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Abstract

Given a graph G and a positive integer k, define the Gallai-Ramsey
number to be the minimum number of vertices n such that any k-edge
coloring of Kn contains either a rainbow (all different colored) triangle
or a monochromatic copy of G. In this paper, we obtain general upper
and lower bounds on the Gallai-Ramsey numbers for the graph G = Sr

t

obtained from a star of order t by adding r extra independent edges
between leaves of the star so there are r triangles and t−2r−1 pendent
edges in Sr

t
. We also prove some sharp results when t = 2.

1 Introduction

In this work, we consider only edge-colorings of graphs. A coloring of a
graph is called rainbow if no two edges have the same color.

Edge colorings of complete graphs that contain no rainbow triangle have
interesting and somewhat surprising structure. In 1967, Gallai [4] examined
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this structure. His main result was restated in [5] in the terminology of
graphs and can also be traced back to [1]. For the following statement, a
trivial partition is a partition into only one part.

Theorem 1. [1, 4, 5] In any coloring of a complete graph containing no
rainbow triangle, there exists a nontrivial partition of the vertices (called a
Gallai-partition) such that there are at most two colors on the edges between
the parts and only one color on the edges between each pair of parts.

The induced subgraph of a Gallai colored complete graph constructed
by selecting a single vertex from each part of a Gallai partition is called the
reduced graph. By Theorem 1, the reduced graph is a 2-colored complete
graph.

Given two graphs G and H, let R(G,H) denote the 2-color Ramsey
number for finding a monochromatic G or H, that is, the minimum number
of vertices n needed so that every red-blue coloring of Kn contains either
a red copy of G or a blue copy of H. Although the reduced graph of a
Gallai partition uses only two colors, the original Gallai colored complete
graph could certainly use more colors. With this in mind, we consider the
following generalization of the Ramsey numbers. Given two graphs G and
H, the general k-colored Gallai-Ramsey number grk(G : H) is defined to be
the minimum integer m such that every k-coloring of the complete graph on
m vertices contains either a rainbow copy of G or a monochromatic copy of
H. Since we have the additional restriction of forbidding the rainbow copy
of G, it is clear that grk(G : H) ≤ Rk(H) for any graph G. Gallai-Ramsey
numbers have been studied for a wide variety of monochromatic graphs.
We refer the intereted reader to [2] for a survey of relevant results with an
updated version available at [3].

The graph Sr
t is obtained from a star of order t by adding an extra r

independent edges between the leaves of the so that there are r triangles
and t− 2r− 1 pendent edges in Sr

t . For r = 0 we obtain Sr
t = K1,t−1, which

are called stars. For r = t−1
2 , if t is odd we obtain Sr

t = F t−1

2

, which are

called fans. Gallai-Ramsey numbers for stars and fans have been considered
in [5] and [6], respectively.

Therefore, in this paper we deal with those graphs Sr
t where 1 ≤ r < t−1

2 ,

i.e. where Sr
t is neither a star nor a fan. We prove general bounds on the

Gallai-Ramsey number for Sr
t and sharp results for some cases when t = 2.

Our first main result finds the 2-color Ramsey numbers for Sr
t for a

variety of situations.

Theorem 2. (1) For t ≥ 7, R(S2
t , S

2
t ) = 2t− 1.
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(2) For t ≥ 15, R(S3
t , S

3
t ) = 2t− 1.

(3) For t ≥ 6r − 5, R(Sr
t , S

r
t ) = 2t+ 2r − 1.

For the graphs S2
t , we have the following.

Theorem 3. (1) For k ≥ 1,

grk(K3;S
2
6) =







2× 5
k

2 + 1
4 × 5

k−2

2 + 3
4 , if k is even;

⌈5110 × 5
k−1

2 + 1
2⌉, if k is odd.

(2) For k ≥ 3,

grk(K3;S
2
8) =







14× 5
k−2

2 + 1
2 × 5

k−4

2 + 1
2 , if k is even;

7× 5
k−1

2 + 1
4 × 5

k−3

2 + 3
4 , if k is odd.

(3) For k ≥ 1 and t ≥ 6,







2(t− 1)× 5
k−2

2 + 1 ≤ grk(K3;S
2
t ) ≤ 2t× 5

k−2

2 , if k is even;

(t− 1)× 5
k−1

2 + 1 ≤ grk(K3;S
2
t ) ≤ t× 5

k−1

2 , if k is odd.

Finally, we also provide general bounds on the Gallai-Ramsey numbers
for Sr

t .

Theorem 4. For t ≥ 6r − 5,























2(t− 1)× 5
k−2

2 + 1 ≤ grk(K3;S
r
t ) ≤ [2t+ 8(r − 1)]× 5

k−2

2 − 4(r − 1),

if k is even;

(t− 1)× 5
k−1

2 + 1 ≤ grk(K3;S
r
t ) ≤ [t+ 4(r − 1)]× 5

k−1

2 − 4(r − 1),

if k is odd.

In Section 2, we prove Theorem 2. The proof of Theorem 3 is mostly
contained in Section 3. We omit the proofs of Item (3) of Theorem 3 and
Theorem 4 since they follow a similar structure to the proofs of the other
parts of Theorem 3. The complete proofs will be made publicly available.

2 Results for the classical Ramsey number

The following lemma is almost immediate.
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Lemma 1. If G is a Gallai colored complete graph of order at least 4n − 3
in which all parts of a Gallai partition have order at most n − 1 and all
edges in between the parts of G have one color, say red, then G contains a
red copy of Fn.

Proof. Let H1,H2, . . . ,Ht be the parts of the assumed partition, so since
|G| ≥ 4n − 3, we see that t ≥ 5. Since |Hi| ≤ n − 1, there exists an integer
r and corresponding set of parts H2,H3, . . . ,Hr such that n ≤ |H2 ∪H3 ∪
· · · ∪Hr| ≤ 2n− 2. This, in turn, implies that |Hr+1 ∪Hr+2 ∪ · · · ∪Ht| ≥ n.
Then a single vertex from H1 along with n red edges from H2∪H3∪· · ·∪Hr

to Hr+1 ∪Hr+2 ∪ · · · ∪Ht produces a red copy of Fn.

2.1 The case r = 2

For r = 2, we need to prove that R(S2
t , S

2
t ) = 2t− 1.

Proof of (1) of Theorem 2. For the lower bound, let G be a 2-edge colored
graph obtained from two copies of Kt−1 by adding all blue edges between
them. Clearly, there is neither a red S2

t nor a blue S2
t in G. So R(S2

t , S
2
t ) ≥

2t− 1.

For the upper bound, let G be a 2-colored copy of K2t−1 and for a
contradiction, suppose G contains no monochromatic copy of S2

t . For each
v ∈ V (G), let Av and Bv be the set of vertices with red and blue edges
respectively to v. Suppose that there exists a vertex v ∈ V (G) with |Av| ≥
t+ 1.

Fact 1. There are neither a red copy of 2K2 within Av nor a blue copy of
2K2 within Bv.

By Fact 1, there is at most a red triangle or a red star in Av. If there is
a red star with center u in Av, then Av − u contains a blue Kt, and hence
Av − u contains a blue S2

t , a contradiction. If there is a red triangle in Av,
then Av is a blue graph obtained from a Kt+1 by deleting a triangle. clearly,
Av contains a blue S2

t , a contradiction.

Suppose that there exists a vertex v ∈ V (G) such that |Av| = t. Then
|Bv| = t− 2. Similar to Fact 1, there is no red copy of 2K2 within Av, and
hence there is at most a red triangle or a red star in Av. If there is a red
triangle in Av, then Av contains a blue graph obtained from Kt−3 and a
star K1,3 by identifying the center of the star and a vertex of Kt−3. Clearly,
there is a blue S2

t , a contradiction. If there is a red star with center u in Av,
then we let A′

v = Av − u. Clearly, A′ = Kt−1, and hence each edge from u

4



to A′
v must be red. To avoid a blue S2

t , the edges from A′
v to B must be red.

If there is a red edge in B, then the edges among v, u, a,B form a red S2
t ,

where a ∈ A′
v , a contradiction. So B is a blue clique of order t− 2. If there

is an red edge from u to B, then u, v,A′ form a red S2
t , a contradiction.

Therefore, the edges from u to B are red, and hence u, v,B form a blue S2
t ,

a contradiction.
For the remainder of the proof, we need only the following fact.

Fact 2. For each v ∈ V (G), |Av| = |Bv| = t− 1.

From Fact 1, there is neither a red copy of 2K2 within Av nor a blue
copy of 2K2 within Bv. Therefore, there is at most a red triangle or a red
star in Av, and there is at most a blue triangle or a blue star in Bv.

Suppose that there is a red star with center a in Av and there is a blue
star with center b in Bv. Let A′

v = Av − a and B′
v = Bv − b. Then A′

v is
a red clique of order t − 2, and B′

v is a blue clique of order t− 2. If t ≥ 7,
then to avoid a red S2

t , the red edges from A′ to B′ form a red matching.
Similarly, the blue edges from A′ to B′ form a blue matching. Since t ≥ 7,
it follows that the number of red and blue edges is (t − 2)2 > 2(t − 2), a
contradiction.

Suppose that there is a red triangle xAyAzAxA in Av and there is a
blue triangle xByBzBxB in Bv. Let A′

v = Av − {xA, yA, zA} and B′
v =

Bv − {xB , yB, zB}. It is clear that A
′
v is a blue clique of order t− 4 and B′

v

is a red clique of order t − 4. Choose a vertex w ∈ A′
v. From Fact 2, there

are t − 2 red edges and one blue edge from w to Bv since |B| = t − 1. If
t ≥ 7, then there is a red 2-matching in B, and hence there is a red S2

t , a
contradiction.

Suppose that there is a red star with center a in Av and there is a blue
triangle xyzx in Bv. Let A

′
v = Av − a and B′

v = Bv − {x, y, z}. Clearly, A′
v

is a blue clique of order t− 2 and B′
v is a red clique of order t− 4. If there is

a blue edge from A′ to B, then this edge together with A′
v form a blue S2

t ,
a contradiction. So we can assume that the edges from A′

v to Bv are red.
Since t ≥ 7, it follows that the edges from A′

v to Bv and B from a red S2
t , a

contradiction.

2.2 The case r = 3

For r = 3, we need to prove that R(S3
t , S

3
t ) = 2t− 1.

Proof of (2) of Theorem 2. The lower bound follows from the same example
as presented in the proof of (1). For the upper bound, let G be a 2-coloring
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of K2t−1 and for a contradiction, suppose G contains no monochromatic
copy of S3

t . For each v ∈ V (G), let Av and Bv be the set of vertices incident
red and blue edges to v, respectively.

Case 1. There exists a vertex v ∈ V (G) such that |Av | ≥ t+ 2.

It is clear that A contains no red 3-matching (that is 3K2). Let X =
{u1, u2, u3, u4} be the vertices of a red 2-matching, and let A′ = A − X.
Clearly, A′ is a blue clique of order t − 2. To avoid a red 3-matching, for
each vertex w in A′, the edges from w to X are red or there is at most
one blue edge from w to X. Choose Y = {w1, w2, w3, w4}. Then the edges
between X and Y form a red subgraph obtained from K4,4 by deleing at
most four edges, and hence there are a 3-matching in this red subgraph, a
contradiction.

Case 2. There exists a vertex v ∈ V (G) such that |Av | = t+ 1.

To avoid a red S3
t , A contains at most a red 2-matching, say {u1u2, u3u4}.

Let A′ = A− {u1, u2, u3, u4}.

Claim 1. For each ui (1 ≤ i ≤ 4), the edges from ui to A′ are red or blue.

Proof. Assume, to the contrary, that there exist two vertices w1, v1 in A′

such that u1w1 is blue and u1v1 is red. To avoid a red 3-matching, u2w1 is
blue and for x ∈ A′ − {w1, v1}, u2x is blue. To avoid a blue S3

t , u3w1 and
u4w1 are red. Clearly, xu3 and xu4 are blue. Then there is a blue S3

t , a
contradiction.

Suppose that the edges from {u1, u2} to A′ are red. Since t ≥ 15, there
exist two vertices w1, w2 ∈ A′ such that {u1w1, u2w2} is a red 2-matching,
and hence {u1w1, u2w2, u3u4} is a red 3-matching, a contradiction. We can
also get a contradiction if the edges from {u3, u4} to A′ are red.

Suppose that the edges from {u1, u2} to A′ are blue. To avoid a blue S3
t ,

the edges from {u3, u4} to A′ are red, and hence there is a red 3-matching
in A, a contradiction. We can also get a contradiction if the edges from
{u3, u4} to A′ are blue.

From now on, without loss of generality, we assume that the edges from
{u1, u3} to A′ are red and the edges from {u2, u4} to A′ are blue. To avoid
a red 3-matching in A = A′ ∪ {u1, u2, u3, u4}, u2u4 is blue. Let A′′ =
A′ ∪ {u2, u4}. It is clear that the graph induced by A′′ is a blue clique of
order t−1. To avoid a blue S3

t , each edge from A′′ to B is red. The following
facts are immediate.
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Fact 3. There is no vertex incident to at least 3 red edges in B, and there
is no red 2-matching in B.

From Fact 3, there is at most one red triangle in B.

Claim 2. There is at most one red edge from u1 (resp. u2) to B.

Proof. Assume, to the contrary, that there are two edges u1w1, u1w2 from
u1 to {w1, w2}, where w1, w2 ∈ B. Choose u ∈ A′′ − {u1, u4}. Then uvu1v,
u1u2w1u1 and u1u4w2u1 form 3 red triangles and hence there is a red S3

t , a
contradiction.

Similarly, there is at most one red edge from u2 to B. Let h ∈ B −
{w1, w2, x, y, z}. Clearly, hu1, hu2, hv are blue, and hence there is a blue S3

t ,
a contradiction.

Case 3. For each vertex v ∈ V (G), |Av| = |Bv| = t− 1.

Since t ≥ 15 and R(F3, F3) = 13, it follows that there is a red F3 or a
blue F3 in G. Without loss of generality, let F3 be a red fan of order 7, and
let v be the center of F3. In this case, there t− 7 pendent edges incident to
v. There is a red S3

t , a contradiction.

Case 4. There exists a vertex v ∈ V (G) such that |Av| = t.

It is clear that there is at most a red 2-matching in A. Let X =
{u1, u2, u3, u4}, and let A′ = A − X. Then |A′| = t − 4 and A′ be a blue
clique of order t− 4.

Fact 4. For each w ∈ A′, there are at most 3 blue edges from w to X.

We distinguish the following cases to show our proof.

Subcase 4.1. There exists a vertex w ∈ A′ such that there are exactly three
blue edges from w to X.

To avoid a blue S3
t , the edges from w to X are red. To avoid a red

3-matching, for any x ∈ A′ −w, the edges from w to X are blue, and hence
there is a blue S3

t , a contradiction.

Subcase 4.2. There exists a vertex w ∈ A′ such that there are exactly two
blue edges from w to X.

7



Let wv1 and wv2 be two blue edges from w to X, and let B′ = B −
{v1, v2}. To avoid a blue S3

t , there are three edges, say wu1, wu2, wu3, from
w to X. To avoid a red 3-matching, the edges from x to X − v3 are blue.

Suppose that there are at least two red edges u1v
′, u1v

′′ from u1 to B.
Then we have the following claim.

Claim 3. The edges from u2 to B are blue.

Proof. Assume, to the contrary, that there exists a vertex v′′′ (note that
v′′′ is not necessarily different from v′ and v′′). Then there is a red S3

t , a
contradiction. Then there is a red S3

t , where uwu1v,wu1v
′w,wu2v

′′′w are
three triangles in S3

t , a contradiction.

From Claim 3, the graphs induced by the vertices in A′∪B∪{u2} contains
a blue S3

t , a contradiction.

Subcase 4.3. For each w ∈ A′, the edges from w to B are red.

Note that |A′| = t− 4 and |B| = t− 2.

Fact 5. There is no vertex incident at least 3 red edges, and there is no red
2-matching in B.

From Fact 5, there is at most a red triangle xyzx in B. Let B′ =
B − {x, y, z}. We claim that the edges from X to B′ are red. Assume, to
the contrary, that there exists a vertex w ∈ B′ such that wu1 is blue. Since
vw,wx,wy,wz are blue, it follows that there is a blue S3

t , a contradiction.

Choose w1, w2 ∈ A′ and v1, v2 ∈ B′. Then there exists a red S3
t ,

u1wv1u1, u1w2v2u1, u1u2vu1 are three triangles in S3
t , a contradiction.

2.3 For general r

For general r, we need to prove that R(Sr
t , S

r
t ) = 2t− 1 for t ≥ 6r − 5.

Proof of (3) of Theorem 2. The lower bound follows from the same example
as presented in the proof of (1). For the upper bound, let G be a 2-coloring
of K2t−1 and for a contradiction, suppose G contains no monochromatic
copy of S3

t . For each v ∈ V (G), let Av and Bv be the set of vertices incident
red and blue edges to v, respectively.

Case 1. There exists a vertex u ∈ V (G) such that |Au| ≥ t and there exists
a vertex v ∈ V (G) such that |Av| ≥ t.
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To avoid a red Sr
t , there are at most r−1 red matching in Au. By deleting

2r − 2 vertices in Au, the resulting graph has no red edges and contains a
blue clique A′ = Kt−2r+2. Similarly, by deleting 2r − 2 vertices in Av, the
resulting graph has no blue edges and contains a red clique B′ = Kt−2r+2.
Choose x ∈ A′. To avoid a blue Sr

t , the number of blue edges from x to
B′ is at most 2r − 3, and hence the number of red edges from x to B′ is at
least t− 4r + 5. Since t ≥ 6r − 5, it follows that there is a red fan F2r with
center x, and there is a blue fan F2r with center x. Since the degree of x is
2t− 2, it follows that the red or blue degree of x is t− 1+ (2r+1) = t+2r,
a contradiction.

Case 2. For each vertex v ∈ V (G), |Av| ≥ t or |Bv | ≥ t.

Without loss of generality, we suppose |Av| ≥ t. Then there is a red
Hamilton cycle C in G. If there exists a vertex x of degree at least t + r,
then there is a red fan F2r, and hence there is a red Sr

t , a contradiction.
Suppose that for each vertex x its red degree is at most t + r − 1 and at
least t.

Claim 4. (3′) For t ≥ 6r − 4, R(Sr
t , S

r
t ) ≤ 2t+ 2r − 1.

Proof. Let G be a graph of order 2t + 2r − 1, whose edges are colored red
and blue. For each v ∈ V (G), let Av and Bv be the set of vertices incident
with red and blue edges to v, respectively. We distinguish the following two
cases, which cover all possible colorings.

Case 1. There exists a vertex u ∈ V (G) such that |Au| ≥ t − 1 and there
exists a vertex v ∈ V (G) such that |Bv| ≥ t− 1.

We follow the proof of Case 1 above with some small changes.

To avoid a red Sr
t , there is at most a r−1 red matching in Au. By deleting

2r − 2 vertices in Au, the resulting graph has no red edges and contains a
blue clique A′ = Kt−2r+1. Similarly, by deleting 2r − 2 vertices in Av, the
resulting graph has no blue edges and contains a red clique B′ = Kt−2r+1.
Choose x ∈ A′. To avoid a blue Sr

t , the number of blue edges from x to
B′ is at most 2r − 2, and hence the number of red edges from x to B′ is at
least t− 4r + 4. Since t ≥ 6r − 4, it follows that there is a red fan F2r with
center x, and there is a blue fan F2r with center x. Since the degree of x is
2t+2r− 2, it follows that the red or blue degree of x is at least t+ r− 1, a
contradiction.

Case 2. For each vertex v ∈ V (G), |Av| ≥ t+ 2r or |Bv| ≥ t+ 2r.

9



Without loss of generality, we suppose |Av| ≥ t+ 2r. Let δR(G) denote
the red minimum degree in G. Then there is a red Hamilton cycle C in G,
since δR(G) ≥ t+2r > 2t+2r−1

2 (Dirac). Since |Av | ≥ t+2r for every vertex
v ∈ V (G), we have dR(v) > 2t+2r−1

2 + r. Using a combinatorial counting
argument we conclude that every vertex v ∈ V (G) is contained in a red fan
F2r, and hence there is a red Sr

t , a contradiction.

This completes the proof of Theorem 2.

3 Results for Gallai Ramsey number

In this section, we study the Gallai Ramsey number of stars with extra
independent edges.

3.1 The case r = 2 and t = 6

We first give a lower bound construction for item (1) in Theorem 3.

Lemma 2. For k ≥ 1, we have

grk(K3;S
2
6) ≥

{

2 · 5
k

2 + 1
4 · 5

k−2

2 + 3
4 , if k is even;

⌈

51
10 · 5

k−1

2 + 1
2

⌉

, if k is odd.

Proof. Let G1 be a copy of K5 entirely colored by color 1 and let G2 be
a copy of K10 consisting of two copies of G1 joined by all edges of color
2. Now suppose we have constructed a Gallai colored complete graph Gk−2

with k ≥ 3 using k− 2 colors which contains no monochromatic copy of S2
6 .

We construct the graph Gk by making five copies of Gk−2 and inserting edges
of colors k − 1 and k between the copies to form a blow-up of the unique
2-coloring of K5 with no monochromatic triangle. This coloring contains no
rainbow triangle and no monochromatic copy of S2

6 , and has order

|Gk| =

{

2 · 5k/2 if k is even;

5(k+1)/2 if k is odd.

For k = 3 we set G′
3 = G3.

For all k ≥ 4 we extend this construction as follows. For j ≥ 4 define the
graph A

j
1 to be a colored complete graph K6 containing a perfect matching

using colors 2, 3 and j, with all other edges in color 1. If k is odd, then
choose two copies of G′

k−2 and replace one copy of G1 within each of them

by a copy of Ak−1
1 and Ak

1 , respectively. This modification process is applied
at each step of the construction above so in particular,

10



• |G′
3| = 25,

• |G′
5| = 5 · 25 + 2 = 127,

• |G′
7| = 5 · 127 + 2 = 637,

and so on. This yields

|Gk| = 5

(⌈

51

10
· 5

k−3

2 +
1

2

⌉

− 1

)

+ 2 =

⌈

51

10
· 5

k−1

2 −
1

2

⌉

,

as claimed.
For j ≥ 4 let Bj

1 be a complete graph K6 containing a perfect matching
using colors 1, j − 1 and j, and all other edges in color 1. Now if k is even,
then choose one copy of G′

k−2 and replace one copy of G1 in it by a copy

of Bk
1 . This modification process is applied at each step of the construction

above so in particular,

• |G′
2| = 10,

• |G′
4| = 5 · 10 + 1 = 51,

• |G′
6| = 5 · 51 + 1 = 256,

and so on. This yields

|Gk| = 5

(

41

4
· 5

k−4

2 +
3

4
− 1

)

+ 1 =
41

4
· 5

k−2

2 −
1

4
,

as claimed.

Next, we give the upper bound for (1) of Theorem 3.

Lemma 3.

grk(K3;S
2
6) ≤

{

2 · 5
k

2 + 1
4 · 5

k−2

2 + 3
4 , if k is even;

⌈

51
10 · 5

k−1

2 + 1
2

⌉

, if k is odd.

Proof. We prove this upper bound by induction on k. The case k = 1 is
trivial and the case k = 2 is precisely the statement R(S2

6 , S
2
6) = 15. We

therefore suppose k ≥ 3 and let G be a coloring of Kn containing no rainbow
triangle and no monochromatic copy of S2

6 where

n = n(k) =

{

2 · 5
k

2 + 1
4 · 5

k−2

2 + 3
4 , if k is even;

⌈

51
10 · 5

k−1

2 + 1
2

⌉

, if k is odd.
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Since G is a Gallai coloring, it follows from Theorem 1 that there is a
Gallai partition of V (G). Suppose that the two colors appearing in the Gallai
partition are red and blue. Let m be the number of parts in this partition
and choose such a partition where m is minimized. Let H1,H2, . . . ,Hm be
the parts of this partition, say with |H1| ≥ |H2| ≥ · · · ≥ |Hm|. Let q be the
number of “large” parts of order at least 3. This means that |Hq| ≥ 3 and
|Hq+1| ≤ 2. Let X be the set of vertices in the “small” parts of order at most
2. Note that m ≤ 10 by Theorem 2. First some easy observations related to
facts noted in [6]. The proof of each involves constructing a monochromatic
copy of S2

6 in the assumed structure.

Fact 6. Let A and B be two disjoint non-empty sets of vertices in a colored
complete graph with no monochromatic copy of S2

6 , with all edges from A to
B colored red.

• If |B| ≥ 3, then A contains no vertex with two incident red edges
(within A).

• If |A| ≥ 5, then A contains no red copy of 2K2.

• If |A| ≥ 4, then at most one of A or B contains a red edge.

Furthermore, given three disjoint non-empty sets of vertices with all red edges
between pairs of these sets, then either all three of these sets must have order
at most 2 or two of these sets must have order 1.

We break the proof into two cases, where k = 3 and where k ≥ 4.

Case 1. k = 3.

With k = 3, we have n = 26 and say the three colors used are red, blue,
and green.

If 2 ≤ m ≤ 3, then by the minimality of m, we may assume m = 2,
say with corresponding parts H1 and H2 with all red edges in between the
two parts. Since n = 26, it follows that |H1| ≥ 13. By Fact 6, H1 does not
contain red 2K2. Thus, by deleting at most 2 vertices fromH1, we can obtain
a subgraph of H1 in which there are no red edges. Since R(S2

6 , S
2
6) = 11,

it follows that there is a blue or green copy of S2
6 within this subgraph, a

contradiction. We may therefore assume that 4 ≤ m ≤ 10.
If q ≥ 6, then there is a monochromatic triangle in the reduced graph

restricted to the q large parts, contradicting Fact 6. At the opposite extreme,
if q = 0, then all parts have order at most 2 so there are at least 13 parts.
Since R(S2

6 , S
2
6) = 11, it follows that there is a monochromatic copy of S2

6 in
the reduced graph, a contradiction. Thus, we may assume that 1 ≤ q ≤ 5.

12



If q = 5, then by Fact 6, in order to avoid a monochromatic triangle
in the reduced graph that uses at least two vertices corresponding to large
parts, we must have m = q = 5 and the parts are arranged to form a blow-up
of the unique 2-coloring of K5 with no monochromatic triangle. This means
that |H1| ≥

⌈

26
5

⌉

= 6. By Fact 6, H1 contains no red or blue copy of 2K2

and no vertex with two incident red edges or two incident blue edges. This
means that H1 contains at most one red edge and at most one blue edge,
meaning that H1 contains a green copy of S2

6 , for a contradiction. More
generally, this argument using Fact 6 yields the following fact.

Fact 7. With k = 3, if a part A of the Gallai partition has all red edges to
at least 3 vertices and all blue edges to at least 3 vertices, then |A| ≤ 5.

Next suppose q = 4. In order to avoid a monochromatic triangle among
the large parts, there are only two possible colorings for the reduced graph
restricted to the large parts, one with complementary monochromatic copies
of P4 and the other with a C4 in one color and 2K2 in the other. In either
case, each large part has red and blue edges to another large part so by
Fact 7, there are at most 20 vertices in large parts so |X| ≥ 6. If the
reduced graph restricted to the large parts contains a C4 in one color, then
the edges from X to the large parts cannot be colored without creating a
monochromatic copy of S2

6 , so we may assume the reduced graph restricted
to the large parts contains two complementary monochromatic copies of P4.
In order to avoid a monochromatic triangle in the reduced graph using at
least two large parts, the edges from all of X to the ends of each P4 must
have the same color as the P4 itself. By the minimality of m, X must be a
single part of the Gallai partition of order at least 6, a contradiction.

Next suppose q = 3. By Fact 6, we may assume that the edges from H1

to H2 ∪H3 are red and the edges from H2 to H3 are blue. If a part in X

had red edges to H1, then to avoid a monochromatic triangle in the reduced
graph, it must have blue edges to bothH2 andH3, creating a monochromatic
copy of S2

6 . Thus, the edges from X to H1 must all be blue. By Fact 6,
|H2| ≤ 5 and |H3| ≤ 5. Then we have the following claim.

Claim 5. There is no set of at least 7 vertices in X with all one colored
edges to a large part.

In particular, since H1 has all blue edges to X, this claim implies that
|X| ≤ 6.

Proof. Assume, to the contrary, that there is a set X ′ ⊂ X with |X ′| ≥ 7
which has all one color on edges to a large part, say blue. By Fact 6, X ′
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contains neither a blue copy of 2K2 nor a vertex of blue degree at least 2,
and so X ′ contains at most one blue edge. Since X ′ consists of only small
parts, the red subgraph of X ′ must therefore be a complete graph minus a
matching. Since |X ′| ≥ 7, there is a red copy of S2

6 inX ′, a contradiction.

From Claim 5, we have |X| ≤ 6. Since |H2| ≤ 5 and |H3| ≤ 5, it follows
that |H1| ≥ 10. By Fact 6, H1 contains neither red copy of 2K2 nor a vertex
of red degree at least 2, and hence H1 contains at most one red edge. If
X 6= ∅, then H1 contains no blue copy of 2K2 so by deleting at most 2
vertices, we obtain a subgraph of H1 of order at least 9 with no blue edges,
clearly yielding a green copy of S2

6 . On the other hand, if X = ∅, then
|H1| ≥ 16. By deleting at most one vertex from H1, we obtain a subgraph
of H1 of order at least 15 with no red edges, only green and blue. By
Theorem 2, there is a monochromatic copy of S2

6 in this subgraph, for a
contradiction.

Claim 6. With k = 3, all parts have order at most 7.

Proof. For a contradiction, suppose |H1| ≥ 8. By minimality of m, there is
at least one vertex in G \H1 with red edges to H1 and at least one vertex
in G \ H1 with blue edges to H1. By Fact 6, H1 contains no red or blue
copy of 2K2. This means that the removal of at most 2 vertices from H1 can
produce a subgraph with no red edges and the removal of at most an addition
2 vertices can produce a subgraph with no blue edges. Therefore, removing
at most 4 vertices from H1 produces a subgraph with all green edges so if
|H1| ≥ 10, this subgraph contains a green copy of S2

6 , so |H1| ≤ 9.
With n = 26, there are at least 3 vertices in G \H1 with all one color,

say blue, on edges to H1. By Fact 6, there is at most one blue edge in H1.
As above, removing at most 2 vertices from H1 produces a subgraph with
no red edges. With |H1| ≥ 8, this subgraph has order at least 6 and all
green edges except possibly one blue edge. This subgraph contains a green
copy of S2

6 , for a contradiction.

Let A and B be the sets of vertices in X with red and blue (respectively)
edges to H1. By Claim 5, we have |A|, |B| ≤ 6. If q = 1, then by Claim 6,
we have

|G| = |H1|+
m
∑

i=2

|Hi|

≤ 7 + 2 · 6

= 19 < 26 = n,
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a contradiction. We may therefore assume that q = 2. By Claims 5 and 6,
we have

|G| = |H1|+ |H2|+ |A|+ |B| ≤ 7 + 7 + 6 + 6 = 26 = n,

which means that |H1| = |H2| = 7 and |A| = |B| = 6. By Claim 5, since
|A|, |B| ≥ 3, H1 contains at most one red edge and at most one blue edge,
meaning that |H1| ≤ 5. Then

|G| = |H1|+ |H2|+ |A|+ |B| ≤ 5 + 5 + 6 + 6 = 22 < n,

a contradiction, completing the proof of Lemma 3 when k = 3.

Case 2. k ≥ 4.

As in the previous case, it is easy to see that 1 ≤ q ≤ 5.
First suppose 2 ≤ m ≤ 3, so by minimality of m, we may assume m = 2,

say with corresponding parts H1 and H2 with all red edges between the two
parts. If |H1| ≥ 5 and |H2| ≥ 5, then by Fact 6, each of H1 and H2 contains
neither a red copy of 2K2 nor a vertex of red degree at least 2. Furthermore,
Fact 6 implies that H1 ∪H2 contains at most one red edge (aside from the
edges in between the two parts). By deleting one vertex from H1∪H2, there
is no red edge within either part, and hence

|G| = |H1|+ |H2| ≤ 2 · [n(k − 1)− 1] + 1 < n(k),

a contradiction. Thus, suppose |H2 ≤ 4 (and |H1| ≥ 5). Then by Fact 6, H1

contains no red copy of 2K2. By deleting two vertices from H1, we obtain a
subgraph of H1 with no red edges, and so

|G| = |H1|+ |H2| ≤ [n(k − 1)− 1] + 2 + 4 < n(k),

a contradiction, meaning that we may assume 4 ≤ m ≤ 10. We break the
remainder of the proof into subcases based on the value of q.

If q = 5, then by Fact 6, m = 5 so G = H1 ∪H2 ∪H3 ∪H4 ∪H5 and the
reduced graph is the unique 2-colored copy of K5 with no monochromatic
triangle. By Fact 6, aside from edges between the parts, H1 ∪ H2 ∪ H3 ∪
H4∪H5 contains at most one red edge and one blue edge. Thus, by deleting
at most 2 vertices, there is neither a red nor a blue edge within any part of
the Gallai partition. This implies that

|G| =
5

∑

i=1

|Hi| ≤ 5 · [n(k − 2)− 1] + 2 < n(k),
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a contradiction.

Next suppose q = 4. In order to avoid a monochromatic triangle among
the large parts, there are only two possible colorings for the reduced graph
restricted to the large parts, one with complementary monochromatic copies
of P4 and the other with a C4 in one color and 2K2 in the other. In either
case, each large part has red and blue edges to another large part so by
Fact 6, there are at most 2 total red edges and at most 2 total blue edges
within large parts. Then by removing at most 4 total vertices, we may
obtain a subgraph in which there are no red or blue edges within the parts.
If m = 4, then

|G| =
4

∑

i=1

|Hi| ≤ 4[n(k − 2)− 1] + 4 < n(k),

a contradiction, meaning that we may assume m ≥ 5. If the reduced graph
restricted to the large parts contains a C4 in one color, then the edges from
X to the large parts cannot be colored without creating a monochromatic
copy of S2

6 , so we may assume the reduced graph restricted to the large
parts contains two complementary monochromatic copies of P4. In order
to avoid a monochromatic triangle in the reduced graph using at least two
large parts, the edges from all of X to the ends of each P4 must have the
same color as the P4 itself. By the minimality of m, X must be a single part
of the Gallai partition of order at most 2. By Fact 6 (as in the proof of the
case q = 5 above), each part Hi for 1 ≤ i ≤ 4 contains at most one red edge
and at most one blue edge. Then by removing at most 2 total vertices, we
may obtain a subgraph in which there are no red or blue edges within the
parts. Thus,

|G| =
4

∑

i=1

|Hi|+ |X| ≤ 4[n(k − 2)− 1] + 2 + 2 < n(k),

a contradiction.

Suppose q = 3. Suppose that the edges from H1 to H2 ∪H3 are red and
the edges from H2 to H3 are blue. Then to avoid a monochromatic triangle
using at least two large parts, every vertex in X has blue edges to H1. By
Claim 5, we have |X| ≤ 6. By Fact 6, H1 ∪H2 ∪H3 contains at most one
red edge within the parts, H2 ∪H3 contains at most one blue edge within
the parts, and H1 does not contain blue copy of 2K2. By deleting at most
4 vertices, we may obtain a subgraph in which there is neither red nor blue
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edges within the parts of H1 ∪H2 ∪H3, and hence

|G| =
3

∑

i=1

|Hi|+ |X| ≤ 3[n(k − 2)− 1] + 4 + 6 < n(k),

a contradiction.
Suppose q = 2, say with the edges from H1 to H2 being red. By Fact 6,

H1∪H2 contains at most one red edge within the parts, and each large part
Hi does not contain a blue copy of 2K2. By deleting at most 5 total vertices
from the large parts, we may obtain a subgraph in which neither red nor
blue edges appear within the parts of H1 ∪ H2. Let A be the set of small
parts with red edges to H1, and let B be the set of small parts with blue
edges to H1. By Claim 5, we have |A| ≤ 6 and |B| ≤ 6, and hence

|G| = |H1|+ |H2|+ |A|+ |B| ≤ 2[n(k − 2)− 1] + 5 + 12 < n(k),

a contradiction.
Finally suppose q = 1 and let A be the set of small parts with red edges

to H1 and B be the set of small parts with blue edges to H1. From Claim 5,
we have |A| ≤ 8 and |B| ≤ 8. By Fact 6, H1 contains neither a red copy
of 2K2 nor a blue copy of 2K2. By deleting at most 4 vertices from H1, we
may obtain a subgraph of H1 in which there is neither a red nor a blue edge.
Hence

|G| = |H1|+ |A|+ |B| ≤ [n(k − 2)− 1] + 4 + 12 < n(k),

a contradiction.

3.2 The case r = 2 and t = 8

We first give a lower bound construction for Item (2) of Theorem 3.

Lemma 4. For k ≥ 3,

grk(K3;S
2
8) ≥

{

14 · 5
k−2

2 + 1
2 · 5

k−4

2 + 1
2 , if k is even;

7 · 5
k−1

2 + 1
4 · 5

k−3

2 + 3
4 , if k is odd.

Proof. This lower bound result is proven by constructing a colored complete
graph on one fewer vertex that does not have the desired colored subgraphs.

Let G1 be a copy of K7 entirely colored by color 1 and let G2 be a copy
of K14 consisting of two copies of G1 joined by all edges of color 2. Now
suppose we have constructed a Gallai colored complete graph Gk−2 with
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k ≥ 3 using k − 2 colors which contains no monochromatic copy of S2
8 . We

construct the graph Gk by making five copies of Gk−2 and inserting edges
of colors k − 1 and k between the copies to form a blow-up of the unique
2-coloring of K5 with no monochromatic triangle. This coloring contains no
rainbow triangle and no monochromatic copy of S2

8 . When k = 3, we set
G′

3 = G3 and G′
4 = G4.

For each odd k ≥ 5, we extend this construction as follows. For j ≥ 5,
let A

j
1 be a colored copy of K8 containing a perfect matching with colors

2, 3, j − 1 and j and all other edges with color 1. Now choose one copy of
G1 from the construction of Gk and replace it with a copy of Ak

1 to produce
a slightly larger graph G′

k.
For each even k ≥ 6, we extend this construction as follows. For j ≥ 6,

let A
j
1 be a colored copy of K8 containing a perfect matching with colors

2, 3, 4, j and all other edges having color 1. Similarly let A
j
2 be a colored

copy of K8 containing a perfect matching with colors 2, 3, 4, j − 1 and all
other edges having color 1. If k = 6, we choose two of the copies of G4 and
choose one copy of G1 from each. One of these copies of G1 is replaced by
A6

1 and the other is replaced by A6
2 to create the graph G′

6 on 352 vertices.
For k ≥ 8, there are always at least 15 copies of G4 (which had not been
modified) so choose two of these and again replace two copies of G1 by Ak

1

and Ak
2 respectively.

This modification process is applied at each step of the construction
process so in particular, for odd values of k, we have

• |G′
3| = 35

• |G′
5| = 5 · 35 + 1 = 176,

• |G′
7| = 5 · 176 + 1 = 881.

Similarly, for even values of k, we have

• |G′
4| = 5 · 14 = 70

• |G′
6| = 5 · 70 + 1 = 352

• |G′
8| = 5 · 352 + 2 = 1762

If k is odd and k ≥ 5, this yields

|G′
k| = 5 · |G′

k−2|+ 1

= 5

(

7 · 5
k−3

2 +
1

4
· 5

k−5

2 +
3

4
− 1

)

+ 1

= 7 · 5
k−1

2 +
1

4
· 5

k−3

2 −
1

4
.
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Similarly, if k is even and k ≥ 6, this yields a new graph G′
k with

|G′
k| = 5 · |G′

k−2|+ 2

= 5

(

14 · 5
k−4

2 +
1

2
· 5

k−6

2 +
1

2
− 1

)

+ 2

= 14 · 5
k−2

2 +
1

2
· 5

k−4

2 −
1

2
,

as claimed.

We now give an upper bound for (1) of Theorem 3.

Lemma 5. For k ≥ 1,

grk(K3;S
2
8) ≤























8, if k = 1;

15, if k = 2;

14 · 5
k−2

2 + 1
4 · 5

k−4

2 + 3
4 , if k is even;

7 · 5
k−1

2 + 1
4 · 5

k−3

2 + 3
4 , if k is odd.

Proof. We prove the upper bound by induction on k. The case k = 1 is
trivial and the case k = 2 is precisely R(S2

8 , S
2
8) = 15. We therefore suppose

k ≥ 3 and let G be a coloring of Kn with no rainbow triangle and no
monochromatic copy of S2

8 where

n = nk =

{

14 · 5
k−2

2 + 1
4 · 5

k−4

2 + 3
4 , if k is even;

7 · 5
k−1

2 + 1
4 · 5

k−3

2 + 3
4 , if k is odd.

Since G is a Gallai coloring, it follows from Theorem 1 that there is a
Gallai partition of V (G). Suppose that the two colors appearing in the Gallai
partition are red and blue. Let m be the number of parts in this partition
and choose such a partition where m is minimized. Let H1,H2, . . . ,Hm be
the parts of this partition, say with |H1| ≥ |H2| ≥ · · · ≥ |Hm|. Let q be
the number of “large” parts of order at least 4. This means that |Hq| ≥ 4
and |Hq+1| ≤ 3. Let X be the set of vertices in the “small” parts of order
at most 3. Note that m ≤ 14 by Theorem 2. First some easy observations
much like Fact 6.

Fact 8. Let A and B be two disjoint non-empty sets of vertices in a colored
complete graph with no monochromatic copy of S2

8 , with all edges from A to
B colored red.

• If |B| ≥ 5, then A contains no vertex with two incident red edges
(within A).
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• If |A| ≥ 7, then A contains no red copy of 2K2.

• If |A| ≥ 6, then at most one of A or B contains a red edge.

Furthermore, given three disjoint non-empty sets of vertices with all red
edges between pairs of these sets, then either the two larger sets have total
order at most 6 or two of the sets have order 1. In particular, there can be
no monochromatic triangle in the reduced graph that corresponds to at least
two large parts (of order at least 4).

We break the proof into two cases, when k = 3 and when k ≥ 4.

Case 1. k = 3 so n = 36.

With red and blue being the colors appearing on edges between parts of
the Gallai partition, let green be the third color in this 3-coloring.

First suppose 2 ≤ m ≤ 3 so by the minimality of m, we may assume
m = 2, say with all red edges between H1 and H2. Clearly, |H1| ≥

n
2 = 18 so

by Fact 8, H1 contains no red copy of 2K2. By removing at most 2 vertices
from H1, we obtain a subgraph with no red edges. Since |H1| − 2 ≥ 16 and
R(S2

8 , S
2
8) = 15, it follows that there is a monochromatic copy of S2

8 within
H1, a contradiction. We may therefore assume that 4 ≤ m ≤ 14. By the
minimality of m, this means every part has incident edges (to other parts)
in both red and blue.

The remainder of this case is broken into subcases based on the value of
q.

First suppose q = 5. Then to avoid a monochromatic triangle in the re-
duced graph containing at least two large parts, we must also havem = 5 and
the reduced graph must be the unique 2-coloring of K5 with no monochro-
matic triangle. Then |H1| ≥

⌈

36
5

⌉

= 8. By Fact 8, there is a total of at most
one red edge and at most one blue edge inside the partsH1∪H2∪H3∪H4∪H5.
Hence, H1 contains at most one red edge and at most one blue edge, with
all remaining edges being green. This produces a green copy of S2

8 , a con-
tradiction.

Next suppose q = 0. By the Pigeonhole Principle, we have |H1| ≥ 3
so let A be the set of vertices in parts with red edges to H1 and let B be
the set of vertices in parts with blue edges to H1. Since |A ∪ B| = 33, it
follows that one of |A| ≥ 17 or |B| ≥ 17 must hold, say |A| ≥ 17 without
loss of generality. By Fact 8, there can be no red copy of 2K2 within A. By
deleting at most 2 vertices from A, we may obtain a subgraph with no red
edges. Since |A| − 2 ≥ 15 = R(S2

8 , S
2
8), it follows that this subgraph of A

contains either a blue or a green copy of S2
8 , a contradiction.
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Next suppose q = 1. By Fact 8, if |H1| ≥ 7, there can be no red or blue
copy of 2K2 within H1. By removing at most 2 vertices from H1, we obtain
a subgraph in which there is at most one red edge and at most one blue
edge. If |H1| ≥ 10, such a subgraph would contain a green copy of S2

8 , so
we must have |H1| ≤ 9. Let A be the set of vertices in parts with red edges
to H1 and let B be the set of vertices in parts with blue edges to H1. Since
n = 36, it follows that |A| + |B| ≥ 27, so either |A| ≥ 14 or |B| ≥ 14, say
|A| ≥ 14. By Fact 8, A contains no red copy of 2K2. This means that by
deleting at most 2 vertices from A, we have a subgraph with no red edges.
Since |A|−2 ≥ 12 and all parts of A have order at most 3, there are at least
4 parts within this subgraph with all blue edges in between each pair. This
produces a blue copy of S2

8 , for a contradiction.

Next suppose q = 4. If m ≥ 5, then in order to avoid a monochromatic
triangle in the reduced graph including two large parts, all small parts must
have specifically colored edges to the large parts such that the small parts
together form one part of a blow-up of the unique 2-coloring of K5 with no
monochromatic triangle. By the minimality of m, there is only one part H5

other than H1 ∪H2 ∪H3 ∪H4, with |H5| ≤ 3. Since n = 36, regardless of
the value of m, it follows that

∑4
i=1 |Hi| ≥ 33. By the Pigeonhole Principle,

we have |H1| ≥
⌈

33
4

⌉

= 9 and by Fact 8, there can be no red or blue copy
of 2K2 within H1. By removing at most 2 vertices from H1, we obtain a
subgraph in which there is at most 1 red edge and at most one blue edge.
If |H1| ≥ 10, such a subgraph would contain a green copy of S2

8 , so we must
have |H1| = 9. Since

∑4
i=1 |Hi| ≥ 33, we have |H2| ≥

⌈

24
3

⌉

= 8 and suppose
the edges from H1 to H2 are red. By Fact 8, H1 contains at most one red
edge. By removing at most one vertex from H1, we obtain a subgraph in
which there is at most one blue edge. Since |H1| − 1 ≥ 8, this subgraph
contains a green copy of S2

8 , for a contradiction.

Next suppose q = 3. Disregarding the relative orders of the large parts,
we may assume without loss of generality and to avoid a monochromatic
triangle, that all edges from H1 to H2 ∪H3 are red and the edges from H2

to H3 are blue. Then in order to avoid a monochromatic triangle in the
reduced graph corresponding to two of the large parts, all edges from X to
H1 must be blue. Next we claim that the large parts are not too large.

Claim 7. |Hi| ≤ 7 for all i.

Proof. First suppose |H2| ≥ 8. By Fact 8, H2 contains neither a red nor
a blue copy of 2K2. Furthermore, since H1 and H3 are both large, H2

contains neither a vertex of red degree at least 3 nor a vertex of blue degree
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at least 3 to avoid creating a monochromatic copy of S2
8 . Therefore, the

graph induced by the red edges in H2 is a subgraph of a red triangle, and
the graph induced by the blue edges in H2 is a subgraph of a blue triangle.
The remaining edges of H2 all being green, there is a green copy of S2

8 in
H2, a contradiction. This means that |H2| ≤ 7 and symmetrically |H3| ≤ 7.

Next assume |H1| ≥ 8. By Fact 8, H1 contains at most one red edge,
and no blue copy of 2K2. Furthermore, the blue edges within H1 form either
a blue triangle or a blue star. If the blue edges of H1 are a subgraph of a
triangle, then with all remaining edges being green aside from possibly one
red edge, there is a green copy of S2

8 in H1, a contradiction. Thus suppose
that H1 contains a blue star with at least 3 edges. By Fact 8, we must
have |X| ≤ 4. With |H2| + |H3| + |X| ≤ 7 + 7 + 4 = 18 and n = 36, we
have |H1| ≥ 18. By removing at most two vertices from H1, we obtain a
subgraph in which there are no red or blue edges. Since this subgraph has
order at least 16 and all green edges, it must contain a green copy of S2

8 for
a contradiction.

From Claim 7, we have |Hi| ≤ 7 for i = 1, 2, 3. Since n = 36, it follows
that |X| ≥ 15. By Fact 8, there is no blue copy of 2K2 in X so by deleting
at most 2 vertices from X, we can obtain a subgraph of X of order at least
13 in which there are no blue edges. Since X consists of only small parts
of the Gallai partition, at least 5 of them, and these parts must have all
red edges in between them, it follows that there is a red copy of S2

8 as a
subgraph of X, completing the proof when q = 3.

Finally suppose q = 2. Suppose that the edges from H1 to H2 are red.
Let A be the set of vertices in small parts with red edges to H1, and let B
be the set of vertices in small parts with blue edges to H1. Then we have
the following claim.

Claim 8. |Hi| ≤ 9 for all i.

Proof. Assume, to the contrary, that |H1| ≥ 10. By Fact 8, H1 contains
neither a red nor a blue copy of 2K2. By deleting at most 2 vertices from
H1, we can obtain a subgraph in which there is at most one red edge and
at most one blue edge. Since all other edges of this subgraph are green and
the subgraph has order at least |H1| − 2 ≥ 8, this contains a green copy of
S2
8 , a contradiction.

From Claim 8, we have |H1|, |H2| ≤ 9. Let v ∈ H2 and let A′ = A∪{v}.
By Fact 8, A′ contains no red copy of 2K2 so removing at most 2 vertices
from A′ yields a subgraph in which there are no red edges. If |A| ≥ 9, then
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such a subgraph of A′ has order at least 8 and consists of only small parts
of the Gallai partition, in between which are all blue edges, making a blue
copy of S2

8 . This means that |A| ≤ 8. By the same argument, we find that
|B| ≤ 9. This is a contradiction to the fact that n = 36 since

n = |H1|+ |H2|+ |A|+ |B| ≤ 9 + 9 + 8 + 9 = 35.

Case 2. k ≥ 4.

First suppose 2 ≤ m ≤ 3, so we may assume m = 2. If |H1| ≥ |H2| ≥ 7,
then the parts H1,H2 together contain at most one red edge, and hence
|G| = |H1| + |H2| ≤ 2(nk−1 − 1) + 1 < nk, a contradiction. If |H1| ≥ 7
and |H2| ≤ 6, then H1 contains at most one red edge, and hence |G| =
|H1|+ |H2| ≤ nk−1+6 < nk, a contradiction. If |H1| ≤ 6 and |H2| ≤ 6, then
|G| = |H1|+ |H2| ≤ 12 < nk, a contradiction for all k ≥ 4.

Since R(S2
8 , S

2
8) = 15, it follows that 4 ≤ m ≤ 14. Since k ≥ 4, we

have n ≥ 71 so by the pigeonhole principle, there is a part of order at least
⌈

71
14

⌉

= 6. Let a be the positive integer such that |Hi| ≥ 4 for 1 ≤ i ≤ a, and
|Hi| ≤ 3 for a+ 1 ≤ i ≤ m. Note that 1 ≤ a ≤ 5 since there is at least one
part of order at least 6 and if there were at least 6 such parts, there would
be a triangle in the reduced graph among those parts of order at least 4,
making a monochromatic copy of S2

8 . Let A =
⋃

i>aHi.

If a = 1, then since m ≤ 14 and n ≥ 71, we have |H1| ≥ 71− 13 · 3 = 32.
By Fact 8, we know that H1 contains neither a red copy of 2K2 nor a blue
copy of 2K2. By deleting a total of at most 4 vertices, we can obtain a
subgraph of H1 in which there are no red or blue edges. We therefore have

|G| =
m
∑

i=1

|Hi| ≤ (nk−2 − 1) + 4 + 3(m− 1) ≤ nk−2 + 42 < nk,

a contradiction.

Suppose a = 2. If |H1| ≥ 7 and |H2| ≥ 7, then by Fact 8, H1 ∪ H2

contains at most one red edge, H1 contains no blue 2K2, and H2 contains
no blue 2K2. By deleting at most 5 vertices, we can obtain a subgraph of
H1∪H2 in which there is no red and blue edge within either H1 or H2. This
means that

|G| =
m
∑

i=1

|Hi| ≤ 2(nk−2 − 1) + 5 + 3(m− 2) = 2(nk−2 − 1) + 41 < nk

for all k ≥ 4, a contradiction.
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Next suppose a = 3. In order to avoid a monochromatic copy of S2
8 ,

the reduced graph restricted to the vertices corresponding to {H1,H2,H3}
must not form a monochromatic triangle. Therefore, suppose that the edges
from H1 to H2 ∪H3 are red, the edges from H2 to H3 are blue. If there is
a part Hi with red edges to H1, then it must have blue edges to both H2

and H3, creating a blue copy of S2
8 . Thus to avoid a monochromatic copy

of S2
8 , for each i ≥ 4, the edges from H1 to Hi must be blue. By Fact 8,

H2 ∪ H3 contains no red copy of 2K2 so the removal of at most 2 vertices
leaves behind a subgraph of H2 ∪ H3 with no red edges. If |Hi| ≥ 7 for
i ∈ {2, 3}, then by Fact 8, there is a total of at most one blue edge within
H2 and H3. Thus, by removing at most one additional vertex, we obtain a
subgraph of H2 ∪H3 in which there are no blue edges within the parts. We
therefore have

|H2|+ |H3| ≤ 2(nk−2 − 1) + 3.

First if |H1| ≥ 7. By Fact 8, H1 contains no red or blue copy of 2K2

and since |H2 ∪H3| ≥ 8, there is also no vertex with two incident red edges
within H1. This means that by removing at most 3 vertices from H1, we can
destroy all red and blue edges within H1 so |H1| ≤ (nk−2 − 1) + 3. Also by
Fact 8, A contains at most one blue edge. Then |A| ≤ 15 since otherwise A

consists of at least 6 parts, thereby containing a red copy of S2
8 . This means

we have

|G| =
3

∑

i=1

|Hi|+ |A| ≤ 3(nk−2 − 1) + 6 + 15 = 3nk−2 + 18 < nk,

a contradiction.
Next if |H1| ≤ 6, then we claim that |A| ≤ 17. Indeed, if |A| ≥ 18, then

since A contains no blue 2K2, the blue edges in A form a triangle or a star.
By deleting 2 vertices, there is no blue edge within A. Since |A| − 2 ≥ 16,
it follows that there are at least six parts with all red edges in between,
providing a red copy of S2

8 . We therefore have

|G| =
3

∑

i=1

|Hi|+ |A| ≤ 6 + 2(nk−2 − 1) + 3 + 17 = 2nk−2 + 24 < nk,

a contradiction.
Next suppose a = 4. If m ≥ 5, then for all i ≤ 4, all edges from

Hi to A have a single color and the reduced graph contains a red cycle
H1H2H3H4AH1 and a blue cycle H1H3AH2H4H1. By Fact 8, there is no
red copy of 2K2 within H1 ∪H4 and if either of H1 or H4 has order at least
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7, then it contains no blue copy of 2K2. Also if either H1 or H2 has order
at least 6, then at most one of the two sets can contain any blue edges.
Putting these observations together, we have |H1|+ |H4| ≤ 2(nk−2 − 1) + 4
and similarly |H2| + |H3| ≤ 2(nk−2 − 1) + 4. By the choice of the Gallai
partition with m minimum, we have A = H5 so |A| ≤ 3. Then

|G| =
5

∑

i=1

|Hi| ≤ 4(nk−2 − 1) + 8 + 3 < nk,

a contradiction. If m = a = 4, then again we have |H1| + |H4| ≤ 2(nk−2 −
1) + 4 and |H2|+ |H3| ≤ 2(nk−2 − 1) + 4 so

|G| =
4

∑

i=1

|Hi| ≤ 4(nk−2 − 1) + 8 < nk,

a contradiction.
Finally suppose a = m = 5. By Fact 8, we have that H1 ∪ H2 ∪ H3 ∪

H4 ∪H5 contains a total of at most one red edge and at most one blue edge
within the parts. If k ≥ 5, then |G| =

∑5
i=1 |Hi| ≤ 5(nk−2 − 1) + 2 < nk, a

contradiction. We may therefore assume that k = 4 so n = 71.
Since

⌈

71
5

⌉

= 15, there exists a part, say H1, such that |H1| ≥ 15. Since
R(S2

8) = 15, there is at least one red or blue edge within H1. Without loss
of generality, suppose w1w2 is a red edge within H1 and if there is a blue
edge within H1, let w3w4 be such an edge. Note that these two edges do not
share a vertex to avoid a rainbow triangle. All other edges of H1 are colored
by colors 3 and 4, say green and purple. Let F = H1 \ {w1, w2, w3, w4} so
every vertex in F has only green or purple edges to the rest of H1.

At this point, it is worth noting that all other parts of the Gallai partition
may have order at most 14 and so may be 2-colored using green and purple
to avoid a monochromatic copy of S2

8 . With H1 containing at most one red
and at most one blue edge, the remainder of the proof consists of finding
either a rainbow triangle or a green or purple copy of S2

8 within H1. We
may also therefore assume that |H1| = 15.

Since |H1| = 15, there are at least 7 vertices in H1 \ {w1, w2} with all
one color on their edges to {w1, w2}. Without loss of generality, say this
color is purple and let P be the set of vertices in H1 with all purple edges
to {w1, w2}. By Fact 8, P contains no purple copy of 2K2. This means that
the purple edges within P form either a star or a triangle so almost all edges
within P are green. Thus, if |P | ≥ 9, then P contains a green copy of S2

8 so
7 ≤ |P | ≤ 8. Let Q = H1 \ (P ∪ {w1, w2}).
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First suppose |P | = 8 so |Q| = 5. In order to avoid a green copy of S2
8

within P , there must exist a vertex v ∈ P that is the center of a spanning
purple star of P . Then with w1 and w2 each forming a purple triangle, v is
the center of a purple copy of S2

8 , for a contradiction.

Thus, we may assume that |P | = 7 so |Q| = 6. First suppose P contains
a purple star with at least 3 edges, say centered at v, so no purple triangle.
Then every vertex of P except v has at most one incident purple edge within
P . To avoid a green copy of S2

8 , each vertex of P \{v} has at most one green
edge to Q. Thus, every vertex of P \ {v} has at least 5 purple edges to Q.
Let u ∈ P \ {v} with a purple edge to v and let u′ be the vertex of Q (if
one exists) with a green edge to u. Then Q \ {u′} contains no purple edge
to avoid a purple copy of S2

8 . To avoid a purple copy of S2
8 , v can have at

most 4 purple edges to Q, leaving at least two edges to Q which must be
green. At least one of these must go to a vertex v′ ∈ Q \ {u′}, forming a
green copy of S2

8 centered at v′.

Therefore, we may assume P contains no vertex with purple degree at
least 3, or rather, the purple edges within P form a subgraph of a triangle,
say T . In order to avoid a green copy of S2

8 , every vertex of P \ T has all
purple edges to Q. Since |Q ∪ {w1, w2}| = 8, by Fact 8, there is no purple
copy of 2K2 within Q. To avoid a green copy of S2

8 centered within Q, there
must be a vertex x ∈ Q with purple edges to all of Q \ {x}. Then using two
vertices of P to form purple triangles, x is the center of a purple copy of S2

8 ,
to complete the proof.
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A Appendix for review

A.1 The case for r = 2 and general t

In this section, we prove Item (3) of Theorem 3. First we prove the following
lemma, which provides the lower bound.

Lemma 6.

grk(K3;S
2
t ) ≥

{

2(t− 1)× 5
k−2

2 + 1, if k is even;

(t− 1)× 5
k−1

2 + 1, if k is odd.

Proof. We prove this result by inductively constructing a coloring of Kn

where

n =

{

2(t− 1) · 5
k−2

2 if k is even,

(t− 1) · 5
k−1

2 if k is odd,

which contains no rainbow triangle and no monochromatic copy of S2
t .

If k is odd, let G1 be a 1-colored complete graph on t−1 vertices. Without
sufficient vertices, this contains no monochromatic copy of S2

t . Suppose this
coloring uses color 1. Suppose we have constructed a coloring G2i−1 where i
is a positive integer and 2i−1 < k, using the 2i−1 colors 1, 2, . . . , 2i−1 and
having order n2i−1 = (t−1) ·5i−1. Construct G2i+1 by making five copies of
G2i−1 and inserting edges of color 2i and 2i+ 1 between the copies to form
a blow-up of the unique 2-colored K5 which contains no monochromatic
triangle. This coloring clearly contains no rainbow triangle and, since there
is no monochromatic triangle in either of the two new colors, there can be
no monochromatic copy of S2

t in G2i+1.
If k is even, let Gk−1 be as constructed in the odd case above. Construct

Gk by making two copies ofGk−1 and inserting all edges of color k in between
the two copies. This graph certainly contains no rainbow triangle and since
color k is bipartite, it also contains no monochromatic copy of S2

t , and has
order

|Gk| = 2|Gk−1| = 2(t− 1) · 5
k−2

2 ,

as desired.

We are now in a position to complete the proof of Item (3) from Theo-
rem 3, that is, to prove that

grk(K3, S
2
t ) ≤







2t · 5
k−2

2 , if k is even;

t · 5
k−1

2 , if k is odd.
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Proof of Item (3) of Theorem 3. The lower bound follows from Lemma 6.
We prove the upper bound by induction on k. The case k = 1 is immediate
and the case k = 2 is precisely the result of Theorem 2, so suppose k ≥ 3
and let G be a coloring of Kn where

n =

{

2t · 5
k−2

2 if k is even,

t · 5
k−1

2 if k is odd.

For a contradiction, we suppose G is a Gallai coloring which contains no
monochromatic copy of S2

t .
By Theorem 1, there is a Gallai partition of G and suppose red and blue

are the two colors appearing in the Gallai partition. Let m be the number
of parts in this partition and choose such a partition where m is minimized.
By Theorem 1, since choosing one vertex from each part of the partition
yields a 2-colored complete graph, we see that m ≤ 2t − 2. Let r be the
number of “large” parts of the Gallai partition with order at least t, say
with |H1|, |H2|, . . . , |Hr| ≥ t and |Hr+1|, |Hr+2|, . . . , |Hm| ≤ t − 1. Call all
remaining parts, those with order at most t− 1, “small”.

First some helpful supporting observations.

Claim 9. Suppose m ≥ 3.

• (1) If r = 2 and A is the set of vertices with all blue edges to H1 and
all red edges to H2 (or equivalently red and blue respectively), then
|A| ≤ t− 1.

• (2) If r ≥ 1 and B is a set of vertices in small parts (of order at most
t− 1) with all one color on edges to H1, then |B| ≤ 2(t− 1).

• (3) If B is a set of vertices in small parts with all one color on edges
to H1, then |B| ≤ 2t− 1.

Proof. For Item (1), suppose |A| ≥ t. In order to avoid a monochromatic
copy of S2

t , there can be no two disjoint red edges or two disjoint blue edges
within A and no vertex within A can have red or blue degree at least 2.
This means that if A contains at least 2 parts, each part must have order 1
and there can be at most 2 of them, a contradiction since t ≥ 3. Thus, A
contains at most one part so |A| ≤ t− 1, again a contradiction.

For Item (2), suppose |B| ≥ 2(t − 1) + 1 so B contains at least 3 parts.
Suppose all edges from B to H1 ∪H2 are red (meaning that all edges from
H1 to H2 must be blue). In order to avoid a red copy of S2

t , there can be at
most one red edge within B. If B has red edges between any pair of parts,
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those parts must have order 1 each, leading to at least 4 parts in B. In
either case, all remaining edges between parts in B must be blue, leading to
a blue copy of S2

t .
For Item (3), suppose |B| ≥ 2t − 1, say with all red edges to H1. To

avoid a red copy of S2
t , B contains no red copy of 2K2. By deleting at most

one vertex, the set B satisfies all the conditions of Item (2) above so the
proof is complete.

The following fact is immediate and will be used later.

Fact 9. Let G be a 3-colored complete graph of order t at least 6, say using
red, blue, and green. If the red subgraph of G is contained within a triangle
and the blue subgraph of G is contained within a triangle and all other edges
must be green, then G contains a green copy of S2

t .

We break the proof into two main cases based on the value of k.

Case 1. k = 3.

In this case, n = 5t so first suppose 2 ≤ m ≤ 3. By the minimality of m,
we may assume m = 2, say with corresponding parts H1 and H2. Suppose
all edges between H1 and H2 are blue and without loss of generality, that
|H1| ≥ |H2|. Then |H1| ≥ ⌈5t2 ⌉. To avoid a blue copy of S2

t , H1 contains no
two disjoint blue edges. By deleting at most two vertices from H1, we can
obtain a subgraphH ′

1 with no blue edge. Clearly, |H ′
1| ≥ ⌈5t2 ⌉−2 > 2t−1 and

H ′
1 uses only two colors, soH

′
1 contains a monochromatic S2

t , a contradiction.
We may therefore assume that m ≥ 4.

Then we have the following claim.

Claim 10. r ≤ 2.

Proof. Assume, to the contrary, that r ≥ 3. For any choice of 3 large
parts, say H1,H2,H3, to avoid a monochromatic copy of S2

t , the triangle
in the reduced graph corresponding to the parts H1,H2,H3 must not be
monochromatic. Without loss of generality, we suppose the edges from H2

to H3 are red and all other edges between those parts are blue. To avoid
a red copy of S2

t , there is no vertex incident two red edges and no red 2-
matching within H1 or within H2 ∪H3, and hence there is at most one red
edge in H2. Similarly, there is at most one blue edge within H2. From
Fact 9, if t ≥ 6, then there is a green S2

t in H2, a contradiction. Otherwise
if t ≤ 5, the result is still easy to verify.

We now consider the following subcases based on the value of r.

30



Subcase 1.1. r = 2.

Without loss of generality, suppose all edges from H1 to H2 are blue. To
avoid a blue copy of S+

t , there is no part with blue edges to both H1 and
H2. Let A be the set of parts with red edges to H1 and blue edges to H2,
let B be the set of parts with blue edges to H1 and red edges to H2, and let
C be the set of parts with red edges to H1 ∪H2.

First suppose C 6= ∅. To avoid a blue copy of S2
t , H1 ∪H2 contains no

blue 2K2 (avoiding the edges between the two parts) and there is no vertex
incident two blue edges (within either part), and hence there is at most one
blue edge within H1 or H2. Since C 6= ∅, there is no red 2K2 within H1∪H2,
and hence at least one of H1 or H2 contains no red edge. Without loss of
generality, we assume that H1 contains no red edge. With at most one edge
within H1 that is not green, there is a green S2

t within H1, a contradiction.
Thus, we may assume C = ∅. From Claim 9, we have |A| ≤ t − 1, and

|B| ≤ t− 1. To avoid a red copy of S2
t , H1 and H2 each contain no red 2K2.

Thus, by removing at most 4 vertices fromH1∪H2, we can obtain a subgraph
H ′ with no red edges. Since |H ′| ≥ |H1∪H2|−4 ≥ 5t−2(t−1)−4 = 3t−2,
this subgraph contains either a blue or green copy of S2

t , a contradiction.

Subcase 1.2. r = 1.

Let A be the set of parts with blue edges to H1 and B be the set of parts
with red edges to H1. If either of these sets is empty, then this contradicts
the minimality of m so A,B 6= ∅. To avoid a monochromatic copy of S2

t ,
we see that H1 contains no red or blue copy of 2K2. By Claim 9 (2), we
get |A|, |B| ≤ 2t − 2. This means that |H1| ≤ 5t − 2(2t − 2) = t + 4. By
removing at most 4 vertices from H1, we can obtain a subgraph H ′ in which
there are no red or blue edges. This subgraph having order at least t and
colored entirely in green means there is a green copy of S2

t , a contradiction.

Subcase 1.3. r = 0.

Let A be the set parts with blue edges to H1, and B be the set parts
with red edges to H1. Note that by minimality of t, we have A 6= ∅ and
B 6= ∅. Without loss of generality, suppose |A| ≥ |B|. As k = 3, n = 5t, so
|A| ≥ 2t + 1. To avoid a blue copy of S2

t , A contains no blue copy of 2K2.
By deleting at most 2 vertices from A, we can obtain a subgraph with no
blue edges, call it A′. Then |A′| ≥ 2t − 1, and A′ contains at least 3 parts
since each part of A′ has order at most t− 1. All edges in between the parts
of A′ must be red (since there are no blue edges), but this yields a red copy
of S2

t , a contradiction.
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Case 2. k ≥ 4.

First suppose 2 ≤ m ≤ 3. If m ≤ 3, then by the minimality of m, we may
assume m = 2, say with corresponding parts H1 and H2. Suppose all edges
in between H1 and H2 are blue. To avoid a blue copy of S2

t , the two parts
H1 and H2 together contain no 2K2 in blue within the parts. Be deleting at
most 2 vertices from H1 ∪H2, we can obtain a subgraph H ′ which contains
no blue edge. Appling induction on k within the two parts of H ′, this means
that

|G| = |H1|+ |H2| ≤ |H ′|+ 2 ≤ 2[grk−1(K3 : S
2
t )− 1] + 2 < n,

a contradiction.
If r ≥ 5 andm ≥ 6, then any choice of 6 parts containing the 5 partsH =

{H1,H2,H3,H4,H5} will contain a monochromatic triangle in the reduced
graph. Such a triangle must contain at least two parts from H, meaning
that the corresponding subgraph of G must contain a monochromatic copy
of S2

t , a contradiction. Thus, we may assume either 4 ≤ m ≤ 5 or r ≤ 4.
We consider the following subcases based on the value of r.

Subcase 2.1. r = 0.

Let A be the set of vertices with blue edges to H1, and B be the set of
vertices with red edges to H1. Note that by minimality of t, we have A 6= ∅
and B 6= ∅. Without loss of generality, suppose |A| ≥ |B|. Since k ≥ 4, we
have n ≥ 10t, so

|A| ≥

⌈

9t+ 1

2

⌉

− 2 > 2t.

On the other hand, by Claim 9, we have |A| ≤ 2t− 1, a contradiction.

Subcase 2.2. r = 1.

Let A be the set of parts with blue edges to H1 and B be the set of
parts with red edges to H1. By Claim 9 (2), we have |A| ≤ 2(t − 1) and
|B| ≤ 2(t − 1). To avoid a monochromatic S2

t , H1 contains no blue or red
2K2. By deleting at most 4 vertices from H1, we can obtain a subgraph H ′

with no blue or red edge. By applying induction on k within H ′, we get

|G| = |H1|+ |A|+ |B| ≤ |H ′|+ 4 + 4(t− 1) ≤ [grk−2(K3, S
2
t )− 1] + 4t < n,

a contradiction.

Subcase 2.3. r = 2.
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Suppose blue is the color of the edges between H1 and H2. There is no
part with blue edges to H1 ∪H2, since otherwise such a part would form a
blue triangle in the reduced graph using the two large parts, a contradiction.
Let A be the set of vertices with blue edges to H1 and red edges to H2, B
be the set of vertices with red red edges to H1 ∪ H2, and C be the set of
vertices with red edges to H1 and blue edges to H2. By Claim 9, we have
|A| ≤ t − 1, |B| ≤ 2(t − 1), and |C| ≤ t − 1. To avoid a blue copy of S+

t ,
there can be at most one blue edge within H1 or H2. Since H1 and H2 must
have red edges to some other part, each contains no red 2K2. By removing
at most 2 vertices from each part H1 and H2, we can remove all red edges
from H1 ∪H2 and by removing at most one vertex, we can remove all blue
edges from within H1 and H2. Thus, |H1 ∪H2| ≤ 2[grk−1(K3, S

2
t )− 1] + 5,

so we get

|G| = |H1|+ |H2|+ |A|+ |B|+ |C| ≤ 2[grk−2(K3, S
2
t )− 1]+ 5+4(t− 1) < n,

a contradiction.

Subcase 2.4. r = 3.

To avoid a monochromatic S2
t , the triangle in the reduced graph corre-

sponding to the parts H1,H2,H3 must not be monochromatic. Without loss
of generality, suppose the edges from H2 to H3 are red and all edges between
H1 and H2 ∪ H3 are blue. First we claim that there is no part with blue
edges to H1. Otherwise suppose there is one part, say H4 with blue edges to
H1. Then to avoid a blue S2

t , all edges from H4 to H2∪H3 are red, but then
the red triangle H4H2H3 contains a red S2

t , a contradiction. Thus all edges
from H1 to H4 ∪ . . . ∪Hm are red and no vertex has red edges to H2 ∪H3.
Let A be the set of vertices with blue edges to H2 and with red edges to H3,
B be the set of vertices with blue edges to H2 ∪H3, C be the set of parts
with red edges to H2 and with blue edges to H3. To avoid a monochromatic
copy of S2

t , H1 ∪ H2 ∪ H3 contains at most one blue edge within a part,
H2 ∪ H3 contains at most one red edge within the parts, and H1 contains
no red 2K2. Thus, by deleting at most 4 vertices from H1 ∪ H2 ∪ H3, we
can obtain a subgraph H ′ which contains no blue and red edge within the
subgraphs induced on H1, H2, H3. By Claim 9, |A| ≤ t− 1, |B| ≤ 2(t− 1)
and |C| ≤ t− 1. Then

|G| = |H1|+|H2|+|H3|+|A|+|B|+|C| ≤ 3[grk−2(K3, S
2
t )−1]+4+4(t−1) < n,

a contradiction.

33



Subcase 2.5. r = 4.

Considering the subgraph of the reduced graph induced by the r large
parts, there can be no monochromatic triangle. This means there are two
possible colorings. For the first coloring, suppose that all edges from H1 to
H2 are blue and all edges from H3 to H4 are blue, and all other edges among
these parts are red. For the second coloring, suppose that all edges from H1

to H2 ∪H3 are blue, all edges from H2 to H4 are blue, and all other edges
among these parts are red.

For the first coloring, to avoid a monochromatic copy of S2
t , we know

that t = 4, and the parts H1 ∪H2 ∪H3 ∪H4 contain a total of at most one
blue edge and one red edge within the parts. By deleting at most 2 vertices
from H1 ∪H2 ∪H3 ∪H4, we can obtain a subgraph which contains no red
or blue edge. Then

|G| = |H1|+ |H2|+ |H3|+ |H4| ≤ 4[grk−2(K3, S
2
t )− 1] + 2 < n,

a contradiction.
For the second coloring, to avoid a monochromatic triangle, all edges

from any part outside {H1,H2,H3,H4} to H1 ∪ H2 must be red, and all
edges from any part outside {H1,H2,H3,H4} to H3 ∪H4 must be blue. By
minimality of m, this means there can be at most one such part, say A and
note that |A| ≤ t−1. As above, the parts H1∪H2∪H3∪H4 contain a total
of at most one blue edge and one red edge. By deleting at most 2 vertices
from H1 ∪H2 ∪H3 ∪H4, we can obtain a subgraph which contains no red
or blue edge. Then

|G| = |H1|+ |H2|+ |H3|+ |H4| ≤ 4[grk−2(K3, S
2
t )− 1] + 2 + t− 1 < n,

a contradiction.

Subcase 2.6. r = 5.

The reduced graph graph restricted to the 5 large parts must be the
unique 2-coloring of K5 containing two complementary copies of C5. To
avoid a monochromatic copy of S2

t , H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 can contain
at most one blue edge within a part and one red edge within a part. By
deleting at most 2 vertices we can obtain a subgraph of G such that none
of the five parts contains a red or a blue edge. Then

|G| = |H1|+ |H2|+ |H3|+ |H4|+ |H5| ≤ 5[grk−2(K3, S
2
t )− 1] + 2 < n,

a contradiction.
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A.2 For general r and t

We first prove the following lemma which will be used later in this section.

Lemma 7. Let G be a Gallai colored complete graph with parts H1,H2, . . . ,Hm

such that |Hi| ≤ t − 1 for 1 ≤ i ≤ m. If the edges in between each pair of
parts Hi,Hj (1 ≤ i 6= j ≤ m) are red and

∑m
i=1 |Hi| ≥ 2t + r, then there is

a red Sr
t in G.

Proof. Since
∑m

i=1 |Hi| ≥ 2t+ r, it follows that there are at least 3 parts in
G. Without loss of generality, let |H1| ≤ |H2| ≤ . . . ≤ |Hm|. Let v ∈ H1.
The number of red edges from v to

∑m
i=2 |Hi| is at least t + r + 1. Since

|H1| ≤ |H2| ≤ t− 1, it follows that
∑m

i=3 |Hi| ≥ r + 2, and hence there is a
red Sr

t , a contradiction.

The lower bound in Theorem 4 is provided by Lemma 6, and the upper
bound of Theorem 4 is provided by the following.

Lemma 8. For k ≥ 1 and t ≥ 6r − 5,

grk(K3 : S
r
t ) ≤







[2t+ 8(r − 1)]× 5
k−2

2 − 4(r − 1), if k is even;

[t+ 4(r − 1)] × 5
k−1

2 − 4(r − 1), if k is odd.

Proof. From Item (3) of Theorem 2, we have R(Sr
t , S

r
t ) = 2t + 2r − 1 ≤

2t + 4r − 4, and hence the result is true for k = 2. We therefore suppose
k ≥ 3 and let G be a Gallai coloring of Kn where

n = n(k, r, t) =







[2t+ 8(r − 1)]× 5
k−2

2 − 4(r − 1), if k is even;

[t+ 4(r − 1)]× 5
k−1

2 − 4(r − 1), if k is odd.

Since G is a Gallai coloring, it follows from Theorem 1 that there is a
Gallai partition of V (G). Suppose that the two colors appearing in the Gallai
partition are red and blue. Let m be the number of parts in this partition
and choose such a partition where m is minimized. Let H1,H2, . . . ,Hm be
the parts of this partition, say with |H1| ≥ |H2| ≥ · · · ≥ |Hm|. When the
context is clear, we also abuse notation and let Hi denote the vertex of the
reduced graph corresponding to the part Hi.

If 2 ≤ m ≤ 3, then by the minimality of m, we may assume m = 2. Let
H1 and H2 be the corresponding parts. Suppose all edges from H1 to H2

are red. If |Hi| ≥ t (i = 1, 2), then to avoid creating a red copy of Sr
t , there

are at most r−1 disjoint red edges in each Hi with i = 1, 2. If we remove all
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the vertices of a maximum set of disjoint red edges within H1 and H2, we
create subgraphs H ′

1 and H ′
2 containing no red edge within either H ′

i. This
means that

|G| = |H1|+ |H2| ≤ 2(n(k − 1, r, t) − 1) + 2(2r − 2) < n,

a contradiction. If |H1| ≥ t and |H2| ≤ t − 1, then we similarly remove all
the vertices of a maximum set of disjoint red edges within H1 to create a
subgraph H ′

1 containing no red edge within H ′
1. This means that

|G| = |H1|+ |H2| ≤ n(k − 1, r, t) − 1 + (2r − 2) + t− 1 < n,

a contradiction. Finally if |H1| ≤ t − 1 and |H2| ≤ t − 1, then |G| =
|H1| + |H2| ≤ 2(t − 1) < n, a contradiction. Thus, we may assume m ≥ 4
and by minimality of m, each part has edges to some other parts in both
red and blue. If a part has order at least t, it can therefore contain no set of
r independent edges in either red or blue. By removing the at most 4r − 4
vertices of a red maximum matching and a blue maximum matching from
such parts, we can obtain a subgraph with no red or blue edges. This leads
to the following fact.

Fact 10.

|Hi| ≤ n(k − 2, r, t) − 1 + (4r − 4).

Let a be the number of parts of the Gallai partition with order at least
t and call these parts “large” while other parts are called “small”. Then
|Ha| ≥ t and |Ha+1| ≤ t − 1. To avoid a monochromatic copy of Sr

t , there
can be no monochromatic triangle within the reduced graph restricted to
these a large parts, leading to the following immediate fact.

Fact 11. a ≤ 5.

Let A be the set of parts with red edges to H1, and B be the set of parts
with blue edges to H1. Then we have the following claim.

Claim 11. If a ≤ 1, we have |A|, |B| ≤ 2t+ 3r − 3.

Proof. Assume, to the contrary, that |A| ≥ 2t+3r− 2. To avoid a red copy
of Sr

t centered inH1, the subgraph A must contain at most r−1 independent
red edges. By deleting all the vertices of a maximum red matching within A,
we create a subgraph A′ containing no red edge with |A′| ≥ |A| − 2(r− 1) ≥
2t+ r. From Lemma 7, A contains a blue copy of Sr

t , a contradiction. The
same holds for B.
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The remainder of the proof is broken into cases based on the value of a.

Case 1. a = 0.

Then by Claim 11, we have

|G| ≤ |H ′
1|+ |A|+ |B| ≤ (t− 1) + 2(2t+ 3r − 3) < n,

a contradiction.

Case 2. a = 1.

By Fact 10 and Claim 11, we have

|G| = |H1|+|A|+|B| ≤ [n(k−2, s, t)−1+4(r−1)]+2[(2t+3r−3)+4(r−1)] < n,

a contradiction.

Case 3. a = 5.

In this case, m = 5 since otherwise any monochromatic triangle in the
reduced graph restricted to H1,H2, . . . ,H6 would yield a monochromatic
copy of Sr

t . To avoid the same construction, the reduced graph on the parts
H1,H2,H3,H4,H5 must be the unique 2-coloring of K5 with no monochro-
matic triangle, say withH1H2H3H4H5H1 andH1H3H5H2H4H1 making two
monochromatic cycles in red and blue respectively.

In order to avoid a red copy of Sr
t , it must be the case that the subgraph

induced on H1 ∪ H3 contains at most r − 1 disjoint red edges. Similarly
H1∪H4, H2∪H4, H2∪H5, and H3∪H5 each contain at most r− 1 disjoint
red edges. Putting these together, there are at most a total of 5r−5

2 disjoint
red edges within the parts H1,H2, . . . ,H5. Thus, by deleting at most 5r− 5
vertices, we can obtain a subgraph of G in which the 5 parts contain no red
edges and symmetrically, by deleting at most another 5r−5 vertices, we can
obtain a subgraph G′ ⊆ G in which the 5 parts also contain no blue edges.
This means that

|G| ≤ |G′|+ (10r − 10) ≤ 5[n(k − 2, r, t) − 1] + (10r − 10) < n,

a contradiction.

Case 4. a = 4.

To avoid monochromatic triangle within the reduced graph restricted to
the four large parts, these parts must form a red path, say H1H2H3H4, and
a blue path, say H2H4H1H3. Since there are at most r− 1 independent red
edges within H1 ∪H3, by deleting at most 2r− 2 vertices from H1 ∪H3, we
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can obtain a subgraph of H1∪H3 in which there are no red edges. Similarly,
by deleting at most 2r− 2 vertices from H2 ∪H4, we can obtain a subgraph
of H2 ∪H4 in which there are no red edges. Symmetrically, if we delete at
most 4r − 4 vertices in H1 ∪H2 ∪H3 ∪H4, there are no blue edges within
H1 ∪H2 or within H3 ∪H4. If m = 4, this means that

|G| ≤ 4[n(k − 2, r, t) − 1] + (8r − 8) < n,

a contradiction. If m > 4, then to avoid a monochromatic triangle in the
reduced graph that includes at least two large parts, all small parts must
have red edges to H1 ∪H4 and blue edges to H2 ∪H3. Then by minimality
of m, we must have m ≤ 5. Now we may apply the same argument as in
Case 3 to complete the proof in this case.

Case 5. a = 3.

The triangle in the reduced graph corresponding to the three large parts
cannot be monochromatic so without loss of generality, suppose the edges
from H1 to H2 ∪ H3 are red, and H2H3 is blue. To avoid a red or blue
triangle, any remaining parts are partitioned into the following three sets.

• Let A be the set of parts outside H1,H2,H3 each with all blue edges
to H1,H3 and all red edges to H2,

• let B be the set of parts outside H1,H2,H3 each with all red edges to
H2,H3 and all blue edges to H1, and

• let C be the set of parts outside H1,H2,H3 each with all blue edges
to H1,H2 and all red edges to H3.

Note that A ∪ B ∪ C 6= ∅ (recall each part must have red and blue
edges to some other parts). By Fact 10, we have |H1| + |H2| + |H3| ≤
3[n(k−2, r, t)−1]+12r−12. Since H1A,H1B,H1C are blue, it follows that
by deleting at most 2r−2 vertices from A∪B∪C, we can obtain a subgraph
in which there are no blue edges. Let A′ ∪B′ ∪C ′ be this remaining graph.
Then the edges in between the parts within A′ ∪ B′ ∪ C ′ are all red. Since
H2A,H2B are blue, it follows that by deleting at most 2r − 2 vertices in
A′∪B′, we can obtain a subgraph in which there are no red edges and so there
is only one (small) part. This means that |A′|+ |B′| ≤ (t−1)+(2r−2). By
deleting at most 2r− 2 vertices from C ′, we can obtain a subgraph in which
there are no red edges and so there is only one (small) part. This means
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|C ′| ≤ (t−1)+(2r−2), implying that |A′|+ |B′|+ |C ′| ≤ 2(t−1)+(4r−4),
and therefore |A|+ |B|+ |C| ≤ 2(t− 1) + (6r − 6). This gives us

|G| = |A|+ |B|+ |C|+ |H1|+ |H2|+ |H3|

≤ 2(t− 1) + (6r − 6) + 3[n(k − 2, r, t) − 1] + (12r − 12)

< n,

a contradiction.

Case 6. a = 2.

To avoid creating a monochromatic copy of Sr
t , there is no part outside

H1 and H2 with red edges to all of H1 ∪ H2. Let A be the set of vertices
outside H1 ∪ H2 each with all blue edges to H2 and all red edges to H1,
and let B be the set of vertices outside H1 ∪ H2 each with all blue edges
to H1 ∪H2, and let C be the set of vertices outside H1 ∪H2 each with all
blue edges to H1 and all red edges to H2. As in the previous case, we get
|A| ≤ (t−1)+(4r−4) and |C| ≤ (t−1)+(4r−4). If |B| ≥ t, then there are
at most r−1 disjoint blue edges within B∪C or B∪A. By deleting at most
2r− 2 vertices in B ∪C or B ∪A, we can obtain a subgraph in which there
are no blue edges. By Lemma 7, this subgraph has order at most 2t+ r− 1,
and so |B ∪ C| ≤ 2t + 3r − 3 and |B ∪ A| ≤ 2t + 3r − 3. Therefore, again
using Fact 10, we have

|G| = |A|+ |B|+ |C|+ |H1|+ |H2|

≤ (t− 1) + (4r − 4) + (2t+ 3r − 3) + 2[n(k − 2, s, t)− 1] + (8r − 8)

< n,

a contradiction. If |B| ≤ t− 1, then

|G| = |A|+ |B|+ |C|+ |H1|+ |H2|

≤ 3(t− 1) + 2(4r − 4) + 2[n(k − 2, s, t)− 1] + (8r − 8)

< n,

a contradiction.
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