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Abstract

Given simple graphs H1, H2, . . . , Hc, the Ramsey number r(H1, H2, . . . , Hc) is the

smallest positive integer n such that every edge-colored Kn with c colors contains a

subgraph in color i isomorphic to Hi for some i ∈ {1, 2, . . . , c}. The critical graphs

for r(H1, H2, . . . , Hc) are edge-colored complete graphs on r(H1, H2, . . . , Hc)− 1 ver-

tices with c colors which contain no subgraphs in color i isomorphic to Hi for any

i ∈ {1, 2, . . . , c}. For n1 ≥ n2 ≥ . . . ≥ nc ≥ 1, Cockayne and Lorimer (The Ram-

sey number for stripes, J. Austral. Math. Soc. 19 (1975), 252–256.) showed that

r(n1K2, n2K2, . . . , ncK2) = n1 + 1 +
c
∑

i=1

(ni − 1), in which niK2 is a matching of size

ni. Using the Gallai-Edmonds Theorem, we characterized all the critical graphs for

r(n1K2, n2K2, . . . , ncK2), implying a new proof for this Ramsey number.
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1 Introduction

All graphs considered in this paper are finite and simple. For terminology and notation

not defined here, we refer the reader to Bondy and Murty [3].

An edge-colored graph is monochromatic if all its edges have the same color. Given

simple graphs H1,H2, . . . ,Hc, the Ramsey number r(H1,H2, . . . ,Hc) is the smallest pos-

itive integer n such that every c-edge-coloring of Kn (an assignment of c colors to the

∗The first author is supported by NSFC (No. 11701441). The third author is supported by NSFC

(Nos. 11671320 and U1803263) and the Fundamental Research Funds for the Central Universities (No.

3102019ghjd003).
†Corresponding author.
‡E-mail addresses: xuchuandong@xidian.edu.cn (C. Xu), yanghn@mail.nwpu.edu.cn (H. Yang),

sgzhang@nwpu.edu.cn (S. Zhang).

1

http://arxiv.org/abs/1905.08456v2


edges of Kn) contains a monochromatic subgraph in some color i ∈ {1, 2, . . . , c} isomor-

phic to Hi. A critical graph for r(H1,H2, . . . ,Hc) is a c-edge-colored complete graph on

r(H1,H2, . . . ,Hc) − 1 vertices, which contains no subgraphs in color i isomorphic to Hi

for any i ∈ {1, 2, . . . , c}.

Determining the value of classical Ramsey numbers seems to be extremely hard (see

[15] for a survey). But for multiple copies of graphs, Burr, Erdős and Spencer [4] obtained

surprisingly sharp and general upper and lower bounds on r(nG, nH) for fixed G, H and

sufficiently large n. They also showed that r(mK3, nK3) = 3m+ 2n when m ≥ n, m ≥ 2.

Hook and Isaak [8] made a conjecture on the critical graphs for r(mK3, nK3). Another

well-known result in this area is due to Cockayne and Lorimer [5].

Theorem 1 (Cockayne and Lorimer [5]). For n1 ≥ n2 ≥ . . . ≥ nc ≥ 1,

r(n1K2, n2K2, . . . , ncK2) = n1 + 1 +

c
∑

i=1

(ni − 1).

This result has been generalized to complete graphs versus matchings by Lorimer and

Solomon [13], and to hypergraphs by Alon et al. [1]. For the Ramsey number of matchings,

Hook and Isaak [8] characterized the critical graphs for r(mK2, nK2) for m ≥ n ≥ 1. The

class of all critical graphs for r(n1K2, n2K2, . . . , ncK2) has not been determined yet.

Cockayne and Lorimer [5] gave a critical graph for r(n1K2, n2K2, . . . , ncK2) which is a

c-edge-colored complete graph G on n1 +
c
∑

i=1

(ni − 1) vertices whose vertex set V (G) has c

parts V1, . . . , Vc such that |V1| = 2n1−1, |Vi| = ni−1 for i ∈ {2, . . . , c}, and the color of an

edge e = xy in G is the maximum j for which {x, y} has a non-empty intersection with Vj.

It is easy to see that G contains no monochromatic niK2 in color i for any i ∈ {1, 2, . . . , c}.

Motivated by Cockayne and Lorimer’s result, in this paper we studied the structure of

the critical graphs for r(n1K2, n2K2, . . . , ncK2) (see Figure 1 for an example).

Theorem 2. For n1 ≥ n2 ≥ . . . ≥ nc ≥ 1, let G be a c-edge-colored complete graph with

order n ≥ n1 +
c
∑

i=1

(ni − 1). If G contains no monochromatic niK2 in color i for any

i ∈ {1, 2, . . . , c}, then n = n1 +
c
∑

i=1

(ni − 1) and the colors of G can be relabeled such that:

(a) V (G) can be partitioned into c parts V1, V2, . . . , Vc, where |V1| = 2n1−1, |Vi| = ni−1,

and all the edges with ends both in Vi have color i, for i ∈ {1, 2, . . . , c};

(b) all the edges with one end in V1 and the other end in Vi have color i, for i ∈ {2, . . . , c};

(c) all the edges with one end in Vi and the other end in Vj have color either i or j, for

{i, j} ⊆ {2, . . . , c}.

Bialostocki and Gyárfás [2] showed that Cockayne and Lorimer’s proof (there is a gap,

a missed case, in this proof) can be modified to give a more general result.

Theorem 3 (Bialostocki and Gyárfás [2]). for n1 ≥ n2 ≥ . . . ≥ nc ≥ 1 and n ≥ n1 + 1 +
c
∑

i=1

(ni − 1), every c-edge-colored n-chromatic graph contains a monochromatic niK2 for

some i ∈ {1, 2, . . . c}.

2



K2n1−1

Kn2−1 Kn3−1 Knc−1· · ·

2

2
33

c

c

2

3 3

c
2

c

Figure 1: The structure of the critical graphs for r(n1K1, n2K2, . . . , ncK2).

As mentioned in [2], Zoltán Király pointed out that the n-chromatic graph version

result can be deduced from the complete graph version result. Here we will show that

Zoltán Király’s method can work for more general graph classes. Let G be an edge-colored

graph with c colors. If there is a partition {V1, V2, . . . , Vn} of V (G) such that E(Vi, Vj) 6= ∅

for i 6= j and n ≥ n1 + 1 +
c
∑

i=1

(ni − 1), then by identifying each Vi to a single vertex vi

and deleting the multiplied edges, one can obtain a c-edge-colored complete graph on n

vertices, denoted by G∗. It’s easy to see that each monochromatic niK2 with some color

i in G∗ corresponds to a monochromatic niK2 with color i in G.

Corollary 1. Let G be an edge-colored graph with c colors. If there is a partition

{V1, V2, . . . , Vn} of V (G) such that E(Vi, Vj) 6= ∅ for each i 6= j and n ≥ n1+1+
c
∑

i=1

(ni−1),

then G contains a monochromatic niK2 for some i ∈ {1, 2, . . . , c}.

The proof of Theorem 2 is in Section 2. At the end of this paper, we remark a simple

application of Theorem 2.

2 Proof of Theorem 1

First, we will state the Gallai-Edmonds Theorem which plays an essential role in our proof.

Let M be a matching of a graph G with order n. Each vertex incident with an edge

in M is said to be covered by M . A maximum matching of G is a matching that covers

as many vertices as possible. When n is even (odd), a perfect matching (near-perfect

matching) is a maximum matching of G which covers n vertices (n− 1 vertices). We call

G factor-critical if G− v has a perfect matching for each vertex v ∈ G.

For a graph G, let D(G) be the set of vertices that cannot be covered by at least one

maximum matching of G, A(G) be the set of vertices that have neighbours in D(G), and

C(G) = V (G) \ (D(G) ∪A(G)). The following Gallai-Edmonds Theorem is due to Gallai

[7] and Edmonds [6]. The current version of this theorem we used here can be found in

Lovász and Plummer [14] (pp. 94, Theorem 3.2.1). We call D(G), A(G), and C(G) the

Gallai-Edmonds decomposition of G (see Figure 2 as an example).
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Theorem 4 (Gallai-Edmonds Theorem). For a graph G, let D(G), A(G), and C(G) be

defined as above. Then

(a) the components of the subgraph induced by D(G) are factor-critical;

(b) the subgraph induced by C(G) has a perfect matching;

(c) the bipartite graph obtained from G by deleting the vertices of C(G) and the edges

spanned by A(G) and by contracting each component of D(G) to a single vertex has

a positive surplus (as viewed from A(G), i.e., |N(S)| − |S| > 0 for each nonempty

subset S of A(G));

(d) if M is any maximum matching of G, it contains a near-perfect matching of each

component of D(G), a perfect matching of each component of C(G) and matches all

vertices of A(G) with vertices in distinct components of D(G);

(e) the size of a maximum matching M is equal to 1

2
(|V (G)|−ω(D(G))+ |A(G)|), where

ω(D(G)) denotes the number of components of the graph spanned by D(G).

Since there exists no monochromatic niK2 in color i in color class Gi (the subgraph of

G induced by all the edges in color i) for each i ∈ {1, 2, . . . , c}, we know that the matching

number (the size a maximum matching) of Gi is at most ni − 1. The Gallai-Edmonds

Theorem characterizes the structure of a graph based on its matching number. We will

deduce from the Gallai-Edmonds Theorem that each color class Gi in G cannot have too

many edges. On the other hand, the union of these color classes have to cover all the edges

of G. Finally we characterize the structure of G, which also implies a new proof on the

value of r(n1K2, n2K2, . . . , ncK2).

Proof of Theorem 2. Suppose that G has n ≥ n1+
c
∑

i=1

(ni− 1) vertices and contains no

monochromatic niK2 in color i for any i ∈ {1, 2, . . . , c}. If ni = 1 for some 1 ≤ i ≤ c, then

G contains no edges with color i. We can ignore color i in our discussion and there is no

influence to the conclusions. So we will assume n1 ≥ n2 ≥ . . . ≥ nc ≥ 2 in this proof.

· · ·

· · ·

· · ·

C(Gi)

A(Gi)

D(Gi)

Figure 2: The Gallai-Edmonds decomposition of the color class Gi.
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Let G1, G2, . . . , Gc be the color classes of G. For each i ∈ {1, 2, . . . , c}, the matching

number of Gi is at most ni − 1 since G contains no monochromatic niK2 in color i. Let

C(Gi), A(Gi), and D(Gi) be the Gallai-Edmonds decomposition of Gi (see Figure 2).

Denote the vertex sets of components in Gi[D(Gi)] by D1(G
i),D2(G

i) . . . Dti(G
i). Let

ai =
∣

∣A(Gi)
∣

∣ , di0 =

∣

∣C(Gi)
∣

∣

2
, dik =

∣

∣Dk(G
i)− 1

∣

∣

2
for k ∈ {1, 2, . . . , ti}.

By the Gallai-Edmonds Theorem, ai + di0 + di1 + · · ·+ diti is the mathcing number of Gi.

Since the matching number of Gi is at most ni − 1, there holds

di0 + di1 + . . .+ diti ≤ ni − 1− ai.

The following inequalities give an upper bound on the number of edges with its ends

both in C(Gi) or in D(Gi), in which the third inequality can be checked by comparing the

size of a complete graph with order 2(di0 + di1 + · · ·+ diti ) + 1 and the size of a subgraph

of it. We have

∣

∣E(Gi[C(Gi)])
∣

∣+
∣

∣E(Gi[D(Gi)])
∣

∣ ≤

(

2di0
2

)

+

(

2di1 + 1

2

)

+ · · ·+

(

2diti + 1

2

)

≤

(

2di0 + 1

2

)

+

(

2di1 + 1

2

)

+ · · ·+

(

2diti + 1

2

)

≤

(

2(di0 + di1 + · · ·+ diti ) + 1

2

)

≤

(

2(ni − 1− ai) + 1

2

)

.

(1)

Next, we give bounds on the number of edges incident with vertices in A(Gi) which can

be partitioned into ai stars. There are
c
∑

i=1

ai such stars in total. Let H be the subgraph

of G with vertex set V (G) and edge set the union of the edge sets of these stars. Those

vertices in V (G)−∪c
i=1

A(Gi) form an independent set of size at least n−
c
∑

i=1

ai in H. Thus

H has at most
(

n
2

)

−
(

n−
∑

ai
2

)

edges. Together with the edges in Gi[C(Gi)] and Gi[D(Gi)]

for 1 ≤ i ≤ c, we have an upper bound on the number of edges in ∪c
i=1G

i which is a

complete graph with oder n:

(

n

2

)

−

(n−
c
∑

i=1

ai

2

)

+
c

∑

i=1

(

2(ni − 1− ai) + 1

2

)

≥

(

n

2

)

. (2)

Note that n ≥ n1 +
c
∑

i=1

(ni − 1− ai). There follows

c
∑

i=1

(

2(ni − 1− ai) + 1

2

)

≥

(n−
c
∑

i=1

ai

2

)

≥

(n1 +
c
∑

i=1

(ni − 1− ai)

2

)

. (3)

For the convenience of discussion, let bi = ni − 1− ai for 1 ≤ i ≤ c. Then we have

c
∑

i=1

(

2bi + 1

2

)

≥

(n1 +
c
∑

i=1

bi

2

)

. (4)
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We will deduce the structure ofG from the above inequality. Assuming bm = max{b1, b2, . . . , bc},

we get bm > 0 (otherwise (4) dosen’t hold since n1 ≥ 2) and 0 ≤ bi ≤ bm ≤ n1 − 1. For

bi > 0 and i 6= m, there holds bi ≤ n1 − 1 ≤ n1 − 1 + n1 − 2, i.e., bi+3

2
≤ n1. There holds

(

2bi + 1

2

)

=

(

bi

2

)

+ bi(bi + 1) +

(

bi + 1

2

)

=

(

bi

2

)

+ bi · bi + bi ·
bi + 3

2

≤

(

bi

2

)

+ bi · bm + bi · n1.

(5)

The equality in (5) holds if and only if bi = bm and bi+3

2
= n1, which only holds when

n1 = 2 and bi = bm = 1.

The last inequality in the following can be checked by treating each item as the size of

a subgraph of a complete graph with order n1 +
c
∑

i=1

bi. It follows from (5) that

c
∑

i=1

(

2bi + 1

2

)

=

(

2bm + 1

2

)

+

c
∑

i=1,i 6=m

(

bi + 1

2

)

≤

(

n1 + bm

2

)

+

c
∑

i=1,i 6=m

[(

bi

2

)

+ bi · bm + bi · n1

]

≤

(n1 +
c
∑

i=1

bi

2

)

.

(6)

The equalities in (6) hold if and only if bm = n1 − 1 and there exists at most one nonzero

bi with i 6= m.

By (4) and (6), we get

c
∑

i=1

(

2bi + 1

2

)

=

(

n1 +
c
∑

i=1

bi

2

)

.

Hence, the equalities hold throughout in inequalities (1)–(6). Thus n = n1 +
c
∑

i=1

(ni − 1)

and bm = n1 − 1. Since bm = nm − 1 − am, nm ≤ n1, and am ≥ 0, there holds nm = n1

and am = 0. Hence we can switch the colors of G1 and Gm to set m = 1. There are two

cases for the values of b1, b2, . . . , bc.

Case 1. b1 = n1 − 1, b2 = · · · = bc = 0.

It follows that a1 = 0, a2 = n2 − 1, · · · , ac = nc − 1. For i = 1, since the equality

holds in inequality (1), there follows C(G1) = A(G1) = ∅ and G1[D(G1)] ∼= K2n1−1. Thus

G1 ∼= K2n1−1.

For i ≥ 2, it follows from ai = ni − 1 that C(Gi) = ∅, and components in Gi[D(Gi)]

are isolate vertices. Recall that H contains the ai = ni−1 stars in color i, i.e., H contains

Gi. Moreover, H =
c
⋃

i=2

Gi ∼= Kn\E(K2n1−1) (the complement of K2n1−1 in Kn). Thus G

has the required structure.

6



Case 2. n1 = 2, b1 = b2 = 1, b3 = · · · = bc = 0.

It follows that n1 = n2 = · · · = nc = 2 since 2 ≤ ni ≤ n1. For i 6= 1 and bi > 0, we

assume i = 2 for convenience. Thus n = c + 2, a1 = a2 = 0 and a3 = · · · = ac = 1. By

(1),
∣

∣E(G1)
∣

∣ =
∣

∣E(G2)
∣

∣ = 3, and thus G1
∼= G2

∼= K3. Also by (1), G1 ∪G2 is isomorphic

to K4, a contradiction. �

3 Remark

Let Kn−1⊔K1,k be the graph obtained from Kn−1 by adding a new vertex v and joining v

to k vertices of Kn−1. For n = r(H1,H2, . . . ,Hc), the star-critical Ramsey number is the

smallest positive integer k such that every c-edge-coloring of Kn−1 ⊔K1,k contains a sub-

graph isomorphic to Hi in color i for some i ∈ {1, 2, . . . , c}, denoted by r∗(H1,H2, . . . ,Hc).

This concept was introduced by Hook and Isaak [8], who showed that r∗(sK2, tK2) = t

for s ≥ t ≥ 1. The star-critical Ramsey numbers of other graphs have been investigated

in [8, 9, 10, 11, 12, 16, 17].

A (H1,H2, . . . ,Hc)-free coloring of Kn−1 is a c-edge-coloring of Kn−1 that contains no

subgraphs isomorphic to Hi in color i for any i ∈ {1, . . . , c}. Thus every critical graph for

r(n1K2, n2K2, . . . , ncK2) has an (n1K2, n2K2, . . . , ncK2)-free coloring. By using Theorem

1, we get the following result on the star-critical Ramsey number of matchings.

Theorem 5. For n1 ≥ n2 ≥ . . . ≥ nc ≥ 1, let r∗(n1K2, n2K2, . . . , ncK2) =
c
∑

i=2

(ni−1)+1.

Proof. For convenience, we let

n := r(n1K2, n2K2, . . . , ncK2) = n1 + 1 +

c
∑

i=1

(ni − 1), m :=

c
∑

i=2

(ni − 1).

To show r∗(n1K2, n2K2, . . . , ncK2) ≥ m + 1, we give an (n1K2, n2K2, . . . , ncK2)-free

coloring of Kn−1 ⊔ K1,m, which is constructed by a critical graph on n − 1 vertices as

defined in Theorem 2 and a vertex v with edges to each monochromatic Kni−1 colored by

i for i ∈ {2, . . . , c}.

Next we prove the reverse. Let G be an edge-colored Kn−1 ⊔ K1,m+1 with c colors,

H be the Kn−1 in G, and v be the center of the star K1,m+1. By Theorem 2, either H

contains a monochromatic niK2 and we are done, or H is a critical graph and contains

an monochromatic K2n1−1 with some color, say color 1. In the following we assume that

H belongs to the latter case. Thus no edges incident to v has color 1 in G, or there is a

monochromatic n1K2. So the colors of the edges incident to v belong to {2, . . . , c}. Note

that n− 1−m = 2n1, there exists an edge uv with u ∈ V (H1) (H1 is the monochromatic

K2n1−1 in H). Denote the color of uv by j (j ∈ {2, . . . , c}). Then the edge uv and an

(nj − 1)-matching in Hj form an njK2 with color j in G. The result follows. �
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