
ar
X

iv
:1

90
9.

11
32

5v
1 

 [
m

at
h.

C
O

] 
 2

5 
Se

p 
20

19

A note on the packing chromatic number

of lexicographic products∗

Dragana Božović(1) and Iztok Peterin(1,2)

(1)
Faculty of Electrical Engineering and Computer Science

University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia.

(2)
Institute of Mathematics, Physics and Mechanics

Jadranska ulica 19, 1000 Ljubljana, Slovenia.

e-mails:dragana.bozovic@um.si and iztok.peterin@um.si

Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer k such that there

exists a k-vertex coloring of G in which any two vertices receiving color i are at distance at

least i + 1. In this short note we present upper and lower bound for the packing chromatic

number of the lexicographic product G◦H of graphs G and H. Both bounds coincide in many

cases. In particular this happens if |V (H)| − α(H) ≥ diam(G) − 1, where α(G) denotes the

independence number of G.
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1 Introduction and preliminaries

Let G be a simple graph. To shorten the notation we use |G| instead of |V (G)| for the order of G.
The distance dG(u, v) between vertices u and v of G is the length of a shortest path between u and
v in G. The diameter of G is denoted by diam(G) and is the maximum length of a shortest path
between any two vertices of G.

Let t be a positive integer. A set X ⊆ V (G) is a t-packing if any two different vertices from
X are at distance more than t. The t-packing number of G, denoted by ρt(G), is the maximum
cardinality of a t-packing of G. Notice, that if t = 1, then the 1-packing number equals to the
independence number α(G) and we use the later more common notation for it. An independent set
of cardinality α(G) is called α(G)-set. The packing chromatic number χρ(G) of G is the smallest
integer k such that V (G) can be partitioned into subsets X1, . . . , Xk, where Xi induces an i-packing
for every 1 ≤ i ≤ k. Another approach is from a k-packing coloring of G, which is a function
c : V (G) → [k], where [k] = {1, . . . , k}, such that if c(u) = c(v) = i, then dG(u, v) > i. Clearly,
χρ(G) is the minimum integer k for which a k-packing coloring of G exists.

∗The second author was partially supported by Slovenian research agency under the grants P1-0297 and J1-9109.
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The concept of packing chromatic number was introduced by Goddard et al. in [6] under the
name broadcast chromatic number. The problem of determining the packing chromatic number of
a graph is a very difficult problem and is NP-complete even for trees as shown in [2]. The attention
was fast drawn to Cartesian product and infinite latices like hexagonal, triangular and similar. In
[1] it was shown that the packing chromatic number of an infinite hexagonal lattice lies between
6 and 8. Upper bound was later improved to 7 in [3] and finally settled to 7 in [9]. For infinite
triangular lattice and three-dimensional integer lattice Z3 the packing chromatic number is infinite
as shown in [4]. The packing chromatic number of the Cartesian product was already considered
in [1] where the general upper and lower bound were set. The lower bound was later improved in
[8]. Several exact values and bounds for special families of Cartesian product graphs can be found
in [8, 9].

In this note we switch from Cartesian to lexicographic product and prove an upper and a lower
bound for the packing chromatic number of lexicographic product. It turns out that these two
bounds coincide in many cases. In particular, if diam(G) ≤ 2, if diam(G) = 3 and H ≇ Kn and if
|V (H)| − α(H) ≥ diam(G)− 1 and H ≇ Kn.

The lexicographic product of graphs G and H is the graph G ◦H (also sometimes denoted with
G[H ]) with the vertex set V (G) × V (H). Two vertices (g1, h1) and (g2, h2) are adjacent if either
g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H). Set Gh = {(g, h) : g ∈ V (G)} is called a G-layer through
h and Hg = {(g, h) : h ∈ V (H)} is called an H-layer through h. Clearly, subgraphs of G ◦ H

induced by Gh and Hg are isomorphic to G and H , respectively. The distance between two vertices
in lexicographic product is given by

dG((g1, h1), (g2, h2)) =

{

dG(g1, g2) : g1 6= g2
min{2, dH(h1, h2)} : g1 = g2

(1)

and depends heavily on the distance between projections of both vertices to G. For the independence
number it is well known that

α(G ◦H) = α(G)α(H), (2)

see Theorem 1 in [5]. Lexicographic product G ◦H is connected if and only if G is connected. For
more properties of the lexicographic product see [7].

2 Results

In this section we present a lower and an upper bound for the packing chromatic number of lexico-
graphic product of graphs. We start with the lower bound and we use the following notation

d(G) =

{

1 : G ∼= Kn

diam(G)− 1 : otherwise
.

Theorem 2.1. If G and H are graphs, then

χρ(G ◦H) ≥ |G| · |H| − α(G)α(H)−

diam(G)−1
∑

i=2

ρi(G) + d(G).

Proof. Denote ℓ = |G| · |H|−α(G)α(H)−
∑diam(G)−1

i=2 ρi(G)+d(G). Let X1, . . . , Xk be a partition of
V (G ◦H) that yields a k-packing coloring of G ◦H . We have at most α(G)α(H) vertices in X1 by
(2). Denote by Ri a ρi(G ◦H)-set for 2 ≤ i ≤ diam(G)− 1. By (1) we have |Hg ∩Ri| ≤ 1 for every
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g ∈ V (G). So there are at most ρi(G) vertices in Xi for 2 ≤ i ≤ diam(G) − 1. For i ≥ diam(G)
there can only be one vertex in Xi since all the vertices are at distance at most diam(G) from vertex
in Xi. So we have at most α(G)α(H) vertices colored with color 1, at most ρi(G) vertices colored
with color i for every 2 ≤ i ≤ diam(G) − 1, and we need one color for each one of the remaining

vertices and there are |G| · |H|−α(G)α(H)−
∑diam(G)−1

i=2 ρi(G) of them. Meaning that χρ(G◦H) ≥ ℓ

because we have exactly d(G) color classes which possibly have more than one vertex.

We continue with an upper bound that has a similar structure as the lower bound from Theorem
2.1.

Theorem 2.2. Let G and H be graphs and k = |H| − α(H). If H ≇ Kn, then

χρ(G ◦H) ≤ |G| · |H| − α(G)α(H)−
k+1
∑

i=2

ρi(G) + k + 1.

Proof. Denote ℓ = |G| · |H|−α(G)α(H)−
∑k+1

i=2 ρi(G)+k+1. We know that α(G◦H) = α(G)α(H)
and it is easy to see that α(G ◦H)-set can be written as AG×AH where AG is an α(G)-set and AH

is an α(H)-set. We color all the vertices from AG × AH with color 1. Let k = |H| − α(H). There
remain k G-layers with no colored vertices. In each of those layers we color ρi(G) vertices with
color i, 2 ≤ i ≤ k + 1 (one color i is used in one layer). Each of the remaining uncolored vertices
is colored with its own color. So we have α(G)α(H) vertices colored with color 1, ρi(G) vertices
colored with color i for every 2 ≤ i ≤ k + 1, and we need one color for each one of the remaining
uncolored vertices. Clearly, there are |G| · |H| − α(G)α(H)−

∑k+1
i=2 ρi(G) vertices colored with its

own color. Meaning that χρ(G ◦ H) ≤ ℓ because we have k + 1 color classes which possibly have
more than one vertex.

Notice that if diam(G) ≤ 2, then also diam(G◦H) ≤ 2 (see 1) and only color 1 can appear more
then once in any packing coloring. Therefore, if diam(G) ≤ 2, Theorem 2.2 also holds for H ∼= Kn.
Next we show that if the number of vertices of H without its α(H)-set is comparable with diam(G),
then both bounds coincide.

Corollary 2.3. Let G and H be graphs and |H| − α(H) ≥ diam(G)− 1. If H ≇ Kn, then

χρ(G ◦H) = |G| · |H| − α(G)α(H)−

diam(G)−1
∑

i=2

ρi(G) + diam(G)− 1.

Proof. Let first G ∼= Kn. By Theorem 2.1 it holds that χρ(G ◦H) ≥ n|H| − α(H)−
∑0

i=2 ρi(G) +
1 = n|H| − α(H) + 1 since d(G) = 1. On the other hand let k = |H| − α(H) and we have
χρ(G ◦ H) ≤ n|H| − α(H) − (k + 1 − 2 + 1) + k + 1 = n|H| − α(H) + 1 by Theorem 2.2 since
ρi(G) = 1 for every 2 ≤ i ≤ k + 1. Hence, the equality follows when G ∼= Kn.
Otherwise G 6∼= Kn and d(G) = diam(G) − 1. So by Theorem 2.1 it holds that χρ(G ◦ H) ≥

|G| · |H| − α(G)α(H)−
∑diam(G)−1

i=2 ρi(G) + diam(G)− 1. Since k ≥ diam(G)− 1 and ρi(G) = 1 for
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every diam(G) ≤ i ≤ k + 1, by Theorem 2.2 it holds that

χρ(G ◦H) ≤ |G| · |H| − α(G)α(H)−





diam(G)−1
∑

i=2

ρi(G) +

k+1
∑

i=diam(G)

ρi(G)



+ k + 1 =

= |G| · |H| − α(G)α(H)−

diam(G)−1
∑

i=2

ρi(G)− (k + 1− diam(G) + 1) + k + 1 =

= |G| · |H| − α(G)α(H)−

diam(G)−1
∑

i=2

ρi(G) + diam(G)− 1.

(3)

We can expect that the condition of Corollary 2.3 will be fulfilled more frequently when diam(G)
is small. In particular, for diam(G) = 1 the condition is always satisfied and we have

χρ(G ◦H) = |G| · |H| − α(H) + 1

as seen in the proof of the previous corollary. Notice that in the case of diam(G) = 2 the sum in the
lower bound of Theorem 2.1 does not exist and that d(G) = 1. Also ρi(G) = 1 for every 2 ≤ i ≤ k

since diam(G) = 2. Therefore we have −
∑k+1

i=2 ρi(G) + k + 1 = −(k + 1− 2 + 1) + k + 1 = 1 in the
upper bound of Theorem 2.2. Hence both bounds coincide and we have the following corollary.

Corollary 2.4. Let G and H be graphs. If diam(G) = 2, then

χρ(G ◦H) = |G| · |H| − α(G)α(H) + 1.

Similar holds also when diam(G) = 3. Namely in this case diam(G◦H) = 3 by (1) and only two
color classes (X1 and X2) can have more than one representative. Therefore bounds from Theorems
2.2 and 2.1 coincide again under condition that there is at least one G-layer without vertices from
X1. This always occurs if H ≇ Kn and the following corollary holds.

Corollary 2.5. Let G and H be graphs. If diam(G) = 3 and H ≇ Kn, then

χρ(G ◦H) = |G| · |H| − α(G)α(H)− ρ2(G) + 2.

Continuing in this manner things get more complicated. Therefore we finish with an approach
from the different side and concentrate on a family of graphs with big diameter, namely the case
when G ∼= Pn. For this we first improve the upper bound from Theorem 2.2.

Theorem 2.6. Let H a graph and n a positive integer. If k = |H| − α(H), then

χρ(Pn ◦H) ≤ n|H| −
⌈n

2

⌉

α(H)−
k+1
∑

i=2

⌈

n

i+ 1

⌉

−

|H|+1
∑

j=k+2

(⌊

⌊

n
2

⌋

− 1
⌊

j

2

⌋

+ 1

⌋

+ 1

)

+ |H|+ 1.

Proof. Let Pn = v1 . . . vn and AH be an α(H)-set. Clearly, APn
= {v2i−1 : i ∈

[⌈

n
2

⌉]

} is an α(Pn)-set
and A = APn

× AH is an α(Pn ◦H)-set. Firstly, we color vertices with k + 1 colors as in the proof
of Theorem 2.2. For this we use

ℓ = n|H| −
⌈n

2

⌉

α(H)−

k+1
∑

i=2

⌈

n

i+ 1

⌉

+ k + 1
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colors because ρi(Pn) =
⌈

n
i+1

⌉

.

In each Gh-layer, h ∈ AH , there exist
⌊

n
2

⌋

still not colored vertices with an even distance between
any two of them. We denote them by Bh = (V (Pn)− APn

)× {h}. Additionally we will color with
color j, k + 2 ≤ j ≤ |H| + 1, some vertices of exactly one Gh-layer, h ∈ AH . Denote by Gh

j the
Gh-layer, h ∈ AH , containing vertices of color j, k+2 ≤ j ≤ |H|+1. The biggest distance between
two vertices from Bh equals 2

⌊

n
2

⌋

− 2. Notice that two vertices of Gh
j colored with j must be at

least pj = 2
⌊

j

2

⌋

+ 2 apart because every second vertex in Gh
j -layer, h ∈ AH , k+ 2 ≤ j ≤ |H|+ 1, is

already colored (with color 1). Therefore, we can color with j vertices from set

{(v2+spj , h) : 0 ≤ s ≤

⌊

⌊

n
2

⌋

− 1
⌊

j

2

⌋

+ 1

⌋

}.

Meaning that tj =

(⌊

⌊n
2
⌋−1

⌊ j

2
⌋+1

⌋

+ 1

)

vertices can be colored with color j, k + 2 ≤ j ≤ |H| + 1 in

Gh
j -layer, h ∈ AH .

By Theorem 2.2 we use at most ℓ colors for coloring Pn ◦H . In addition tj vertices of Gh
j are colored

with j, k + 2 ≤ j ≤ |H|+ 1. Meaning that

χρ(Pn ◦H) ≤ ℓ−

|H|+1
∑

j=k+2

tj + |H| − k

which completes the proof.

For H ∼= Km we have α(H) = 1 and k = m− 1. The second sum of Theorem 2.6 has only one
term and that is in the case of j = |H|+ 1 so we immediately obtain the following.

Corollary 2.7. For positive integers n and m we have

χρ(Pn ◦Km) ≤ nm−
⌈n

2

⌉

−

m
∑

i=2

⌈

n

i+ 1

⌉

−

⌊

⌊

n
2

⌋

− 1
⌊

m+1
2

⌋

+ 1

⌋

+m.

The upper bound from Theorem 2.6 is not the best possible in the general case which we can
see in the example of coloring P8 ◦P6. Using the coloring described in the proof of that theorem we
use 32 colors to color P8 ◦ P6, see left part of Figure 1. But the same graph can be colored with 31
colors, so χρ(P8 ◦ P6) ≤ 31, see right part of Figure 1.

1 1 1 1

1 1 1 1

1 1 1 1

2 2 2

3 3

4 4

5 5

6

7

8 9

10 11 12 13 14

15 16 17

18 19 20 21 22 23

24 25 26

27 28 29 30 31 32

1 1 1 1

1 1 1 1

1 1 1 1

5 5

6 6

4 4

2 2 2

3 3

7

8 9

10 11 12 13 14 15

16 17

18 19 20 21 22

23 24 25

26 27 28 29 30 31

Figure 1: Packing coloring for P8 ◦ P6 using 32 colors according to Theorem 2.6 (a) and 31 colors
(b) (not all edges of a graph are drawn).
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Another example can be constructed as follows. Let nt = 1 + lcm(2, 3, . . . , t + 1), H ≇ Km a
graph and k = |H| −α(H). Notice that nt is chosen in such a way that every ρi(Pnt

)-set, 1 ≤ i ≤ t,
contains the first and the last vertex of Pnt

. If t− 1 > k, then we cannot obtain ρi(Pnt
) vertices of

color i in Pnt
◦H for some 2 ≤ i ≤ t and the upper bound of Theorem 2.6 is not exact.
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