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Abstract

We propose the conjecture that the domination number γ(G) of a ∆-regular
graph G with ∆ ≥ 1 is always at most its edge domination number γe(G), which
coincides with the domination number of its line graph. We prove that γ(G) ≤
(

1 + 2(∆−1)
∆2∆

)

γe(G) for general ∆ ≥ 1, and γ(G) ≤
(

7
6 − 1

204

)

γe(G) for ∆ = 3.

Furthermore, we verify our conjecture for cubic claw-free graphs.
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MSC 2010: 05C69, 05C70

1 Introduction

We consider finite, simple, and undirected graphs, and use standard terminology. Let G
be a graph. A set D of vertices of G is a dominating set in G if every vertex in V (G) \D
has a neighbor in D, and the domination number γ(G) of G is the minimum cardinality
of a dominating set in G. For a set M of edges of G, let V (M) denote the set of vertices
of G that are incident with an edge in M . The set M is a matching in G if the edges in
M are pairwise disjoint, that is, |V (M)| = 2|M |. A matching M in G is maximal if it is
maximal with respect to inclusion, that is, the set V (G) \ V (M) is independent. Let the
edge domination number γe(G) of G be the minimum size of a maximal matching in G.
A maximal matching in G of size γe(G) is a minimum maximal matching.

A natural connection between the domination number and the edge domination num-
ber of a graph G becomes apparent when considering the line graph L(G) of G. Since
a maximal matching M in G is a maximal independent set in L(G), the edge domina-
tion number γe(G) of G equals the independent domination number i(L(G)) of L(G).
Since L(G) is always claw-free, and since the independent domination number equals
the domination number in claw-free graphs [1], γe(G) actually equals the domination
number γ(L(G)) of L(G). While the domination number [7] and the edge domination
number [11], especially with respect to computational hardness and algorithmic approx-
imability [3–6, 8, 10], have been studied extensively for a long time, little seems to be
known about their relation. For regular graphs, we conjecture the following:

Conjecture 1. If G is a ∆-regular graph with ∆ ≥ 1, then γ(G) ≤ γe(G).
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The conjecture is trivial for ∆ ≤ 2, and fails for non-regular graphs, see Figure 1.
As pointed out by Felix Joos [9], for ∆ ≥ 13, Conjecture 1 follows by combining the

known results γ(G) ≤ (1+ln(∆+1))n
∆+1

(cf. [2]) and γe(G) ≥ ∆n
4∆−2

(cf. (1) below), that is, it
is interesting for small values of ∆ only. Furthermore, he observed that the union of two
triangles plus a perfect matching shows that Conjecture 1 is tight for ∆ = 3.

Figure 1: A non-regular graph G with γ(G) = 2 > 1 = γe(G).

Our contributions are three results related to Conjecture 1. A simple probabilistic
argument implies a weak version of Conjecture 1, which, for ∆ ≤ 12, is better than the
above-mentioned consequence of [2] and (1).

Theorem 1. If G is a ∆-regular graph with ∆ ≥ 1, then γ(G) ≤
(

1 + 2(∆−1)
∆2∆

)

γe(G).

For cubic graphs, Theorem 1 implies γ(G) ≤ 7
6
γe(G), which we improve with our next

result. Even though the improvement is rather small, we believe that it is interesting
especially because of the approach used in its proof.

Theorem 2. If G is a cubic graph, then γ(G) ≤
(

7
6
− 1

204

)

γe(G).

Finally, we show Conjecture 1 for cubic claw-free graphs.

Theorem 3. If G is a cubic claw-free graph, then γ(G) ≤ γe(G).

All proofs are given in the following section.

2 Proofs

We begin with the simple probabilistic proof of Theorem 1, which is also the basis for the
proof of Theorem 2.

Proof of Theorem 1. Let M be a minimum maximal matching in G. Since every vertex
in V (G) \ V (M) has ∆ neighbors in V (M), and every vertex in V (M) has at most ∆− 1
neighbors in V (G) \ V (M), we have

∆(n− 2γe(G)) ≤ 2(∆− 1)γe(G), (1)

where n is the order of G.
Let the set D arise by selecting, for every edge in M , one of the two incident vertices

independently at random with probability 1/2. Clearly, |D| = γe(G). If u is a vertex in
V (G) \ V (M), then u has no neighbor in D with probability at most 1/2∆. Note that
u might be adjacent to both endpoints of some edge in M in which case it always has a
neighbor in D. If B is the set of vertices in V (G) \ V (M) with no neighbor in D, then
linearity of expectation implies

E[|B|] =
∑

u∈V (G)\V (M)

P[u ∈ B] ≤
|V (G) \ V (M)|

2∆
=

n− 2γe(G)

2∆
.
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Since D ∪ B is a dominating set in G, the first moment method implies

γ(G) ≤ |D|+ E[|B|] = γe(G) +
n− 2γe(G)

2∆

(1)
≤ γe(G) +

2(∆− 1)γe(G)

∆2∆
,

which completes the proof.

The next proof arises by modifying the previous proof.

Proof of Theorem 2. Clearly, we may assume that G is connected. Let M be a minimum
maximal matching in G. Let R0 be the set of vertices from V (G)\V (M) that are adjacent
to both endpoints of some edge in M , and let R be (V (G) \ V (M)) \ R0. Also in this
proof, we construct a random set D containing exactly one vertex from every edge in M .
Note that every vertex from R0 will always have a neighbor in D. Again, let B be the set
of vertices in R with no neighbor in D. As before, we will use the estimate

γ(G) ≤ γe(G) + E[|B|] = γe(G) +
∑

u∈R

P[u ∈ B].

Initially, we choose D exactly as in the proof of Theorem 1, which implies

E[|B|] =
|R|

8
.

In order to obtain an improvement, we iteratively modify the random choice of D in such
a way that E[|B|] becomes smaller. We do this using two operations. Each individual
operation leads to some reduction of E[|B|], and we ensure that all these reductions
combine additively. While the first operation leads to a reduction of E[|B|] regardless of
additional structural properties of G, our argument that the second operation leads to a
reduction is based on the assumption that the first operation has been applied as often
as possible.

The first operation is as follows.

• If there are two edges uv and u′v′ in M such that the set X of vertices x in R with

NG(x) ∩ {u, v, u′, v′} ∈
{

{u, u′}, {v, v′}
}

is larger than the set Y of vertices y in R with

NG(y) ∩ {u, v, u′, v′} ∈
{

{u, v′}, {v, u′}
}

,

see Figure 2, then we couple the random choices for the pair {uv, u′v′} in such a
way that D contains {u, v′} with probability 1/2 and {u′, v} with probability 1/2.

u v

u′ v′

X Y

Figure 2: The edges uv, u′v′ and the sets X and Y .

The choice for the coupled pair {uv, u′v′} will remain independent of all other random
choices involved in the construction of D. Furthermore, the two edges in a coupled pair
will not be involved in any other operation modifying the choice of D.
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Let π be a coupled pair {uv, u′v′}. By construction, we obtain P[x ∈ B] = 0 for every
vertex x in X . Now, consider a vertex y in Y . The two neighbors of y in the two coupled
edges are either both in D or both outside of D, each with probability exactly 1/2. We
will ensure that the third neighbor of y, which is necessarily in a third edge from M , will
belong to D still with probability exactly 1/2. By the independence mentioned above,
we have P[y ∈ B] = 1/4. Recall that, for the choice of D as in the proof of Theorem 1,
each vertex from X ∪ Y belongs to B with probability exactly 1/8. Hence, by coupling
the pair π, the expected cardinality E[|B|] of B is reduced by (|X| − |Y |)/8, which is at
least 1/8.

The second operation is as follows.

• We select a suitable vertex z from R such that it has no neighbor in any of the
coupled edges. If the edges u1v1, u2v2, and u3v3 from M are such that u1, u2,
and u3 are the three neighbors of z, then we derandomize the selection for these
three edges, and D will always contain u1, u2, and u3. We call {u1v1, u2v2, u3v3} a
derandomized triple with center z.

We will first couple a maximal number of pairs, and then derandomize triples one after
the other as long as possible.

Let τ = {u1v1, u2v2, u3v3} be the next triple to be derandomized at some point. Let
S(τ) be the set of all vertices that are incident with an edge e from M \ τ such that some
vertex in R has a neighbor in V (τ) as well as in e, see Figure 3.

zτ

S(τ)

V (τ)

Figure 3: The set S(τ).

During all changes of the initial random choice of D performed so far, we ensure that
the following property holds just before we derandomize the triple τ :

For every vertex u in R that has a neighbor in V (τ) ∪ S(τ), the three

neighbors of u in V (M) belong to D independently with probability 1/2.
(2)

All coupled pairs and derandomized triples will be disjoint.
For every edge in M that does not belong to any coupled pair or derandomized triple,

we select the endpoint that is added toD exactly as in the proof of Theorem 1, that is, with
probability 1/2 independently of all other random choices involved in the construction of
D.

We fix a maximal collection P of pairwise disjoint coupled pairs π1, . . . , πp.
Let Spaired be the set of the 4p vertices from V (M) that are incident with some of the

2p paired edges. Let R1 be the set of vertices in R with exactly one neighbor in Spaired,
and let R2 be the set of vertices in R with at least two neighbors in Spaired. Note that
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the sets R0, R1, and R2 are disjoint by definition. Let S ′
paired be the set of vertices from

V (M)\Spaired that are incident with an edge in M that contains a neighbor of some vertex
in R0 ∪R2. Let R3 be the set of vertices from R \ (R0 ∪R1 ∪R2) that have a neighbor in
S ′
paired. All sets are illustrated in Figure 4. Let

R(1) = R \ (R0 ∪ R1 ∪ R2 ∪R3),

r = |R|, r(1) = |R(1)|, and ri = |Ri| for i ∈ {0, 1, 2, 3}.

Spaired

S ′
paired

M

R2

R1

R0

R3

Figure 4: The sets Spaired, S
′
paired, R0, R1, R2, and R3

Since G has at most 8p edges leaving Spaired, we have 2r2 + r1 ≤ 8p, which implies
r1 + 7r2 ≤ 28p. By definition, we obtain |S ′

paired| ≤ 4r0 + 2r2. Considering the number of
edges leaving S ′

paired, we obtain r3 ≤ 3|S ′
paired| ≤ 12r0 + 6r2. Therefore,

r(1) = r − r0 − r1 − r2 − r3

≥ r − 13r0 − r1 − 7r2

≥ r − 13r0 − 28p. (3)

Note that, only coupling the pairs π1, . . . , πp and not derandomizing any triple, we have

E[|B|] ≤
|R|

8
−

p

8
=

1

8
(n− 2γe(G)− r0)−

p

8
. (4)

If r0+p is large enough, then this already yields the desired improvement. Since we cannot
guarantee this, we now form derandomized triples one by one with centers from R(1). For
every selected triple to be derandomized, we remove suitable vertices from R(1) in order
to ensure (2). Suppose that we have already formed t− 1 such derandomized triples with
centers z1, . . . , zt−1, then the center zt for the triple τt will be selected from R(t), where t
is initially 1, and R(t+1) is obtained from R(t) by removing every vertex from R(t) that has
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a neighbor in V (τt)∪ S(τt). This ensures that all coupled pairs and derandomized triples
are disjoint as well as (2).

Now, we analyze the reduction of E[|B|], or rather the reduction of the upper bound
on E[|B|] given in (4), incurred by some derandomized triple τt with center zt. Let e1, e2,
and e3 in M be such that ei = uivi for i ∈ [3] and zt is adjacent to u1, u2, and u3, that is,
τt = {u1v1, u2v2, u3v3}.

We consider two cases.

Case 1 Some vertex z in R distinct from zt has three neighbors in V (τt).

First, suppose that z is adjacent to u1 and u2. In this case, the pair e1 and e2 could be
coupled and added to P, contradicting the choice of P. Next, suppose that z is adjacent
to v1, v2, and v3. Since the pair e1 and e2 cannot be coupled and added to P, there are
two vertices z′ and z′′ in R such that z′ is adjacent to u1 and v2, and z′′ is adjacent to
u2 and v1. Since the pair e2 and e3 cannot be coupled and added to P, the vertex z′ is
adjacent to u3, which implies the contradiction that the pair e1 and e3 could be coupled
and added to P.

Hence, by symmetry, we may assume that z is adjacent to u1, v2, and v3. Since the
pair e2 and e3 cannot be coupled and added to P, there are two vertices z′ and z′′ in R
such that z′ is adjacent to u2 and v3, and z′′ is adjacent to u3 and v2. If z′′ is adjacent
to v1, then, considering the pair e1 and e2, it follows that z

′ must be adjacent to v1. In
this case, the connected graph G has order 10, and {u1, u2, u3} is a dominating set, which
implies the statement. Hence, we may assume that z′′ is not adjacent to v1. A symmetric
argument implies that z′ is not adjacent to v1. See Figure 5 for an illustration.

zt z

z′ z′′

Figure 5: The edges in τ and the vertices zt, z, z
′, and z′′.

Our derandomized choice of adding always u1, u2, and u3 to D yields

P[zt ∈ B] = P[z ∈ B] = P[z′ ∈ B] = P[z′′ ∈ B] = 0.

Furthermore, property (2) implies P[w ∈ B] = 1/4 for every neighbor w of v1 in R. Since
v1 has at most two such neighbors, derandomizing the triple τt additionally reduces the
upper bound on E[|B|] given in (4) by at least 4

8
− 2

8
= 1

4
. Since z′ and z′′ both have at

most one neighbor not in V (τt), and at most two neighbors of v1 in R both have at most
two neighbors not in V (τt), we obtain |S(τt)| ≤ 12, and

|R(t+1)| = |R(t)| −
∣

∣

{

v ∈ R(t) : v has a neighbor in V (τt) ∪ S(τt)
}
∣

∣

= |R(t)| −
∣

∣

{

v ∈ R(t) : v has a neighbor in V (τt)
}
∣

∣

−
∣

∣

{

v ∈ R(t) : v has a neighbor in S(τt) but no neighbor in V (τt)
}
∣

∣

≥ |R(t)| − 6− 3 · 6

= |R(t)| − 24.

Case 2 zt is the only vertex in R that has three neighbors in V (τt).
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Since the pair e1 and e2 cannot be coupled and added to P, we may assume, by symmetry,
that there is a vertex z in R that is adjacent to u1 and v2. Since the pair e2 and e3 cannot
be coupled and added to P, we may assume that there is a vertex z′ in R such that either
z′ is adjacent to u3 and v2 or z′ is adjacent to u2 and v3.

If z′ is adjacent to u3 and v2, then the assumption of Case 2 implies the contradiction
that the pair e1 and e3 can be coupled and added to P. Hence, we may assume that z′ is
adjacent to u2 and v3. Since the pair e1 and e3 cannot be coupled and added to P, there
is a vertex z′′ in R adjacent to u3 and v1. See Figure 6 for an illustration.

zτ

z

z′ z′′

Figure 6: The edges in τ and the vertices zt, z, z
′, and z′′.

The choice of P implies that no vertex from R(t) distinct from zt, z, z
′, and z′′ has

two neighbors in V (τt). Arguing as above, we obtain that derandomizing the triple τt
additionally reduces the upper bound on E[|B|] given in (4) by at least 4

8
− 3

8
= 1

8
.

Similarly as in Case 1, it follows that |S(τt)| ≤ 18, and that

|R(t+1)| = |R(t)\{v ∈ R : v has a neighbor in V (τt)∪S(τt)}| ≥ |R(t)|−7−3·9 = |R(t)|−34.

Since we derandomize as many triples as possible, it follows that the number t of deran-
domized triples satisfies

t ≥
r(1)

34

(3)
≥

r − 13r0 − 28p

34
,

and that the joint reduction of the upper bound on E[|B|] given in (4) is at least

t

8
≥

r − 13r0 − 28p

272
.

Altogether, coupling all p pairs in P, and derandomizing the t triples, we obtain

E[|B|] ≤
1

8
(n− 2γe(G)− r0)−

p

8
−

t

8

≤
1

8
(n− 2γe(G)− r0 − p)−

r − 13r0 − 28p

272

=
1

8
(n− 2γe(G)− r0 − p)−

n− 2γe(G)− r0 − 13r0 − 28p

272

=
33

272
(n− 2γe(G))−

5

68
r0 −

3

136
p

≤
33

272
(n− 2γe(G))

(1)
≤

11

68
γe(G).

Therefore,

γ(G) ≤ γe(G) + E[|B|] ≤
79

68
γe(G) =

(

7

6
−

1

204

)

γe(G),

which completes the proof.
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We proceed to the final proof.

Proof of Theorem 3. Let M be a minimum maximal matching in G. Let the set D of |M |
vertices intersecting each edge in M be chosen such that the set B = {u ∈ V (G)\V (M) :
|NG(u) ∩ D| = 0} is smallest possible. For a contradiction, we may suppose that B is
non-empty. Let C = {u ∈ V (G) \ V (M) : |NG(u) ∩D| = 1}. Let b be a vertex in B. Let
u−1v−1, u0v0, and u1v1 in M be such that NG(b) = {v−1, v0, v1}. Since D intersects each
edge in M , we have u−1, u0, u1 ∈ D. Since G is claw-free, we may assume, by symmetry,
that v0 and v1 are adjacent, which implies that v−1 is not adjacent to v0 or v1. Let x be
the neighbor of v−1 distinct from u−1 and b. Since G is claw-free, the vertex x is adjacent
to u−1. If x = u0, then u0 has no neighbor in C, and exchanging u0 and v0 within D
reduces |B|, which is a contradiction. Hence, by symmetry between u0 and u1, the vertex
x is distinct from u0 and u1. Since exchanging u1 and v1 within D does not reduce |B|,
the vertex u1 has a neighbor c1 in C, which is necessarily distinct from x.

Now, let σ : v1, u1, c1, v2, u2, c2, . . . , vk, uk, ck be a maximal sequence of distinct ver-
tices from V (G) \ {u−1, u0, v−1, v0, b, x} such that uivi ∈ M , ui ∈ D, ci ∈ C, ui is
adjacent to ci for every i ∈ [k], and vi+1 is adjacent to ui for every i ∈ [k − 1]. Let
X = {u−1, u0, v−1, v0, b, x} ∪ {v1, u1, c1, v2, u2, c2, . . . , vk, uk, ck}, and see Figure 7 for an
illustration.

x

u−1

v−1

b

u0 u1

v1 u2

v2 u3

v3 u4

v4

c1

c2

c3

c4

Figure 7: A subgraph of G with vertex set X , where k = 4.

Let vk+1 be the neighbor of uk distinct from vk and ck. Since G is claw-free, the vertex
vk+1 is adjacent to ck. Since V (G) \ V (M) is independent, we have uk+1vk+1 ∈ M for
some vertex uk+1. Since ck ∈ C and uk ∈ D, we obtain vk+1 6∈ D and uk+1 ∈ D, which
implies that the vertex vk+1 does not belong to X .

If uk+1 belongs to X , then uk+1 = x, and replacing D with

D′ = (D \ {u1, u2, . . . , uk+1}) ∪ {v1, v2, . . . , vk+1}

reduces |B|, which is a contradiction. Hence, the vertex uk+1 does not belong to X . If
uk+1 has a neighbor ck+1 in C, then, by the structural conditions, the vertex ck+1 does
not belong to X , and the sequence σ can be extended by appending vk+1, uk+1, ck+1,
contradicting its choice. Hence, the vertex uk+1 has no neighbor in C, and replacing
D with the set D′ as above again reduces |B|. This final contradiction completes the
proof.

Acknowledgement We thank Felix Joos for pointing out that Conjecture 1 holds for
large values of ∆.
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