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Strongly separable matrices for nonadaptive

combinatorial group testing
Jinping Fan, Hung-Lin Fu, Yujie Gu, Ying Miao, and Maiko Shigeno

Abstract

In nonadaptive combinatorial group testing (CGT), it is desirable to identify a small set of up to d defectives
from a large population of n items with as few tests (i.e. large rate) and efficient identifying algorithm as possible. In
the literature, d-disjunct matrices (d-DM) and d̄-separable matrices (d̄-SM) are two classical combinatorial structures
having been studied for several decades. It is well-known that a d-DM provides a more efficient identifying algorithm
than a d̄-SM, while a d̄-SM could have a larger rate than a d-DM. In order to combine the advantages of these two
structures, in this paper, we introduce a new notion of strongly d-separable matrix (d-SSM) for nonadaptive CGT
and show that a d-SSM has the same identifying ability as a d-DM, but much weaker requirements than a d-DM.
Accordingly, the general bounds on the largest rate of a d-SSM are established. Moreover, by the random coding
method with expurgation, we derive an improved lower bound on the largest rate of a 2-SSM which is much higher
than the best known result of a 2-DM.

Index Terms

Nonadaptive combinatorial group testing, Disjunct matrices, Strongly separable matrices, Separable matrices

I. INTRODUCTION

Group testing was introduced by Dorfman [4] in 1940s for a large-scaled blood testing program. The object of

this program was testing a large number of blood samples to determine the defective (or positive) ones. Instead of

testing one by one, group testing was proposed to pool all the blood samples into groups and perform a test to each

group. If the testing outcome of a group is positive, it means that at least one defective is contained in this group. If

the testing outcome of a group is negative, then this group is considered containing no defective samples. In general,

there are two types of group testing models. In an adaptive (or sequential) setting, the group arrangement of the

next test is always based on the previous testing outcomes. In a nonadaptive setting, all the group arrangements are

designed in advance and all the tests are conducted simultaneously. On the other hand, group testing can be roughly

divided into two categories: probabilistic group testing (PGT) and combinatorial group testing (CGT). In PGT,

the defective samples are assumed to follow some probability distribution, while in CGT, the number of defective

samples is usually assumed to be no more than a fixed positive integer. In this paper, we focus on nonadaptive

CGT (or pooling design) in the noiseless scenario, which has been studied extensively due to its applications in

a variety of fields such as DNA library screening, network security, multi-access communication and so on, see

[5]–[7], [15]–[17] for example.

A nonadaptive CGT scheme can be represented by a binary matrix whose rows are indexed by the groups and

columns are indexed by the items to be tested. Suppose that there are n items among which at most d (≪ n) are

positive. Let M be the t × n testing matrix where the entry Mj(i) = 1 if the jth item is contained in the ith test

and Mj(i) = 0 otherwise. Note that each column of M corresponds to an item and each row corresponds to a test.

The result of a test is 1 (positive) if the test contains at least one positive item and 0 (negative) otherwise. After

performing all the t tests simultaneously, one could observe the testing outcome r = (r(1), . . . , r(t)) ∈ {0, 1}t

where r(i) is the result of the ith test. It is easily seen that r is the Boolean sum of the column vectors of M
indexed by all the positive items. The problem of studying nonadaptive CGT is to design the testing matrix M
such that all the positives could be identified based on M and the testing outcome r. The goal is to decrease the

computational complexity of the identifying algorithm and to minimize the number of tests needed given the number
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of items to be tested, or equivalently, to maximize the number of items to be tested given the number of tests, or

in other words, to explore the largest rate of the testing matrix M .

In the literature, disjunct matrices and separable matrices are two classical combinatorial structures for nonadaptive

CGT. Disjunct matrices and separable matrices were first studied by Kautz and Singleton [15] for file retrieval under

the name of superimposed codes, and later were extensively investigated under the concepts of cover-free families

and union-free families respectively, see [10]–[12] for example. The definitions of disjunct matrices and separable

matrices could be found in [5].

Definition I.1. ([5]) Let n, t, d ≥ 2 be integers and M be a binary matrix of size t× n.

1) M is called a d-disjunct matrix, or briefly d-DM, if the Boolean sum of any d column vectors of M does not

cover any other one.

2) M is called a d̄-separable matrix, or briefly d̄-SM, if the Boolean sums of ≤ d column vectors of M are all

distinct.

It was shown in [5] that a d-DM, as well as a d̄-SM, could be utilized in nonadaptive CGT to identify any set of

positives with size no more than d, but both have their advantages and disadvantages. In general, the computational

complexity of the identifying algorithm based on a d-DM of size t × n is O(tn), while that based on a d̄-SM

of size t × n is O(tnd), explicating that a d-DM provides a more efficient identifying algorithm than a d̄-SM.

However, given the number of rows, a d̄-SM contains more columns, implying a higher rate, than a d-DM. In order

to combine the advantages of these two structures, in this paper, we introduce a new notion of strongly d-separable

matrix (d-SSM) for nonadaptive CGT which has weaker requirements than d-DM but the same identifying ability

as d-DM. It is also shown that a d-SSM has a larger rate than a d-DM.

The rest of this paper is organized as follows. In Section II, we give the definition of SSM and establish the

relationships among SSM, DM and SM. We show that a d-SSM could identify any set of up to d positives as

efficiently as a d-DM. In Section III, we first give the general bounds on the largest rate of a d-SSM from the

known results on DM and SM, and then derive an improved lower bound on the largest rate of a 2-SSM by the

random coding method with expurgation. The conclusion is drawn in Section IV.

II. STRONGLY SEPARABLE MATRICES

In this section, we first introduce the notion of d-SSM and investigate the relationships among DM, SSM and

SM. Next we provide an identifying algorithm based on a d-SSM and prove that a d-SSM has the same identifying

ability as a d-DM.

Let n, t, d be integers with n ≥ d ≥ 2, and M be a binary matrix of size t×n. Denote [t] = {1, . . . , t} and [n] =
{1, . . . , n}. Let F = {c1, . . . , cn} ⊆ {0, 1}t be the set of column vectors of M where cj = (cj(1), . . . , cj(t)) ∈
{0, 1}t for any j ∈ [n]. We say a vector cj covers a vector ck if for any i ∈ [t], ck(i) = 1 implies cj(i) = 1.

Definition II.1. A t × n binary matrix M is called a strongly d-separable matrix, or briefly d-SSM, if for any

F0 ⊆ F with |F0| = d, we have ⋂

F ′∈U(F0)

F ′ = F0, (1)

where

U(F0) =
{
F ′ ⊆ F :

∨

c∈F0

c =
∨

c∈F ′

c

}
. (2)

Remark 1. An equivalent description of Definition II.1 is as follows. A t × n binary matrix M is a d-SSM if for

any F0,F
′ ⊆ F with |F0| = d, F ′ ∈ U(F0) implies that F0 ⊆ F ′.

Remark 2. We call M a d̄-SSM if the condition |F0| = d in Definition II.1 is replaced by 1 ≤ |F0| ≤ d.

It is obvious that a d̄-SSM is always a d-SSM. The following observation shows that the converse also holds.

Lemma II.1. A t× n matrix M is a d-SSM if and only if M is a d̄-SSM.

Proof: It is enough to show the necessity. Assume that M is a d-SSM of size t × n, but not a d̄-SSM. Let

F = {c1, . . . , cn} be the set of column vectors of M . By Definition II.1 and Remarks 1 and 2, there must exist

F0,F
′ ⊆ F with 1 ≤ |F0| < d such that F ′ ∈ U(F0) but F0 6⊆ F ′. Suppose that |F0| = j, 1 ≤ j ≤ d − 1. If

F ′ \ F0 = ∅, there exists F1 ⊆ F \F0 such that |F0 ∪F1| = d since n ≥ d. Then we have F ′ ∪F1 ∈ U(F0 ∪F1)
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but F0∪F1 6⊆ F ′∪F1, a contradiction to the definition of d-SSM. Thus, F ′ \F0 6= ∅ and c
′ is covered by

∨
c∈F0

c

for any c
′ ∈ F ′ \ F0. We discuss |F ′ \ F0| based on the following two cases. 1)

1) If |F ′ \ F0| ≥ d − j, then there exists F1 ⊆ F ′ \ F0 such that |F0 ∪ F1| = d and F ′ ∈ U(F0 ∪ F1). Since

F0 6⊆ F ′, we have F0 ∪ F1 6⊆ F ′, a contradiction to the definition of d-SSM.

2) If |F ′ \ F0| < d − j, then |F0 ∪ F ′| < d. Since n ≥ d, there exists F2 ⊆ F \ (F0 ∪ F ′) such that

|F0 ∪ F ′ ∪ F2| = d and F ′ ∪ F2 ∈ U(F0 ∪ F ′ ∪ F2), but F0 ∪ F ′ ∪ F2 6⊆ F ′ ∪ F2, also a contradiction.

The conclusion follows.

The relationship between DM and SM was investigated in [2], [5].

Lemma II.2. ([2], [5]) A d-DM is a d̄-SM and a d̄-SM is a (d− 1)-DM.

The following lemma shows that a d-SSM lies between a d-DM and a d̄-SM.

Lemma II.3. A d-DM is a d-SSM and a d-SSM is a d̄-SM.

Proof: We first show that a d-DM is a d̄-SSM. Let A be a d-DM and A be the set the column vectors of A.

By Definition I.1, for any A0 ⊆ A with |A0| = d, we have U(A0) = {A0} where U(A0) is defined by (2). Then

we obtain
⋂

A′∈U(A0)
A′ = A0 implying that A is a d-SSM according to Definition II.1.

Now we prove that a d-SSM is a d̄-SM. Let M be a d-SSM and F be the set the column vectors of M . If

M is not a d̄-SM, then by Definition I.1, there exist distinct F1,F2 ⊆ F with 1 ≤ |F1|, |F2| ≤ d such that∨
c∈F1

c =
∨

c∈F2
c. By (2), we have F1 ∈ U(F2) and F2 ∈ U(F1). Since M is a d-SSM, by Lemma II.1 we have

F1 ⊆ F2 and F2 ⊆ F1 which implies F1 = F2, a contradiction to the assumption.

From Lemma II.3 we know that a d-DM is always a d-SSM. But a d-SSM might not be a d-DM. To show this,

we give an example below.

Example 1. Let M be a binary matrix of size 7× 8 as defined below.

M =

c1 c2 c3 c4 c5 c6 c7 c8


1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 1 1 0 0 1 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 1




It is easy to check that M is a 2-SSM and thus a 2̄-SM by Lemma II.3. But M is not a 2-DM since c2 is covered

by c1 ∨ c3.

By Lemma II.3, a d-SSM, as well as a d̄-SM, has weaker requirements than a d-DM. However, we will prove

that a d-SSM could determine any set of positives with size no more than d as efficiently as a d-DM.

Theorem II.1. A t × n d-SSM could identify any set of ≤ d positives among n items with t tests by applying

Algorithm 1, and the computational complexity of Algorithm 1 is O(tn).

Proof: Denote [n] as n items to be tested. Let M be the testing matrix which is a d-SSM of size t × n, and

F = {c1, c2, . . . , cn} be the set the column vectors of M . Suppose that P0 ⊆ [n] is the set of positives with

|P0| ≤ d, and the testing outcome is r ∈ {0, 1}t. We show that Algorithm 1 will output P0 given the input r, that

is, we show P = P0.

Let F0 ⊆ F be the set of column vectors of M corresponding to P0. Then, |F0| ≤ d and r =
∨

c∈F0
c. According

to Algorithm 1, given the input r, we first remove every column c ∈ F that is not covered by r. Then we obtain

a subset FS = {cj : j ∈ S} ⊆ F , where S = {j ∈ [n] : cj is covered by r}. It is obvious that F0 ⊆ FS and

FS ∈ U(F0) where U(F0) is defined by (2). Next we show how to determine F0 from FS .

For any c ∈ FS , we claim that c ∈ F0 if and only if there exists i ∈ [t] such that c(i) = 1 and c
′(i) = 0

for any c
′ ∈ FS \ {c}. To show the necessity, assume that c ∈ F0 but there dose not exist i ∈ [t] such that

c(i) = 1 and c
′(i) = 0 for any c

′ ∈ FS \ {c}. Then we have FS \ {c} ∈ U(F0). Since M is a d-SSM, we have

c 6∈
⋂

F ′∈U(F0)
F ′ = F0, a contradiction to the condition that c ∈ F0. To show the sufficiency, assume that there

exists c ∈ FS with the property that there exists i0 ∈ [t] such that c(i0) = 1 and c
′(i0) = 0 for any c

′ ∈ FS \ {c},

but c 6∈ F0, that is, the item corresponding to c is negative. Since F0 ⊆ FS and r =
∨

c∈F0
c, we must have
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r(i0) = 0. Since c(i0) = 1, it implies that c 6∈ FS by the previous step of Algorithm 1, a contradiction to the

condition that c ∈ FS .

Thus, the output P of Algorithm 1 is exactly the set of positives P0. The computational complexity of Algorithm

1 is O(nt).

Algorithm 1: SSMIdAlg(r)

Let R0 = {N1, . . . , N|R0|} ⊆ [t] and R1 = {J1, . . . , J|R1|} ⊆ [t] be two sets of indices which indicate

r(i) = 0 and r(i) = 1 respectively. Clearly, R0 ∪R1 = [t] and |R0|+ |R1| = t.
S = {1, 2, . . . , n};

P = ∅;

for k = 1 to |R0| do
i = Nk;

for j = 1 to n do

if cj(i) = 1 then
S = S \ {j};

for k = 1 to |R1| do
i = Jk;

for j = 1 to n do

if j ∈ S then

if cj(i) = 1 and cl(i) = 0 for any l ∈ S \ {j} then
P = P ∪ {j};

if |P | ≤ d then
output P ;

else
output “The set of positives has size at least d+ 1.”

III. BOUNDS FOR d-SSM

In this section, we concentrate on the largest rate of a d-SSM. We first provide general bounds for d-SSM based

on its connections with d-DM and d̄-SM, and then derive an improved lower bound for 2-SSM by the random

coding method with expurgation, which is much better than the best existing lower bound of 2-DM.

A. General bounds for d-SSM

Let n(d, t), f(d, t) and s(d̄, t) denote the maximum possible number of columns of a d-SSM, a d-DM and a

d̄-SM with t rows respectively. Denote their largest rates as

R(d) = lim
t→∞

log2 n(d, t)

t
,

RD(d) = lim
t→∞

log2 f(d, t)

t
,

RS(d̄) = lim
t→∞

log2 s(d̄, t)

t
.

In the literature, the best known upper and lower bounds of RD(d) for d ≥ 3 were proved in [8], [9] respectively,

and the general bounds of RS(d̄) were derived by Lemma II.2 and the known results on RD(d) [5]. For the case

d = 2, Erdös, Frankl and Füredi [10] investigated cover-free families and derived the best known results for RD(2)
in which the lower bound was obtained by the random coding method and the upper bound was obtained by the

techniques in extremal combinatorics. In [3], Coppersmith and Shearer provided the best known lower bound for

RS(2̄) by constructing a 2̄-union-free family from a deterministic cancellative family and a random weakly union-free

family, and gave the best known upper bound for RS(2̄) by the techniques also in extremal combinatorics.

Theorem III.1. ([3], [5], [8]–[10]) Let d ≥ 2 be an integer. If d → ∞, then we have

1

d2 log2 e
(1 + o(1)) ≤ RD(d) ≤ RS(d̄) ≤ RD(d− 1) ≤

2 log2(d− 1)

(d− 1)2
(1 + o(1))
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where e is the base of the natural logarithm. Moreover,

0.1814 ≤ RD(2) ≤ 0.3219,

0.3135 ≤ RS(2̄) ≤ 0.4998.

We remark that the expressions of the general bounds of RD(d) for any d ≥ 3 shown in [8], [9] are complicated

and therefore not stated in this paper. The interested reader may refer to the references therein. The asymptotic

version on the bounds of RD(d) shown in Theorem III.1 could also be found in [7].

By Theorem III.1 and Lemma II.3, we immediately have the following results for SSM.

Corollary III.2. Let d ≥ 2 be an integer. Then we have

1

d2 log2 e
(1 + o(1)) ≤ R(d) ≤

2 log2(d− 1)

(d− 1)2
(1 + o(1)) (3)

for d → ∞, and

0.1814 ≤ R(2) ≤ 0.4998. (4)

B. An improved lower bound for 2-SSM

Inspired by the Kautz-Singleton construction for DM in [15] which is based on maximum distance separable

codes and identity codes, in this part, we provide an improved lower bound of R(2) by the random coding method

together with a concatenated construction for SSM based on strongly separable codes. For more applications of this

method, the interested reader may refer to [1].

Theorem III.3. R(2) ≥ 0.2213.

Before proving Theorem III.3, we do some preparations. Let q ≥ 2 be an integer and Q = {0, 1, . . . , q − 1} be

an alphabet. A set C = {c1, c2, . . . , cn} ⊆ Qt is called a (t, n, q) code where each cj is called a codeword, t is

the length of the code and n is the code size. For a code C ⊆ Qt, define the set of the ith coordinates of C as

C(i) = {c(i) ∈ Q : c = (c(1), c(2), . . . , c(t)) ∈ C} for any 1 ≤ i ≤ t and define the descendant code of C as

desc(C) = C(1)× C(2)× . . .× C(t).
In [13], Jiang, Cheng and Miao introduced strongly separable codes in multimedia fingerprinting for the purpose

of tracing back to all the traitors in an averaging collusion attack as efficiently as the well-known frameproof codes

but having a larger code size than frameproof codes.

Definition III.1. ([13]) Let C be a (t, n, q) code and d ≥ 2 be an integer. C is called a strongly d̄-separable code,

or briefly d̄-SSC(t, n, q), if for any C0 ⊆ C with 1 ≤ |C0| ≤ d, we have
⋂

C′∈S(C0)

C′ = C0, (5)

where

S(C0) = {C′ ⊆ C : desc(C′) = desc(C0)}. (6)

Remark 3. An equivalent description of Definition III.1 is as follows. A (t, n, q) code C is a d̄-SSC if for any

C0, C′ ⊆ C with 1 ≤ |C0| ≤ d, C′ ∈ S(C0) implies that C0 ⊆ C′.

Remark 4. When q = 2, an equivalent description of (6) is that S(C0) = {C′ ⊆ C :
∨

c∈C′ c =
∨

c∈C0
c and∧

c∈C′ c =
∧

c∈C0
c}.

We have the following observation on the relationship between SSM and SSC.

Lemma III.1. If there exists a d-SSM of size t× n, then there exists a d̄-SSC(t, n, 2).

Proof: Let M be a d-SSM of size t × n and C be the set of column vectors of M . It is obvious that C is a

(t, n, 2) code. By (2) and Remark 4, for any C0 ⊆ C with 1 ≤ |C0| ≤ d, we have S(C0) ⊆ U(C0). Since M is a

d-SSM, we have C0 =
⋂

C′∈U(C0)
C′ ⊆

⋂
C′∈S(C0)

C′ ⊆ C0 which yields
⋂

C′∈S(C0)
C′ = C0. Thus C is a d̄-SSC.

In [13], Jiang, Cheng and Miao also provided a concatenated construction for d̄-SSC(tq, n, 2) based on d̄-

SSC(t, n, q). We show that the (tq, n, 2) code they constructed is actually a tq × n d-SSM.

Lemma III.2. If there exists a d̄-SSC(t, n, q), then there exists a d-SSM of size tq × n.
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Proof: Let C = {c1, . . . , cn} be a d̄-SSC(t, n, q) on Q = {0, 1, . . . , q − 1}. For each cj = (cj(1), . . . , cj(t))
∈ C, define xj = (x1

j ,x
2
j , . . . ,x

t
j) ∈ {0, 1}tq where

x
i
j = (xi

j(0),x
i
j(1), . . . ,x

i
j(q − 1)) ∈ {0, 1}q

for any 1 ≤ i ≤ t and

x
i
j(k) =

{
1, cj(i) = k
0, otherwise

for any 0 ≤ k ≤ q − 1. Let F = {x1,x2, . . . ,xn} be the set of column vectors of a matrix M . It is obvious that

M is a binary matrix of size tq × n. We show that M is a d-SSM.

For any F0,F ′ ⊆ F with |F0| ≤ d, let C0, C′ ⊆ C denote the corresponding subsets of codewords to F0,F ′

respectively. Then |C0| ≤ d. If F ′ ∈ U(F0), we must have C′ ∈ S(C0) according to the construction for F . Since

C is a d̄-SSC, we have C0 ⊆ C′ yielding F0 ⊆ F ′. Thus M a d-SSM.

To use Lemma III.2 to derive bounds of SSM, the results on d̄-SSC with fixed q and large t is required. However,

to the best of our knowledge, there is no known good result for this case in the literature. Therefore, in order to

derive the lower bound of R(2) in Theorem III.3, we shall first randomly construct a 2̄-SSC with fixed small q
and large t and then exploit Lemma III.2 to obtain a 2-SSM. To present the argument more precisely, we need the

following concept of minimal frame, which was also studied in [14].

Definition III.2. Let C be a (t, n, q) code. For any C0, C′ ⊆ C, we call C′ a frame of C0 if C′ ∈ S(C0). Moreover,

C′ is called a minimal frame of C0 if C′ ∈ S(C0) and C′ \ {c} 6∈ S(C0) for any c ∈ C′.

Lemma III.3. Let C be a (t, n, q) code. If C is not a d̄-SSC, then there exist C0 ⊆ C with 1 ≤ |C0| ≤ d and a

minimal frame C′ of C0 such that C0 6⊆ C′.

Proof: If C is not a d̄-SSC, then by Definition III.1, there exist C0 ⊆ C with 1 ≤ |C0| ≤ d and a frame C′ ⊆ C
of C0 such that C0 6⊆ C′. If C′ is minimal, then it completes the proof. Otherwise, by Definition III.2, there must

exist a codeword c ∈ C′ such that C′ \ {c} is still a frame of C0. Consider C′ \ {c} and repeat the process until it

forms a minimal frame of C0.

The following result could be found in [14] as well. For readers’ convenience, we will give a self-contained proof

of it.

Lemma III.4. Let C be a (t, n, q) code. For any C0 ⊆ C with 1 ≤ |C0| ≤ d, the minimal frame of C0 has size no

more than td− t+ 1.

Proof: Suppose that C′ is a minimal frame of C0. We count the number of codewords in C′ by the order of

coordinates. For the first coordinate, by Definition III.2 and (6), there exists C1 ⊆ C′ such that C1(1) = C0(1) and

(C1 \ {c})(1) 6= C0(1) for any c ∈ C1. It is obvious that |C1| = |C0(1)| ≤ d. Consider the second coordinate, then

there exists C2 ⊆ C′ \ C1 such that (C2 ∪ C1)(2) = C0(2) and (C2 ∪ C1 \ {c})(2) 6= C0(2) for any c ∈ C2. Then

we have |C2| = |C0(2)| − |C1(2)| ≤ d − 1. Consider C′ \ (C1 ∪ C2) and the ith coordinates in a similar way for

3 ≤ i ≤ t until there will be no codewords left, which must occur since C′ is a minimal frame of C0. Then we have

|C′| ≤ d+ (d− 1)(t− 1) = td− t+ 1 as desired.

Now we present the proof of Theorem III.3.

Proof of Theorem III.3: Let n > 3 and C = {c1, c2, . . . , cn} be a collection of vectors of length t where

cj = (cj(1), cj(2), . . . , cj(t)) and each cj(i) is chosen uniformly and independently at random from a set Q =
{0, 1, . . . , q − 1} with the probability that

Pr(cj(i) = k) = 1/q, ∀k ∈ Q

for any 1 ≤ j ≤ n and 1 ≤ i ≤ t. The values of t, n, q will be determined later.

For any vector c ∈ C, c is called bad if there exists C′ = {c0, c1, . . . , cm} ⊆ C \ {c} such that at least one of

the following two cases occurs: (1)

1) there exists some ci ∈ C′ such that desc(C′) = desc({c, ci}) with 1 ≤ m ≤ t;
2) there exists some ci ∈ C′ such that desc(C′ \ {ci}) = desc({c, ci}) with 2 ≤ m ≤ t+ 1.

Let T be the collection of all bad vectors of C and Ĉ = C\T . We claim that all the vectors in Ĉ are distinct. If not,

assume that there exist a, b ∈ Ĉ such that a = b. Then, for any x ∈ Ĉ\{a, b}, we have desc({a,x}) = desc({b,x})
which implies that a is bad, a contradiction to the assumption. Hence, Ĉ is a (t, n− |T |, q) code by regarding each

vector in Ĉ as a codeword.
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We further show that Ĉ is a 2̄-SSC. If not, by Lemma III.3, there exists C0 ⊆ Ĉ with 1 ≤ |C0| ≤ 2 and a minimal

frame C1 ⊆ Ĉ of C0 such that C0 6⊆ C1. We discuss the size of C0. 1)

1) If |C0| = 1, then all the codewords in C1 are the same as that in C0. Since C1 is a minimal frame of C0, we

have |C1| = 1 and C1 = C0, a contradiction to the fact that Ĉ is a (t, n− |T |, q) code.

2) If |C0| = 2, let C0 = {c, c0}. 2.1)

a) If |C0 ∩ C1| = 1, without loss of generality, assume that C0 ∩ C1 = {c0} and |C1| = m + 1. Then by

Lemma III.4, we have m ≤ t. If m = 0, we have C1 = {c0} and desc({c, c0}) = desc({c0}), which

implies that c = c0, a contradiction. So, we have 1 ≤ m ≤ t. Then C1 satisfies case (1) implying that c

is a bad codeword, a contradiction to the fact that Ĉ contains no bad codewords.

b) If |C0 ∩ C1| = 0, without loss of generality, assume that C1 = {c1, c2, . . . , cm} ⊆ Ĉ \ C0. Then by

Lemma III.4, we have m ≤ t + 1. If m = 1, we have desc({c, c0}) = desc({c1}), which implies that

c = c0 = c1, a contradiction. So, we have 2 ≤ m ≤ t+ 1. Then C1 satisfies case (2) implying that c is

a bad codeword, also a contradiction.

Thus, Ĉ is a 2̄-SSC(t, n − |T |, q) where |T | is a random variable due to the random construction of C. Next we

estimate the expected value of |T |.
For any c ∈ C, let S1(c) = {C′ ⊆ C \ {c} : |C′| = m+ 1 and C′ satisfies case (1)} and S2(c) = {C′ ⊆ C \ {c} :

|C′| = m+ 1 and C′ satisfies case (2)}. Then, we have

Pr(c is bad) = Pr(|S1(c)| ≥ 1 or |S2(c)| ≥ 1)

≤ Pr(|S1(c)| ≥ 1) + Pr(|S2(c)| ≥ 1)

≤ E(|S1(c)|) + E(|S2(c)|)

where the last inequality is by Markov’s inequality, and

E(|T |) = n · Pr(c is bad)

≤ n · (E(|S1(c)|) + E(|S2(c)|))
(7)

where

E(|S1(c)|) =
t∑

m=1

(
n− 1

m+ 1

)(
m+ 1

1

)
Pr(desc({c, ci}) = desc(C′))

=
t∑

m=1

(
n− 1

m+ 1

)(
m+ 1

1

)(
(1/q)m+1 + (1− 1/q)((2/q)m − (1/q)m)

)t

≤
t∑

m=1

(m+ 1)nm+1 ((2m − 1)q − (2m − 2))t q−(m+1)t

≤ t · max
1≤m≤t

{
(m+ 1)nm+1 ((2m − 1)q − (2m − 2))

t
q−(m+1)t

}

and

E(|S2(c)|) =
t+1∑

m=2

(
n− 1

m+ 1

)(
m+ 1

1

)
Pr (desc({c, ci}) = desc(C′ \ {ci}))

=

t+1∑

m=2

(
n− 1

m+ 1

)(
m+ 1

1

)(
(1/q)m+1 + (1− 1/q) ((2/q)m − 2(1/q)m)

)t

≤
t+1∑

m=2

(m+ 1)nm+1 ((2m − 2)q − (2m − 3))t q−(m+1)t

≤ t · max
2≤m≤t+1

{
(m+ 1)nm+1 ((2m − 2)q − (2m − 3))

t
q−(m+1)t

}
.

For any m ≥ 1 and q ≥ 2, we have (2m − 1)q − (2m − 2) > (2m − 2)q − (2m − 3). If

t · max
1≤m≤t+1

{
(m+ 1)nm+1 ((2m − 1)q − (2m − 2))t q−(m+1)t

}
≤ 1/3, (8)

then E(|S1(c)|) ≤ 1/3 and E(|S2(c)|) ≤ 1/3 for any c ∈ C. According to (7), we have E(|T |) ≤ 2n/3, that is,
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the expected number of bad codewords in C is at most 2n/3. By the random construction, there exists C such that

it contains at most 2n/3 bad codewords which implies that Ĉ, obtained by deleting all the bad codewords from C,

is a 2̄-SSC with at least n/3 codewords. By Lemma III.2, we can obtain a 2-SSM with tq rows and at least n/3
columns. Thus,

R(2) ≥ lim
t→∞

log2(n/3)

tq
= lim

t→∞

log2 n

tq
. (9)

Now we would like to maximize the lower bound of R(2) in (9) under the restriction of (8). It is obvious that

(8) is equivalent to that for any 1 ≤ m ≤ t+ 1,

t(m+ 1)nm+1 ((2m − 1)q − (2m − 2))
t
q−(m+1)t ≤ 1/3. (10)

By taking log2 on (10) and do some simplifications, we have that for any 1 ≤ m ≤ t+ 1,

log2 n

tq
≤

log2 q

q
−

log2((2
m − 1)q − (2m − 2))

(m+ 1)q
−

log2(3t(m+ 1))

tq(m+ 1)
.

Take t, n, q such that

log2 n

tq
=

log2 q

q
− max

1≤m≤t+1

{
log2((2

m − 1)q − (2m − 2))

(m+ 1)q
−

log2(3t(m+ 1))

tq(m+ 1)

}
−

ǫ

t

where ǫ = o(t) is a real number. Then (8) will be established and by (9), we have

R(2) ≥ lim
t→∞

log2 n

tq

=
log2 q

q
− lim

t→∞
max

1≤m≤t+1

{
log2((2

m − 1)q − (2m − 2))

(m+ 1)q
−

log2(3t(m+ 1))

tq(m+ 1)

}

≥
log2 q

q
− lim

t→∞
max

1≤m≤t+1

{
log2((2

m − 1)q − (2m − 2))

(m+ 1)q

}

for any q ≥ 2. To make this lower bound as large as possible, we take q = 4 and then

R(2) ≥
1

2
− lim

t→∞
max

1≤m≤t+1

log2((2
m − 1)4− (2m − 2))

4(m+ 1)

=
1

2
−

log2 22

16
.
= 0.2213

as desired.

IV. CONCLUSION

In this paper, we introduced strongly separable matrices for nonadaptive CGT to identify a small set of positives

from a large population. We showed that a d-SSM has weaker requirements than a d-DM, but provides an equally

efficient identifying algorithm as a d-DM. A general bound on the largest rate of d-SSM was established. Besides,

by the random coding method with expurgation, we derived an improved lower bound on the largest rate of 2-SSM

which is much higher than the best known result of 2-DM. The results presented in this paper showed that a 2-SSM

could work better than a 2-DM for nonadaptive CGT, which makes the research on SSM important. It is of interest

to further improve the lower and upper bounds on the largest rate of 2-SSM and explore the explicit constructions

of optimal 2-SSM. It is also interesting but more challenging to extend the argument for 2-SSM to general d-SSM.
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[10] P. Erdös, P. Frankl, Z. Füredi, Families of finite sets in which no set is covered by the union of two others, J. Combin. Theory, Series A

33 (1982) 158-166.
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