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Abstract

A plane near-triangulation G can be decomposed into a collection of induced subgraphs, described here as
the W-components of G, such that G is perfect (respectively, chordal) if and only if each of its W-components
is perfect (respectively, chordal). Each W-component is a 2-connected plane near-triangulation, free of edge
separators and separating triangles. Graphs satisfying these conditions will be called W-near-triangulations.
A linear time decomposition of G into its W-components is achievable using known techniques from the
literature.

W-near-triangulations have the property that the open neighbourhood of every internal vertex induces
a cycle. It follows that a W-near-triangulation H of at least five vertices is non-chordal if and only if it
contains an internal vertex. This yields a local structural characterization that a plane near-triangulation
G is chordal if and only if it does not contain an induced wheel of at least five vertices.

For W-near-triangulations that are free of induced wheels of five vertices, we derive a similar local criteria,
that depends only on the neighbourhoods of individual vertices and faces, for checking perfectness. We show
that a W-near-triangulation H that is free of any induced wheel of five vertices is perfect if and only if there
exists neither an internal vertex x, nor a face f such that, the neighbours of x or f induces an odd hole. The
above characterization leads to a linear time algorithm for determining perfectness of this class of graphs.
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1. Introduction

A plane embedding of a (planar) graph is called a plane near-triangulation if the boundary of every face,
except possibly the outer face, is a cycle of length three. We try to derive local characterizations for checking
whether a plane near-triangulation is chordal or perfect. Here, a local characterization refers to a condition
that can be checked by inspecting the neighbourhood of individual vertices, edges or faces of the graph. A
graph is chordal if and only if it is free of induced cycles of length exceeding three [13]. A graph is perfect
if and only if it is free of induced odd cycles of length exceeding three (or odd holes) [12].

Investigation of the structural properties of plane triangulations and some of their subfamilies like Apol-
lonian networks have been elaborately undertaken in the literature [7, 2, 6, 3], owing to their rich and
interesting geometric structure. Here we investigate local structural characterizations for chordal and per-
fect plane near-triangulations.

A plane near-triangulation G can be decomposed in linear time, into a set of induced component sub-
graphs, which we call the W-components of G (see Section 3). Each W-component H of G is essentially a
2-connected plane near-triangulation that is free of edge separators and separating triangles. Graphs satis-
fying these conditions are referred to as W-near-triangulations. The neighbourhood of every internal vertex
of any W-near-triangulation induces a wheel.

The problem of determining whether a plane near-triangulation G is chordal (respectively, perfect) can
be reduced to the problem of checking whether each of its W-components is chordal (respectively, perfect).
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In Section 3 we describe a linear time procedure to extract the W-components of G, by adapting a method
known in the literature [5] for identifying 4-connected blocks in a plane triangulation.

In Section 4 it is shown that a W-near-triangulation G that is not K4 is chordal if and only if it does
not contain an internal vertex. Consequently, we derive a local structural characterization that a plane
near-triangulation G is chordal if and only if it does not contain an induced wheel of at least five vertices.

In Section 6, we show that perfect W-near-triangulations that do not contain any induced wheel of five
vertices admit a simple local characterization. It is shown that a W-near-triangulation H that does not
contain any induced wheel of five vertices is perfect if and only if there exists neither an internal vertex
x, nor a face f in H such that, the neighbours of x or f induces an odd hole. This local structural
characterization results in a linear time algorithm for determining whether a W-near-triangulation, that is
free of any induced wheel of five vertices, is perfect. No sub-quadratic time algorithm appears to be known
for recognizing perfect plane near-triangulations or perfect plane triangulations.

2. Preliminaries

Given a plane near-triangulation G, we call the vertices on the boundary of the external face of G as
the external vertices of G, denoted by Ext(G) and the remaining vertices as the internal vertices of G,
denoted by Int(G). The notation Cn will be used to denote a cycle of n vertices. If S ⊆ V (G), then NG(S)
(respectively, NG[S]) denotes the open (respectively, closed) neighbourhood of the set S. In the case when
S = {u} for a vertex u ∈ V (G), we write NG(u) (respectively, NG[u]) for the open (respectively, closed)
neighbourhood of u. The suffix will be dropped when the underlying graph G is clear from the context.

Definition 2.1 (Wheel). A wheel on n (n ≥ 4) vertices, Wn, is the graph obtained by adding a new vertex
v to a cycle Cn−1 and making it adjacent to all vertices in Cn−1. The cycle Cn−1 is called the rim of the
wheel, the vertex v is called the centre of the wheel and the added edges joining v and vertices in Cn−1 are
called spokes of the wheel.

A wheel Wn is called an even wheel (respectively, odd wheel) if n is even (respectively, odd). Note that
the rim of an even wheel contains an odd number of vertices and the rim of an odd wheel has an even number
of vertices. Any induced cycle of length at least four in a graph is called a hole. A hole with odd number
of vertices is known as an odd hole. A separator in a connected graph is a set of vertices, the removal of
which disconnects the graph. A clique in a graph is a set of pairwise adjacent vertices. A clique separator is
a separator which is a clique. A clique separator of size two (respectively, three) is called an edge separator
(respectively, a separating triangle).

Definition 2.2 (W-near-triangulation). A plane near-triangulation G is called a W-near-triangulation if G
is two connected and, either G is isomorphic to K4 or G contains neither a separating triangle, nor an edge
separator. A W-near-triangulation G is called an even W-near-triangulation if the degree of every vertex in
Int(G) is even.

Note that a W-near-triangulation need not be 4-connected (for example, a wheel on five vertices is a
W-near-triangulation, but contains a 3-separator).

In the next section, we show that the study of chordality (respectively, perfectness) of plane-near-
triangulations reduces to the study of chordality (respectively, perfectness) of W-near-triangulations.

3. W-decomposition

In this section we describe a method to decompose any plane near-triangulation G into a collection of
induced subgraphs, G1, G2, . . . , Gk (for some k ≥ 1) in linear time, where each Gi, i ∈ {1, 2 . . . , k} is a
W-near-triangulation and G is chordal (respectively, perfect) if and only if all of G1, G2, . . . Gk is chordal
(respectively, perfect). The method described here is a combination of known techniques for handling plane
triangulations, drawn from various sources. We sketch the details briefly here for the sake of completeness.
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Let G be a plane near-triangulation. G is chordal (respectively, perfect) if and only if each of its 2-
connected blocks is chordal (respectively, perfect). Since we can identify the 2-connected blocks of G in
linear time, we assume hereafter that G is 2-connected.

Let uv be an edge separator in G. Let H1 and H2 be the two components of G \ {u, v}. It is easy to see
that G is chordal (respectively, perfect) if and only if the subgraphs G1 and G2 induced by V (H1) ∪ {u, v}
and V (H2)∪{u, v} are chordal (respectively, perfect). Similarly, let uvw is a separating triangle in G and, let
H1 and H2 be the two components of G \ {u, v, w}. It is easy to see that G is chordal (respectively, perfect)
if and only if the subgraphs G1 and G2 induced by V (H1) ∪ {u, v, w} and V (H2) ∪ {u, v, w} are chordal
(respectively, perfect). We can recursively find edge separators and separating triangles in the components
till we are left with a collection of induced subgraphs G1, G2, . . . Gk of G such that none of them contains an
edge separator or a separating triangle. That is, we have a decomposition of G into a collection of maximal
W-near-triangulated subgraphs of G such that, G is chordal (respectively, perfect) if and only if each of the
subgraphs is chordal (respectively, perfect). We call each maximal W-near-triangulated subgraph of G a
W-component of G. This decomposition is a special case of the clique decomposition described by Tarjan
[11]. We need to show that the decomposition can be done in linear time.

The problem of finding edge separators in a 2-connected plane near-triangulation is reducible to finding
separating triangles, using a folklore algorithmic trick. Given a plane near-triangulation G that is not already
a triangulation, we can triangulate G by artificially adding a new vertex, say p, on the external face of G
and making all vertices in the external face of G adjacent to p. Let the new graph be denoted by Gp. It is
easy to see that any edge separator uv in G must be a chord connecting two vertices in the external face
of G and hence puv must be a separating triangle in Gp. Conversely, for any separating triangle puv in Gp

containing the newly added vertex p, uv must be an edge separator in G.
To construct Gp from G in linear time, we need to find the vertices on the external face of G from the

adjacency list of G. Here is one possible way to do this. We first embed G in an n × n grid in linear time
using the algorithm by Schnyder [10]. Now start from a the vertex, say v1 in G whose x coordinate is the
smallest. This vertex must be on the external face of G. Traverse the adjacency list of v1 to find the vertex
v2 such that the edge v1v2 has the largest slope among edges incident on v1. Clearly, v1v2 must be an
edge on the external face of G. By traversing the adjacency list of v2 once and finding the angles between
v1v2 and v2w for each neighbour w of v2, we can identify the edge, say v2v3 that appears next to v1v2, in
the clockwise ordering of edges around the vertex v2. It is not difficult to see that the edge v2v3 is on the
external face of G. Continuing this way until we reach back v1, we can find all the vertices on the boundary
of G. Since the adjacency list of each vertex is traversed at most once in the process, the procedure takes
only linear time. Adding the vertex p to the adjacency list of every vertex on the boundary of the external
face and adding the adjacency list of p to G can be done in linear time.

Thus, starting from a 2 connected plane near-triangulation G, we can construct a plane triangulation
Gp in linear time such that separating triangles in Gp correspond to either edge separators or separating
triangles in G. It is well known that a plane triangulation is 4-connected if and only if it is free of separating
triangles. Thus, to find the maximal W-components of Gp, it suffices to find the 4-connected blocks of Gp,
which can be done in linear time using the algorithm by Kant[5]. It is not hard to see that, by removing
the vertex p from each W-component of Gp (whenever p is present), we can recover the W-components in
G, which again requires only linear time. Hence we have:

Lemma 3.1. Given a plane near-triangulation G, we can find the maximal W-near-triangulated subgraphs
(W-components) of G in linear time. Moreover, G is chordal (respectively, perfect) if and only if each of the
W-components is chordal (respectively, perfect).

Consequently, we study W-near-triangulations for the rest of the paper.

4. Chordal plane near-triangulations

The following Lemma describes the structure of W-near-triangulations.
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Lemma 4.1. If G is a W-near-triangulation with at least five vertices then for all u ∈ Int(G), N [u] induces
a wheel Wk for some k ≥ 5.

Proof. Let G be a W-near-triangulation with at least five vertices and u ∈ Int(G). As u is an internal vertex,
|N(u)| ≥ 3. Let N(u) = {u0, u1, u2, . . . ut−1} for some t ≥ 3 such that uu0, uu1, ..., uut−1 is the clockwise
ordering of the edges incident with u. We claim that uiui+1 ∈ E(G), where index i ∈ {0, 1, ..., t − 1} is
taken modulo t. Indeed, if uiui+1 is not an edge, then uui and uui+1 will be on the boundary of a face of
length greater than three, contradicting that G is a W-near-triangulation. Consequently, u0, u1, . . . ut−1u0

is a cycle and as G is free of separating triangles, we get t ≥ 4. Now suppose that there exists an edge uiuj

with j /∈ {i + 1, i − 1}. Then {u, ui, uj} will be a separating triangle. Therefore N [u] is the wheel Wt+1,
containing at least five vertices.

The next observation is directly verifiable and form the base case of the inductive argument that follows.

Observation 4.2. Every plane near-triangulation with five or fewer vertices except W5 is chordal. Every
plane near-triangulation having no internal vertex is chordal.

Lemma 4.3. A W-near-triangulation except K4 is chordal iff it does not contain any internal vertices.

Proof. Let G be a W-near-triangulation. If |V (G)| ≤ 5 then by Observation 4.2, G is chordal iff G is not W5,
which has an internal vertex. If |V (G)| > 5 and there is no internal vertex in G, then by Observation 4.2,
G is chordal. If |V (G)| > 5 and G contains at least one internal vertex say u, then by the Lemma 4.1, N [u]
will induce a wheel say Wk for k ≥ 5 . As the rim of Wk is a chordless cycle of length (k − 1) > 3, G is not
chordal.

The following theorem gives a local structural characterization for chordal plane near-triangulations in
terms of the closed neighbourhoods of internal vertices.

Theorem 4.4. A plane near-triangulated graph is not chordal iff it contains an induced wheel of at least
five vertices.

Proof. Let G be a plane near-triangulated graph. If G contains an induced Wk for some k ≥ 5 then the
rim of Wk is a chordless cycle of length exceeding three and hence G is not chordal. Conversely, if G is not
chordal, by Lemma 3.1, we can decompose G into its W-components - say G1, G2, . . . , Gt for some t > 0
such that G is not chordal if and only if at least one Gi, 1 ≤ i ≤ t is not chordal. Let Gi be a non-chordal
W-component of G. Since Gi is a plane near-triangulation which is not chordal, by Lemma 4.3, Gi contains
at least one internal vertex, say v. By Lemma 4.1, NGi

[v] induces a wheel Wk for some k ≥ 5 in Gi. Since Gi

is an induced subgraph of G (by definition), NGi [v] induces a wheel of at least five vertices in G as well.

Lemma 3.1 and Lemma 4.3 yield a linear time algorithm for recognizing chordal plane near-triangulations,
different from the standard method based on perfect elimination ordering [8], as described below. Given
a plane near-triangulation G, it suffices to decompose G into its W-components in linear time and check
whether any of the components contain an internal vertex. Checking whether a plane near-triangulation
contains an internal vertex requires only linear time (for instance, find vertices on the boundary as described
in the previous section and check whether the boundary includes every vertex or not). Thus, in linear time,
chordal plane near-triangulations can be recognized.

5. Perfect plane near-triangulations

Our next objective is to investigate the problem of providing a local characterization for plane near-
triangulated perfect graphs similar in spirit to Theorem 4.4. It is easy to see that the complement of cycle
Cn for n ≥ 7 is not planar. Moreover, the complement of C5 is isomorphic to C5. Thus, it follows from the
strong perfect graph theorem [4] that to prove a plane triangulated graph G is perfect, it is enough to prove
that G does not contain an induced odd hole.
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Let G be a plane near-triangulated graph. If G contains an induced wheel on an even number of vertices
(even wheel) then clearly G is not perfect. However the absence of an induced even wheel is not sufficient
to guarantee the perfectness of a plane near-triangulation. For example, the graph shown in Figure 1 does
not contain any induced even wheel. But the vertices on the boundary of external face induce an odd hole.

By Lemma 3.1, we know that the problem of characterizing perfect plane near-triangulations reduces
to the problem of characterizing perfect W-near-triangulations. A local characterization that is simple
enough to yield a linear time recognition procedure for arbitrary perfect W-near-triangulations appears
hard to find. Instead, we characterize a subclass of W-near-triangulations that indeed admits a simple
local characterization that leads to a linear time recognition procedure. we derive a simple local structural
characterization for W-near-triangulations that do not contain any induced wheel of five vertices.

1

2

3 4

6

78
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z

y

x

5

Figure 1: An even wheel-free non-perfect plane near-triangulation

6. W5 free W-near-triangulations

In this section, we prove that any non-perfect W5 free W-near-triangulation G contains either an even
wheel or contains three vertices forming an internal face such that the open neighbourhood of these vertices
induces an odd hole. Throughout this section, we use the notation W (u) to denote a wheel with vertex u at
the centre. We first establish some properties of W-near-triangulations that will be useful for deriving the
characterization.

Lemma 6.1. If a W-near-triangulation G contains e edges, f internal faces and t edges on the boundary
of external face, then f = t mod 2. That is, f is odd if and only if t is odd.

Proof. Each internal face is bounded with exactly three edges and each edge except those in the boundary
of the external face is shared by two faces. This implies 3f = 2e − t. Hence t is odd if and only if f is
odd.

Definition 6.2 (Face intersecting wheels). Let W (u) and W (v) (u 6= v) be any two wheels in a W-near-
triangulation. W (u) and W (v) are said to be face intersecting if they share at least one face.

Lemma 6.3. Let G be a W-near-triangulation and W (u) and W (v) (u 6= v) be any two face-intersecting
wheels in G, then W (u) and W (v) share exactly two faces. Further, the edge uv is on the boundary of these
two faces.
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Proof. Since W (u) and W (v) are face-intersecting and u 6= v, u should be on the rim of W (v). Similarly
v should lie on the rim of W (u). Hence the edge uv should be a spoke in both the wheels. As u is on the
rim of W (v), u will have exactly two neighbours (say x, y) on the rim of W (v). Similarly v also have two
neighbours (say p, q) on the rim of W (u). If p 6= x and p 6= y then the edge pu will be a chord on the wheel
W (v) and the vertices u, p, v forms a separating triangle in G, which is a contradiction to the definition of
W-near-triangulation. Hence p = x or p = y Similarly q = y or q = x. This implies that either p = x and
q = y or p = y and q = x. So x and y are the only vertices in N(u) ∩N(v) and the edges ux and uy on the
rim of W (v) are also spokes of W (u) and vx and vy on the rim of W (u) are also spokes of W (v). That is,
{ux, xv, vu)} and {uy, yv, vu} are the only two faces shared by W (u) and W (v).

Corollary 6.4. Let W (x), W (y) and W (z) (with x 6= y 6= z) be three (pair-wise) face-intersecting odd
wheels in a W-near-triangulation G. Then they share exactly the common face {xy, yz, xz}.

Proof. Since W (x) and W (y) are face-intersecting, by Lemma 6.3, they share two faces (faces which has
the edge xy as one of its boundary). Similarly W (y) and W (z) share two faces (faces which has the edge
yz as one of its boundary) and W (x) and W (z) share two faces (faces which has the edge xz as one of its
boundary). This implies that xy, yz and xz forms either a separating triangle or a face which is shared
by W (x), W (y) and W (z). But as G is a W-near-triangulation, the edges xy, yz and xz can not form a
separating triangle.

Definition 6.5 (W∆). Let G be a W-near-triangulation and W (x),W (y) and W (z) be three face intersecting
odd wheels in G. If N [x] ∪ N [y] ∪ N [z] \ {x, y, z} induces an odd hole in G, then the subgraph induced by
N [x] ∪N [y] ∪N [z] is called a W∆. The graph shown in Figure 1 is an example of W∆.

If a W-near-triangulation G with at least five vertices contains an internal vertex u of odd degree
exceeding 3, then the rim of W (u) induces an odd hole in G and thus G cannot be perfect. Since an internal
vertex of degree 3 would induce a separating triangle, a W-near-triangulation with at least 5 vertices cannot
contain an internal vertex whose degree is 3. Consequently, the non-trivial case to handle is to characterize
perfect W-near-triangulations whose internal vertices are all of even degree (even W-near-triangulations).

Lemma 6.6. Let G be a W5 free even W-near-triangulation and W (x),W (y) and W (z) be three face
intersecting wheels in G. Then N [x] ∪N [y] ∪N [z] induces a W∆.

Proof. Let x, y and z be three vertices of G such that W (x),W (y) and W (z) are face intersecting wheels
in G. Let G1 be the subgraph of G induced by the vertices x, y, z and their neighbours. That is, G1 is a
subgraph of G induced by N [x] ∪N [y] ∪N [z]. Let G2 be the subgraph of G1 induced by V (G1) \ {x, y, z}.
If G1 does not induce a W∆ then there exists at least one chord in G2. Without loss of generality we
may assume that there exists two non consecutive vertices p and q on the rim of wheels W (x) and W (y)
respectively such that pq is a chord in G2. We may further assume without loss of generality that there is
no chord between the vertices of the clockwise boundary of G1 from p to q (see Figure 2).

Let P = pq1q2 . . . qrq (where r ≥ 1) be the path joining p and q in G1 (see Figure 2). As W (x) and W (y)
are face intersecting,there must be at least one vertex, say qi, 1 ≤ i ≤ r) in P that lies on the rim of both
the wheels W (x) and W (y) (see Figure 2).

Let s be the neighbour of p on the rim of W (x) in the anti clockwise direction and t be the neighbour of
q on the rim of Wy in the clockwise direction (see Figure 2). Let G3 be the subgraph of G1 induced by the
vertices p, q1, . . . , qi, . . . , qr, q and their neighbours except x, y, s and t. That is, G3 is the subgraph of G1

induced by the vertices (N [p]∪N [q1]∪ ..N [qi]∪N [q]) \ {x, y, s, t} (see figure 3). Let e, f , ne and ni be the
number of edges, internal faces, external vertices and internal vertices in G3 respectively. Let n = ne + ni

be the total number of vertices in G3. Since G3 is internally triangulated, by Lemma 6.1 we have,

3f = 2e− ne (1)

Using Euler’s formula [13] we get:
3ne + 3ni + 3f = 3e + 3 (2)
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Figure 2: G1

qiq1 qr qp

Figure 3: G3

from (1) and (2) we get:
e = 2ne + 3ni − 3 (3)

Let Vi and Ve be the set of internal and external vertices in G3 respectively. As G3 is an induced subgraph
of G1 and pq a chord in G1, all vertices except p and q in Ve are internal vertices of G1 (see Figure 2 and
Figure 3). Also every vertex in Ve except qi must either be on the rim of Wx or on the rim of Wy, but not on
both. That is, for all external vertices in G3 except p, q and qi, all but one of their neighbours in G1 must
be in the graph G3. It follows that the degree of all vertices on the external face of G3 except p, q and qi
will be at least five. This is true because we have assumed that G1 is a W5 free even W-near-triangulation
and hence has no internal vertex of degree below six.

The vertices p, q and qi have two neighbours on the cycle p, q1, . . . , qi, . . . , qr, q and as G3 is plane near-
triangulated, they must have at least one neighbour in Vi. So the degree of p, q and qi will be at least three
in G3. Since every neighbour (in G1) of vertices in Vi is also present in G3, degree of all vertices in Vi must
be at least six in G3. Counting the degree of vertices, we get:

2e ≥ 6ni + 5(ne − 3) + 9 (4)

Substituting (3) we get,

4ne + 6ni − 6 ≥ 6ni + 5ne − 6 =⇒ 0 ≥ 2ne =⇒ 0 ≥ ne (5)

which is a contradiction.
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The following lemma shows that Lemma 6.6 characterizes all non-perfect W5 free even W-near-triangulations.

Lemma 6.7. Every W5 free even W-near-triangulation G that contains an induced odd hole must contain
an induced W∆.

Proof. Let C be an induced odd hole in G. As G is a plane near-triangulation, there must exist at least
one vertex in Int(C). Let G′ = (V ′, E′) be the subgraph induced by the vertices in Int(C). If |V ′| = 1
then V ′ ∪ V (C) will have to induce an odd wheel which is impossible as G is an even W-near-triangulation.
The case |V ′| = 2 is also not possible as two face intersecting odd wheels will not induce an odd hole (See
Lemma 6.1). Thus we may assume that |V ′| ≥ 3. Let G′′ be the subgraph of G induced by the vertices
V ′ ∪ V (C). We have to consider the following cases.

1. G′ contains an induced triangle 4 = (xyz): In this case, W (x), W (y) and W (z) are face intersecting
odd wheels and by Lemma 6.6, N(x) ∪N(Y ) ∪N(z) induces an odd hole, proving the lemma.

2. G′ does not contain any induced triangles: In this case, as G is a plane near-triangulation, the only
possibility is that V ′ induces a tree T of at least 3 vertices. (See Figure 4a. T could possibly a path
as in Figure 4b.) Let v0, v1, . . . , vr for some r ≥ 2 be the vertices in T ordered in such a way that
v0 is the root of the tree and each node vj for j > 0 is a child of some unique vi, i < j in T . Note
that every neighbour of a vertex vi in T except its children and its parent in the tree T must be a
vertex in the odd hole C. Let W (vi) be the wheel induced by N [vi]. Since G is an even W5 free plane
near-triangulation, vi must have even degree (greater than 4) for each i ∈ {0, 1, . . . , r}. Further, each
edge incident on vi (0 ≤ i ≤ r) is shared by exactly two internal faces in G′′ (See Figure 4a). Hence,
for each i, j ∈ {0, 1, . . . , r}, if vi is the parent of vj in the tree T , the wheels W (vi) and W (vj) must
be face intersecting odd wheels sharing exactly two faces. Using this observation, we count the the
total number of internal faces in G′′ to be f =

∑r
i=0 deg(vi)−2(r−1). As the degree of every internal

vertex in G′′ is even, f must be even. Then by Lemma 6.1, the number of external vertices of G′′

should be even. That is, |V (C)| must be even. However, this contradicts the assumption that C is an
odd hole.

v0
v1

v3

v4v2

vr

Figure 4a: V ′ induces a tree

The proof of Lemma 6.7 shows that if a W5 free even W-near-triangulation G contains an odd hole, then
the interior of the odd hole cannot be a tree, and hence must contain a facial triangle uvw. On the other
hand, if three internal vertices u, v and w forms a facial triangle in a W5 free even W-near-triangulation
G, by Lemma 6.6, the neighbours of the facial triangle uvw must induce an odd hole. Hence, we have the
following computationally useful corollary.
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v0
v1

v2 vr

Figure 4b: V ′ induces a path

Corollary 6.8. Let G be a W5 free even W-near-triangulation. The following conditions are equivalent.

1. G is not perfect.

2. The subgraph induced by vertices of Int(G) contains a facial triangle.

3. The subgraph induced by vertices of Int(G) is not a tree.

Lemma 6.6 and Lemma 6.7 yields the following local characterization for perfect W-near-triangulations.

Theorem 6.9. A W5 free plane triangulated W-near-triangulation G other than a K4 is perfect if and only
if the following conditions hold

• G does not contain an even wheel

• G does not contain an induced W∆

A simple linear time algorithm for checking whether a given W5 free W-near-triangulation G is perfect
follows from Corollary 6.8 and Theorem 6.9, as explained below. We can find the vertices on the external
face of G in linear time using the method described in Section 3 and create an array whose ith entry indicates
whether the ith vertex is in Int(G) or not, in linear time. Now we can check whether any vertex in Int(G)
has odd degree, in which case, we immediately conclude that G is not perfect. Otherwise, we perform a
breadth first search on the subgraph induced by the vertices of Int(G) (the indicator array serves to ensures
that the search never enters a vertex on the boundary of G) in linear time to decide whether the subgraph
induced by vertices of Int(G) is a tree (Corollary 6.8).

7. Discussion and Conclusion

Investigation into the structure of perfect plane-triangulations or plane near-triangulations has been re-
ported in two unpublished manuscripts in the literature. In a work done prior to this paper by Benchetrit
and Bruhn [1], a structural characterization for perfect plane triangulations that is not a local characteri-
zation is reported. The characterization does not appear to yield any direct algorithmic consequences. In a
work done subsequent to this paper by Salam et al. [9], a local characterization for W-near-triangulations
has been derived using a different proof technique, but the characterization is more complex than the one
derived here for W5 free W-near-triangulations and consequently yields only a quadratic time recognition
algorithm for perfectness. It is interesting to check whether the approach presented here can be extended
to all W-near-triangulations in a way to yield a linear time recognition algorithm for plane perfect near-
triangulations.

9



8. Acknowledgment

We thank Ajit A. Diwan, IIT Bombay and Jasine Babu, IIT Palakkad for discussions and suggestions.
A preliminary version of this paper was presented in CALDAM 2019.

References

References

[1] Yohann Benchetrit and Henning Bruhn. h-perfect plane triangulations. coRR, abs/1151.07790, 2015. URL http://arxiv.

org/abs/1511.07990.
[2] Therese Biedl, Erik D Demaine, Christian A Duncan, Rudolf Fleischer, and Stephen G Kobourov. Tight bounds on

maximal and maximum matchings. Discrete Mathematics, 285(1-3):7–15, 2004.
[3] Ibrahim Cahit and Mehmet Ozel. The characterization of all maximal planar graphs. Manuscript, 2003.
[4] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect graph theorem. Annals of

mathematics, pages 51–229, 2006.
[5] Goos Kant. A more compact visibility representation. International Journal of Computational Geometry & Applications,

7(03):197–210, 1997.
[6] C. E. Kumar, P. Sreenivasa; Veni Madhavan. A new class of separators and planarity of chordal graphs. pages 30–43,

1989.
[7] Renu C Laskar, Martyn Mulder, and Beth Novick. Maximal outerplanar graphs as chordal graphs, path-neighborhood

graphs, and triangle graphs. Technical report, 2011.
[8] Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM

J. Comput., 5(2):266–283, 1976.
[9] Sameera Muhamed Salam, Jasine Babu, and K. Murali Krishnan. A local characterization for perfect plane near-

triangulations. CoRR, abs/1906.06200, 2019. URL http://arxiv.org/abs/1906.06200.
[10] Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the first annual ACM-SIAM symposium on

Discrete algorithms, pages 138–148. Society for Industrial and Applied Mathematics, 1990.
[11] Robert Endre Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221–232, 1985.
[12] Alan Tucker. The strong perfect graph conjecture for planar graphs. Canadian Journal of Mathematics, 25(1):103–114,

1973.
[13] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, NJ, 1996.

10

http://arxiv.org/abs/1511.07990
http://arxiv.org/abs/1511.07990
http://arxiv.org/abs/1906.06200

	1 Introduction
	2 Preliminaries
	3 W-decomposition
	4 Chordal plane near-triangulations
	5 Perfect plane near-triangulations
	6 W5 free W-near-triangulations
	7 Discussion and Conclusion
	8 Acknowledgment

