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Abstract

Perfect state transfer in graphs is a concept arising from quantum physics and quantum
computing. Given a graph G with adjacency matrix AG, the transition matrix of G with

respect to AG is defined as HAG
(t) = exp(−itAG), t ∈ R, i =

√
−1. We say that perfect

state transfer from vertex u to vertex v occurs in G at time τ if u 6= v and the modulus
of the (u, v)-entry of HAG

(τ) is equal to 1. If the moduli of all diagonal entries of HAG
(τ)

are equal to 1 for some τ , then G is called periodic with period τ . In this paper we give a
few sufficient conditions for NEPS of complete graphs to be periodic or exhibit perfect state
transfer.
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1 Introduction

Let G be a graph. Denote by V (G) the vertex set of G and AG the adjacency matrix of G. The

transition matrix of G with respect to AG is defined as

HAG
(t) = exp(−itAG) =

∑

k≥0

(−i)kAk
Gt

k

k!
, t ∈ R, i =

√
−1.

Clearly, this is a symmetric and unitary matrix for any t. Denote by HAG
(t)u,v the (u, v)-entry

of HAG
(t), where u, v ∈ V (G). We say that perfect state transfer (PST for short) from vertex

u to vertex v occurs in G at time τ if u 6= v and |HAG
(τ)u,v| = 1. If |HAG

(τ)u,u| = 1, then G

is called periodic at vertex u with period τ . A graph is called periodic if it is periodic at every

vertex with the same period.
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The definitions above arose from quantum physics (see, for example, [3, 5]). In recent years,

the problem of determining which quantum spin networks admit PST has received considerable

attention due to its potential applications in quantum information transmission and quantum

computing. It is known [16] that PST can be used as an important approach to universal quan-

tum computing. In [3], Bose first introduced the concept of PST and addressed its importance

in quantum computing. In [5], Chirstandl et al. modelled quantum spin networks by graphs in

which vertices represent locations of the qubits and edges represent quantum wires between such

qubits. In this way the problem of determining which quantum spin networks admit PST can be

transformed to the one of characterizing which graphs admit PST. Unfortunately, in general it

is difficult to determine whether a given graph exhibits PST. Up until now, only a small number

of families of graphs have been proved to admit PST. See [1, 3, 6, 9, 14, 20, 19, 18] and the

survey papers [8, 15] for details.

The purpose of this paper is to study the existence of PST and periodicity in the family of

graphs built from complete graphs using the NEPS operation. As usual we use Kn, Pn and Cn

to denote the complete graph, the path and the cycle on n vertices, respectively. Denote the

elementary abelian 2-group of rank d ≥ 1 by Zd
2 and its identity element by 0 = (0, . . . , 0), where

Z2 = {0, 1} is the group of integers modulo 2. We will omit the rank d in 0 as it can be easily

figured out in the context.

Definition 1.1. (Cvetković et al. [7, Definition 2.5.1]) Let G1, . . . , Gd be graphs, and let ∅ 6=
A ⊆ Zd

2 \ {0}, where d ≥ 1 and 0 = (0, . . . , 0) ∈ Zd
2. The NEPS (non-complete extended p-

sum) of G1, . . . , Gd with basis A, denoted by NEPS(G1, . . . , Gd;A), is the graph with vertex set

V (G1)× · · · × V (Gd) in which two vertices (u1, . . . , ud) and (v1, . . . , vd) are adjacent if and only

if there exists (a1, . . . , ad) ∈ A such that ui = vi whenever ai = 0 and ui is adjacent to vi in Gi

whenever ai = 1.

The notion of NEPS is a generalization of several graph operations such as tensor prod-

uct (also known as direct product, Kronecker product, categorical product, etc. in the liter-

ature [10]), Cartesian product, and strong product. In fact, NEPS(G1, . . . , Gd; {(1, . . . , 1)}) is

simply the tensor product G1 ⊗ · · · ⊗ Gd. If A = {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} is the stan-

dard basis of Zd
2, then NEPS(G1, . . . , Gd;A) is the Cartesian product G1✷ · · ·✷Gd; in partic-

ular, NEPS(Kn1 , . . . ,Knd
;A) is the Hamming graph H(n1, . . . , nd), where n1, . . . , nd ≥ 2, and

NEPS(K2, . . . ,K2;A) is the hypercube Qd of dimension d. In general, for any ∅ 6= A ⊆ Zd
2 \{0},

NEPS(K2, . . . ,K2;A) is called a cubelike graph.

The NEPS operation provides a useful tool for constructing graphs admitting PST. For

example, Pal and Bhattacharjya [13] gave sufficient conditions for the NEPS of some copies of

P3 to admit PST, and Zheng et al. [18] obtained sufficient conditions for the NEPS of some

copies of cubes to admit PST. It was proved in [2, Theorem 1] and [4, Theorem 2.3] that a

cubelike graph NEPS(K2, . . . ,K2;A) exhibits PST if
∑

a∈A a 6= 0, where the sum on the left-

hand side is performed in Zd
2, with each coordinate modulo 2. On the other hand, it is known

[18, Corollary 2] that any NEPS of complete graphs Kn1 , . . . ,Knd
with ni ≥ 3 for each i cannot

exhibit PST. In the general case when ni ≥ 3 for at least one i and nj = 2 for at least one

j, it is unknown whether NEPS(Kn1 , . . . ,Knd
;A) admits PST. We aim to study this problem

and the related periodicity problem in this paper. As we will see shortly, our results extend the

known results [2, 4] on cubelike graphs and enlarge the collection of graphs that admit PST. In

addition, the methods developed in this paper can be used to give another proof of these results

[2, 4] on cubelike graphs.
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In the sequel we always assume that d, r, n1, . . . , nd are integers such that

d ≥ 1, r ≥ 1, n1, . . . , nd ≥ 3.

The greatest common divisor of n1, . . . , nd is denoted by gcd(n1, . . . , nd). Write r ⊙ K2 =

K2, . . . ,K2
︸ ︷︷ ︸

r

, and for ∅ 6= A ⊆ Zd+r
2 \ {0}, set

NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A) = NEPS(Kn1 , . . . ,Knd

,K2, . . . ,K2
︸ ︷︷ ︸

r

;A).

As usual, the Hamming weight of a vector a = (a1, . . . , am) ∈ Zm
2 , where m ≥ 1, is defined as

w(a) = w(a1, . . . , am) = |{i : 1 ≤ i ≤ m, ai = 1}|.

We make the following assumption throughout the paper.

Assumption. For A ⊆ Zm
2 , where m ≥ 1, we set

c(A) =
∑

a∈A

a,

where the addition is performed in Zm
2 (that is, each coordinate takes modulo 2). We treat

V (Kni
) as the cyclic group Zni

for 1 ≤ i ≤ d and treat V (K2) as Z2. In this way each vertex

of NEPS(Kn1 , . . . ,Knd
, r ⊙ K2;A) is treated as an element u = (u1, . . . , ud, ud+1, . . . , ud+r) ∈

Zn1 × · · · × Znd
× Zr

2. Moreover, for any a = (a1, . . . , ad, ad+1, . . . , ad+r) ∈ Zd+r
2 , u + a is

understood as the element of Zn1 × · · · × Znd
× Zr

2 obtained by coordinate-wise addition, with

the ith coordinate modulo ni for 1 ≤ i ≤ d and the jth coordinate modulo 2 for d+1 ≤ j ≤ d+r.

That is,

u+a = ((u1+a1) mod n1, . . . , (ud+ad) mod nd, (ud+1+ad+1) mod 2, . . . , (ud+r+ad+r) mod 2).

Using the notation and assumption above, we now present our results in the following three

theorems.

Theorem 1.1. Let ∅ 6= A ⊆ Zd+r
2 \ {0}. Suppose that the last r coordinates of each element

of A are equal to 0. Then NEPS(Kn1 , . . . ,Knd
, r ⊙ K2;A) is periodic with period 2π

h
, where

h = gcd(n1, . . . , nd).

Theorem 1.2. Let ∅ 6= A ⊆ Zd+r
2 \ {0}. Suppose that the first d coordinates of each element of

A are equal to 0. Denote c(A) = (0, . . . , 0, cd+1, . . . , cd+r).

(a) If c(A) 6= 0, then NEPS(Kn1 , . . . ,Knd
, r ⊙ K2;A) admits PST from vertex u to vertex

u+ c(A) at time π
2 , for every vertex u, and its transition matrix HA(t) at

π
2 is given by

HA

(π

2

)

= (−i)|A|In1···nd
⊗





d+r⊗

j=d+1

(AK2)
cj



 .

(b) If c(A) = 0, then NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A) is periodic with period π

2 , and its tran-

sition matrix HA(t) at
π
2 is given by

HA

(π

2

)

= (−i)|A|I2rn1···nd
.
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Note that NEPS(Kn1 , . . . ,Knd
, r ⊙ K2;A) in Theorem 1.2 is the vertex-disjoint union of

n1n2 · · ·nr copies of the cubelike graph NEPS(r⊙K2;A2), whereA2 consists of those (a1, . . . , ar) ∈
Zr
2 such that (0, . . . , 0, a1, . . . , ar) ∈ A.

For any A ⊆ Zd+r
2 , define

A∗ = {(a1, . . . , ad) : (a1, . . . , ad, ad+1, . . . , ad+r) ∈ A}.

For any a = (a1, . . . , ad) ∈ Zd
2, define

A−(a) = {(xd+1, . . . , xd+r) : (x1, . . . , xd, xd+1, . . . , xd+r) ∈ A and (x1, . . . , xd) = a}.

In particular,

A−(0) = {(ad+1, . . . , ad+r) : (0, . . . , 0, ad+1, . . . , ad+r) ∈ A}.

Note that if a 6∈ A∗ then A−(a) = ∅.

Theorem 1.3. Let ∅ 6= A ⊆ Zd+r
2 \ {0}. Suppose that A contains at least one element whose

last r coordinates are not all 0 and at least one element whose first d coordinates are not

all 0. Set c(A) = (b1, . . . , bd, bd+1, . . . , bd+r) and c(A−(0)) = (cd+1, . . . , cd+r). Denote G =

NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A) and h = gcd(n1, . . . , nd).

(a) Suppose that h is odd. Then G is periodic with period 2π. Moreover, if every a ∈ A∗ \ {0}
satisfies |A−(a)| ≡ 0 (mod 4) and c(A−(a)) = 0, then the following hold:

(a.i) if (cd+1, . . . , cd+r) 6= 0, then G admits PST from u to u+ (0, . . . , 0, cd+1, . . . , cd+r) at

time π
2 , for every vertex u;

(a.ii) if (cd+1, . . . , cd+r) = 0, then G is periodic with period π
2 .

(b) Suppose that h is even. Then G is periodic with period π. Moreover, if h is not a multiple

of 4 and every a ∈ A∗ \ {0} satisfies |A−(a)| ≡ 0 (mod 2) and c(A−(a)) = 0, then the

following hold:

(b.i) if (cd+1, . . . , cd+r) 6= 0, then G admits PST from u to u+ (0, . . . , 0, cd+1, . . . , cd+r) at

time π
2 , for every vertex u;

(b.ii) if (cd+1, . . . , cd+r) = 0, then G is periodic with period π
2 .

(c) Suppose that h is a multiple of 4. Then the following hold:

(c.i) if (bd+1, . . . , bd+r) 6= 0, then G admits PST from u to u+(0, . . . , 0, bd+1, . . . , bd+r) at

time π
2 , for every vertex u;

(c.ii) if (bd+1, . . . , bd+r) = 0, then G is periodic with period π
2 .

Recall that, for A = {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} ⊂ Zd+r
2 \ {0}, NEPS(Kn1 , . . . ,Knd

, r ⊙
K2;A) is the Hamming graph H(n1, . . . , nd, 2, . . . , 2), which is written as H(n1, . . . , nd, r⊙ 2) in

the sequel. Theorem 1.3 implies the following corollary.

Corollary 1.4. Let h = gcd(n1, . . . , nd).

(a) If h is odd, then H(n1, . . . , nd, r ⊙ 2) is periodic with period 2π.

(b) If h is even, then H(n1, . . . , nd, r ⊙ 2) is periodic with period π.
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(c) If h is a multiple of 4, then H(n1, . . . , nd, r ⊙ 2) admits PST from vertex u to vertex

u+ (0, . . . , 0, 1, . . . , 1) at time π
2 , for every vertex u.

We will prove Theorems 1.1–1.3 in Section 3 after preliminary discussions in Section 2.

As will be seen in Examples 2 and 3 in the last section, the sufficient condition in part (a)

of Theorem 1.2 is in general not necessary for NEPS of complete graphs to admit PST, and

similarly the sufficient condition in part (c.i) of Theorem 1.3 is in general not necessary. So it

is natural to ask for which special families of NEPS of complete graphs the sufficient conditions

in these parts are also necessary. More broadly, we would like to pose the following general

problem.

Problem 1. Give a necessary and sufficient condition for NEPS of complete graphs to admit

PST.

2 Preliminaries

In this section eigenvectors of matrices are written as column vectors. Given a vector x, denote

by xT and xH the transpose and conjugate transpose of x, respectively. Denote by In the

identity matrix of size n.

The spectral decomposition [8] of symmetric matrices plays a key role in our subsequent

discussion. So let us explain it first. Let G be a graph on n vertices. Let λ1, . . . , λs be dis-

tinct eigenvalues of G with respective multiplicities l1, . . . , ls, where l1 + · · · + ls = n. Take
{

x
(r)
1 , . . . ,x

(r)
lr

}

to be an orthonormal basis of the eigenspace associated with λr, r = 1, . . . , s,

and set

Xr =
(

x
(r)
1 · · · x

(r)
lr

)

, r = 1, . . . , s.

Set

X =






XH
1
...

XH
s




 ,

and

Y =
(
X1 · · · Xs

)
,

where XH
i is the conjugate transpose of Xi for each i. Clearly, Xr is an n× lr matrix and both

X and Y are n× n matrices. Define

Er =

lr∑

i=1

x
(r)
i (x

(r)
i )H = XrX

H
r , r = 1, . . . , s.

Then XY = In, E
2
r = Er, and ErEr′ = 0 for r 6= r′. Since X is invertible, it follows that

Y X = In, or equivalently
s∑

r=1
Er = In. Using this and the definition of Er and x

(r)
i , one can

easily verify (see e.g. [8]) that

AG =
s∑

r=1

λrEr.
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This expression is called the spectral decomposition of AG with respect to distinct eigenvalues

(see [12, p.517]). It follows from this decomposition that

HAG
(t) =

∑

k≥0

(−i)kAk
Gt

k

k!
=
∑

k≥0

(−i)k(
∑s

r=1 λ
k
rEr)t

k

k!
=

s∑

r=1

exp(−itλr)Er. (2.1)

Example 1. Consider the complete graph Kn of order n ≥ 3. We have

E1 =
1

n








n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1

...
...

...
...

...
−1 −1 · · · −1 n− 1








, E2 =
1

n








1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

...
...

1 1 · · · 1 1








. (2.2)

The spectral decomposition of AKn is given by AKn = −E1 + (n− 1)E2. By (2.1),

HAKn
(t) = exp(it)E1 + exp(−(n− 1)it)E2.

Clearly, if t = 2zπ
n
, z ∈ Z, then HAKn

(t) has entries of unit modulus. In fact, HAKn

(
2zπ
n

)
is a

scalar multiple of the identity matrix. Putting t = 2(nz+g)π
n

, g ∈ Z, 0 < g ≤ n− 1, we have

HAKn

(
2(nz + g)π

n

)

= exp

(
2gπ

n
i

)

E1 + exp

(
2gπ

n
i

)

E2 = exp

(
2gπ

n
i

)

In.

In particular, when g = 0, we obtain HAKn
(2zπ) = In. Therefore, Kn does not exhibit PST but

is periodic with period t = 2π
n
. ✷

Let A = (aij)m×n and B be matrices. The Kronecker product of A and B is defined as

A⊗B = (aijB) =






a11B · · · a1nB
...

...
am1B · · · amnB




 .

The following properties of the Kronecker product of matrices can be found in [11, Section 4.2]

and [17]:

(1) (A⊗B)⊗ C = A⊗ (B ⊗ C);

(2) (A+B)⊗ C = A⊗ C +B ⊗ C, C ⊗ (A+B) = C ⊗A+ C ⊗B;

(3) (A⊗B)T = AT ⊗BT ;

(4) (A⊗B)(C ⊗D) = (AC)⊗ (BD);

(5) (kA) ⊗B = A⊗ (kB) = k(A⊗B).

Lemma 2.1. Let A = AG for a graph G, and let I be the identity matrix of any size. Then

(a) HA⊗I(t) = HA(t)⊗ I;

(b) HI⊗A(t) = I ⊗HA(t);

(c) HI⊗A⊗I(t) = I ⊗HA(t)⊗ I.

6



Proof. By (2), (4) and (5) above, we have

HA⊗I(t) =
∑

k≥0

(−i)k(A⊗ I)ktk

k!

=
∑

k≥0

(−i)k
(
Ak ⊗ Ik

)
tk

k!

=
∑

k≥0

(
(−i)kAktk

)
⊗ I

k!

= HA(t)⊗ I.

This proves (a). Similarly, one can prove (b) and (c). ✷

Lemma 2.2. (Cvetković et al. [7, Theorem 2.5.3]) Let G1, . . . , Gd be graphs and let ∅ 6= A ⊆
Zd
2 \ {0}. Then the adjacency matrix of NEPS(G1, . . . , Gd;A) is given by

A =
∑

a∈A

Aa1
G1

⊗ · · · ⊗Aad
Gd

.

Lemma 2.3. (Cvetković et al. [7, Theorem 2.5.4]) Let ∅ 6= A ⊆ Zd
2 \ {0}. Let Gi be a graph

on ki ≥ 2 vertices, i = 1, . . . , d. Suppose that λi,1, . . . , λi,si are distinct eigenvalues of AGi

with respective multiplicities li,1, . . . , li,si, where li,1 + · · · + li,si = ki. Let
{

x
(t)
i,1, . . . ,x

(t)
i,li,t

}

be

linearly independent eigenvectors of the eigenspace associated with λi,t, t = 1, . . . , si. Then the

eigenvalues of NEPS(G1, . . . , Gd;A) consists of all possible values of Λj1,...,jd, where

Λj1,...,jd =
∑

a∈A

λa1
1,j1

· · ·λad
d,jd

, jh = 1, . . . , sh, h = 1, . . . , d,

and the corresponding eigenvectors are, respectively,

x
(j1)
1,q1

⊗ · · · ⊗ x
(jd)
d,qld

, qh = 1, . . . , lh,jh , h = 1, . . . , d.

Recall that the tensor product of graphsG andH is defined asG⊗H = NEPS(G,H; {(1, 1)}).
So by Lemma 2.2 the adjacency matrix of G⊗H is AG ⊗AH .

Lemma 2.4. (Godsil [8, Lemma 16.1]; Pal et al. [14, Proposition 2.2]) Let G and H be graphs.

Let

AG =
∑

r

λrEr

and

AH =
∑

s

µsFs

be the spectral decompositions of AG and AH , respectively. Then

HAG⊗H
(t) =

∑

r

Er ⊗HAH
(λrt) =

∑

s

HAG
(µst)⊗ Fs.

7



Lemma 2.5. (Pal and Bhattacharjya [13, Proposition 4.1]) Let G1, . . . , Gd be graphs and let

∅ 6= A ⊆ Zd
2 \{0}. Denote by HA(t) the transition matrix of NEPS(G1, . . . , Gd;A) and by Ha(t)

the transition matrix of NEPS(G1, . . . , Gd; {a}) for a ∈ Zd
2 \ {0}. Then

HA(t) =
∏

a∈A

Ha(t).

Equivalently, for any partition {A1, . . . ,Am} of A, we have

HA(t) =

m∏

i=1

HAi
(t).

3 Proofs of the main results

3.1 A few lemmas

We need the following six lemmas in the proofs of Theorems 1.1, 1.2 and 1.3.

Lemma 3.1. Let a = (a1, . . . , ar) ∈ Zr
2 \ {0}. Denote by Aa the adjacency matrix of NEPS(r ⊙

K2; {a}). Then

(a) ±1 are all distinct eigenvalues of NEPS(r ⊙K2; {a});

(b) the spectral decomposition of Aa is given by

Aa = (−1) ·




1

2



I2r −
r⊗

j=1

(AK2)
aj







+ 1 ·




1

2



I2r +

r⊗

j=1

(AK2)
aj







 ; (3.1)

(c)

Ha (π) = −I2r , (3.2)

Ha

(π

2

)

= −i

r⊗

j=1

(AK2)
aj . (3.3)

Proof. (a) By Lemma 2.2, Aa =
⊗r

j=1 (AK2)
aj . Since ±1 are eigenvalues of AK2 and 1 is the

eigenvalue of I2, according to Lemma 2.3, we obtain (a) immediately.

(b) Note that

Aa ·




1

2



I2r −
r⊗

j=1

(AK2)
aj







 =





r⊗

j=1

(AK2)
aj








1

2



I2r −
r⊗

j=1

(AK2)
aj









=
1

2





r⊗

j=1

(AK2)
aj −

r⊗

j=1

(AK2)
2aj





= (−1) ·




1

2



I2r −
r⊗

j=1

(AK2)
aj







 , (3.4)
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where in the last step we used the fact that (AK2)
2 = I2. Similarly,

Aa ·




1

2



I2r +

r⊗

j=1

(AK2)
aj







 = 1 ·




1

2



I2r +

r⊗

j=1

(AK2)
aj







 . (3.5)

On the other hand, one can easily verify that




1

2



I2r −
r⊗

j=1

(AK2)
aj









2

=
1

2



I2r −
r⊗

j=1

(AK2)
aj



 , (3.6)




1

2



I2r +

r⊗

j=1

(AK2)
aj









2

=
1

2



I2r +

r⊗

j=1

(AK2)
aj



 , (3.7)




1

2



I2r −
r⊗

j=1

(AK2)
aj












1

2



I2r +

r⊗

j=1

(AK2)
aj







 = 0, (3.8)

and

1

2



I2r −
r⊗

j=1

(AK2)
aj



+
1

2



I2r +
r⊗

j=1

(AK2)
aj



 = I2r . (3.9)

We then obtain (b) using (3.4)-(3.9) and the definition of the spectral decomposition.

(c) By (2.1) and (3.1), we have

Ha(t) = exp(it)




1

2



I2r −
r⊗

j=1

(AK2)
aj







+ exp(−it)




1

2



I2r +

r⊗

j=1

(AK2)
aj







 .

Evaluating at t = π and t = π
2 , we obtain (3.2) and (3.3), respectively. ✷

Lemma 3.2. Let a = (a1, . . . , ad) ∈ Zd
2\{0}. Denote by Ha(t) the transition matrix of NEPS(Kn1 , . . . ,Knd

; {a})
and set h = gcd(n1, . . . , nd). Then the following hold:

(a) NEPS(Kn1 , . . . ,Knd
; {a}) does not have PST ([18, Corollary 2.14]);

(b) NEPS(Kn1 , . . . ,Knd
; {a}) is periodic with period 2tπ

h
for every non-zero integer t, and

moreover

Ha

(
2tπ

h

)

= exp

(

(−1)w(a)−1 2tπ

h
i

)

In1···nd
.

Proof. We prove (b) by induction on d. If d = 1, then w(a) = 1 as a 6= 0. By Example 1,

Ha

(
2tπ

n1

)

= exp

(
2tπ

n1
i

)

In1 = exp

(

(−1)(1−1) 2tπ

n1
i

)

In1 .

So the result is true when d = 1.

Assume that the result in (b) is true for some d = l. Consider d = l + 1 and a =

(a1, . . . , al, al+1). Let a
∗ = (a1, . . . , al). Set hl = gcd(n1, . . . , nl).

9



Case 1. a∗ 6= 0.

In this case, by the hypothesis we have

Ha∗

(
2tπ

hl

)

= exp

(

(−1)w(a∗)−1 2tπ

hl
i

)

In1···nl
.

Case 1.1. al+1 = 1.

In this case we have w(a) = w(a∗)+1. According to Lemma 2.2, NEPS(Kn1 , . . . ,Knl+1
; {a})

is the tensor product NEPS(Kn1 , . . . ,Knl
; {a∗})⊗Knl+1

. By Example 1, the spectral decompo-

sition of AKnl+1
is given by AKnl+1

= −E1 + (nl+1 − 1)E2, where E1 and E2 are as shown in

(2.2) but with n replaced by nl+1. Note that hl+1 = gcd(n1, . . . , nl, nl+1) = gcd(hl, nl+1). Set

hl = khl+1, where k 6= 0 is an integer. Lemma 2.4 implies that

Ha

(
2tπ

hl+1

)

= Ha∗

(

− 2tπ

hl+1

)

⊗ E1 +Ha∗

(

(nl+1 − 1)
2tπ

hl+1

)

⊗ E2

= Ha∗

(

− 2tπ

hl+1

)

⊗ E1 +Ha∗

(

− 2tπ

hl+1

)

⊗ E2

= Ha∗

(

− 2tπ

hl+1

)

⊗ (E1 + E2)

= Ha∗

(

−k · 2tπ
hl

)

⊗ Inl+1

=

(

Ha∗

(

−2tπ

hl

))k

⊗ Inl+1

=

(

exp

(

(−1)w(a∗)−1+1 2tπ

hl
i

)

In1···nl

)k

⊗ Inl+1

= exp

(

(−1)(w(a)−1) 2tπ

hl
i

)k

In1···nl+1

= exp

(

(−1)(w(a)−1) 2tπ

hl+1
i

)

In1···nl+1
.

Case 1.2. al+1 = 0.

In this case we have w(a) = w(a∗). LetAa∗ be the adjacency matrix of NEPS(Kn1 , . . . ,Knl
; {a∗}).

By Lemma 2.2, the adjacency matrix of NEPS(Kn1 , . . . ,Knl+1
; {a}) is Aa∗ ⊗ Inl+1

. According

to Lemma 2.1(a) and the same technique as in Case 1.1, we obtain

Ha

(
2tπ

hl+1

)

= Ha∗

(
2tπ

hl+1

)

⊗ Inl+1

= exp

(

(−1)(w(a∗)−1) 2tπ

hl+1
i

)

In1···nl+1

= exp

(

(−1)(w(a)−1) 2tπ

hl+1
i

)

In1···nl+1
.

Case 2. a∗ = 0.

In this case we have a = (0, . . . , 0, 1) and so w(a) = 1. By Lemma 2.2, the adjacency matrix

of NEPS(Kn1 , . . . ,Knl+1
; {a}) is In1⊗· · ·⊗Inl

⊗AKnl+1
. Note that hl+1 = gcd(n1, . . . , nl, nl+1) =
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gcd(hl, nl+1). Set nl+1 = khl+1, where k 6= 0 is an integer. According to Lemma 2.1(b) and

Example 1, we have

Ha

(
2tπ

hl+1

)

= In1 ⊗ · · · ⊗ Inl
⊗HAKnl+1

(
2tπ

hl+1

)

= In1 ⊗ · · · ⊗ Inl
⊗HAKnl+1

(

k · 2tπ

nl+1

)

= In1 ⊗ · · · ⊗ Inl
⊗
(

HAKnl+1

(
2tπ

nl+1

))k

= In1 ⊗ · · · ⊗ Inl
⊗
(

exp

(
2tπ

nl+1
i

)

Inl+1

)k

= In1 ⊗ · · · ⊗ Inl
⊗
(

exp

(
2tπ

hl+1
i

)

Inl+1

)

= exp

(

(−1)(w(a)−1) 2tπ

hl+1
i

)

In1···nl+1
.

This completes the proof. ✷

Lemma 3.3. Let a = (a1, . . . , ad) ∈ Zd
2 \ {0} and y = (ad+1, . . . , ad+r) ∈ Zr

2 \ {0}. Set h =

gcd(n1, . . . , nd) and b = (a1, . . . , ad, ad+1, . . . , ad+r). Denote by Hb(t) the transition matrix of

G = NEPS(Kn1 , . . . ,Knd
, r ⊙K2; {b}). Then the following hold:

(a) if h is odd, then G is periodic with period 2π and Hb(2π) = I2rn1···nd
;

(b) if h is even, then G is periodic with period π and Hb(π) = −I2rn1···nd
;

(c) if h is a multiple of 4, then G exhibits PST at time t = π
2 and

Hb

(π

2

)

= (−1)(w(a)−1)iIn1···nd
⊗





d+r⊗

j=d+1

(AK2)
aj



 .

Proof. By Lemma 2.2, G is isomorphic to the tensor product NEPS(Kn1 , . . . ,Knd
; {a}) ⊗

NEPS(r⊙K2; {y}). Let Ha(t) be the transition matrix of NEPS(Kn1 , . . . ,Knd
; {a}). According

to Lemmas 2.4 and 3.1, we have

Hb(t) = Ha(−t)⊗




1

2



I2r −
d+r⊗

j=d+1

(AK2)
aj







+Ha(t)⊗




1

2



I2r +

d+r⊗

j=d+1

(AK2)
aj







 . (3.10)

By (3.10), if there exists an entry ofHa(t) having unit modulus, then there exists a pair of vertices

u,v of G such that
∣
∣1
2(Ha(−t))u,v + 1

2(Ha(t))u,v
∣
∣ = 1 or

∣
∣ − 1

2 (Ha(−t))u,v + 1
2(Ha(t))u,v

∣
∣ = 1.

Note that Ha(−t) and Ha(t) are unitary matrices. So Ha(t) has an entry with unit modulus if

and only if (Ha(−t))u,v = (Ha(t))u,v = ±1 or (Ha(−t))u,v = −(Ha(t))u,v = ±1. By Lemma

3.2(b), only if u = v and t = 2kπ
h

(k ∈ N \ {0}), can the cases above happen.

Case 1.
(
Ha(−2kπ

h
)
)

u,u
=
(
Ha(

2kπ
h
)
)

u,u
.
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According to Lemma 3.2, we have

exp

(

(−1)w(a) 2kπ

h
i

)

= exp

(

(−1)(w(a)−1) 2kπ

h
i

)

,

which is equivalent to that sin
(
2kπ
h

)
= 0. This equation is satisfied if and only if 2kπ

h
= lπ, l ∈ N.

If h is odd, we choose k = h. By (3.10) and Lemma 3.2(b), we obtain

Hb (2π) = Ha (−2π)⊗




1

2



I2r −
d+r⊗

j=d+1

(AK2)
aj







+Ha (2π) ⊗




1

2



I2r +

d+r⊗

j=d+1

(AK2)
aj









= I2rn1···nd
,

which means that G is periodic with period 2π, yielding (a).

Similarly, if h is even, we choose k = h/2. Then

Hb (π) = Ha (−π)⊗




1

2



I2r −
d+r⊗

j=d+1

(AK2)
aj







+Ha (π)⊗




1

2



I2r +

d+r⊗

j=d+1

(AK2)
aj









= −I2rn1···nd
,

which implies that G is periodic with period π, yielding (b).

Case 2.
(
Ha(−2kπ

h
)
)

u,u
= −

(
Ha(

2kπ
h
)
)

u,u
.

According to Lemma 3.2, we have

exp

(

(−1)w(a) 2kπ

h
i

)

= − exp

(

(−1)(w(a)−1) 2kπ

h
i

)

,

which is equivalent to that cos
(
2kπ
h

)
= 0. This equation holds if and only if 2kπ

h
= lπ+ π

2 , l ∈ N,

which happens only when 4 divides h. Assume that 4 divides h. Set k = h/4. According to

(3.10) and Lemma 3.2(b), we have

Hb

(π

2

)

= Ha

(

−π

2

)

⊗




1

2



I2r −
d+r⊗

j=d+1

(AK2)
aj







+Ha

(π

2

)

⊗




1

2



I2r +
d+r⊗

j=d+1

(AK2)
aj









= i sin
(

(−1)(w(a)−1) π

2

)

In1···nd
⊗





d+r⊗

j=d+1

(AK2)
aj





= (−1)(w(a)−1)iIn1···nd
⊗





d+r⊗

j=d+1

(AK2)
aj



 ,

which means that G exhibits PST at time t = π
2 , yielding (c). ✷

Lemma 3.4. Let a = (a1, . . . , ad) ∈ Zd
2 \ {0} and b = (a1, . . . , ad, 0, . . . , 0) ∈ Zd+r

2 . Then

NEPS(Kn1 , . . . ,Knd
, r ⊙ K2; {b}) is periodic with period 2π

h
and its transition matrix Hb(t)

satisfies

Hb

(
2π

h

)

= exp

(

(−1)w(a)−1 2π

h
i

)

I2rn1···nd
.
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Proof. Denote byAa and Ab the adjacency matrices of the graphs NEPS(Kn1 , . . . ,Knd
; {a}) and

NEPS(Kn1 , . . . ,Knd
, r⊙K2; {b}), respectively. Lemma 2.2 implies that Ab = Aa⊗I2 ⊗ · · · ⊗ I2

︸ ︷︷ ︸

r

.

According to Lemmas 2.1(a) and 3.2(b), we have

Hb

(
2π

h

)

= Ha

(
2π

h

)

⊗ I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

r

= exp

(

(−1)w(a)−1 2π

h
i

)

In1···nd
⊗ I2 ⊗ · · · ⊗ I2
︸ ︷︷ ︸

r

= exp

(

(−1)w(a)−1 2π

h
i

)

I2rn1···nd
.

This implies that NEPS(Kn1 , . . . ,Knd
, r ⊙K2; {b}) is periodic with period 2π

h
. ✷

Lemma 3.5. Let y = (ad+1, . . . , ad+r) ∈ Zr
2 \ {0} and b = (0, . . . , 0, ad+1, . . . , ad+r) ∈ Zd+r

2 .

Denote by Hb(t) the transition matrix of NEPS(Kn1 , . . . ,Knd
, r⊙K2; {b}). Then the following

hold:

(a) NEPS(Kn1 , . . . ,Knd
, r ⊙K2; {b}) exhibits PST at time π

2 , and

Hb

(π

2

)

= −iIn1···nd
⊗





d+r⊗

j=d+1

(AK2)
aj



 ;

(b) NEPS(Kn1 , . . . ,Knd
, r ⊙K2; {b}) is periodic with period π, and

Hb (π) = −I2rn1···nd
.

Proof. Let Ay and Ab denote respectively the adjacency matrices of NEPS(r ⊙K2; {y}) and

NEPS(Kn1 , . . . ,Knd
, r ⊙ K2; {b}). Lemma 2.2 implies that Ab = In1···nd

⊗ Ay. According to

Lemma 2.1(b) and Equation (3.3), we have

Hb

(π

2

)

= In1···nd
⊗Hy

(π

2

)

= In1···nd
⊗



−i

d+r⊗

j=d+1

(AK2)
aj





= −iIn1···nd
⊗





d+r⊗

j=d+1

(AK2)
aj



 ,

which implies that NEPS(Kn1 , . . . ,Knd
, r ⊙K2; {b}) exhibits PST at time π

2 , yielding (a).

By Lemma 2.1(b) and Equation (3.2), we have

Hb (π) = In1···nd
⊗Hy (π) = In1···nd

⊗ (−I2r)

= −I2rn1···nd
,

which implies that NEPS(Kn1 , . . . ,Knd
, r ⊙K2; {b}) is periodic with period π, yielding (b). ✷
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Lemma 3.6. Let ∅ 6= B ⊆ Zr
2 with |B| ≥ 2. Take a = (a1, . . . , ad) ∈ Zd

2 \ {0} and set

B(a) = {(a1, . . . , ad, ad+1, . . . , ad+r) : (ad+1, . . . , ad+r) ∈ B}.

Denote by HB(a)(t) the transition matrix of NEPS(Kn1 , . . . ,Knd
, r⊙K2;B(a)). Set h = gcd(n1, . . . , nd).

Suppose that c(B) = 0. Then the following hold:

(a) if h is odd and |B| ≡ 0 (mod 4), then NEPS(Kn1 , . . . ,Knd
, r ⊙K2;B(a)) is periodic with

period π
2 , and

HB(a)

(π

2

)

= I2rn1···nd
;

(b) if h is even but not a multiple of 4, and |B| ≡ 0 (mod 2), then NEPS(Kn1 , . . . ,Knd
, r ⊙

K2;B(a)) is periodic with period π
2 , and

HB(a)

(π

2

)

= −I2rn1···nr .

Proof. Set c = |B(a)| and B(a) = {b(1), . . . ,b(c)} with b(i) = (a1, . . . , ad, a
i
d+1, . . . , a

i
d+r) for

i = 1, 2, . . . , c. By (3.10), we have

Hb(i)(t) = (Ha(t)−Ha(−t))⊗




1

2

d+r⊗

j=d+1

(AK2)
aij



+ (Ha(t) +Ha(−t))⊗
(
1

2
I2r

)

. (3.11)

Set C = {1, 2, . . . , c}. According to Lemma 2.5 and Equation (3.11), we have

HB(a)

(π

2

)

=

c∏

i=1

Hb(i)

(π

2

)

=
∑

∅6=S(C





(

Ha

(π

2

)

−Ha

(

−π

2

))|S|
⊗




1

2|S|

d+r⊗

j=d+1

(AK2)

∑

i∈S

aij









×
((

Ha

(π

2

)

+Ha

(

−π

2

))c−|S|
⊗ 1

2c−|S|
I2r

)

+
(

Ha

(π

2

)

+Ha

(

−π

2

))c

⊗ 1

2c
I2r +

(

Ha

(π

2

)

−Ha

(

−π

2

))c

⊗




1

2c

d+r⊗

j=d+1

(AK2)

∑

i∈C

aij





=
∑

∅6=S(C

((

Ha

(π

2

)

−Ha

(

−π

2

))|S| (

Ha

(π

2

)

+Ha

(

−π

2

))c−|S|
)

⊗




1

2c

d+r⊗

j=d+1

(AK2)

∑

i∈S

aij





+
(

Ha

(π

2

)

+Ha

(

−π

2

))c

⊗ 1

2c
I2r +

(

Ha

(π

2

)

−Ha

(

−π

2

))c

⊗




1

2c

d+r⊗

j=d+1

(AK2)

∑

i∈C

aij



 .

(3.12)

By Lemma 3.2(b), we have Ha(2π) = In1...nd
. Hence

(

Ha

(π

2

)

−Ha

(

−π

2

))(

Ha

(π

2

)

+Ha

(

−π

2

))

= Ha

(π

2

)

Ha

(π

2

)

−Ha

(

−π

2

)

Ha

(

−π

2

)
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= Ha(π)−Ha(−π)

= Ha(2π)Ha(−π)−Ha(−π)

= 0. (3.13)

Recall that c(B) = 0. Equations (3.12) and (3.13) imply that

HB(a)

(π

2

)

=
(

Ha

(π

2

)

+Ha

(

−π

2

))c

⊗ 1

2c
I2r +

(

Ha

(π

2

)

−Ha

(

−π

2

))c

⊗




1

2c

d+r⊗

j=d+1

(AK2)

∑

i∈C

aij





=
((

Ha

(π

2

)

+Ha

(

−π

2

))c

+
(

Ha

(π

2

)

−Ha

(

−π

2

))c)

⊗ 1

2c
I2r

=





c∑

j=0

(
c

j

)

Ha

(π

2

)j

Ha

(

−π

2

)c−j

+
c∑

i=0

(
c

j

)

Ha

(π

2

)j (

−Ha

(

−π

2

))c−j



⊗ 1

2c
I2r

=




2

c∑

j=0
j≡0 (mod 2)

(
c

j

)

Ha

(
jπ

2

)

Ha

(

−(c− j)π

2

)




⊗ 1

2c
I2r

=




2

c∑

j=0
j≡0 (mod 2)

(
c

j

)

Ha

(

−(c− 2j)π

2

)




⊗ 1

2c
I2r . (3.14)

If h is odd and |B| ≡ 0 (mod 4), then by Equation (3.14) and Lemma 3.2(b) we have

HB(a)

(
π
2

)
= I2rn1···nr , yielding (a). If h is even but not a multiple of 4, and |B| ≡ 0 (mod 2),

then by Equation (3.14) and Lemma 3.2(b) we have HB(a)

(
π
2

)
= −I2rn1···nr , yielding (b). ✷

3.2 Proofs of Theorems 1.1, 1.2 and 1.3

Now we are ready to prove Theorems 1.1, 1.2 and 1.3.

Proof of Theorem 1.1. Denote by HA(t) and Ha(t) respectively the transition matrices of

NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A) and NEPS(Kn1 , . . . ,Knd

, r ⊙K2; {a}). Since the last r coordi-

nates of each element of A are equal to 0, according to Lemmas 2.5 and 3.4, we have

HA

(
2π

h

)

=
∏

a∈A

(

Ha

(
2π

h

))

=
∏

a∈A

exp

(

(−1)w(a)−1 2π

h
i

)

I2rn1···nd

= exp

(
∑

a∈A

(

(−1)(w(a)−1) 2π

h
i

))

I2rn1···nd
. (3.15)

This implies that NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A) is periodic with period 2π

h
. ✷

Proof of Theorem 1.2. Denote by HA(t) and Ha(t) respectively the transition matrices of

NEPS(Kn1 , . . . ,Knd
, r⊙K2;A) and NEPS(Kn1 , . . . ,Knd

, r⊙K2; {a}). Since the first d coordi-

nates of each element of A are equal to 0, according to Lemmas 2.5 and 3.5(a), we have

HA

(π

2

)

=
∏

a∈A

(

Ha

(π

2

))
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=
∏

a∈A



−iIn1···nd
⊗





d+r⊗

j=d+1

(AK2)
aj









= (−i)|A|In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

a∈A aj



 . (3.16)

Thus, if c(A) 6= 0, then NEPS(Kn1 , . . . ,Knd
, r⊙K2;A) has PST from vertex u to vertex u+c(A)

at time π
2 , yielding (a). On the other hand, if c(A) = 0, then NEPS(Kn1 , . . . ,Knd

, r⊙K2;A) is

periodic with period π
2 , yielding (b). ✷

Proof of Theorem 1.3. Set

A1 = {(a1, . . . , ad, ad+1, . . . , ad+r) ∈ A : (ad+1, . . . , ad+r) = 0} ,
A2 = {(a1, . . . , ad, ad+1, . . . , ad+r) ∈ A : (a1, . . . , ad) = 0} ,
A3 = A \ (A1 ∪A2).

Since A contains at least one element whose last r coordinates are not all 0 and at least

one element whose first d coordinates are not all 0, we have A1 6= A and A2 6= A. Since

A 6= ∅, at least one of A1, A2 and A3 is nonempty. Denote by HA(t), HAi
(t) and Ha(t)

the transition matrices of NEPS(Kn1 , . . . ,Knd
, r⊙K2;A), NEPS(Kn1 , . . . ,Knd

, r⊙K2;Ai) and

NEPS(Kn1 , . . . ,Knd
, r ⊙K2; {a}), respectively. By Lemma 2.5, we have

HA(t) =

3∏

i=1

HAi
(t), (3.17)

where H∅(t) is understood as I.

Recall that

A∗ = {(a1, . . . , ad) : (a1, . . . , ad, ad+1, . . . , ad+r) ∈ A},
A−(x) = {(xd+1, . . . , xd+r) : (x1, . . . , xd, xd+1, . . . , xd+r) ∈ A and (x1, . . . , xd) = x}

and

A−(0) = {(xd+1, . . . , xd+r) : (0, . . . , 0, xd+1, . . . , xd+r) ∈ A}.
Set

A+(x) = {(x1, . . . , xd, xd+1, . . . , xd+r) ∈ A : (x1, . . . , xd) = x}
and

A+(0) = {(0, . . . , 0, xd+1 . . . , xd+r) : (0, . . . , 0, xd+1 . . . , xd+r) ∈ A} .
Denote byHA+(x)(t) andHA+(0)(t) the transition matrices of NEPS(Kn1 , . . . ,Knd

, r⊙K2;A+(x))

and NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A+(0)), respectively. By Lemma 2.5, we have

HA(t) =




∏

06=x∈A∗

HA+(x)(t)



HA+(0)(t). (3.18)

Recall also that c(A) = (b1, . . . , bd, bd+1, . . . , bd+r) and c(A−(0)) = (cd+1, . . . , cd+r).

(a) If h is odd, then according to Equation (3.17) and Lemmas 2.5, 3.3(a), 3.4 and 3.5(b),

we have

HA (2π) = HA1(2π)HA2(2π)HA3(2π)
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=




∏

a∈A1

Ha (2π)








∏

a∈A2

Ha (2π)








∏

a∈A3

Ha (2π)





=




∏

a∈A1

Ha (2π)








∏

a∈A2

(Ha (π))
2








∏

a∈A3

Ha (2π)





= I
|A1|
2rn1···nd

· (−I2rn1···nd
)2|A2| · I |A3|

2rn1···nd

= I2rn1···nd
.

This implies that NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A) is periodic with period 2π.

Since we assume that |A−(x)| ≡ 0 (mod 4) and c(A−(x)) = 0 for every x ∈ A∗ \ {0},
according to Lemmas 2.5 and 3.6(a), Theorem 1.2, Equation (3.18) and the definition of A+(0),

we obtain

HA

(π

2

)

=




∏

06=x∈A∗

I2rn1...nr



 ·



(−i)|A+(0)|In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

y∈A+(0) yj









= I2rn1...nr ·



(−i)|A+(0)|In1···nd
⊗





r⊗

j=1

(AK2)
∑

y∈A−(0) yj









= (−i)|A+(0)|In1···nd
⊗





r⊗

j=1

(AK2)
∑

y∈A−(0) yj



 . (3.19)

Thus, if (cd+1, . . . , cd+r) 6= 0, then, by (3.19), NEPS(Kn1 , . . . ,Knd
, r ⊙ K2;A) has PST from

vertex u to vertex u+ (0, . . . , 0, cd+1, . . . , cd+r) at time π
2 , yielding (a.i). On the other hand, if

(cd+1, . . . , cd+r) = 0, then NEPS(Kn1 , . . . ,Knd
, r ⊙ K2;A) is periodic with period π

2 , yielding

(a.ii).

(b) If h is even, then according to Equation (3.17) and Lemmas 2.5, 3.3(b), 3.4 and 3.5(b),

we have

HA (π) = HA1(π)HA2(π)HA3(π)

=




∏

a∈A1

Ha (π)








∏

a∈A2

Ha (π)








∏

a∈A3

Ha (π)





= (−I2rn1···nd
)|A1| · (−I2rn1···nd

)|A2| · (−I2rn1···nd
)|A3|

= (−1)|A|I2rn1···nd
.

This implies that NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A) is periodic with period π, yielding (b).

Suppose that h is not a multiple of 4. Since we assume that |A−(x)| ≡ 0 (mod 2) and

c(A−(x)) = 0 for every x ∈ A∗ \ {0}, by Lemmas 2.5 and 3.6(b), Theorem 1.2, Equation (3.18)

and the definition of A+(0), we obtain

HA

(π

2

)

=
∏

06=x∈A∗

(−I2rn1...nr) ·



(−i)|A+(0)|In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

y∈A+(0) yj









= (−1)|A
∗|−1I2rn1...nr ·



(−i)|A+(0)|In1···nd
⊗





r⊗

j=1

(AK2)
∑

y∈A−(0) yj








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= (−1)|A
∗|−1+|A+(0)|i|A+(0)|In1···nd

⊗





r⊗

j=1

(AK2)
∑

y∈A−(0) yj



 . (3.20)

Thus, if (cd+1, . . . , cd+r) 6= 0, then according to (3.20), NEPS(Kn1 , . . . ,Knd
, r⊙K2;A) has PST

from vertex u to vertex u + (0, . . . , 0, cd+1, . . . , cd+r) at time π
2 , yielding (b.i). On the other

hand, if (cd+1, . . . , cd+r) = 0, then NEPS(Kn1 , . . . ,Knd
, r ⊙ K2;A) is periodic with period π

2 ,

yielding (b.ii).

(c) Assume that h is a multiple of 4. If A3 6= ∅, then Lemmas 2.5 and 3.3(c) imply that

HA3

(π

2

)

=
∏

a∈A3

(

Ha

(π

2

))

=
∏

a∈A3



(−1)(w(a1,...,ad)−1)iIn1···nd
⊗





d+r⊗

j=d+1

(AK2)
aj









= (−1)
∑

a∈A3
(w(a1,...,ad)−1)

i|A3|In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

a∈A3
aj



 . (3.21)

If A1 6= ∅, then by (3.15), we have

HA1

(π

2

)

= (−1)
∑

a∈A1
(w(a)−1)

i|A1|I2rn1···nd
. (3.22)

If A2 6= ∅, then by (3.16), we have

HA2

(π

2

)

= (−1)|A2|i|A2|In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

a∈A2
aj



 . (3.23)

Since at least one of A1, A2 and A3 is nonempty, according to Equations (3.17)-(3.23), we obtain

HA

(π

2

)

=
(

(−1)
∑

b∈A1
(w(b)−1)

i|A1|I2rn1···nd

)

·



(−1)|A2|i|A2|In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

b∈A2
bj









·



(−1)
∑

b∈A3
(w(b1,...,bd)−1)i|A3|In1···nd

⊗





d+r⊗

j=d+1

(AK2)
∑

b∈A3
bj









= (−1)
∑

b∈A1
(w(b)−1)+|A2|+

∑
b∈A3

(w(b1,...,bd)−1)
i|A1|+|A2|+|A3|

·In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

b∈A bj





= (−1)
∑

b∈A1
(w(b)−1)+|A2|+

∑
b∈A3

(w(b1,...,bd)−1)
i|A|

·In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

b∈A bj



 . (3.24)

By our assumption, A contains at least one element whose last r coordinates are not all

equal to 0, and at least one element whose first d coordinates are not all equal to 0. So (3.24)
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can be restated as

HA

(π

2

)

= δ(A1,A2,A3) · In1···nd
⊗





d+r⊗

j=d+1

(AK2)
∑

b∈A bj



 , (3.25)

where we set

δ(A1,A2,A3) =







(−1)
∑

b∈A1
(w(b)−1)+|A2|+

∑
b∈A3

(w(b1,...,bd)−1)
i|A|, if A1,A2,A3 6= ∅;

(−1)
∑

b∈A1
(w(b)−1)+|A2|i|A|, if A1,A2 6= ∅ and A3 = ∅;

(−1)
∑

b∈A1
(w(b)−1)+

∑
b∈A3

(w(b1,...,bd)−1)i|A|, if A1,A3 6= ∅ and A2 = ∅;
(−1)|A2|+

∑
b∈A3

(w(b1,...,bd)−1)i|A|, if A2,A3 6= ∅ and A1 = ∅;
(−1)

∑
b∈A3

(w(b1,...,bd)−1)
i|A|, if A3 6= ∅ and A1 = A2 = ∅.

Therefore, if (bd+1, . . . , bd+r) 6= 0, then by (3.24) and (3.25), NEPS(Kn1 , . . . ,Knd
, r⊙K2;A)

has PST from vertex u to vertex u+ (0, . . . , 0, bd+1, . . . , bd+r) at time π
2 , yielding (c.i). On the

other hand, if (bd+1, . . . , bd+r) = 0, then by (3.24) and (3.25) we obtain (c.ii) immediately. ✷

4 Concluding remarks

Consider ∅ 6= A ⊆ Zr
2 \ {0}. It was proved in [2, Theorem 1] that, if c(A) 6= 0, then the cubelike

graph NEPS(r⊙K2;A) admits PST from u to u+ c(A) at time π
2 for every vertex u. A simple

proof of this result was given in [4, Theorem 2.3], where it was also proved that if c(A) = 0

then NEPS(r⊙K2;A) is periodic with period π
2 . We now show that tools developed in previous

sections can be used to give another proof of these two results. In addition, we obtain the

transition matrix of NEPS(r ⊙K2;A) at time π
2 .

Theorem 4.1. ([2, Theorem 1]; [4, Theorem 2.3]) Let ∅ 6= A ⊆ Zr
2 \ {0}. Denote by HA(t) the

transition matrix of the cubelike graph NEPS(r ⊙K2;A) and set c(A) = (c1, . . . , cr).

(a) If c(A) 6= 0, then NEPS(r⊙K2;A) admits PST from vertex u to vertex u+ c(A) at time
π
2 , for every vertex u. Moreover,

HA

(π

2

)

= (−i)|A|
r⊗

j=1

(AK2)
cj .

(b) If c(A) = 0, then NEPS(r ⊙K2;A) is periodic with period π
2 . Moreover,

HA

(π

2

)

= (−i)|A|I2r .

Proof. Denote by Ha(t) the transition matrix of NEPS(r ⊙ K2; {a}). By Lemmas 2.5 and

3.1(c), we have

HA

(π

2

)

=
∏

a∈A

Ha

(π

2

)

=
∏

a∈A



−i

r⊗

j=1

(AK2)
aj




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= (−i)|A|
r⊗

j=1

(AK2)
∑

a∈A aj .

Thus, if c(A) 6= 0, then NEPS(r ⊙K2;A) has PST from u to u+ c(A) at time π
2 , yielding (a).

On the other hand, if c(A) = 0, then NEPS(r ⊙K2;A) is periodic with period π
2 , yielding (b).

✷

Finally, we would like to mention that the sufficient conditions in part (a) of Theorem 1.2

and part (c.i) of Theorem 1.3 are in general not necessary for NEPS of complete graphs to admit

PST. We illustrate this by the following examples.

Example 2. Consider the graph NEPS(K3, 5⊙K2;A), where

A ={(0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 0),
(0, 0, 1, 0, 0, 1), (0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 1), (0, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 1)}.

Then c(A) = 0. For any a = (a1, a2, a3, a4, a5, a6) ∈ A, define a∗ = (a2, a3, a4, a5, a6). Set

A∗
− = {a∗ : a ∈ A}.

Let Aa and Aa∗ be the adjacency matrices of NEPS(K3, 5⊙K2; {a}) and NEPS(5⊙K2; {a∗}),
respectively. Lemma 2.2 implies that Aa = I3⊗Aa∗. Hence, by Lemmas 2.1(b) and 2.5, we have

HA(t) =
∏

a∈A

Ha(t)

=
∏

a∈A

I3 ⊗Ha∗(t)

= I3 ⊗
∏

a∗∈A∗
−

Ha∗(t)

= I3 ⊗HA∗
−
(t).

It is known [4] that NEPS(5⊙K2;A∗
−) admits PST at time π

4 . This implies that NEPS(K3, 5⊙
K2;A) admits PST at time π

4 . On the other hand, we have c(A) = 0 as mentioned above. This

shows that the sufficient condition in part (a) of Theorem 1.2 is in general not necessary for

NEPS(Kn1 , . . . ,Knd
, r ⊙K2;A) to admit PST. ✷

Example 3. Consider the graph NEPS(K4, 5⊙K2;A), where

A ={(1, 0, 1, 1, 1, 1), (1, 1, 0, 1, 1, 1), (1, 1, 1, 0, 1, 1), (1, 1, 1, 1, 0, 1), (1, 0, 0, 1, 1, 1), (1, 0, 1, 0, 1, 1),
(1, 0, 1, 1, 0, 1), (1, 0, 1, 1, 1, 0), (1, 1, 0, 0, 1, 1), (1, 1, 0, 1, 0, 1), (1, 1, 0, 1, 1, 0), (1, 1, 1, 0, 0, 1),

(1, 1, 1, 0, 1, 0), (1, 1, 1, 1, 0, 0), (1, 0, 1, 1, 0, 0), (1, 0, 0, 1, 1, 0), (1, 1, 0, 1, 0, 0), (1, 1, 0, 0, 1, 0),

(1, 0, 1, 0, 1, 0), (1, 1, 1, 0, 0, 0)}.

For any a = (a1, a2, a3, a4, a5, a6) ∈ A, define a∗ = (a2, a3, a4, a5, a6). Let

A∗
− = {a∗ : a ∈ A}.

Let Aa and Aa∗ be the adjacency matrices of NEPS(K4, 5⊙K2; {a}) and NEPS(5⊙K2; {a∗}),
respectively. Lemma 2.2 implies that Aa = AK4 ⊗Aa∗ . According to Lemma 2.4 and Equation

(2.2), we have

Ha(t) = HAK4⊗Aa∗
(t) = E3 ⊗Ha∗(3t) + E−1 ⊗Ha∗(−t),
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where

E3 =
1

4







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1







, E−1 =
1

4







3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3







.

Hence, by Lemmas 2.1(b) and 2.5, we have

HA(t) =
∏

a∈A

Ha(t)

=
∏

a∈A

(E3 ⊗Ha∗(3t) + E−1 ⊗Ha∗(−t))

= E3 ⊗
∏

a∗∈A∗
−

Ha∗(3t) +E−1 ⊗
∏

a∗∈A∗
−

Ha∗(−t)

= E3 ⊗HA∗
−
(3t) + E−1 ⊗HA∗

−
(−t). (4.1)

By Lemma 3.1(c), we have

Ha∗

(π

2

)

= −i

5⊗

j=1

(AK2)
aj .

Note that |A∗
−| = 20 and

∑

a∗∈A∗
−
a∗ = (0, 0, 0, 0, 0). Thus, by Lemma 2.5, we have

HA∗
−

(π

2

)

=
∏

a∗∈A∗
−

Ha∗

(π

2

)

= (−i)|A
∗
−|

∏

a∗∈A∗
−





5⊗

j=1

(AK2)
aj





=

5⊗

j=1

(AK2)
∑

a∗∈A∗
−

aj

= I25 ,

yielding HA∗
−
(π) = I25 . Thus, when t = π

4 , Equation (4.1) gives

HA

(π

4

)

= E3 ⊗HA∗
−

(
3π

4

)

+ E−1 ⊗HA∗
−

(

−π

4

)

= E3 ⊗HA∗
−

(
3π

4

)

+ E−1 ⊗
(

HA∗
−

(
3π

4

)

HA∗
−
(−π)

)

= E3 ⊗HA∗
−

(
3π

4

)

+ E−1 ⊗HA∗
−

(
3π

4

)

= I4 ⊗HA∗
−

(
3π

4

)

. (4.2)

It is known [4] that NEPS(5⊙K2;A∗
−) admits PST at time 3π

4 . According to (4.2), NEPS(K4, 5⊙
K2;A) admits PST at time π

4 . On the other hand, we have c(A∗
−) = 0. This shows that the suffi-

cient condition in part (c.i) of Theorem 1.3 is in general not necessary for NEPS(Kn1 , . . . ,Knd
, r⊙

K2;A) to admit PST. ✷
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