,19]).

Our results. In this paper we study the set obs(Ak(S)) where S is the class of sub-unicyclic
graphs. Certainly the class S is minor-closed (while this is not the case for unicyclic graphs). It is
easy to see that obs(S) = {2K3,K

−
4 , Z}, where 2K3 is the disjoint union of two triangles, K−4 is

the complete graph on 4 vertices minus an edge, and Z the butterfly graph, obtained by 2K3 after
identifying two vertices of its triangles (we call the result of this identification central vertex of Z).

Our first result is the identification of obs(A1(S)), i.e., the minor-obstruction set of all 1-apices
of sub-unicyclic graphs (Section 3). This set contains 29 graphs that is the union of two sets L0 and
L1, depicted in Figures 1 and 6 respectively. An important ingredient of our proof is the notion
of a nearly-biconnected graph, that is any graph that is either biconnected or it contains only one
cut-vertex joining two blocks where one of them is a triangle. We first prove that L0 is the set
of minor-obstructions in obs(Ak(S)) that are not nearly-biconnected. The proof is completed by
proving that the nearly-biconnected graphs in obs(A1(S)) are also minor-obstructions for 1-apex
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pseudoforests, i.e., members of obs(A1(P)). As this set is known from [20], we can identify the
remaining obstructions in obs(A1(S)), that is the set L1, by exhaustive search.

Our second result is an exponential lower bound on the size obs(Ak(S)) (Section 4). For
this we completely characterize, for every k, the set obs(Ak(S)) ∩ K where K is the set of all
cacti (graphs whose all blocks are either edges or cycles). In particular, we first prove that each
connected cactus obstruction in obs(Ak(S)) can be obtained by identifying non-central vertices of
k + 1 butterfly graphs and then we give a characterization of disconnected cacti in obs(Ak(S)) in
terms of obstructions in obs(Ak′(S)) for k′ < k (we stress that here the result of Dinneen in [8]
does not apply immediately, as not all graphs in obs(S) are connected).

After identifying obs(Ak(S))∩K, the next step is to count the number of its elements (Section 5).
To that end, we employ the framework of the Symbolic Method and the corresponding techniques
of singularity analysis, as they were presented in [15]. The combinatorial construction that we
devise relies critically on the Dissymmetry Theorem for Trees, by which one can move from the
enumeration of rooted tree structures to unrooted ones (see [3] for a comprehensive account of these
techniques, in the context of the Theory of Species).

|obs(Ak(S)) ∩ K| ∼ c·k−5/2 · xk,

where c ≈ 0.33995 and x ≈ 6.27888. This provides an exponential lower bound for |obs(Ak(S))|.

2 Preliminaries

Sets, integers, and functions. We denote by N the set of all non-negative integers and we
set N+ = N \ {0}. Given two integers p and q, we set [p, q] = {p, . . . , q} and given a k ∈ N+

we denote [k] = [1, k]. Given a set A, we denote by 2A the set of all its subsets and we define(A
2
)

:= {e | e ∈ 2A ∧ |e| = 2}. If S is a collection of objects where the operation ∪ is defined, then
we denote

⋃⋃⋃⋃⋃⋃⋃⋃⋃
S =

⋃
X∈S X.

Graphs. All the graphs in this paper are finite, undirected, and without loops or multiple edges.
Given a graph G, we denote by V (G) the set of vertices of G and by E(G) the set of the edges
of G. We refer to the quantity |V (G)| as the size of G. For an edge e = {x, y} ∈ E(G), we
use instead the notation e = xy, that is equivalent to e = yx. Given a vertex v ∈ V (G), we
define the neighborhood of v as NG(v) = {u | u ∈ V (G), uv ∈ E(G)}. If X ⊆ V (G), then we write
NG(X) = (

⋃
v∈X NG(v))\X. The degree of a vertex v in G is the quantity |NG(v)|. Given two graphs

G1, G2, we define the union of G1, G2 as the graph G1 ∪G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).
A subgraph of a graph G = (V,E) is every graph H where V (H) ⊆ V (G) and E(H) ⊆ E(G).

If S ⊆ V (G), the subgraph of G induced by S, denoted by G[S], is the graph (S,E(G) ∩
(S

2
)
). We

also define G \ S to be the subgraph of G induced by V (G) \ S. If S ⊆ E(G), we denote by G \ S
the graph (V (G), E(G) \S). Given a vertex x ∈ V (G) we define G \ x = G \ {x} and given an edge
e ∈ E(G) we define G \ e = G \ {e}.

An edge e ∈ E(G) is a bridge of G if G has less connected components than G \ e. Given a set
S ⊆ V (G), we say that S is a separator of G if G has less connected components than G \ S. Let
G be a graph and S ⊆ V (G) and let V1, . . . , Vq be the vertex sets of the connected components of
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G \S. We define C(G,S) = {G1, . . . , Gq} where, for i ∈ [q], Gi is the graph obtained from G[Vi ∪S]
if we add all edges between vertices in S. Given a vertex x ∈ V (G) we define C(G, x) = C(G, {x}).

A vertex v ∈ V (G) is a cut-vertex of G if {v} is a separator of G. A block of a graph G is a
maximal biconnected subgraph of G.

By Kr we denote the complete graph on r vertices, also known as r-clique. Similarly, by Kr1,r2

we denote the complete bipartite graph of which one part has r1 vertices and the other r2. We
denote by K−r the graph obtained by Kr after removing any edge. For an r ≥ 3, we denote by Cr
the cycle on r vertices. Given a graph G and an r ≥ 1 we denote by rG the graph with r connected
components, each isomorphic to G.

Given a graph class G and a graph G, a vertex v ∈ V (G) is a G-apex of G if G \ v ∈ G.

Minors. We define G/e, the graph obtained from the graph G by contracting an edge e = xy ∈
E(G), to be the graph obtained by replacing the edge e by a new vertex ve which becomes adjacent
to all neighbors of x, y (apart from y and x). Given two graphs H and G we say that H is a minor
of G, denoted by H ≤ G, if H can be obtained by some subgraph of G after contracting edges. We
say that H is a proper minor of G if it is a minor of G but is not isomorphic to G. Given a set H
of graphs, we write H ≤ G to denote that ∃H ∈ H : H ≤ G.

Sub-unicyclic Graphs. We now resume some basic concepts that we already mentioned in the
introduction. A sub-unicyclic graph is a graph that contains at most one cycle. A graph is a
pseudoforest if all its connected components are sub-unicyclic. We denote by S (resp. P) the set of
all sub-unicyclic graphs (resp. pseudoforests). The study of the class P dates back in [6,24]. Clearly,
S ⊆ P and therefore Ak(S) ⊆ Ak(P), for every k ∈ N. For simplicity, instead of saying that a graph
is 1-apex sub-unicyclic/pseudoforest/acyclic we just say apex sub-unicyclic/pseudoforest/acyclic.

Given a graph G and a set S ⊆ V (G) we say that S is an apex sub-unicyclic set (resp. apex
forest set) of G if G \ S is sub-unicyclic (resp. forest). If |S| ≤ k, for some k ∈ N, then we say that
S a k-apex sub-unicyclic set (resp. k-apex forest set) of G if G \ S is sub-unicyclic (resp. forest).

3 Minor-obstructions for apex sub-unicyclic graphs

In this section we will identify the set obs(A1(S)). Part of it will be the set L0 containing the
graphs depicted in Figure 1.

3.1 Structure for general obstructions

We need the following lemma on the general structure of the obstructions of Ak(S).

Lemma 3.1. Let G ∈ obs(Ak(S)), k ≥ 0. Then the following hold:

1. The minimum degree of a vertex in G is at least 2.

2. G has no bridges.

3. All of its vertices of degree 2 have adjacent neighbors.

4



(a) O0
1 (b) O0

2 (c) O0
3 (d) O0

4 (e) O0
5 (f) O0

6

(g) O1
1 (h) O1

2 (i) O1
3 (j) O1

4

Figure 1: The set L0 of obstructions for A1(S) that are not nearly-biconnected.

Proof. It is clear that every vertex and every edge of G participates in a cycle. Thus, we get (1)
and (2). Regarding (3), suppose, to the contrary, that there exists a vertex v ∈ V (G) of degree 2
whose neighbors are no adjacent, and let e ∈ E(G) be an edge incident to v, i.e. e = uv for some
u ∈ V (G). As G ∈ obs(Ak(S)) we have that G′ := G/e ∈ Ak(S). Let S be a k-apex sub-unicyclic
set of G′ and ve the vertex formed by contracting e. Observe that, every cycle in G that contains
v also contains u and so if ve ∈ S then (S \ {ve}) ∪ {u} is a k-apex sub-unicyclic set of G, a
contradiction. Therefore, ve /∈ S and so S ⊆ V (G). Since the neighbors of v are not adjacent, the
contraction of e can only shorten cycles and not destroy them. Hence, S is a k-apex sub-unicyclic
set of G, a contradiction.

3.2 The disconnected case

We set O0 = {O0
1, . . . , O

0
6}. We begin with an easy observation:

Observation 3.2. Let G be a connected graph such that obs(S) ≤ G. Then, obs(S) \ {2K3} ≤ G.

Lemma 3.3. If G ∈ obs(A1(S)) and G is not connected, then G ∈ O0.

Proof. Notice first that O0 ⊆ obs(A1(S)). Suppose, to the contrary, that there exists some discon-
nected graph G ∈ obs(A1(S)) \ O0. Note that due to Lemma 3.1 each connected component of G
contains at least one cycle and so if G has more than two connected components, it follows that
O0

1 ≤ G, a contradiction. Therefore, G has exactly two connected components, namely G1, G2.

Claim 1: One of G1, G2 is isomorphic to K3.

Proof of Claim 1: Suppose, towards a contradiction, that G1, G2 6∈ S. Then, since both G1, G2 are
connected, Observation 3.2 implies that obs(S) \ {2K3} ≤ G1, G2 and therefore {O0

2, O
0
3, O

0
4} ≤ G,

a contradiction. Hence, one of G1, G2 is sub-unicyclic and therefore, by Lemma 3.1, isomorphic to
K3. Claim 1 follows.

By Claim 1, we can assume, without loss of generality, that G2 ∼= K3.

Claim 2: G1 biconnected but not triconnected.
Proof of Claim 2: If G1 is triconnected then K4 ≤ G1, and therefore O0

5 ≤ G, a contradiction. Now,
suppose that there exists a cut-vertex x of G1. Note that, by Lemma 3.1, it follows that every
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H ∈ C(G1, x) contains at least one cycle. If x belongs to every cycle of G1, then x is an S-apex
vertex of G, which is a contradiction. Therefore, there exists an H ∈ C(G1, x) such that H \ x
contains a cycle C which together with a cycle in some H ′ ∈ C(G1, x) \ {H} and G2 form O0

1 as a
minor of G, a contradiction. Therefore, G is biconnected. Claim 2 follows.

Claim 2 implies that there exists a 2-separator S = {x, y} of G1 such that every H ∈ C(G1, S)
is a biconnected graph.
Observation: Every cycle in G1 contains either x or y. Indeed, suppose to the contrary that there
exists a cycle C ⊆ G1 disjoint to both x, y and consider an H ∈ C(G1, S) such that C 6⊆ H. Then,
due to Lemma 3.1, G[V (H)] contains a cycle and together with C and G2 form O0

1 as a minor of
G, a contradiction.

C1

C2

C1

C2

x

y

H ′H

x

y

H ′H

Figure 2: The cycles C1, C2 in the last part of the proof of Lemma 3.3

Since x, y are not S-apex vertices of G, then, apart from G2, there exist two cycles C1, C2 in
G1 such that y /∈ V (C1) and x /∈ V (C2). The above Observation implies that x ∈ V (C1) and
y ∈ V (C2). Due to O0

1-freeness of G, we have that V (C1) ∩ V (C2) 6= ∅ and therefore there exists
an H ∈ C(G1, S) such that C1 ∪ C2 ⊆ H. Consider, now, an H ′ ∈ C(G1, S) different from H and
observe that by Lemma 3.1, G[V (H ′)] contains a cycle. Then, if C1, C2 share more than one vertex,
O0

5 ≤ G, while if they share only one vertex, O0
6 ≤ G, a contradiction in both cases (see Figure 2).

Lemma follows.

3.3 The connected cases

Lemma 3.4. If G is a connected graph in obs(A1(S)), with at least three cut-vertices, then G ∼= O1
1.

Proof. Consider a connected graph G ∈ obs(A1(S)) with at least three cut-vertices. We first
exclude the case where there is a block B of G containing three cut-vertices x, y, z. Indeed, due to
Lemma 3.1, each block of G contains a cycle and this holds for B and the blocks of G that share
a cut-vertex with B. This implies the existence of O0

1 as a proper minor of G, a contradiction as
O0

1 ∈ obs(A1(S)).
We just proved that G contains 4 blocks B1, B2, B3, and B4 such that V (B1) ∩ V (B2) = {x},

V (B2) ∩ V (B3) = {y}, V (B3) ∩ V (B4) = {z} are singletons each consisting of a cut-vertex. In
this case, again by Lemma 3.1, each block in {B1, B2, B3, B4} contains a cycle, which implies that
O1

1 ≤ G. As O1
1 ∈ obs(A1(S)), it follows that G ∼= O1

1.

Lemma 3.5. If G is a connected graph in obs(A1(S)) with exactly two cut-vertices, then G ∈
{O1

2, O
1
3}.
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Proof. Observe first that {O1
2, O

1
3} ⊆ obs(A1(S)).Suppose, to the contrary, that there is a graph

G ∈ obs(A1(S)) \ {O1
2, O

1
3} that has exactly two cut-vertices, namely u1 and u2. Let B be the

(unique) block containing the two cut-vertices u1, u2 and let

H1 =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
{H ∈ C(G, u1) : u2 /∈ V (H)} and H2 =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
{H ∈ C(G, u2) : u1 /∈ V (H)}.

Keep in mind that G cannot contain any graph in O0 as a minor because, due to the connectivity
of G, it would contain it as a proper minor, a contradiction to the fact that O0 ⊆ obs(A1(S)).

We prove a series of claims:

Claim 1: Every cycle in G contains either u1 or u2.

Proof of Claim 1: Suppose, to the contrary, that there exists a cycle C not containing any of the
cut-vertices. We distinguish two cases:
Case 1: C is in B. Note that, due to Lemma 3.1, each block contains a cycle. Therefore the cycle
C along with two more cycles, one from H1 and one from H2, form O0

1 as a proper minor of G, a
contradiction.
Case 2: C is either in H1 or H2. Suppose, without loss of generality, that C is in some block of
H1. Then, due to Menger’s theorem, there exist two paths from C to u1 that intersect only in u1.

Since each block of G contains at least one cycle, we have that C together with the aforementioned
paths, the block B and any block in H2, form O1

3 as minor of G, a contradiction (See Figure 3).
Claim 1 follows.

C u1 u2

Figure 3: The cycle C in Case 2 of the proof of Claim 1.

Claim 2: Both H1 and H2 are isomorphic to K3.

Proof of Claim 2: Suppose, towards a contradiction, that one of H1, H2, say H1, is not sub-
unicyclic (we will use Lemma 3.1). Since H1 is connected, then, by Observation 3.2, we have that
obs(S)\{2K3} ≤ H1. Also, since u1 is not an S-apex vertex of G and since, due to Claim 1, all cycles
of H1 contain u1, then G \ V (H1) 6∈ S. Now, since G \ V (H1) is connected then Observation 3.2
implies that obs(S) \ {2K3} ≤ G \ V (H1). Hence, {O0

2, O
0
3, O

0
4} ≤ G, a contradiction. Therefore

H1, H2 ∈ S and, by Lemma 3.1, Claim 2 follows.

Since u1 is not a S-apex of G, then Claim 2 implies that (apart from H2) there exists a cycle
C2 in B \ u1, which by Claim 1, contains u2. The same holds for u2, i.e. there exists a cycle C1
in B \ u2 that contains u1. Then O0

3 ≤ G, if C1, C2 are disjoint, O1
1 ≤ G, if C1 and C2 share

exactly one vertex, and O1
2 ≤ G, if C1, C2 share at least 2 vertices, a contradiction in all cases (see

Figure 4). Lemma follows.
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u1 u2 u1 u2 u1 u2

Figure 4: The ways the cycles C1, C2 may intersect in the last part of the proof of Lemma 3.5.

Nearly-biconnected graphs. We say that a graph G is nearly-biconnected if it is either bicon-
nected or it contains exactly one cut-vertex x and C(G, x) = {H,K3} where H is a biconnected
graph.

Lemma 3.6. Let G ∈ obs(A1(S)) be a connected graph that contains exactly one cut-vertex. Then
either G ∼= O1

4 or G is nearly-biconnected.

Proof. Notice that O1
4 ∈ obs(A1(S)). Let G be a graph in obs(A1(S)) \ {O1

4}. As in the the proof
of Lemma 3.5, keep in mind that G does not contain any graph in O0 as a minor.

We first prove the following claim.

Claim 1: There exists a unique component in C(G, x) which contains a cycle disjoint from x.

Proof of Claim 1: First, we easily observe that there exists such a component in C(G, x). Suppose
that there exist two different components in C(G, x), each of which contains a cycle disjoint to x.
Then, due to Menger’s theorem, for each of said cycles there exist two paths from x to the cycle
being considered, intersecting only in x. But then O1

4 is formed as a minor of G, a contradiction
(see Figure 5). Claim follows.

x

Figure 5: The configuration in the proof of Claim 1.

Let H ∈ C(G, x) be the unique, by Claim 1, component in C(G, x) which contains a cycle disjoint
to x. Also, let D =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
{H ′ ∈ C(G, x) : H ′ 6= H}.

Claim 2: D ∼= K3
Proof of Claim 2: We argue that D ∈ S, which, due to Lemma 3.1, implies that D ∼= K3.

Suppose, to the contrary, that D 6∈ S. Then, since D is connected, Observation 3.2 implies that
obs(S) \ {2K3} ≤ D. By Claim 1, every cycle in D contains x and therefore, since x is not an
S-apex vertex of G, H \ x contains at least two cycles. Then, taking into account the connectivity
of H \ x, Observation 3.2 implies that obs(S) \ {2K3} ≤ H \ x. Hence, {O0

2, O
0
3, O

0
4} ≤ G, a

contradiction. Claim 2 follows.

Claim 2 implies that G is nearly-biconnected, as required.
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3.4 Borrowing obstructions from apex-presudoforests

We need the following fact:
Fact 3.7. The graphs in obs(A1(P)) that are nearly-biconnected and belong in obs(A1(S)) are the
graphs in Figure 6.

Figure 6: The set L1 of the 19 nearly-biconnected minor-obstructions for A1(S) that are also
obstructions for A1(P).

The set obs(A1(P)) consists of 33 graphs and has been identified in [20]. The correctness
of Fact 3.7 can be verified by exhaustive check, considering all nearly-biconnected graphs in
obs(A1(P)) (they are 26) and then filter those that belong in obs(A1(S)). For this, one should
pick those that become apex sub-unicyclic after the contraction or removal of each of their edges.
Notice that the fact that these graphs are not apex-sub-unicyclic follows directly by the fact that
they are not apex-pseudoforests (as members of obs(A1(P))) and the fact that S ⊆ P. The choice
of L1 is justified by the next lemma.

Lemma 3.8. If G is a nearly-biconnected graph in obs(A1(S)), then G ∈ obs(A1(P)).

Proof. Let G be a graph satisfying the assumptions of the lemma. We need to show that G /∈ A1(P)
and that for every proper minor H of G it holds that H ∈ A1(P). Notice that the latter is trivial
since A1(S) ⊆ A1(P) and therefore it remains to show that G /∈ A1(P). We begin with the
following claim:

Claim: If x ∈ V (G) is a P-apex of G then, then x is a cut-vertex of G.
Proof of Claim: Consider a vertex x ∈ V (G). Since G ∈ obs(A1(S)), x is not an S-apex of G and
so there exist two cycles C1, C2 in G \ x. If x is not a cut-vertex of G, then G \ x is connected and
therefore C1, C2 are in the same connected component of G \ x. Hence, G \ x is not a pseudoforest
and Claim follows.

Suppose, towards a contradiction, that G ∈ A1(P). Then, there exists a vertex x ∈ V (G) such
that G \ x is a pseudoforest. From the above Claim, x is a cut-vertex of G and since G is nearly
biconnected, C(G, x) = {H,K3} where H is a biconnected graph. Therefore, H \ x is a connected
component of G \x while the other connected component of G \x is a single edge. Therefore, G \x
contains at most one cycle which implies that G \ x ∈ S, a contradiction.

9



Figure 7: An example of a graph G ∈ Z3 and its block-cut-vertex tree TG with the P3-subgraphs
corresponding to the butterflies composing G highlighted.

We are now ready to prove the main result of this section.

Theorem 3.9. obs(A1(S)) = L0 ∪ L1.

Proof. Recall that L0 = O0 ∪ {O1
1, O

1
2, O

1
3, O

1
4}. Notice that L0 ∪ L1 ⊆ obs(A1(S)). Let G ∈

obs(A1(S)). If G is disconnected, then, from Lemma 3.3, G ∈ O0. If G is connected and has
at least three cut-vertices, then from Lemma 3.4, G ∼= O1

1. If G is connected and has exactly
two cut-vertices, then from Lemma 3.5, G ∈ {O1

2, O
1
3}. If G is connected with exactly one a cut-

vertex and is not nearly-biconnected then, from Lemma 3.6, G ∼= O1
4. We just proved that if G

is not nearly-biconnected, then G ∈ L0. On the other side, if G is nearly-biconnected, then from
Lemma 3.8, G ∈ obs(A1(P)), therefore, from Fact 3.7, G ∈ L1, as required.

4 Structural Characterisation of Cactus Obstructions

Recall that a cactus graph is a graph where all its blocks are either edges or cycles. Equivalently, a
graph is a cactus graph, if it does not contain K−4 as a minor. We denote by K the set of all cactus
graphs. In this section we provide a complete characterization of the class of obs(AkS) ∩ K, i.e.,
the obstructions for k-apex sub-unicyclic graphs that are cactus graphs.

Given a graph G and two vertices x and y of G, we call a pair (x, y) ∈ (V (G))2 anti-diametrical
if there is no other pair (x′, y′), where the distance between x′ and y′ in G is bigger than the distance
in G between x and y. Notice that if G is a tree, the two vertices in any anti-diametrical pair of G
are both leaves.

Block-cut-vertex Tree. Let G be a connected graph. We denote by B(G) the set of its blocks
and by C(G), the set of its cut-vertices. We define the graph TG = (B(G) ∪ C(G), E) where
E = {{B, c} | B ∈ B(G), v ∈ C(G), v ∈ V (B)}. Notice that TG is a tree, called the block-cut-vertex
tree of G (or bc-tree in short). Furthermore, note that all its leafs are blocks of G. We call a block
of G leaf-block if B is a leaf of TG. We call a leaf-block B of G peripheral if there is some leaf-block
B′ of G such that the pair (B,B′) is an anti-diametrical pair of TG.

4.1 Characterization of connected cactus-obstructions

Butterflies and Butterfly-Cacti. We denote by Z the butterfly graph. We will frequently refer
to graphs isomorphic to Z simply as butterflies. Given a butterfly Z we call all its four vertices
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that have degree two, extremal vertices of Z and the unique vertex of degree four, central vertex of
Z.

Let k be a positive integer. We recursively define the graph class of the k-butterfly-cacti, denoted
by Zk, as follows: We set Z1 = {Z}, where Z is the butterfly graph, and given a k ≥ 2 we say that
G ∈ Zk if there is a graph G′ ∈ Zk−1 such that G is obtained if we take a copy of the butterfly
graph Z and then we identify one of its extremal vertices with a non-central vertex of G′. The
central vertices of the obtained graph G are the central vertices of G′ and the central vertex of Z.
If G ∈ Zk, we denote by K(G) the set of all central vertices of G.

We need the following observation.
Observation 4.1. For every k ≥ 1 and for every G ∈ Zk, K(G) is the unique k-apex forest set of G.

Proof. It is easy to observe that K(G) is a k-apex forest set of G. To prove that K(G) is unique,
suppose to the contrary that k is the minimum number such that there is a G ∈ Zk and a k-apex
forest set S ⊆ V (G) where S 6= K(G). Recall that G is obtained by identifying a non-central vertex
of some member G′ of Zk−1 with an extremal vertex of some graph H isomorphic to the butterfly
graph Z. Let now C be the cycle of H in G that contains no vertices of G′. By the minimality of
k, S \ V (C) = K(G′) and therefore S ∩ V (C) must contain only one vertex, namely x, which must
also belong to the cycle of H different from C. This implies that x is the central vertex of Z, thus
S = K(G), a contradiction.

The objective of this section is to prove the following theorem.

Theorem 4.2. For every non-negative integer k, the connected graphs in obs(AkS)∩K are exactly
the graphs in Zk+1.

The following lemma proves one direction of Theorem 4.2.

Lemma 4.3. If G ∈ Zk+1, k ≥ 0, then G ∈ obs(Ak(S)).

Proof. We proceed by induction on k. The lemma clearly holds for k = 0. Let G ∈ Zk+1 for some
k ≥ 1 and assume that the lemma holds for smaller values of k. We argue that G is not k-apex
sub-unicyclic while all its proper minors are. By the construction of G, we know that G is the result
of the identification of an extremal vertex of a new copy of the butterfly graph Z and a non-central
vertex of some graph G′ ∈ Zk. By the induction hypothesis, we have that G′ ∈ obs(Ak−1(S)). Let
C (resp. C ′) be the cycle of the new copy of Z in G that is (resp. is not) a leaf-block of G.

Claim 1: G is not k-apex sub-unicyclic.
Proof of Claim 1: Suppose, towards a contradiction, that G is k-apex sub-unicyclic and therefore
there exists some k-apex sub-unicyclic set S of G.
Case 1: S ∩ V (C) 6= ∅. We set S′ = S ∩ V (G′). Then |S′| ≤ k − 1 and we observe that G′ \ S′ is
sub-unicyclic contradicting the fact that G′ ∈ obs(Ak−1(S)).
Case 2: S ∩ V (C) = ∅. Then S is a k-apex forest set of G \ V (C) that should contain at least
one vertex of C ′. This means that G′ contains a k-apex forest set that is different from K(G′), a
contradiction to Observation 4.1.

Claim 2: Every proper minor of G is k-apex sub-unicyclic.

11



Proof of Claim 2: Consider a minor H of G created by the contraction (or removal) of some edge
e of G. If e is an edge of the copy of Z in G, then observe that K(G′) is a k-apex sub-unicyclic
set of H and so the claim is proven. Suppose now that e is an edge of G′ in G and let H ′ be the
minor of G′ created after contracting (or removing) e in G′. Since G′ ∈ obs(Ak−1(S)), there exists
a (k − 1)-apex sub-unicyclic set S′ of H ′. But then S′, together with the central vertex of Z, form
a k-apex sub-unicyclic set of H, as required.

From the above two claims, we conclude that G ∈ obs(Ak(S)).

The following is a direct consequence of the application of Lemma 3.1 on cacti.
Observation 4.4. Let G ∈ obs(Ak(S)) ∩ K, k ≥ 0. Then all blocks of G are triangles.

Lemma 4.5. Let k ≥ 1, G be a connected cactus graph in obs(Ak(S)) and let B be some peripheral
block of G. Then the (unique) neighbour c of B in TG has degree 2.

Proof. Notice that TG has diameter at least 3 since otherwise G has a unique cut-vertex that is an
1-apex forest set, and therefore also an 1-apex sub-unicyclic set, of G, contradicting the fact that
G /∈ A1(S). Suppose, towards a contradiction, that c has degree at least three in TG. Since TG has
diameter at least 3 and B is a peripheral leaf, there is exactly one neighbour, say B′, of c in TG that
is not a leaf-block of G. Let e ∈ E(B′) be some edge of said neighbour. Since G ∈ obs(Ak(S)),
we have that G′ = G \ e contains a k-apex sub-unicyclic set S. If c 6∈ S, S must contain at least
one vertex from a leaf-block of G that contains c. This follows from the assumption that c has at
least two neighbours in TG which are leaf-blocks of G. But then the set S′ which is constructed by
replacing these vertices with c is also a k-apex sub-unicyclic set of G′. Therefore, we can assume
that c ∈ S. But then S is also an k-apex sub-unicyclic set for G, as c ∈ V (B′), a contradiction.

Lemma 4.6. Let k ≥ 1 and G be a connected cactus graph in obs(Ak(S)). Let also B be a
peripheral block of G. Then TG contains a path of length 3 whose one endpoint is B and its
internal vertices are of degree 2.

Proof. Let c be the unique neighbour of B in TG. By Lemma 4.5, there exists a unique block B′ of
G, different from B, that is a neighbour of c in TG. Observe that it suffices to prove that B′ has
degree 2 in TG.

Suppose, towards a contradiction, that the block B′ has 3 neighbours c, c′, c′′ in TG. Since B is
a peripheral leaf, we have that at least one of c′, c′′, say c′′, is such that all its neighbours in TG,
except for B′, are leaf-blocks. Let B′′ be a neighbour of c′′ in TG different than B′. Consider now
some edge e ∈ E(B′). Since G ∈ obs(Ak(S)), we have that G′ = G \ e must contain a k-apex
sub-unicyclic set S. We can assume that S contains one of c, c′′. Indeed, we have that S contains a
vertex x ∈ V (B) ∪ V (B′′). If x ∈ V (B) then the set S′ = (S \ {x}) ∪ {c} is a k-apex sub-unicyclic
set of G′. Respectively, if x ∈ V (B′′) then the set S′ = (S \{x})∪{c′′} is a k-apex sub-unicyclic set
of G′. Assume then that S is a k-apex sub-unicyclic set of G′ such that either c or c′′ is in S. Then,
S is also a k-apex sub-unicyclic set of G since both c and c′′ are vertices of B′, a contradiction.

Given a graph G we say that a subgraph Q of G is a leaf-butterfly of G if

• Q is an induced subgraph of G,
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• Q is isomorphic to a butterfly graph,

• all the vertices of Q, except from an extremal one, called the attachment of Q, have all their
neighbours inside Q in G, and

• the block of Q that does not contain its attachment is a peripheral block of G.

A butterfly bucket of G is a maximal collection Q = {Q1, . . . , Qr} of leaf-butterflies of G with
the same attachment w in G. If G =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Q then we say that Q is a trivial butterfly bucket, otherwise

we say that Q is a non-trivial butterfly bucket. We call w the attachment of Q in G.
By considering Lemma 4.6 and Observation 4.4 together, we have the following corollary:

Corollary 4.7. Let k ≥ 1, and let G be a connected cactus graph in obs(Ak(S)). Then G contains
a butterfly bucket.

Lemma 4.8. Let k ≥ 1 and let Q be a non-trivial butterfly bucket of a connected cactus graph G.
If G ∈ obs(Ak(S)) then there is no leaf-block of G containing the attachment of Q.

Proof. Suppose to the contrary that there exists a leaf-block B of G containing the attachment w
of Q. Let Q ∈ Q, let c be the central vertex of Q, and let A and C be the two cycles of Q such
that w is a vertex of A. Let e be an edge of A and G′ = G \ e. As G ∈ obs(Ak(S)), it follows
that G′ = G \ e contains a k-apex sub-unicyclic set S. If S ∩ V (C) = ∅ then there exists some
x ∈ S∩V (B) and therefore S′ = (S \{x})∪{w} is a k-apex sub-unicyclic set of G, a contradiction.
If there exists some y ∈ S ∩V (C) then S′ = (S \{y})∪{c} is a k-apex sub-unicyclic set of G, again
a contradiction.

Lemma 4.9. Let k ≥ 1, G be a connected cactus graph in obs(Ak(S)), and Q be a non-trivial
butterfly bucket of G with attachment w. Then the graph G′ = G \ (V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Q) \ {w}) is a connected

cactus in obs(Ak−r(S)) where r = |Q|.

Proof. Let Q = {Q1, . . . , Qr}. For i ∈ [r], let Ai and Bi be the two cycles of Qi such that w is a
vertex of Ai. Recall that V (Ai) ∩ V (Bi) is a singleton consisting of the central vertex, say ci, of
Qi. Observe that G′ is a connected cactus and w is contained in exactly one, say B∗, of the blocks
of G′. This follows from the non-triviality of the butterfly bucket Q, Lemma 4.8, Lemma 4.6, and
the definition of a butterfly bucket.

In what follows, we prove that G′ is a member of obs(Ak−r(S)).

Claim 1: G′ is not (k − r)-apex sub-unicyclic.
Proof of Claim 1: Suppose, to the contrary, that S is a (k − r)-apex sub-unicyclic set of G′. Then
S ∪ {c1, . . . , cr} is a k-apex sub-unicyclic set of G, a contradiction as G ∈ obs(Ak(S)).

Claim 2: Every proper minor of G′ is (k − r)-apex sub-unicyclic.
Proof of Claim 2: Consider a minor H ′ of G′ created by the contraction (or removal) of some edge
e of G′. Let H be the result of the contraction (or removal) of e in G. As G ∈ obs(Ak(S)), there
is a k-apex sub-unicyclic set S in H.

We can assume that {c1, . . . , cr} ⊆ S. Indeed, to see this is so, we can distinguish two cases:
Case 1: for every i ∈ [r], S ∩ V (Bi) 6= ∅. Then, for all i ∈ [r] let xi ∈ S ∩ V (Bi) and observe that
the set S′ = (S \ {x1, . . . , xr}) ∪ {c1, . . . cr} is a k-apex sub-unicyclic set of G.
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B∗

G′

w

Q1

Q2

Q3

Figure 8: An example of a graph G and a butterfly bucket Q = {Q1, Q2, Q3} of G with attachment
w. The graph G′ = G \ (V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Q) \ {w}) is depicted in yellow and B∗ is the unique block of G′ that

contains w.

Case 2: there is some i ∈ [r] such that S ∩ V (Bi) = ∅. Without loss of generality, we can assume
that i = 1. Then, the only cycle in G \ S is B1 and therefore for every j ∈ [2, r], there exist some
xj ∈ S ∩ V (Bj). Observe that S′ = (S \ {x2, . . . , xr})∪ {c2, . . . , cr} is a k-apex sub-unicyclic set of
G (see Figure 9). As before, we have that there exists x ∈ S ∩ V (A1). Set S′′ = (S′ \ {x}) ∪ {c1}.
If x 6= w then S′′ is a k-apex sub-unicyclic set of G. If x = w then since Bi is the only cycle in
G \ S′ and B∗ is the only cycle in G′ that contains w, S′′ is again a k-apex sub-unicycle set of G.

B∗

G′

w

Q1

Q2

Q3

x2

c2

x3
c3

Figure 9: Following the example in Figure 8, for every i ∈ [2], xi is the vertex of S that is in V (Bi)
(depicted in red) and ci is the center of Qi (depicted in blue). The set S′ is obtained by replacing
in S the red vertices with the blue ones.

Now, since {c1, . . . , cr} ⊆ S, we have that S \ {c1, . . . , cr} is a (k − r)-apex sub-unicyclic set of
H ′ and so the claim follows.

Based on the above two claims, we conclude that G′ ∈ obs(Ak−r(S)).

Observation 4.10. For every k ∈ N, (k + 2)K3 ∈ obs(Ak(S)).

Lemma 4.11. Let k ≥ 0 and G be a connected cactus graph in obs(Ak(S)). Then G ∈ Zk+1.
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Figure 10: The connected graphs in obs(Sk) for n = 1, 2, 3 respectively (presented left to right).

Proof. We proceed by induction on k. The base case where k = 0 is trivial. Let G be a connected
cactus graph in obs(Ak(S)) for some k ≥ 1 and assume that the statement of the lemma holds for
smaller values of k.

Let Q be a butterfly bucket in G that exists because of Corollary 4.7. We first examine the
case where Q is trivial. We claim that if Q is trivial, then |Q|= k + 1. Indeed, if |Q| ≤ k, then
the central vertices of the leaf buckets of Q form a k-apex sub-unicyclic set, contradicting the fact
that G ∈ obs(Ak(S)). Also, if |Q| ≥ k + 2, then (k + 2)K3 is a minor of G, a contradiction as
(k+2)K3 ∈ obs(Ak(S)). The triviality of Q and the fact that |Q|= k+1 then imply that G ∈ Zk+1.

Suppose now that Q is not trivial. By Lemma 4.9, G′ = G\(V (
⋃⋃⋃⋃⋃⋃⋃⋃⋃
Q)\{w}) is a connected cactus

in obs(Ak−r(S)) where r = |Q|. Since, due to the induction hypothesis, we have G′ ∈ Zk−r+1, it
follows that G ∈ Zk+1, as required.

Proof of Theorem 4.2. The proof is an immediate consequence of Lemma 4.3 and Lemma 4.11.

4.2 Characterization of disconnected cactus-obstructions

The objective of this section is to prove the following theorem.

Theorem 4.12. Let k ∈ N, let G be a disconnected cactus graph in obs(Ak(S)), and let G1, G2, . . . , Gr
be the connected components of G. Then, one of the following holds:

• G ∼= (k + 2)K3

• there is a sequence k1, k2, . . . , kr such that for every i ∈ [r], Gi is a graph in Zki and
∑
i∈[r] ki =

k + 1.
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We begin with the following Lemma which implies that every obstruction G ∈ obs(Ak(S)) not
isomorphic to (k + 2)K3 is also a (k + 1)-forest.

Lemma 4.13. For every k ∈ N and for every cactus graph G it holds that if (k + 2)K3 6≤ G then
G contains a (k + 1)-apex forest set S.

Proof. Suppose, towards a contradiction, that k is the minimum non-negative integer for which
the contrary holds. Let G be a cactus graph with the minimum number of vertices such that
(k + 2)K3 6≤ G and that for every apex-forest set S of G it holds that |S| > k + 1. Observe that
k ≥ 1 and that there exists some connected component H of G that is not isomorphic to a cycle.
As such, let B be a leaf-block of H and observe that, since G has the minimum number of vertices,
every vertex of G has degree at least 2 and therefore B is isomorphic to a cycle. Since H is not
isomorphic to a cycle, there exists a cut-vertex c ∈ V (B), which is unique since B is a leaf-block of
H. Now, consider the graph G′ = G \ c and observe that this too is a cactus. Observe, also, that
(k + 1)K3 6≤ G′, since otherwise (k + 2)K3 ≤ G, a contradiction. Thus, by the minimality of k, we
have that there exists a k-apex forest set S′ of G′. But then, the set S = S′ ∪ {c} is a (k+ 1)-apex
forest set of G, a contradiction to our assumption for G.

We now proceed with the main lemma of this section.

Lemma 4.14. Let k ≥ 1 and let G be a disconnected cactus graph in obs(Ak(S)) non-isomorphic
to (k+2)K3. Let also {C1, C2} be a partition of the connected components of G and Gi =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Ci, i ∈ [2].

Then G1 ∈ obs(Ak1−1(S)) and G2 ∈ obs(Ak2−1(S)) for some k1, k2 ≥ 1 such that k1 + k2 = k+ 1.

Proof. Clearly, since G is a cactus graph, then the same holds for G1, G2. By Lemma 4.13, there
exists a (k + 1)-apex forest set S of G. Notice that, since G 6∈ Ak(S), we have that |S| = k + 1.
Also observe that, by Lemma 3.1, neither of G1, G2 is a forest. Let S1 = S∩V (G1), S2 = S∩V (G2)
and let k1 = |S1|, k2 = |S2|. Note that, k1, k2 ≥ 1 and, since V (G1) ∩ V (G2) = ∅, k1 + k2 = k + 1.
We argue that the following holds:

Claim 1: For each i ∈ [2], Gi 6∈ Aki−1(S).
Proof of Claim 1: Suppose, towards a contradiction, that Gi ∈ Aki−1(S) for some i ∈ [2]. Then,
there exists a (ki − 1)-apex sub-unicyclic set Xi of Gi. But then, the set Xi ∪ Sj , where j 6= i, is a
k-apex sub-unicycle set of G, a contradiction to the fact that G ∈ obs(Ak(S)). Claim 1 follows.

Claim 2: For each i ∈ [2], it holds that if Hi is a proper minor of Gi then Hi ∈ Aki−1(S).
Proof of Claim 2: Suppose, towards a contradiction, that for some i ∈ [2] there exists a proper
minor Hi of Gi such that Hi 6∈ Aki−1(S). Let H = Hi∪Gj , where j 6= i. As G ∈ obs(Ak(S)), there
exists a k-apex sub-unicyclic set X of H. Let Xi = X∩Hi and Xj = X∩Gj . Then, as Hi 6∈ Aki−1S,
we have that |Xi| ≥ ki and therefore the fact that |X| ≤ k implies that |Xj | = |X|− |Xi| ≤ k−ki =
kj − 1. Hence, the set Xj ∪ Si is a k-apex sub-unicyclic set of G, a contradiction to the fact that
G ∈ obs(Ak(S)). Claim 2 follows.

Claim 1 and Claim 2 imply that G1 ∈ obs(Ak1−1(S)) and G2 ∈ obs(Ak2−1(S)), which concludes
the proof of the Lemma.

Proof of Theorem 4.12. The proof follows by Observation 4.10 and by repeated applications of
Lemma 4.14, as required.
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Set Operation GF operation

Disjoint sum A = B + C A(z)=B(z)+C(z)

Cartesian Product A = BC A(z)=B(z)C(z)

Multiset A = MSET (B) A(z) = exp
(∑

k≥1
B(zk)
k

)
2-multiset A = MSET2(B) A(z) = A(z)2+A(z2)

2

Table 1: Operations between combinatorial classes and their counterparts in terms of generating
functions.

5 Enumeration of cactus obstructions

Let G = obs(Ak(S))∩K. In this section, we determine the asymptotic growth of gk = |obs(Ak(S))∩
K| and zk = |Zk|. To that end, we make use of the Symbolic Method framework and the corre-
sponding analytic techniques, as developed in [15].

The Symbolic Method. A combinatorial class is a tuple (A, f), where A is a set and f is a
size function f : A → N∗. When the nature of f is clear, we refer to (A, f) as A for convenience.
Let ak = |{a ∈ A : f(a) = k}|. The generating function, or simply GF, A(z) is defined as the
power series A(z) =

∑
n≥0 anz

n.1 We also employ the notation [zk]A(z) = ak to refer to the k-th
coefficient of some GF A(z). Two combinatorial classes A,B are isomorphic, written as A = B,
if ak = bk for all k. The simplest combinatorial class is the atomic one, denoted by X , with GF
X(x) = x.

The Symbolic Method allows us to translate operations between combinatorial classes into
functional operations between their generating functions. In particular, we shall make use of the
operations of disjoint sum (+), cartesian product, multiset (MSET ), 2-multiset (MSET2), i.e.
multisets of two objects. Each of these operations defines a new set upon given ones, in the obvious
way. The size function upon the new class is an additive function over the size of the objects that
compose the new object. For instance, the size of a multiset b ∈MSET (A) equals the sum of the
sizes of all objects in b. The functional relations corresponding to each of these operations can be
seen in Table 1. We refer to [15, Chapter I] for details.

Rooted trees. A tree is a connected graph for which it holds that |V (G)|−1 = |E(G)|. Let T
be a family of trees. We define the family of trees in T rooted at a vertex, denoted by T •, to be
all tuples (T, v), where T ∈ T and v ∈ V (T ). We define the family of trees in T rooted at an edge,
denoted by T •−•, to be all tuples (T, e), where T ∈ T , and e ∈ E(G). Finally, we define the family
of trees in T rooted at an oriented edge, denoted by T •→•, to be all tuples (T,−→e ), where T ∈ T ,
−→e = (a, b) ∈ V (T )2, and ab ∈ E(G). We say that two rooted trees (T1, r1), (T2, r2) are isomorphic
when there exists a graph isomorphism between T1, T2 that maps r1 to r2. When no confusion can

1By convention, we denote combinatorial classes by calligraphic uppercase letters, their GFs by the same uppercase
letters in plain form, and use subscripted lowercase letters to denote the coefficients of the GFs.
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arise, we will refer to a rooted tree (T, r) simply as T . By the well-known Dissymmetry Theorem
for Trees (see [3]), it holds that

T + T •→• = T • + T •−•. (1)

5.1 A bijection of Z with a family of trees.

We begin by giving a bijection between the combinatorial class Z, i.e., connected graphs in
obs(Ak(S)) ∩ K with size equal to the number of butterfly-subgraphs, and the following family
of trees. Let T be the family of trees having three different types of vertices, namely �-, M-, and
◦-vertices, and meeting the following conditions:

1. The neighbourhood of a �-vertex consists of two M-vertices.

2. The neighbourhood of a M-vertex consists of a �-vertex and two ◦-vertices.

3. The neighbourhood of a ◦-vertex consists of one or more M-vertices.

Consider the combinatorial class (T , f) where f assigns to a tree size equal to the number of
its �-vertices. Then the following holds.

Lemma 5.1. The combinatorial classes Z and T are isomorphic.

Proof. We shall construct a bijection φ : Z → T that preserves the size function. Given a graph G ∈
Z whose butterfly-subgraphs we denote as {Z1, . . . , Zk}, let φ(G) = T ∈ T be a tree constructed
as such:

• To every central vertex ci of Zi we associate a �-vertex si.

• To every vertex v ∈ G which is not a central vertex of some Zi, we associate a ◦-vertex ov.

• To each K3-subgraph Ti1 , Ti2 of Zi, we associate a M-vertex ti1 , ti2 , respectively. The neigh-
bourhood of tij consists of the �-vertex ci and the two ◦-vertices associated to the vertices of
Tij \ ci.

Observe that the described tree belongs in T and that φ is a bijection (see also Figure 11). Also,
notice that φ is also size-preserving, since the number of butterfly-subgraphs of Z ∈ Z equals the
number of �-vertices in φ(Z).

By Lemma 5.1, enumerating Z is equivalent to enumerating T . To that end, we will make use
of the combinatorial classes T �, T M, T ◦, T ◦−M, T �−M, T �→M, T M→�, T M→◦, T ◦→M, which correspond
to trees in T that are rooted in the indicated way.

Lemma 5.2. The following functional relations hold for T (z) and G(z):

T (x) = T�(x) + TM(x) + T ◦(x)− T�→M(x)− TM→◦(x) (2)

G(x) = exp
(∑
k≥1

T (xk)
k

)
.
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Figure 11: A graph in Z and its image in T , under the bijection described in Lemma 5.1.

Proof. It is clear that

T • = T � + T M + T ◦

T •→• = T �→M + T M→� + T M→◦ + T ◦→M

T •−• = T ◦−M + T �−M

T ◦−M = T ◦→M

T �−M = T M→�

Then, the first relation follows by substituting the above in Equation 1 and translating to GFs.
The second relation follows by noticing that G = MSET (Z) = MSET (T ).

To obtain defining systems for T�(x), TM(x), T ◦(x), T�→M(x), TM→◦(x), we define the auxiliary
combinatorial classes T� and T?. T� contains trees in T rooted at a leaf and T? contains multisets
of trees in T�.

Lemma 5.3. The generating functions T?, T�, T�, TM, T ◦, T�→M, TM→◦ are defined through the fol-
lowing system of functional equations.

T�(x) = x

2 exp
(∑
k≥1

T�(xk)
k

)(
exp

(∑
k≥1

2T�(xk)
k

)
+ exp

(∑
k≥1

T�(x2k)
k

))

T?(x) = exp
(∑
k≥1

T�(xk)
k

)

T ◦(x) = exp
(∑
k≥1

T�(xk)
k

)
− 1

T�(x) = x

8 T? (x)4 + x

4T?(x)2T?(x2) + 3x
8 T?(x2)2 + x

4 T?(x
4)

TM(x) = x

4 T?(x)4 + x

2 T?(x)2T?(x2) + x

4T?(x
2)2

T�→M(x) = x

4 T?(x)4 + x

2 T?(x)2T?(x2) + x

4T?(x
2)2

TM→◦(x) = x

2 T? (x)4 + x

2 T?(x)2 T?(x2)
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Proof. We obtain the indicated functional equations by establishing the following combinatorial
bijections in the language of the Symbolic method. The result follows by applying their translation
to GF relations.

T � = XMSET (T�)MSET2(MSET (T�)) (3)
T? = MSET (T�) (4)
T ◦ = MSET (T�)− 1 (5)
T � = XMSET2(MSET2(T?)) (6)
T M = XMSET2(T?)2 (7)

T �→M = XMSET2(T?)2 (8)
T M→◦ = X (T?)2MSET2(T?). (9)

We now justify each of the equations presented above.
Equation 4 immediately follows from the definition of T?.
Let T ∈ T and let s be a �-vertex. We define its extended neighbourhood to be the set

{o1, o2, o3, o4, t1, t2} where {t1, t2} is the neighbourhood of s, o1, o2 are the ◦-neighbours of t1,
and o3, o4 are the ◦-neighbours of t2. Given some s whose extended neighbourhood contains the
◦-vertices oi, i ∈ [4], we define Si = {G | G ∈ C(T, oi) ∧ s /∈ V (G)}, i ∈ [4]. Observe that each Si is
a multiset of graphs which, rooted at oi, are elements of T�. Hence, Si ∈MSET (T�), which equals
Si ∈ T?.

Equation 3: Let T ∈ T�, o1 be its root vertex, and s be the closest �-vertex to o1 in T . Consider
the extended neighbourhood defined by s and the corresponding multisets Si. Notice that if S3 is
exchanged with S4, then the resulting tree remains the same However, this does not hold when S2
is exchanged with S3 or S4. Hence, T defines uniquely (and is defined by) an object of T? and a
2-set of objects in T?. The object X of the atomic class accounts for the vertex s, whose size equals
1.

Equation 5: Let o1 be the root of T ∈ T ◦. Observe that C(T, o1) 6= ∅ (this fact corresponds to
the term -1 in Equation 5) and all elements of C(T, o1), rooted at o1, belong in T�. Hence, T is
uniquely defined by (and defines) a multiset of elements in T�.

Equation 6: Let T ∈ T � with root s. Consider the multisets Si, i ∈ [4], as defined using the
extended neighbour of s. Observe that S1, S2 can be exchanged to give the same tree, and the same
holds for S3, S4, so we can consider them as two 2-multisets. Moreover, one can exchange the pair
S1, S2 with the pair S3, S4 to obtain the same tree. Therefore, the desired relation holds, where X
accounts for s.

Equation 7: Let T ∈ T M and s the �-vertex connected to the root. Consider the extended
neighbourhood of s and the sets Si, i ∈ [4]. S1 and S2 are exchangeable, as well as S3 and S4.
However, as pairs, they cannot be exchanged to give the same graph. Hence, T M is equivalent to
the cartesian product of two 2-multisets of objects in T?. X accounts for the vertex s.

Equation 8: Holds by arguments similar to the ones used to prove Equation 7.
Equation 9: Let T ∈ T M→◦, (t1, o1) be its root, and s be the �-vertex closest to t1. Consider the

multisets Si, i ∈ [4], as defined using the extended neighborhood of s. Note that one may exchange
S3, S4 to obtain the same tree T . Note, also, that one may not exchange S1 with S2, since then one
obtains a different tree.The desired relation then follows, with the X factor accounting for s.
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By the defining systems of T (x) and G(x), we can obtain the first terms of the series:

T (x) = x+ x2 + 3x3 + 7x4 + 25x5 + 88x6 + 366x7 + 1583x8 + 7336x9 + 34982x10 + · · ·
G(x) = 1 + z + 2x2 + 5x3 + 13x4 + 41x5 + 143x6 + 558x7 + 2346x8 + 10546x9 + 49397x10 + · · ·

5.2 Asymptotic Analysis

Having set up a system of functional equations for the generating functions Z(x) and G(x), we can
determine the asymptotic growth of zk and gk via the process of Singularity Analysis. We briefly
mention the main tools we will use and refer to [15] for details.

We call dented domain at x = ρ a set of the form {x ∈ C | |x| < R, arg(x − ρ) /∈ [−θ, θ]}, for
some R > ρ and 0 < θ < π/2. Let f(x) =

∑
k≥0 fkx

k a GF analytic in a dented domain at x = ρ

that satisfies an expansion of the form

f(x) = F0 + F1X + F2X
2 + F3X

3 + · · ·+ F2kX
2k + F2k+1X

2k+1 +O
(
X2k+2

)
locally around ρ, where X =

√
1− x/ρ. We call singular exponent the smallest odd exponent of X

divided by two, and denote it by α. If fk > 0 for all k big enough, then we can apply the so-called
Transfer Theorems of singularity analysis [15, Corrollary VI.1, Theorem VI.4] and obtain

[xn]f(x) ∼ c · n−α−1 · ρ−n, (10)

where c = F2α
Γ(−α) and Γ is the standard Gamma function. To obtain such expansions, we will use

the following Theorem.

Theorem 5.4 ([12, Proposition 1, Lemma 1]). Suppose that F (x, y) is an analytic function in
x, y such that F (0, y) ≡ 0, F (x, 0) 6≡ 0, and all Taylor coefficients of F around 0 are real and
nonnegative. Then, the unique solution y = y(x) of the functional equation y = F (x, y) with
y(0) = 0 is analytic around 0 and has nonnegative Taylor coefficients yk around 0. Assume that the
region of convergence of F (x, y) is large enough such that there exist nonnegative solutions x = x0
and y = y0 of the system of equations

y = F (x, y), (11)
1 = Fy(x, y), (12)

where Fx(x0, y0) 6= 0 and Fyy(x0, y0) 6= 0.2 Assume also that yk > 0 for large enough k. Then, ρ is
the unique singularity of f on its radius of convergence and there exist functions q(x), h(x) which
are analytic around x = x0, such that y(x) is analytically continuable in a dented domain at ρ and,
locally around x = ρ, it has a representation of the form

y(x) = q(x) + h(x)
√(

1− x

ρ

)
. (13)

2Here, and in the sequel, subscripts will denote partial differentiation with respect to the subscripted variable(s).

21



In the proof of the latter Theorem, an explicit way is given to compute the coefficients qi, hi.
Using a computer algebra program like Maple, we can easily obtain:

h0 =
√

2ρFx(x0, y0)
Fyy(x0, y0) , h1 = 1

6
−Fyyy(x0, y0)h2

0 + 6Fxy(x0, y0)ρ
2Fyy(x0, y0) , (14)

q1 = − 1
24
Fyyyy(x0, y0)h4

0 − 12Fxyyy(x0, y0)h2
0ρ+ 12Fyyy(x0, y0)h1h

2
0

Fyy(x0, y0)h0
+ (15)

+12Fxx(x0, y0)ρ2 − 24Fxy(x0, y0)h1ρ+ 12Fxx(x0, y0)h2
1

Fyy(x0, y0)h0
.

Lemma 5.5. The generating functions T�, T�, TM, T ◦, T�→M, TM→◦ have a unique singularity of
smallest modulus, at the same positive number ρ < 1. Moreover, they are analytic in a dented
domain at ρ and satisfy expansions of the form

A0 +
∑
k≥1

AkX
k, where X =

√
1− x/ρ,

locally around ρ. The coefficients Ai and ρ are computable; in particular, ρ ≈ 0.15926.

Proof. Let ρ� < 1 the positive radius of convergence of T� (it is easy to see combinatorially that
0 < ρ� < 1). All functions T�, TM, T ◦, T�→M, TM→◦ can be defined with respect to T�, as indicated
in Lemma 5.3. In particular, they depend on T� in three different ways: by composing T�(x) with
either a polynomial having positive coefficients or the exponential function, by performing a change
of variables from x to xk, and by the operator exp

( 1
k

∑
k≥2 T�(xk)

)
. We observe that all three of

them preserve the number and nature of singularities, hence these are determined solely by the
behaviour of T�. In the case of composition with polynomials or exponentials, it is trivial to see. In
the case of variable change, observe that T�(xk) has radius of convergence k

√
ρ� > ρ�. In the case

of exp
( 1
k

∑
k≥2 T�(xk)

)
, it is enough to notice that in |x| < ρ� it holds that

∑
k≥2

T�(xk) ≤ T�(x2) +
∑
k≥3

xk−2T�(x2) = T�(x2)
1− x .

Therefore, it is enough to prove the claimed properties for T�(z).
To analyse T�(z), we will use Theorem 5.4. Let

F (x, y) = x

2 exp
(
y +

∑
k≥2

T�(xk)
k

)(
exp

(
2y +

∑
k≥2

2T�(xk)
k

)
+ exp

(∑
k≥1

T�(x2k)
k

))
. (16)

The system {y = F (x, y), 1 = Fy(x, y)} can be solved numerically, using truncations of the functions
T�(zk). We find a solution (x0, y0), where x0 ≈ 0.15926 and y0 ≈ 0.41738. Clearly, the rest of the
requirements of Theorem 5.4 are met and the coefficients of the desired expansion can be computed
by Equations 14, 16. The coefficients for the expansions of T�(x), TM(x), T ◦(x), T�→M(x), TM→◦(x)
can be computed straightforwardly by the coefficients of T�(z). Notice that Theorem 5.4 guarantees
A1 6= 0 in all cases.
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Lemma 5.6. The generating functions Z(x), G(x) have a unique singularity of smallest modulus
at the same positive number ρ < 1. Moreover, they are analytic in a dented domain at ρ and satisfy
expansions

Z(x) = Z0 +
∑
k≥2

ZkX
k, G(x) = G0 +

∑
k≥2

GkX
k, where X =

√
1− x/ρ,

locally around ρ. The coefficients Zi, Gi, and ρ are computable; in particular, ρ ≈ 0.15926 (the
same as in Lemma 5.5).

Proof. By Equation 2, the singular behaviour of Z(x) depends entirely on the functions Ti(x) that
were studied in Lemma 5.5 (recall that Z(x) = T (x)). In particular, Z(x) has a unique positive
singularity of minimum modulus at the same point ρ and the same holds for G(x).

The coefficients of the expansions are directly computable by the coefficients of Ti(x). In
particular, we can show that the coefficient Z1 vanishes identically and Z3 6= 0. Let A0 +A1X + ...

be the expansion given by Lemma 5.5 for T?(x) and notice that A0 = T?(ρ). Then, Z1 is equal to
the following expression, which can be easily obtained on computational software such as Maple:

Z1 = A1

(
3ρA3

0
2 + ρA0C0

2 − 1
)
,

where C0 = T?(ρ2). Recall the function F in Equation 16 and the system {y = F (x, y), 1 =
Fy(x, y)}. The latter has solution (ρ, y0) and thus it holds that:

0 = Fy(ρ, y0)− 1

= 3ρ
2 exp

(
y0 +

∑
i≥2

T�(ρi)
i

)3
+ ρ

2 exp
(
y0 +

∑
k≥2

T�(xk)
k

)
exp

(∑
k≥1

T�(ρ2k)
k

)
− 1.

This is equal to 1
A1
Z1, since T?(ρ) = exp

(
y0 +

∑
i≥2

T�(ρi)
i

)
and T?(ρ2) = exp

(∑
k≥1

T�(ρ2k)
k

)
.

Thus, Z1 = 0. This is a typical behaviour after applying the Dissymmetry Theorem (see [4], [27]).
To see that Z3 does not vanish, it is enough to argue combinatorially. First, observe that

t•n ∼
cρ−n

n3/2 by Lemma 5.5 and the Transfer Theorem (see Equation 10 and the related account). If
Z3 vanished, then the singular exponent would be bigger than 3/2. Consequently, by the Transfer
Theorem we would obtain n · zk = n · tk = o( cρ

−n

n3/2 ) for large n, a contradiction to the asymptotic
growth of t•n.

Corollary 5.7. The coefficients of Z(x), G(x) satisfy an asymptotic growth of the form

cn−
5
2 ρ−n,

where c is equal to Z3
Γ(−3/2) ≈ 0.27160 and G3

Γ(−3/2) ≈ 0.33995, respectively, and ρ−1 ≈ 6.27888.

Proof. It follows by Lemma 5.6 and the Transfer Theorem. The computations are straightforward
and can be easily confirmed on computational software such as Maple (see

http://www.cs.upc.edu/˜sedthilk/osmc/apexmo.mw

for the detailed calculations).
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[27] Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Asymptotic enumeration of non-crossing
partitions on surfaces. Discrete Mathematics, 313(5):635–649, 2013.
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