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Abstract

We introduce the game of Surrounding Cops and Robbers on a
graph, as a variant of the original game of Cops and Robbers. In
contrast to the original game in which the cops win by occupying the
same vertex as the robber, they now win by occupying each of the
robber’s neighbouring vertices. We denote by σ(G) the surrounding

cop number ofG, namely the least number of cops required to surround
a robber in the graph G. We present a number of results regarding this
parameter, including general bounds as well as exact values for several
classes of graphs. Particular classes of interest include product graphs,
graphs arising from combinatorial designs, and generalised Petersen
graphs.
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1 Introduction

The vertex-pursuit game of Cops and Robbers was introduced about 40 years
ago by Nowakowski and Winkler [22] and by Quilliot [25]. Initially only
a single cop and a single robber were considered, but in 1984 Aigner and
Fromme generalised the game to include a team of cops as one of the two
players in the game [1]; it is this version of the game that is now the standard
scenario. Under its rules the game commences with the cops choosing their
positions at vertices of a graph G, next the robber chooses a starting position
at a vertex, and thereafter the cops and robber alternate their respective
moves. During a move each individual is permitted to remain stationary or
to take up a new vertex position that is adjacent to the individual’s current
position. If a cop ever occupies the same vertex as the robber, the cops
win the game. Otherwise, if the robber can forever evade the cops, the
robber is deemed to win. The cop number c(G) denotes the least number of
cops for which the cops always have a winning strategy for the graph G. A
substantial body of literature has been written about the game of Cops and
Robbers, including a number of variants of the game. For a detailed survey
we recommend the monograph by Bonato and Nowakowski [8]. Following [8],
we will use the pronouns she/her to refer to an individual cop and he/him/his
to refer to the robber.

In this paper, we introduce a new variation of the game. The players
are a set of k > 0 cops and a single robber. Again, the cops choose their
starting vertex positions, the robber then chooses an initial position on a
vertex unoccupied by a cop, and the cops and robber thereafter alternate
moves. On each move, a player may move to an adjacent vertex or pass,
subject to the following restrictions: the robber is forbidden to move to or
stay at a vertex that is occupied by a cop. If, at any time, the robber finds
that his position is also occupied by a cop, then he is immediately compelled
to move to a neighbouring vertex not occupied by a cop. Having a cop occupy
the same vertex as the robber is no longer how the game is won by the cops.
Instead, the cops win the game if at any time each of the neighbours of
the robber’s vertex is occupied by a cop; this would also be when the cops
proclaim “Surrender! You’re Surrounded!” If the robber can forever avoid
the circumstance of being surrounded, then the robber wins. The game is
played with perfect information (that is, each player knows the location of
every player) and the cops are able to communicate and coordinate their
moves. By σ(G) we denote the least number of cops for which the cops
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always have a winning strategy. We call σ(G) the surrounding cop number
for the graph G.

Observe that any strategy by which the cops can successfully surround
the robber yields a strategy by which the cops can also win the original game.
Hence the surrounding cop number is an upper bound on the cop number.

Lemma 1.1. For any graph G, c(G) 6 σ(G).

By K1,n−1, Pn and Cn we denote the star, path and cycle, respectively, on
n vertices. For stars and most cycles, the bound of Lemma 1.1 is an equality
(the only exception is the 3-cycle, for which c(C3) = 1 and σ(C3) = 2). For
paths, observe that σ(Pn) = 1 if n 6 3 and σ(Pn) = 2 when n > 4, whereas
c(Pn) = 1 for all n. More generally, if G is a tree other than a star or a path
then c(G) = 1 and σ(G) = 2. If G is a wheel graph (the graph obtained by
joining a vertex x to each vertex of a cycle Cn−1), then again c(G) = 1 but
now σ(G) = 3.

In order for the cops to surround the robber at some vertex, clearly the
number of cops must be at least the degree of the robber’s vertex. Hence the
minimum degree δ(G) of the graph G is a lower bound on the surrounding
cop number.

Lemma 1.2. For any graph G, δ(G) 6 σ(G).

Another straightforward bound is based on the clique number of G, ω(G)
(the maximum number of pairwise adjacent vertices in G).

Lemma 1.3. For any graph G, ω(G)− 1 6 σ(G).

Proof. If there are at most ω(G)−2 cops, the robber initially selects a vertex
within a maximum clique. As there are too few cops to surround the robber
on this vertex, he moves from it only if a cop moves onto his position. When
this occurs, however, there will be at least one vacant vertex of the same
clique that he can then occupy.

We note that these three lower bounds on σ(G) are tight. For instance,
σ(Kn) = δ(Kn) = n− 1 = ω(Kn)− 1 and, for n > 4, σ(Cn) = 2 = c(Cn).

Although in cases such as when G is an n-cycle and n > 4 the two
parameters c(G) and σ(G) are equal in value, the two parameters are, in
general, very distinct from one another. The difference σ(G)− c(G) can be
arbitrarily large, as illustrated by complete graphs, for which c(Kn) = 1 and
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σ(Kn) = n − 1, and complete bipartite graphs Km,n with 2 6 m 6 n, for
which c(Km,n) = 2 and σ(Km,n) = m.

With respect to the bound of Lemma 1.2, the difference between σ(G) and
δ(G) can also be arbitrarily large, such as when G consists of a large clique
with one additional vertex attached via a single pendant edge. Regarding
Lemma 1.3, we will see later (in Theorem 4.6) an example of a family of
graphs which shows that the difference between σ(G) and the lower bound
of ω(G)− 1 can also be arbitrarily large.

An elementary upper bound on σ(G) involves the independence number
α(G) (the maximum number of pairwise non-adjacent vertices in G).

Lemma 1.4. For any graph G, σ(G) 6 |V (G)| − α(G).

Proof. Let S be any vertex cover in G, the complement of which is an inde-
pendent set. If v ∈ V (G) \S then N(v) ⊆ S and so initially placing a cop at
each vertex of S is a trivial winning strategy for the cops. The cardinality of
a minimum vertex cover is |V (G)| − α(G).

Combining Lemma 1.4 with Lemma 1.3 yields the following result, which
was previously observed by Chartrand and Schuster in the context of
Nordhaus-Gaddum relations [10].

Corollary 1.5. For any graph G, α(G) + ω(G) 6 |V (G)|+ 1.

Before proceeding to delve further into the surrounding cop number, we
pause here to briefly comment on two Cops and Robbers variants which at
first glance appear similar to Surrounding Cops and Robbers. In the game
of Containment [12, 23], the robber plays on vertices while the cops play
on edges; the cops win if they occupy all of the robber’s incident edges. In
Containment, however, the cops are unable to force the robber to move from
a vertex; thus the maximum degree is a lower bound on the containability
number, whereas the minimum degree is a lower bound for σ(G). For several
graphs, including the Petersen Graph and the Cartesian product of paths, the
containability number and surrounding cop number differ, further illustrating
the distinction between these variants.

In the game of Cheating Robot Cops and Robbers [17], the cops and
robber play on vertices and move simultaneously on a round; however the
robber is a robot which cheats and hence knows in advance what the cops’
move will be. The cops capture the robot if both players either traverse the
same edge in a round, or land on the same vertex at the end of the round.
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Any winning strategy for the cops requires them to surround the robot’s
position. Viewed as a game with sequential turns, the robot is compelled to
move from a vertex immediately after a cop lands on it, as in the Surrounding
Cops and Robbers game. However, since traversing the same edge as a cop in
a given round would cause the robot to lose, the robot is thus forbidden from
moving to the vertex which the cop occupied in the previous round, a move
that is allowed in Surrounding Cops and Robber. This added restriction is
significant; for example, on a path with at least four vertices, σ(Pn) = 2 but
only one cop is required to capture a cheating robot.

To provide a brief outline of the remainder of this paper, Section 2 includes
additional bounds on the parameter as well as other pertinent observations.
An algorithm that determines the surrounding cop number of a given graph
is presented in Section 3. In Section 4, results about and bounds on the
surrounding cop number are established for a number of graph classes, such
as graphs arising from product operations, graphs based on combinatorial
designs, and generalised Petersen graphs. We conclude with some further
discussion, questions, and open problems.

2 Additional bounds and other observations

In this section we present some less obvious bounds on the surrounding cop
number, as well as some other useful observations about this parameter.

As defined in [8], H is a retract of G if there is a homomorphism f :
V (G) → V (H) so that f(x) = x for all x ∈ V (H). Retracts supply a lower
bound on c(G) [5]. A similar proof provides an analogous lower bound on
the surrounding cop number of a graph.

Theorem 2.1. If H is a retract of G then σ(H) 6 σ(G).

In the literature, lower bounds have been given on the cop number of
graphs of sufficiently large girth. In [1], it is proved that any graph G of girth
at least 5 satisfies c(G) > δ(G). Frankl [15] extended this result to prove that
if the girth of G is at least 8t−3 (where t is a positive integer) and δ(G) > d,
then c(G) > dt. In [12] it is proved that for all δ > 3, every δ-regular
graph G with girth at least 5 has containability number ξ(G) > δ(G) + 1
and every δ-regular graph G with girth at least 7 has containability number
ξ(G) > δ(G)+2. Here we give a lower bound on the surrounding cop number
of graphs with girth at least 7.
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Theorem 2.2. If G has girth g > 7 and minimum degree δ > 3, then
σ(G) > δ + 1.

Proof. Suppose there are δ cops.
We first show that after the cops have chosen their initial vertices, the

robber may choose a vertex which guarantees he will not be surrounded after
the cops’ next move. Assuming that this is not possible, it follows that every
cop must be within distance at most two from every vertex not containing a
cop. It is clear that there must be a vertex R which is not adjacent to every
cop, as otherwise the girth of G is 3 or 4. The robber begins the game on
vertex R, and is not surrounded prior to the cops’ next move. Let C be a
vertex containing a cop which is not adjacent to R, and let x be a common
neighbour of C and R. Since G has girth greater than 4, x is the only common
neighbour of C and R. Since the cops will surround R on the next turn, it
follows that there must be a cop on a vertex C ′ 6= C. Moreover, x cannot
contain a cop, as any cops on C and x cannot reach distinct neighbours of R
on their next turn. Thus C ′ must be adjacent to either x or a neighbour of
x, as well as to either R or a neighbour of R. But as x and R are adjacent,
G must contain a cycle of length at most 5, contradicting that its girth is at
least 7.

It remains to show that following the initial round, after any move by the
cops in which the robber is not surrounded, the robber has a move which will
guarantee that he is not surrounded after the cops’ next move. Let R be the
robber’s vertex, and let X = {x1, . . . , xdeg(R)} be the set of neighbours of R.

For i ∈ {1, 2, . . . , deg(R)}, let Si denote the set of deg(xi) − 1 vertices
other than R which are adjacent to xi, and let Ti denote the set of vertices
other than xi which are adjacent to a vertex in Si. Note that, since the girth
of G is at least 7, we have that for any i, j ∈ {1, . . . , deg(R)} with i 6= j:

1. xj /∈ Si ∪ Ti (otherwise G would contain a 3- or 4-cycle)

2. Si ∩ Sj = ∅ (otherwise G would contain a 4-cycle)

3. Si ∩ Tj = ∅ (otherwise G would contain a 5-cycle)

4. Ti ∩ Tj = ∅ (otherwise G would contain a 6-cycle).

In particular, Si ∪ Ti is disjoint from {xj} ∪ Sj ∪ Tj whenever i 6= j.
First suppose that one of the neighbours, say xi, of R is such that N [xi]

contains no cop. In this case, the robber passes. (Note that, in particular, R
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contains no cop and so the robber is not forced to move.) On the next turn,
the cops cannot occupy xi and so cannot surround R.

Next suppose that N [xi] contains a cop for each i ∈ {1, . . . , deg(R)}, but
there is no cop on vertex R. Thus, for each i ∈ {1, . . . , deg(R)}, Si ∪ {xi}
contains a cop. Note that since there are no vertices in common between
Si ∪{xi} and Sj ∪{xj} for i 6= j, each set Si ∪{xi} contains exactly one cop.
Moreover, each cop is on a vertex of one of the sets Si ∪ {xi}, so no vertex
in a set Tj contains a cop. Now, as the robber is not currently surrounded,
there must be at least one neighbour of R which is not occupied by a cop;
without loss of generality, say x1 has no cop. This means that there must be
a cop on a vertex s of S1. But since δ > 3, S1 has at least one vertex s′ 6= s,
and since there are no cops on x1 or T1, no neighbour of s′ contains a cop.
Thus, the robber may move to x1, and will not be surrounded on the next
turn as no cop is able to move to s′ on the next turn.

Finally, suppose a cop moves to R. Since the robber is not currently
surrounded, at least one neighbour of R, say x1, has no cop. The robber will
be prevented from moving to x1 only if this causes him to be surrounded
immediately or after the cops’ next move. Since R is not adjacent to any
element of S1 (else G would contain a 3-cycle), this can only happen if there
are deg(x1)− 1 > δ− 1 cops in S1 ∪ T1. But recalling that S1 ∪ T1 is disjoint

from ∪deg(R)
i=2 ({xi}∪Si∪Ti), it follows that S2∪T2 has no cop. Thus either x1

or x2 is a vertex to which the robber can move and avoid being surrounded
after the cops’ next move.

We note that the result of Theorem 2.2 is not true if the hypothesis that
g > 7 is replaced by g > 6, as we claim the graph G shown in Figure 1 has
girth 6 and σ(P ) = δ(P ) = 3. To see that G has girth 6, note that G is
bipartite and clearly has no 4-cycles. Hence we need to justify the claim that
three cops are sufficient to surround the robber on G. One cop (C1) will play
on the vertices of N [x1] as follows. The cop will initially be placed on x1.
If the robber ever moves to a vertex in {a1, a2, a3, b1, b2, b3}, C1 will move to
the unique neighbour of the robber’s position in N [x1]. For all other robber
positions, C1 will remain on or move to x1. Similarly a second cop, say C2,
will play on the vertices of N [x2]. This cop will initially be placed on x2. If
the robber ever moves to a vertex in {a1, a2, a3, b1, b2, b3}, C2 will move to the
unique neighbour of the robber’s position in N [x2] and, for all other robber
positions, C2 will remain on or move to x2. The movements of cops C1 and
C2 ensure that once the robber is in N [a] or N [b], he cannot leave. The third
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a

b

b1 b2 b3

a1 a2 a3

y1 y2 y3 y4 y5 y6

x1x2

Figure 1: A cubic graph with girth 6 and surrounding cop number of 3.

cop, C3, will move towards the robber’s position, to ensure (if necessary) that
the robber cannot indefinitely stay on a vertex in {y1, y2, y3, y4, y5, y6}. Once
the robber is in N [a] or N [b], C3 moves to a or b respectively, and the robber
is surrounded by the next turn.

With the exception of Lemma 1.4, each of the bounds on σ(G) that we
have so far seen has been a lower bound. In Theorem 2.4, we will show that
the treewidth of G can be used to provide an upper bound on the surround-
ing cop number. We first review this parameter, previously introduced by
Robertson and Seymour [26].

Given a graph G = (V,E), a tree decomposition is a pair (X, T ), where
X = {X1, . . . , Xn} is a family of subsets of V called bags, and T is a tree
whose vertices are the subsets Xi, satisfying the following three properties:

1. V =
⋃n

i=1Xi; that is, each graph vertex is associated with at least one
tree vertex;
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2. For every edge {v, w} in the graph G, there is a bag Xi that contains
both v and w;

3. If Xi, Xj and Xk are bags, and Xk is on the path in T from Xi to Xj ,
then Xi ∩Xj ⊆ Xk.

The width of a tree decomposition is one less than the size of its largest
bag Xi. The treewidth of a graph G, written tw(G), is the minimum width
among all possible tree decompositions of G. Note that, by condition (3),
for each vertex in G, the set of bags containing the vertex is a subtree of T .
It then follows from condition (2) that vertices are adjacent in G only when
their corresponding subtrees have a tree vertex in common.

An upper bound involving treewidth is known for the cop number c(G).

Theorem 2.3 ([19]). For any graph G, c(G) 6 tw(G)
2

+ 1.

We now establish an upper bound on the surrounding cop number.

Theorem 2.4. For any graph G, σ(G) 6 tw(G) + 1.

Proof. Let T be a fixed tree decomposition of G such that T has width tw(G).
Place a cop on each vertex of an arbitrary bag B of T and any remaining
cops on arbitrary vertices of G. Hence the robber cannot start on a vertex of
B. Let B′ be the unique bag adjacent to B in T which is on a shortest path
connecting the bag B to the subtree T ′ of T − B that contains the robber.

The cops now perform a sequence of moves that culminate with a cop
being present on each vertex of B′. They do so in such a way that throughout
this process a cop is always present on each vertex ofB∩B′. As each edge ofG
is in a bag, B∩B′ is a cut set of G. At the end of this sequence of moves, when
the vertices of B′ are occupied by cops, the cops have therefore restricted the
robber’s possible positions to the vertices of the set

⋃

X∈T ′ X \B′.
The cops then similarly move to occupy each vertex of B′′, the unique

bag adjacent to B′ which is on a shortest path in T to the subtree T ′′ of
T −B′ that contains the robber, in such a way that throughout this process
a cop is always present on each vertex in B′ ∩B′′. By iterating this process,
the cops are able to further restrict the possible positions of the robber. As
G is finite, the robber is eventually surrounded.

Corollary 2.5. If G is a chordal graph then σ(G) ∈ {ω(G)− 1, ω(G)}.
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Proof. If G is a chordal graph then tw(G) = ω(G) − 1. It follows from
Lemma 1.3 and Theorem 2.4 that ω(G)−1 6 σ(G) 6 tw(G)+1 = ω(G).

Observe that each of the two possibilities in Corollary 2.5 can be realised
when considering trees, which are chordal graphs and have treewidth 1. If
G is a star then σ(G) = 1 = ω(G)− 1, whereas if G is a tree which is not a
star then σ(G) = 2 = ω(G).

Also note that the treewidth of a graph G does not provide a lower
bound on σ(G) in general. For instance, observe that tw(Pn�Pn) = n, yet
σ(Pn�Pn) = 3 when n > 4 (see Theorem 4.3).

We conclude this section with an example of a class of graphs for which
the cop number is bounded by a constant, but the surrounding cop number
is on the order of the square root of the number of vertices of the graph. For
a graph G, let L(G) denote the line graph of G, namely the graph having
vertex set V (L(G)) = E(G) and such that two vertices of L(G) are adjacent
in L(G) if (as edges) they share a vertex in G.

Theorem 2.6. For any integer n > 3, σ(L(Kn)) = 2(n− 2).

Proof. It is clear from Lemma 1.2 that σ(L(Kn)) > 2(n − 2) since L(Kn)
is a 2(n − 2)-regular graph. It is easily verified that σ(L(K3)) = 2. Hence
it remains to show that 2(n − 2) cops suffice when n > 4. Let V (Kn) =
{1, . . . , n}, so that V (L(Kn)) =

{

{x, y} : x, y ∈ V (Kn), x 6= y
}

.
Initially place one cop on each of the 2(n − 2) vertices of

{

{1, x} : 2 6

x 6 n
}

∪
{

{2, x} : 3 6 x 6 n − 1}
}

. Then without loss of generality we
can assume the robber starts on vertex {2, n}, {3, n} or {3, 4}. We will show
that in each case the cops can immediately move to surround the robber.

If the robber starts on vertex {2, n} then for each x ∈ {3, 4, . . . , n − 1}
the cop on vertex {1, x} moves to {x, n}, causing the robber to become
surrounded. Now suppose the robber starts on vertex {3, n}. For each x ∈
{4, 5, . . . , n − 1} the cop on vertex {2, x} moves to {3, x}. Simultaneously,
for each y ∈ {2, 3, . . . , n− 1} \ {3} the cop on vertex {1, y} moves to {y, n}.
The robber is then surrounded. Finally, suppose the robber starts on vertex
{3, 4}. For each x ∈ {5, 6, . . . , n − 1} the cop on vertex {1, x} moves to
{3, x} and the cop on {2, x} moves to {4, x}. Simultaneously the cop on
{1, n} moves to {3, n}, the cop on {1, 2} moves to {1, 4} and the cop that
was initially on {1, 4} moves to {4, n}. The robber is then surrounded.

Note that the line graph of Kn has order n(n−1)
2

and so the surrounding

cop number of L(Kn) is Θ
(
√

|V (L(Kn))|
)

, whereas the cop number of L(Kn)
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is bounded by a constant. Specifically, c(L(Kn)) 6 2 because c(L(G)) 6

c(G) + 1 for any graph G [13].

3 Algorithmic considerations

In [7], Bonato and Chiniforooshan showed that a robber can win the original
Cops and Robbers game when k cops are deployed if and only if there exists
a function ψ from the set of all possible placements of cops to the power set
P(V (G)) such that ψ has certain properties, one of which is that ψ(T ) 6= ∅
for each configuration T . More technically, the set of all possible placements
of k cops within G can be represented as the vertex set of the graph ⊠kG =
G ⊠ G ⊠ · · · ⊠ G (with k − 1 instances of the strong product operation ⊠

being applied), where two vertices are adjacent if the cops can move between
the two configurations in a single move. For each T , the set ψ(T ) ultimately
represents those vertices of G that the robber ought to move onto when the
cops are at T .

In this section we adapt results from [7] to the new context of the sur-
rounding cop number. We begin with a characterisation of when the robber
can win when in the presence of k cops.

Theorem 3.1. Let k ∈ N. Then σ(G) > k if and only if there exists a
function ψ : V (⊠kG)→ P(V (G)) with the following three properties:

(1) ∀T ∈ V (⊠kG), ψ(T ) 6= ∅;

(2) ∀T ∈ V (⊠kG), ψ(T ) ⊆ V (G) \ (AT ∪ BT ∪ CT ) where AT is the set of
all vertices of G that are in the k-tuple T , BT is the set of vertices in
G that are currently surrounded by T , and CT is the set of vertices in
G that can be surrounded by T in one move;

(3) ∀T1T2 ∈ E(⊠kG), ψ(T1) ⊆ NG[ψ(T2)].

In the interest of brevity we omit a proof, which can be obtained by
suitably adapting the proof found in [7] concerning the cop number.

Corollary 3.2. Let G be a connected graph, and let ψ : V (⊠kG)→ P(V (G))
be a function satisfying properties (2) and (3) of Theorem 3.1. If there exists
T1 ∈ V (⊠kG) with ψ(T1) = ∅, then ψ(T ) = ∅ for each T ∈ V (⊠kG).
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Proof. Since G is connected, so is ⊠kG. Thus there is a finite walk W =
T1, T2, ..., Tm in ⊠kG which starts at T1 and visits every vertex of ⊠kG at
least once. Suppose that for some i ∈ {1, . . . , m}, ψ(Ti) = ∅. Noting that
TiTi+1 ∈ E(⊠kG), property (3) implies that ψ(Ti+1) ⊂ NG[ψ(Ti)] = ∅, and
thus ψ(Ti+1) = ∅. But recalling that ψ(T1) = ∅, it follows by induction that
ψ(Ti) = ∅ for all i ∈ {1, . . . , m}. Since W contains each vertex of ⊠kG, the
result follows.

Bonato and Chiniforooshan [7] also presented an algorithm to decide
whether k cops suffice to capture a robber in a given graph. With only
minor alterations to the way in which the algorithm is initialised, it can also
be used to determine the surrounding cop number σ(G) of a graph G (see
Algorithm 1).

input : connected graph G = (V,E), number of cops k ∈ N

output: either σ(G) 6 k or σ(G) > k

1 initialise ψ(T ) to V (G) \ (AT ∪BT ∪ CT ) for all T ∈ V (⊠kG)
2 repeat

3 forall TT ′ ∈ E(⊠kG) do

4 ψ(T )← ψ(T ) ∩NG[ψ(T ′)]
5 ψ(T ′)← ψ(T ′) ∩NG[ψ(T )]

6 end

7 until the value of ψ is unchanged ;
8 if ∃T ∈ V (⊠kG) such that ψ(T ) = ∅ then
9 return σ(G) 6 k (cops win)

10 else

11 return σ(G) > k (robber wins)
12 end

Algorithm 1: check potential σ(G) value

Theorem 3.3. Algorithm 1 runs in time O(knk+3+n3k+3) where n = |V (G)|.

We omit the proof of Theorem 3.3 as it follows in a similar fashion to the
proof of Theorem 2.2 in [7].

We implemented Algorithm 1, as well as the corresponding algorithm
from [7] for the cop number. When testing to see whether k cops are able
to win, the algorithm performs best when k is small. For other values of k,
the order of the graph ⊠kG makes it impractical to execute the algorithm.
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Nevertheless, we found some interesting empirical results, particularly for
generalised Petersen graphs, which we will discuss in more detail in Sec-
tion 4.3.

We conclude this section with some comments about the computational
complexity of determining the surrounding cop number, expressed as a deci-
sion problem as follows.

Surrounding Cop Number

Instance: A graph G and an integer k.
Question: Is σ(G) 6 k?

It was shown in 2010 that the analogous Cop Number decision problem
for determining the cop number c(G) of an arbitrary graph G is NP-hard [14],
although whether the problem is in NP remains an open question. It was con-
jectured in [16] that the problem of determining c(G) is EXPTIME-complete;
the truth of this conjecture was established by Kinnersley [20].

Theorem 3.3 shows that for fixed values of k the Surrounding Cop

Number problem can solved in polynomial time. However, for arbitrary k
the computational complexity of the problem is not currently known. We
leave as open problems the questions of determining whether Surrounding
Cop Number is in NP, is NP-hard, or is EXPTIME-complete.

4 Classes of Graphs

It is natural to ask how the surrounding cop number behaves for various
classes of graphs, as well as in relation to some common graph operations.
For instance, given two graphs G and H , we consider the surrounding cop
numbers of product graphs built from G and H . We also consider graphs
arising from designs, as well as generalised Petersen graphs.

4.1 Graph Products

We recommend the monograph by Imrich and Klavžar [18] for an overview
of graph products and for the notation that we follow. Here we consider the
Cartesian product G�H , the strong product G ⊠ H , and the lexicographic
product G ◦ H for various graphs G and H . We begin with the Cartesian
product, for which the following result is known for the cop number.
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Theorem 4.1 ([27]). If G and H are each connected, then c(G�H) 6 c(G)+
c(H).

We establish a similar result for the surrounding cop number.

Theorem 4.2. If G and H are each connected, then σ(G�H) 6 σ(G) +
σ(H).

Proof. The cops adopt a strategy whereby σ(G) cops first seek to be within
the robber’s copy of G, while σ(H) other cops seek to be within the robber’s
copy of H . Note that any time that the robber stays within his present copy
of G, the σ(G) G-seeking cops can each move along an edge within their
copy of H and thereby get closer to the robber’s copy of G, and similarly the
σ(H) H-seeking cops will get closer to the robber’s copy of H whenever the
robber stays within his present copy of H . Clearly at least one of the two
teams of cops will achieve their initial goal after a finite number of rounds of
the game.

Without loss of generality (due to the symmetry between G and H), we
may now suppose that the σ(G) cops that sought to occupy the same copy
of G as the robber have achieved their initial goal. Henceforth these σ(G)
cops mirror any move that the robber makes when he moves to a different
copy of G, or else they follow a strategy within their copy of G that leads to
them occupying each of the robber’s neighbouring vertices within that copy
of G (which, by definition, can be achieved by σ(G) cops). Recall that any
time that the robber either stays still or moves within his copy of H , the
H-seeking cops are able to get closer to the robber’s copy of H . Observe
that the strategy now employed by the G-seeking cops will therefore enable
the H-seeking cops to successfully reach the robber’s copy of H in a finite
number of moves, at which time both teams of cops will have achieved their
initial goal.

Both teams now follow similar strategies; that is, if the robber moves to
a new copy of G (resp. H) then the G-seeking (resp. H-seeking) cops make
a parallel move, while the H-seeking (resp. G-seeking) cops work towards
surrounding the robber within his copy of H (resp. G). Clearly one of these
teams, say the G-seeking team, will achieve the goal of surrounding the cop
within a copy of G after a finite number of moves. Once that has happened,
the robber’s movement is restricted to a single copy of H , and the team
of σ(H) cops can then follow a strategy to ultimately surround the robber
within that copy of H .
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We now show that the bound of Theorem 4.2 is sometimes, but not always,
an equality. For instance, equality is obtained when G = H = P2, but not
when G and H are paths on four or more vertices.

Theorem 4.3. Let 2 6 m 6 n be integers. If m,n 6 3 then σ(Pm�Pn) = 2;
otherwise σ(Pm�Pn) = 3.

Proof. It is easy to verify that σ(Pm�Pn) = 2 when m,n 6 3. So we hence-
forth assume n > 4. We commence by showing that two cops are unable
to surround the robber. As a winning strategy for the robber, he initially
chooses a position that is not one of the four vertices of degree 2. The cops
cannot surround the robber on such a vertex, although they can force the
robber to move to a new vertex. When the robber is forced to move, one cop
shares the robber’s vertex, which has at least two unoccupied neighbouring
vertices, at most one of which has degree 2. Thus the robber is able to move
to a new vertex that is not a vertex of degree 2.

We now present a strategy that enables three cops to surround the robber.
In reference to the m × n rectangular grid of vertices formed by the graph
Pm�Pn, for their initial positions, cop C1 positions herself at the rightmost
vertex of the top row, cop C2 is immediately below C1, and cop C3 is at the
leftmost vertex of the top row. Initially the cops C1 and C2 sweep leftwards
until they are in the same column of vertices as the robber, while C3 remains
stationary.

Once C1 and C2 are in the same column as the robber, the cops adjust
their strategy. First, suppose that the robber is on the topmost row when C1

and C2 move to occupy his column; thus, C1 will occupy the robber’s vertex
and C2 will be directly below him, forcing the robber to move horizontally.
In subsequent rounds, C1 and C2 move horizontally to follow the robber
to his new column; for the rest of the game, the movements of C1 and C2

contain the robber to the topmost row and prevent him from passing on any
turn. In each subsequent turn, C3 moves rightwards on the top row, unless
such a move would cause her to occupy the same vertex as the robber, in
which case she remains stationary. Eventually, C3 will occupy the robber’s
left neighbour, and the robber will thereafter be forced to move rightwards.
When he reaches the upper right corner, he will be surrounded on the cops’
next turn.

We now assume that the robber is not on the topmost row when C1 and
C2 move to occupy his column. In the next phase of the game, cops C1 and
C2 move horizontally to follow the robber to a new column if he chooses to
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move to a new column; otherwise they do not move. Meanwhile, C3 moves
down from the topmost row until she finds herself in the same row as the
robber.

Before the robber makes his next move, he finds himself in the same row
as C3, and in the same column as C1 and C2. Note that C3 either occupies
the same vertex as the robber in the leftmost column or is to the left of
the robber, while C1 and C2 are either both above the robber, or else C1 is
his above neighbour and C2 occupies the same vertex as the robber. If the
robber moves vertically, C3 then makes a parallel move to the robber’s new
row, while C1 and C2 both move down. If the robber moves horizontally,
then on their next move C1 and C2 move horizontally to the robber’s new
column, while C3 either moves to the right if the vertex to her right is not
occupied by the robber, or else C3 remains stationary as the robber’s left
neighbour. If the robber should happen to remain stationary, then C1 and
C2 both move down, and C3 moves to the right if the robber is not on the
vertex that is her right neighbour. By moving in this fashion, the cops will
guide the robber to move downward and to the right, ultimately surrounding
him in the rightmost vertex of the bottom row.

On the matter of the strong product, we first show that exact values
for the surrounding cop number are able to be determined when taking the
product of two paths.

Theorem 4.4. Let 2 6 m 6 n be integers. Then

σ(Pm ⊠ Pn) =







5, if m > 4
4, if m = 3, or m = 2 and n > 4
3, if m = 2 and n 6 3.

Proof. For convenience, label the vertices of Pm (resp. Pn) with integers from
1 to m (resp. 1 to n) so that the vertices of Pm ⊠ Pn are labelled with 2-
dimensional coordinates from the set {1, 2, . . . , m}× {1, 2, . . . , n} with (1, 1)
at the bottom left. It is easy to verify that σ(Pm⊠Pn) = 3 when m = 2 and
n 6 3, so we henceforth assume that if m = 2, then n > 4.

Suppose now that m = 2 and n > 4, or that m = 3. If only three cops
are available, then the robber can initially position himself on a vertex that
is not one of the four vertices of degree 3. The robber cannot be surrounded
by three cops when he is on a vertex of degree exceeding 3 and, when forced
to move from his current position, at least one neighbouring vertex of degree
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greater than 3 is not occupied by a cop and so the robber moves to such a
vertex. The robber can iterate this manoeuvre indefinitely to win the game.

If m = 2 and n > 4 then a winning strategy for four cops is to initially
place one cop on each vertex of the two bottommost columns (that is, on
vertices (1, 1), (2, 1), (1, 2) and (2, 2)), and at each turn they move upwards,
ultimately corralling the robber into the topmost copy of P2 where he will
be easily surrounded.

If m = 3 then a winning strategy for four cops is as follows. Three of
the cops, C1,C2 and C3, initially place themselves on vertices (1, 1), (2, 1)
and (3, 1), respectively, and the fourth cop, C4, begins on the vertex (2, 2).
The cops’ first aim is to force the robber onto the topmost row. Initially,
on each turn each cop moves one vertex upward, until C4 occupies the same
row as the robber. Say this occurs when the robber is on vertex (i, j + 1),
so that C1,C2,C3 are on vertices (1, j), (2, j) and (3, j), respectively, and C4

is on vertex (2, j + 1). If the robber moves to a vertex of row j + 2 on his
next move, the cops continue their upward trajectory. Otherwise, after his
next move the robber is on either (1, j + 1) or (3, j + 1). By symmetry we
may assume the robber is on (1, j + 1). Now, C3 moves to (2, j + 1) and C4

moves to (1, j+1). The robber is now forced to move into column j+2. The
cops C1,C2,C3 and C4 move to (1, j + 1), (2, j + 1), (3, j + 1) and (2, j + 2),
respectively, thus resetting their formation. In either case, they have forced
the robber to move further upwards.

Eventually, after a cops’ turn, the robber will occupy a vertex of the form
(i, n), and the cops will occupy vertices (1, n − 1), (2, n − 1), (3, n − 1) and
(2, n). The robber is either already surrounded, or else he is forced to move
to a corner vertex where he will be surrounded.

Finally assume that 4 6 m 6 n. To show that five cops suffice, we present
a strategy that shows how they can always surround a robber. First position
the five cops C1, . . . ,C5 on vertices (m,n), (m,n − 1), (m,n − 2), (m − 1, n)
and (m − 1, n − 1) respectively. For most of their strategy, the cops will
maintain this configuration relative to each other. The cops’ initial formation
is illustrated in Figure 2. We claim that while maintaining this formation
as they move, the cops are able to achieve one of the following intermediate
goals:
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C4 C1

C2

C3

C5

Figure 2: Initial positions of cops in Pm ⊠ Pn, 4 6 m 6 n.

(i) the robber is on vertex (x, 1) for some x ∈ {1, 2, . . . , m − 1} and the
cops are in formation with C3 at (x+ 1, 1); or

(ii) the robber is on vertex (1, n) and has been surrounded by C1, C2 and
C5.

One facet of the cops’ strategy while they move in formation is to keep the
robber confined to the rectangular region bounded by (1, 1) on the bottom
left and the position of C1 on the top right (with the perimeter being included
as part of the region described); note that the boundaries of this region will
change as the cops move. Maintaining this restriction is easily accomplished:
if the robber is in the same row as C1 then the cops move leftward and upward
(unless they are unable to move in one of those directions), and if the robber
is in the same column as C1 then the cops move downward and to the right
(unless they are unable to move in one of those directions). Otherwise, if
condition (i) is not met and the robber is in neither the same row nor the
same column as C1 then the cops move down and/or left toward the robber,
reducing both their vertical and horizontal distance between the robber and
C5 when possible. Should C5 land on the robber, then he will be forced to
move down and/or left.

Whenever condition (i) is achieved the cops change strategy, acting to
corral the robber to move left towards being ultimately surrounded at (1, 1).

All that now remains is to show that four cops are insufficient to surround
the robber. If the robber adopts a strategy whereby he initially positions
himself on a vertex that is not one of the four vertices of degree 3, then he
will be on a vertex of degree at least 5. With four cops, clearly he cannot
be surrounded while he is on such a vertex. However, the cops can force him
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to move by having a cop occupy his vertex, at which time at least two of
his neighbouring vertices are unoccupied, at least one of which is a vertex of
degree 5 or more. Hence the robber can perpetually move among vertices of
degree at least 5 and thereby avoid ever being surrounded.

Note that Neufeld and Nowakowski proved the following upper bound for
the cop number of the strong product of graphs.

Theorem 4.5 ([21]). If G and H are each connected, then c(G ⊠ H) 6

c(G) + c(H)− 1.

The following result, however, establishes that a similar upper bound on
σ(G⊠H) in terms of σ(G) and σ(H) does not exist. In particular, although
the surrounding cop number of a star is 1, the surrounding cop number of the
strong product of a star with itself is bounded below by n+1. Note, moreover,
that Theorem 4.6 gives a family of graphs showing that the surrounding cop
number of G can be arbitrarily larger than ω(G)− 1, as the clique number
of K1,n ⊠K1,n can easily be shown to be 4.

Theorem 4.6. For n > 1, σ(K1,n ⊠K1,n) > n + 1.

Proof. When n 6 2 the result follows from Theorem 4.4, and so we henceforth
assume that n > 3. Let v0 be the vertex of degree n in K1,n, and L be the
set of n leaves of K1,n. In K1,n ⊠ K1,n, let A be the set of vertices of the
form (v0, ℓ) with ℓ ∈ L and B be the set of vertices of the form (ℓ, v0) with
ℓ ∈ L. Observe for every ℓ, ℓ′ ∈ L, (v0, ℓ) is adjacent to (ℓ′, v0). In other
words, every vertex in A is adjacent to every vertex in B. As |A| = |B| = n,
thus Kn,n is a subgraph of K1,n⊠K1,n not containing (v0, v0). As the robber
can just play on this subgraph, at least n cops are needed to surround the
robber. Since (v0, v0) is a universal vertex, an additional cop must always
stay on (v0, v0) (or the robber has an escape).

This result can be generalised further to the strong product of a complete
bipartite graph with itself.

Theorem 4.7. If a, b > 1 then σ(Ka,b ⊠Ka,b) > ab.

Proof. Let the bipartition of Ka,b be (A,B), where |A| = a and |B| = b.
Let X be the set of vertices of Ka,b ⊠ Ka,b of the form (α, β) and Y be
the set of vertices of the form (β, α), where α ∈ A and β ∈ B. Note that
|X| = |Y | = ab. In Ka,b ⊠Ka,b, every vertex in X is adjacent to every vertex
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of Y , giving a subgraph isomorphic to Kab,ab. Considering that the robber
can always play on this subgraph, the result follows.

Finally we consider the lexicographic product of two graphs.

Theorem 4.8. If G andH are connected graphs then σ(G◦H) 6 σ(G)|V (H)|+
σ(H).

Proof. Begin by selecting σ(G) copies of H , say H1, H2, . . . , Hσ(G), and then

place a cop on each vertex of
⋃σ(G)

i=1 V (Hi). By imitating a strategy for
surrounding a robber in G, trap the robber on one copy of H ; that is if a
cop moves from x to y in G, then move all of the cops from Hx to Hy in
G ◦H . Subsequently use the remaining σ(H) cops to play on the copy of H
containing the robber.

We note that δ(G ◦H) = δ(G)|V (H)|+ δ(H), and so the bound given by
Theorem 4.8 is tight whenever σ(G) = δ(G) and σ(H) = δ(H).

4.2 Graphs arising from designs

In [6], Bonato and Burgess investigated the cop number for several classes of
graphs that are based on combinatorial designs. Accordingly we now proceed
to consider the surrounding cop number for some of these classes of graphs.
Before discussing them, though, we introduce several definitions.

For integers v > k > 2 and λ > 1 we define a balanced incomplete block
design with parameters (v, k, λ), denoted as a BIBD(v, k, λ), to be a pair
(X,B) where X is a v-set and B is a collection of k-subsets of X such that
each 2-subset of X is contained within exactly λ of the elements of B. The
elements of B are called the blocks of the design. In any BIBD(v, k, λ), each
element or point of X must occur in a constant number of blocks, namely
λ(v−1)
k−1

; this value is known as the design’s replication number, often repre-
sented as r. A BIBD(n2 + n + 1, n + 1, 1) is known as a projective plane
of order n. If the blocks of a BIBD(v, k, λ) can be partitioned into sets of
blocks, each of which contains each point of X exactly once amongst its
blocks, then such a partition is called a resolution of the design into paral-
lel classes. Any BIBD that admits a resolution is a resolvable BIBD, often
denoted as RBIBD. Given a BIBD(v, k, λ), say (X,B), its block-intersection
graph is the graph having B as its vertex set, and two vertices are adjacent
if (as blocks) they have non-empty intersection. Another graph that we can
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construct from a BIBD(v, k, λ) (X,B) is its incidence graph, for which X ∪B
is the vertex set and a vertex x ∈ X is adjacent to a vertex B ∈ B if and
only if x ∈ B. For further background on design theory, see [11].

The cop number of the incidence graph of a projective plane of order k−1
(and hence having block size k) is known to be k; for a proof see Baird [2] or
Pra lat [24]. For the game of Surrounding Cops and Robbers, one additional
cop is needed.

Theorem 4.9. If G is the incidence graph of a projective plane with block
size k, then σ(G) = k + 1.

Proof. Let (X,B) be a projective plane with block size k, and incidence
graph G. We first show that k + 1 cops suffice. Let x ∈ X and, noting that
there are exactly k blocks containing x, put a cop on x and on each B ∈ B

such that x ∈ B. If the robber starts on a block B0, then the cops on blocks
move to immediately surround the robber because B0 intersects with each of
the original blocks at distinct points.

So suppose the robber starts on a point y 6= x. As long as the cops occupy
all blocks B such that x ∈ B, then the robber stays on y until forced to move
(otherwise he will be immediately surrounded as in the previous case). The
cop on point x moves to B′ such that {x, y} ⊆ B′ and then moves to y;
meanwhile, the other cops remain stationary. The robber is then forced to
move to a block containing y, and is then surrounded as above.

We now assume towards a contradiction that σ(G) 6 k. If k cops suffice,
then without loss of generality, in the final position the robber is on a point
x and the k cops are on each of the blocks containing x. (If the robber is
surrounded on a block, we consider the game on the dual.) If the game ends
with the robber’s turn then, in the previous move, the robber was on a block
B and the cops move to all blocks containing x, including B. Note that x
is the only point of B which is surrounded, so the robber would have chosen
another vertex y 6= x in B.

Now suppose the game ends when the robber is surrounded after the
cops’ turn. Consider the k blocks B1, . . . , Bk which contain x. At the end
of the final turn, the k cops must each occupy these blocks. In the move
prior to surrounding x, we can assume that ℓ cops are on points and k − ℓ
cops are on blocks, where 1 6 ℓ 6 k. Say cops C1, . . . ,Cℓ occupy points
a1, a2, . . . , aℓ, respectively, such that x 6= ai ∈ Bi, and k − ℓ cops occupy the
blocks Bℓ+1, . . . , Bk. Note that for each i ∈ {1, . . . , ℓ}, no cop other than Ci

can occupy a point y ∈ Bi, as Bi is the only block containing both y and x;
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moreover, no cop other than Ci can be on a block B′ which intersects Bi\{x}.
Thus, if the robber had passed on his previous turn, he could instead have
moved to one of the blocks B1, . . . , Bℓ and would have been safe for another
round. Similarly, had he occupied one of the blocks B1, . . . , Bℓ, he could have
passed rather than move to x.

Now suppose that the robber had occupied a block {Bℓ+1, . . . , Bk}, and
was forced to move from that block by a cop. Without loss of generality,
suppose the robber moved to x from Bk. If ℓ < k− 1, then choose any point
z ∈ Bk \ {x}. Note that since Bℓ+1 and Bk share only vertex x, Bℓ+1 and z
are not adjacent in the incidence graph. Thus, the robber could have moved
to z rather than x; the cop on Bℓ+1 could not occupy his neighbour on the
next round, so he would have avoided capture.

Finally, suppose ℓ = k − 1 and the robber was forced to move from Bk

to x by a cop occupying Bk. Thus, after the robber’s move to x, the other
k − 1 cops occupy vertices a1, . . . , ak−1 of blocks B1, . . . , Bk−1, respectively.
Consider the block B̂ containing points a1 and a2. Since (X,B) is a projective
plane, B̂ and Bk must intersect in exactly one point, say z. Noting that
B̂ /∈ {B1, . . . , Bk} (as a1 and a2 are in distinct blocks containing x), we
have that z 6= x. But the cops occupying a1 and a2 cannot move to distinct
neighbours of z; thus, the robber could have moved to z rather than x and
remained safe for another round.

Theorem 4.10. Let v > k > 2 be integers such that v ≡ 0 (mod k). If G is
the incidence graph of a resolvable BIBD(v, k, 1), then σ(G) = v

k
+ 1.

Proof. It can be seen that v
k

+ 1 cops suffice by placing one cop on each of
the v

k
blocks of a parallel class Π and one cop on a point x, and proceeding

as in Theorem 4.9.
We now show that if there are at most v

k
cops, then the robber is always

able to return to a point-vertex and hence avoid being surrounded. Note that
point-vertices have degree v−1

k−1
, and that v−1

k−1
> v

k
since v > k. The robber

adopts a strategy whereby he always stays on (or moves to) a point-vertex,
unless forced to move to a block-vertex. Suppose that at some point the
robber is forced to move to a block-vertex because a cop has moved to his
current position at point-vertex x. Let t denote the number of neighbouring
block-vertices that are occupied by cops, so that the robber has v−1

k−1
− t valid

moves. The corresponding v−1
k−1
− t blocks collectively contain ( v−1

k−1
− t)(k−1)

points other than point x, each of which has a point-vertex that must be
occupiable by a cop if the cops are to be able to surround the robber once he
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has moved away from x. Moreover, these ( v−1
k−1
− t)(k − 1) point-vertices can

only be covered by the remaining v
k
− t − 1 cops, each of which is adjacent

to at most k point-vertices. Hence for the cops to surround the robber it is
necessary that ( v

k
− t − 1)k > ( v−1

k−1
− t)(k − 1), which is clearly impossible.

Thus the robber is able to move away from vertex x, not be surrounded when
the cops move, and then he can move to another point-vertex.

Bonato and Burgess showed in [6] that the cop number of the block-
intersection graph of a BIBD(v, k, λ) is at most k. We establish the exact
value for the surrounding cop number for BIBDs with index λ = 1, and in so
doing we find that the surrounding cop number is substantially greater than
the cop number.

Theorem 4.11. If G is the block-intersection graph of a BIBD(v, k, 1), then
σ(G) = k(r − 1).

Proof. First note that δ(G) = k(r − 1) so σ(G) > k(r − 1). It remains
to show that σ(G) 6 k(r − 1). In the case that G is a complete graph,
then σ(G) = δ(G) = k(r − 1), so we may assume that there are two non-
intersecting blocks. Hence we may relabel the BIBD so that it contains blocks
{1, 2, . . . , k} and {k + 1, k + 2, . . . , 2k}. Initially place the k(r − 1) cops on
all blocks adjacent to {1, 2, . . . , k}. Without loss of generality, assume the
robber starts on block {k + 1, k + 2, . . . , 2k}.

Let A be the set of blocks adjacent to {1, 2, . . . , k} in G, and let B be
the set of blocks adjacent to {k + 1, k + 2, . . . , 2k} in G. As each pair of
points appears together in a unique block, each x ∈ A contains exactly one
element in {1, 2, . . . , k} and each y ∈ B contains exactly one element in
{k + 1, k + 2, . . . , 2k}; thus |A ∩ B| = k2. We construct a bipartite graph
G′ with partite sets A′ and B′ where A′ = {xA : x ∈ A} is a copy of A and
B′ = {yB : y ∈ B} is a disjoint copy of B. Let xAyB be an edge in G′ if
xA ∈ A′, yB ∈ B′ and either x is adjacent to y in G or x = y.

Let H be the following subgraph of G′. For each point i ∈ {1, 2, . . . , k}
include the edges xAyB ∈ E(G′) such that i ∈ x, i + k /∈ x, and i + k ∈ y.
Also include the edges xAyB where {i, i + k} ⊆ x and {i + k, j} ⊆ y for
j ∈ {1, 2, . . . , k}\{i}. Clearly, G′ is a (k−1)-regular bipartite graph so there
exists a 1-factor F of G′. For each edge xAyB in F, the cops move from x to
y in G, thereby surrounding the robber.
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4.3 Generalised Petersen graphs

We begin this section with a definition. Let A = {a0, . . . , an−1} and B =
{b0, . . . , bn−1}. For positive integers n and k such that n > 2k, the generalised
Petersen graph GP(n, k) has vertex set A ∪ B and edges {ai, ai+1}, {ai, bi}
and {bi, bi+k} for each i ∈ {0, . . . , n−1}, with subscripts computed modulo n.
The edges of the form {ai, bi} are called spokes. The infinite Petersen graph
GP(∞, k) is defined similarly with A = {ai : i ∈ Z} and B = {bi : i ∈ Z}.
Observe that the well known Petersen graph is GP(5, 2). In GP(n, k) or
GP(∞, k), we refer to a movement by a cop or robber as leftwards if the
player moves from ai to ai−1 or from bi to bi−k, and rightwards if the player
moves from ai to ai+1 or from bi to bi+k.

Tables 1 and 2 show the cop number and the surrounding cop number
for several generalised Petersen graphs GP(n, k), as computed by our imple-
mentation of the algorithm of Bonato and Chiniforooshan [7] (for the cop
number) and Algorithm 1 (for the surrounding cop number).

The cop number of generalised Petersen graphs was previously considered
by Ball, Bell, Guzman, Hanson-Colvin and Schonsheck in [4]. They proved
that every generalised Petersen graph has cop number at most 4, and by
performing a computational assessment they demonstrated that a cop num-
ber of 4 is required for several cases. With the exception of GP(25, 7), our
computational results agree with theirs. Our implementation has stated that
c(GP(25, 7)) = 4 (see Table 1), whereas Ball et al. reported that GP(26, 10)
is the smallest generalised Petersen graph having 4 as its cop number.

In Theorem 4.13 we show that every generalised Petersen graph has sur-
rounding cop number at most 4. Empirical results shown in Table 2 suggest
that there may only be a handful of cases for which σ(GP(n, k)) = 3 and
k > 2.

The proof of Theorem 4.13 is similar to that of [4] for ordinary Cops and
Robbers. The key is to consider a “lifting” of the game on GP(n, k) to a
game on the infinite graph GP(∞, k). Before proceeding to the proof, we
require some further terminology adapted from [4].

Consider the homomorphism π : GP(∞, k) → GP(n, k) which maps a
vertex xi (where x ∈ {a, b}) to the vertex xj of GP(n, k) satisfying j ≡ i
(mod n). If a player moves from vertex y to z in GP(n, k), the lifted move
in GP(∞, k) for a player on a vertex v of π−1(y) is to move to the unique
vertex of π−1(z) adjacent to v, or to pass if y = z. Suppose in GP(∞, k),
two players, say P1 and P2, are on vertices u and v, respectively, of π−1(y).
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c(GP(n, k))
k

1 2 3 4 5 6 7 8 9 10 11 12 13 14

n

3 2
4 2
5 2 3
6 2 2
7 2 3 3
8 2 2 3
9 2 3 2 3
10 2 3 3 3
11 2 3 3 3 3
12 2 3 2 3 3
13 2 3 3 3 3 3
14 2 3 3 3 3 3
15 2 3 3 3 3 3 3
16 2 3 3 3 3 3 3
17 2 3 3 3 3 3 3 3
18 2 3 3 3 3 3 3 3
19 2 3 3 3 3 3 3 3 3
20 2 3 3 3 3 3 3 3 3
21 2 3 3 3 3 3 3 3 3 3
22 2 3 3 3 3 3 3 3 3 3
23 2 3 3 3 3 3 3 3 3 3 3
24 2 3 3 3 3 3 3 3 3 3 3
25 2 3 3 3 3 3 4 3 3 3 3 3
26 2 3 3 3 3 3 3 3 3 4 3 3
27 2 3 3 3 3 4 3 3 3 3 3 3 3
28 2 3 3 3 3 4 3 4 3 3 3 3 3
29 2 3 3 3 3 3 3 4 3 3 4 4 3 3
30 2 3 3 3 3 3 3 3 3 3 3 3 3 3

Table 1: Cop numbers of Generalised Petersen Graphs, c(GP(n, k))
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σ(GP(n, k))
k

1 2 3 4 5 6 7 8 9

n

3 3
4 3
5 3 3
6 3 3
7 3 4 4
8 3 3 3
9 3 4 3 4
10 3 4 4 4
11 3 4 4 4 4
12 3 4 3 4 4
13 3 4 4 4 4 4
14 3 4 4 4 4 4
15 3 4 4 4 4 4 4
16 3 4 4 4 4 4 4
17 3 4 4 4 4 4 4 4
18 3 4 4 4 4 4 4 4
19 3 4 4 4 4 4 4 4 4
20 3 4 4 4 4 4 4 4 4

Table 2: Surrounding Cop numbers of Generalised Petersen Graphs,
σ(GP(n, k))
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We describe the next move of P1 and P2 as consistent if P1 and P2 follow
the lifted move of the same move in GP(n, k). Given a game of Surrounding
Cops and Robbers in GP(n, k), the lifted game in GP(∞, k) is as follows.
For each cop C in GP(n, k), we associate a set S of cops in GP(∞, k); if C is
initially placed on vertex x, then a cop of S is initially placed on each vertex
of π−1(x). Thereafter, in each round the cops of S play the lifted moves of
those of C; we refer to the cops of S as a squad. Suppose the robber R begins
on vertex y of GP(n, k). We place a robber on a vertex of π−1(y), who will
play the lifted moves of R. Conversely, if a game in GP(∞, k) is the lift of a
game in GP(n, k), we refer to the game in GP(n, k) as the projected game.

In practice, while playing in GP(∞, k), we single out one cop of a given
squad, the lead cop, and determine the consistent movements of the entire
squad based on the position of the lead cop relative to the robber. As the
game progresses, the choice of lead cop may change; however, regardless of
this choice, the movements of the squad correspond to the movements of a
single cop in the projected game.

Lemma 4.12. In the game of Surrounding Cops and Robbers, two squads
of cops playing in GP(∞, k) can prevent the robber from moving left after a
finite number of turns.

Proof. The proof is similar to that of Corollary 2.2 of [4], with the exception
that the robber cannot necessarily be forced to increase his index, but rather
is prevented from decreasing his index beyond a finite number of moves. We
provide only an outline of the details. The difference in the cops’ strategy is
that the cops now choose to pass rather than landing on the robber’s position.

Using the modified strategy, we outline how, after finitely many turns,
the robber is prevented from moving left. The cops start on A and work in
tandem so that the first lead cop, C1, matches parity and congruence modulo
k with the robber. In subsequent rounds, the cop C1 then moves (if necessary)
to remain in the same set (A or B) as the robber and maintain congruence
modulo k, and each time the robber moves within B or passes while on a
vertex of B, C1 moves closer to the robber in B. Thus, the robber can only
move or pass finitely many times within B before C1 and the robber occupy
vertices of the form xi and xi+k (x ∈ {a, b}); if this happens their indices
will differ by k for the remainder of the game, thus preventing the robber
from making any leftward moves in B. However, each time the robber moves
leftwards within A, the second lead cop (C2) moves closer to the robber in
A, so the robber can make only finitely many leftward moves in A. (Note
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that if the robber moves along a spoke, C2 will not move to a vertex with
larger index than the robber, so movement along spokes will not increase the
robber’s number of leftward moves in A.)

In [4] it was proved that the cop number of every generalised Petersen
graph is at most 4. This constant upper bound also applies to the surrounding
cop number.

Theorem 4.13. For all integers n > 5 and k > 2, σ(GP(n, k)) 6 4.

Proof. The proof due to Ball et al. [4] can be adapted for σ(G). This proof
relies on playing the lifted version of the game on the graph Ĝ = GP(∞, k).
The main change is that we use Lemma 4.12 in place of [4, Corollary 2.2].

By Lemma 4.12, one pair of lifted cops can prevent R̂ (the lifted robber)
from moving to the left. A second pair of lifted cops moves closer to R̂ or
prevents R̂ from moving to the right. At this point, the robber’s movements
in the lifted game, and hence in GP(n, k), are confined to the spokes, and
the cops are in position to surround him by the next turn.

As first noted in [4], there are many graphs GP(n, k) where c(GP(n, k)) =
3 and seemingly many others for which c(GP(n, k)) = 4. Empirical results
(see Table 2) suggest that when k > 2 there may only be a finite number of
instances for which the surrounding cop number is not 4, namely GP(5, 2),
GP(6, 2), GP(8, 2), GP(8, 3), GP(9, 3) and GP(12, 3). In the case k = 1,
GP(n, 1) is a prism and σ(GP(n, 1)) = 3.

Theorem 4.14. For all n > 3, σ(GP(n, 1)) = 3.

Proof. Since GP(n, 1) is 3-regular, clearly at least three cops are needed to
surround the robber. We give a strategy in which three cops can prevail. We
let CA (resp. CB) denote the cycle induced by A (resp. B).

Initially, the cops are placed with two of them, say C1 and C2, on a0.
The third, C3, is placed on b0. In the first stage of the game, cops C1 and
C2 play on the cycle induced by A, aiming to surround the robber on the
graph obtained by identifying vertex ai with bi for each i. To simplify the
discussion below, define the shadow of the robber to be ai if the robber is on
vertex bi and bi if the robber is on ai. In this part of the game, C3 passes in
each round, thus preventing the robber from moving cyclically along CB (this
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ensures that if the robber is playing on CB, cops C1 and C2 can surround his
shadow). At the end of this stage, we have one of two cases.

Case 1. C1 and C2 surround the robber on CA, so that C1 and C2 are in
positions ai−1 and ai+1, with the robber on vertex ai.

In this case, C1 and C2 confine the robber to moving along the spoke
aibi. If he passes, so do they; otherwise, his only allowable move is along this
spoke, and C1 and C2 follow along their corresponding spokes. At this stage
of the game, C3 moves until she is at vertex bi. If the robber is on ai when C3

arrives at bi, the robber is immediately surrounded. Otherwise, C3 lands on
the robber, who is then forced to move to ai. In the next move, cops C1 and
C2 (who had been on bi−1 and bi+1) move to ai−1 and ai+1, while C3 passes;
again, the robber is surrounded.

Case 2. C1 and C2 surround the robber’s shadow, that is, they occupy
positions ai−1 and ai+1 while the robber is on vertex bi.

If the robber moves to ai, we proceed as in Case 1. Otherwise, after the
next move of the cops or the robber, we can ensure that one of the cops
occupies the other end-vertex of the spoke incident with the robber. In the
rest of the game, this cop stays on CA, mirroring the robber’s moves on CB, so
that after each of this cop’s turns she is still on the other end of the robber’s
spoke, and the robber is henceforth prevented from moving to a vertex of A.
For the robber and the other two cops, the game is reduced to playing on
the cycle CB, where two cops can surround the robber.

5 Concluding Remarks

Although the game of Surrounding Cops and Robbers is new, it has already
attracted interest. A recent preprint [9] considers the surrounding cop num-
ber of graphs of bounded genus, in particular giving small constant upper
bounds for the surrounding cop number of planar, outerplanar and toroidal
graphs. Below we present several unresolved questions to provide directions
for future study.

1. The empirical results that we have for generalised Petersen graphs sug-
gest that σ(GP(n, k)) = 4 whenever n > 12 and k > 1. Is this indeed
true?

2. In [12] it is proved that c(G) 6 ξ(G). Is the containability number
ξ(G) also an upper bound for σ(G)?
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3. Theorem 2.2 establishes σ(G) > δ whenever G has minimum degree
δ > 3 and girth g > 7. Does a generalisation of this theorem, similar
to the result of Frankl [15], hold?

4. Characterise graphs G such that σ(G) = k. For k = 1 we found that
G must be K1 or a star K1,m for some m > 1. For k = 2 we do not
have a characterisation, but have noted that the family includes such
graphs as cycles, trees (other than K1 and stars), cycles with a chord,
and more.

It is not true that G being a connected subgraph of a connected graph H
implies that σ(G) 6 σ(H). For instance, form the graph G from an 8-cycle
(1, 2, 3, . . . , 8) by adding the edges {2, 8} and {4, 6} and let H = G+e where
e is the edge {2, 6}. It is easy to confirm that σ(G) = 3 and σ(H) = 2.

5. Under what conditions on G and e is σ(G− e) 6 σ(G)?

6. Let G/e be the graph obtained by contracting the edge e. Under what
conditions on G and e is σ(G/e) 6 σ(G)?

We conclude with a brief discussion regarding Meyniel’s conjecture, which
asserts that c(G) ∈ O(

√
n), where n denotes the order of the graph G. This

conjecture was first published in [15]. For a nice survey, see [3]. When
considering graphs such as complete graphs, for which σ(Kn) = n − 1, it
is clear that there is no analogy of this conjecture that would apply to the
surrounding cop number. Nevertheless, there may be a way to exploit the
surrounding cop number as a means of proving Meyniel’s conjecture for the
cop number. Recall that c(G) 6 σ(G), and in particular note that any graph
G for which σ(G) ∈ O(

√
n) must satisfy Meyniel’s conjecture. Hence any

counterexample to the conjecture must be such that σ(G) /∈ O(
√
n). Aside

from incidence graphs of projective planes, all of the graphs for which σ(G)
exceeds

√
n that we have encountered have been graphs for which the cop

number c(G) has not only been below
√
n, but substantially below. For

instance, when G is an n-vertex line graph of a complete graph, in which
case σ(G) is approximately 2

√
2n (see Theorem 2.6), the cop number is at

most 2.

7. Do graphs with high surrounding cop number inherently possess some
property which in turn implies that the cop number is low?
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