
On selecting a fraction of leaves with disjoint
neighborhoods in a plane tree∗

Kolja Junginger, Ioannis Mantas, and Evanthia Papadopoulou†

Faculty of Informatics, USI Università della Svizzera italiana,
Lugano, Switzerland

Abstract
We present a generalization of a combinatorial result by Aggarwal,

Guibas, Saxe and Shor [Discrete & Computational Geometry, 1989]
on a linear-time algorithm that selects a constant fraction of leaves,
with pairwise disjoint neighborhoods, from a binary tree embedded in
the plane. This result of Aggarwal et al. is essential to the linear-
time framework, which they also introduced, that computes certain
Voronoi diagrams of points with a tree structure in linear time. An
example is the diagram computed while updating the Voronoi diagram
of points after deletion of one site. Our generalization allows that only
a fraction of the tree leaves is considered, and it is motivated by linear-
time Voronoi constructions for non-point sites. We are given a plane
tree T of n leaves, m of which have been marked, and each marked leaf
is associated with a neighborhood (a subtree of T) such that any two
topologically consecutive marked leaves have disjoint neighborhoods.
We show how to select in linear time a constant fraction of the marked
leaves having pairwise disjoint neighborhoods.

1 Introduction

In 1987, Aggarwal, Guibas, Saxe and Shor [1] introduced a linear-time tech-
nique to compute the Voronoi diagram of points in convex position, which

∗This work was supported in part by the Swiss National Science Foundation, project
SNF 200021E-154387. It appears in Discrete Applied Mathematics [5].

†Corresponding author: evanthia.papadopoulou@usi.ch

1

ar
X

iv
:2

31
2.

10
24

5v
1

 [
cs

.C
G

]
 1

5
D

ec
 2

02
3

VD(SB ∪ SC)
SC

SG
SR

SB

S

VD(SG)
VD(S)

VD(SB)

Figure 1: The divide & conquer algorithm of [1]. (ÝÑ) indicates the two
different divide phases; (ÝÑ) indicates the recursive constructions; (ÝÑ)
indicates site insertion; (ÝÑ) indicates merging.

can also be used to compute other Voronoi diagrams of point-sites with a
tree structure such as: (1) updating a nearest-neighbor Voronoi diagram of
points after deletion of one site; (2) computing the farthest-point Voronoi
diagram, after the convex hull of the points is known; (3) computing an
order-k Voronoi diagram of points, given its order-(k-1) counterpart. Since
then, this framework has been used (and extended) in various ways to tackle
various linear-time Voronoi constructions, including the medial axis of a sim-
ple polygon by Chin et al. [4], the Hamiltonian abstract Voronoi diagram by
Klein and Lingas [8], and some forest-like abstract Voronoi diagrams by
Bohler et al. [2]. The linear-time construction for problem (3) improves by a
logarithmic factor the standard iterative construction by Lee [9] to compute
the order-k Voronoi diagram of point-sites, which is in turn used in different
scenarios; for example, algorithms for coverage problems in wireless networks
by So and Ye [10]. A much simpler randomized linear-time approach for
problems (1)-(3) was introduced by Chew [3].

The linear-time technique of Aggarwal et al. [1] is a doubly-recursive
divide-and-conquer scheme operating on an ordered set of points S whose
Voronoi diagram is a tree with connected Voronoi regions. At a high level
it can be described as follows, see Figure 1. In an initial divide phase, the
set S is split in two sets SR (red) and SB (blue) of roughly equal size, with
the property that every two consecutive red sites in SR have disjoint Voronoi
regions. In a second divide phase, the set SR is split further in sets SC

(crimson) and SG (garnet), so that any two sites in SC have pairwise disjoint
regions in the Voronoi diagram of SB Y SC , and the cardinality of SC is a
constant fraction of the cardinality of SR. In the merge phase, the sites of

2

SC are inserted one by one in the recursively computed Voronoi diagram of
SB, deriving the Voronoi diagram of SC Y SB, and the result is merged with
the recursively computed diagram of SG.

The key factor in obtaining the linear-time complexity is that the cardi-
nality of the set SC is a constant fraction of SR, which is Θp|S|q, and that SC

can be obtained in linear time. This is possible due to the following combi-
natorial result of [1] on a geometric binary tree embedded in the plane. This
result is, thus, inherently used by any algorithm that is based on the linear-
time framework of Aggarwal et al. A binary tree that contains no nodes of
degree 2 is called proper.

Theorem 1 ([1]). Let T be an unrooted (proper) binary tree embedded in the
plane. Each leaf of T is associated with a neighborhood, which is a (proper)
subtree of T rooted at that leaf; consecutive leaves in the topological ordering
of T have disjoint neighborhoods. Then, there exists a fixed fraction of the
leaves whose neighborhoods are pairwise disjoint, they have a constant size,
and no tree edge has its endpoints in two different neighborhoods. Such a set
of leaves can be found in linear time.

Overall, the time complexity of the algorithm is described by the following
recursive equation and can be proved to be Θpnq, where n “ |S|.

T pnq “ T p|SB|q ` T p|SG|q ` Θp|SR|q ` |SC | ¨ Θp1q ` Θpnq

“ T p|SB|q ` T p|SG|q ` Θpnq

“ Θpnq (Because |SC | “ Θpnq)

It is worth understanding what Theorem 1 represents, in order to have a
spherical perspective of its connection to Voronoi diagrams. An embedded
tree corresponds to the graph structure of a Voronoi diagram, and leaves are
the endpoints of unbounded Voronoi edges ”at infinity”; see Figure 2a. The
neighborhood of a leaf corresponds to the part of the diagram (of SB) that
gets deleted if a point-site is inserted there; see Figure 2b. Hence, Theorem 1
aims to select leaves with pairwise disjoint neighborhoods (SC), as they can
easily, and independently from one another, be inserted in the diagram.

For generalized sites, other than points in the plane, or for abstract
Voronoi diagrams, deterministic linear-time algorithms for the counterparts
of problems (1)-(3) have not been known so far. This includes the diagrams
of very simple geometric sites such as line segments and circles in the Eu-
clidean plane. A major complication over points is that the underlying dia-
grams have disconnected Voronoi regions. Recently Papadopoulou et al. [6, 7]

3

`1

`2

`3

`4`5

(a) The Voronoi diagram
of 5 points (‚); the neigh-
borhood of ℓ2 is shaded.

(b) The dashed part of the
diagram will get deleted if
point (‚) is inserted.

`1

`2

`3

`4`5

(c) The topological order-
ing of the leaves in T .

Figure 2: An embedded binary tree T in the setting of Aggarwal et al. [1].

presented a randomized linear-time technique for these problems, based on
a relaxed Voronoi structure, called a Voronoi-like diagram [6, 7]. Whether
this structure can be used within the framework of Aggarwal et al., lead-
ing to deterministic linear-time constructions, remains still an open problem.
Towards resolving this problem we need a generalized version of Theorem 1.

The problem is formulated as follows. We have an unrooted binary tree
T embedded in the plane, which corresponds to a Voronoi-like structure.
Not all leaves of T are eligible for inclusion in the set SC of the linear-time
framework. As in the original problem, each of the eligible leaves is associ-
ated with a neighborhood, which is a subtree of T rooted at that leaf, and
adjacent leaves in the topological ordering of T have disjoint neighborhoods.
In linear time, we need to compute a constant fraction of the eligible leaves
such that their neighborhoods are pairwise disjoint. The non-eligible leaves
spread arbitrarily along the topological ordering of the tree leaves. This paper
addresses this problem by proving the following generalization of Theorem 1.

Theorem 2. Let T be an unrooted (proper) binary tree embedded in the
plane having n leaves, m of which have been marked. Each marked leaf of T
is associated with a neighborhood, which is a proper subtree of T rooted at
this leaf, and any two consecutive marked leaves in the topological ordering of
T have disjoint neighborhoods. Then, there exist at least 1

10
m marked leaves

whose neighborhoods are pairwise disjoint and no tree edge has its endpoints
in two of these neighborhoods. Further, we can select at least a fraction p of
these 1

10
m marked leaves in time Op 1

1´p
nq, for any p P p0, 1q.

4

`1

`2

`3

`4

(a) Neighborhoods of the marked leaves
are shown shaded. The intersection of
neighborhoods is highlighted with red.

T

(b) A marked tree T , which serves as
an example instance for illustrating the
notions of Section 2.

Figure 3: Two marked trees, where marked leaves are shown with (‚) and
unmarked leaves are shown with (‚).

The algorithm of Theorem 2 allows for a trade-off between the number
of the returned marked leaves and its time complexity, using a parameter
p P p0, 1q. If p is constant then the algorithm returns a constant fraction
of the marked leaves in Opnq time. Theorem 2 is a combinatorial result on
an embedded tree, and thus, we expect it to find applications in different
contexts as well.

2 Preliminaries

Throughout this work, we consider an unrooted binary tree T of n leaves
that is embedded in the plane. The tree T contains no nodes of degree 2 and
has the following additional properties:

‚ m out of the n leaves of T have beenmarked, and the remaining r “ n´m
leaves are unmarked (see Figure 3b).

‚ Every marked leaf ℓ is associated with a neighborhood, denoted nhpℓq,
which is a subtree of T rooted at ℓ (see Figure 3a).

‚ Every two consecutive marked leaves in the topological ordering of T
have disjoint neighborhoods (see Figure 3a).

5

Tu

(a) Tree Tu.

T ∗u

(b) Tree T ˚
u : L-nodes are shown with

(˝), C-nodes with (˝), J-nodes with
(‚), and spines are highlighted.

Figure 4: Illustration of Definition 1 applied to the tree T of Figure 3b.

We call a binary tree T that follows these properties, amarked tree. Given
a marked tree T , let Tu denote the unmarked tree obtained by deleting all
the unmarked leaves of T and contracting the resulting degree-2 nodes, see
Figure 4a. We apply to Tu the following definition, which is extracted from
the proof of Theorem 1 in [1], see Figure 4.

Definition 1. Let T be a proper binary tree and let T ˚ be the tree obtained
from T after deleting all its leaves. A node u in T ˚ is called:

a) Leaf or L-node if degpuq “ 1 in T ˚, i.e., u neighbors two leaves in T .

b) Comb or C-node if degpuq “ 2 in T ˚, i.e., u neighbors one leaf in T .

c) Junction or J-node if degpuq “ 3 in T ˚, i.e., u neighbors no leaves in T .

A spine is a maximal sequence of consecutive C-nodes, which is delimited by
J- or L-nodes. Each spine has two sides and marked leaves may lie in either
side of a spine.

Let T ˚
u , be the tree obtained by applying Definition 1 to the unmarked tree

Tu. The nodes T ˚
u are labeled as L-, C- and J-nodes, see, e.g., Figure 4b. The

labeling of nodes in T ˚
u is then carried back to their corresponding nodes in

the original marked tree T obtaining amarked tree T with labels, see Figure 6.
Some nodes in T remain unlabeled, see, e.g., node u in Figure 6.

6

T

u

Figure 5: The marked tree T of Fig-
ure 3b with labels (˝, ˝, ‚). Node u
is not labeled.

T

λ

Pc1:c5

c1

c2

c3 c5

c4K1 K2

ι

λ′

c6

u′

c3

Figure 6: The components of T
shown shaded. The dashed parts do
not belong to any component.

Definition 2. Given a marked tree T with labels we define the following
two types of components :

a) L-component : an L-node λ defines an L-component that consists of λ
union the two subtrees of T that are incident to λ and contain no labeled
node, see, e.g., K2 in Figure 6. The L-component contains exactly the
two marked leaves that labeled λ.

b) 5-component : a group of five successive C-nodes ci, . . . , ci`4 on a spine
defines a 5-component that consists of the path Pci:ci`4

from ci to ci`4

(which may contain unlabeled nodes) union the subtrees of T , which are
incident to the nodes of Pci:ci`4

and contain no labeled node, see, e.g.,
K1 in Figure 6. Nodes ci and ci`4 are referred to as the extreme nodes
of K. The 5-component contains exactly the five marked leaves, which
labeled the five C-nodes.

Each spine is partitioned into consecutive groups of 5-components and at
most four remaining ungrouped C-nodes.

Figure 5 and Figure 6 illustrates these definitions. The tree T has three
L-components and two 5-components which are indicated shaded in Figure 6.
The 5-component K1 contains the path Pc1:c5 from c1 to c5, which is shown
in thick black lines, and contains one unlabeled node. Node c6 is an un-
grouped C-node. Figure 6 also illustrates a spine consisting of the C-nodes

7

c1, c2, c3, c4, c5, c6. The spine is delimited by the L-node λ1 and the J-node ι;
it has five marked leaves from one side and one marked leaf from the other.

Observation 1. The components of T are pairwise vertex disjoint. Every
L-component contains exactly two marked leaves and every 5-component con-
tains exactly five marked leaves.

Among the components of T there may be subtrees of T consisting of
unlabeled nodes and unmarked leaves that may be arbitrarily large. These
subtrees hang off any unlabeled nodes and ungrouped C-nodes. For example,
in Figure 6, node u1 is unlabeled and the gray dotted subtree incident to it
consists solely of unmarked leaves and unlabeled nodes that do not belong
to any component.

3 Existence of leaves with pairwise disjoint

neighborhoods

Aggarwal et al. [1] showed that for every eight ungrouped C-nodes in Tu

there exists at least one L-node. Their argument holds for the marked tree
T as well, which is described in the following lemma for completeness.

Lemma 1. For every eight ungrouped C-nodes in T there exists at least one
L-component.

Proof. We count the L-nodes of T using the tree T ˚
u following the argument

of [1]. Let k be the number of leaves in T ˚
u , which also equals the number of

L-nodes in T . Contracting all degree-2 vertices in T ˚
u yields a binary tree T ˚

b ,
which has the same leaves as T ˚

u . Since T ˚
b is an unrooted binary tree with k

leaves, it has 2k´2 nodes and 2k´3 edges. Every edge in T ˚
b corresponds to

at most one spine in T ˚
u and in every spine there are at most four ungrouped

C-nodes. Thus,

|ungrouped C-nodes| ď 4|spines| ď 4 ¨ p2k ´ 3q ă 8|L-nodes|,

where | ¨ | denotes cardinality. So, there exists at least one L-node for ev-
ery eight ungrouped C-nodes, and an L-node corresponds to exactly one
L-component.

8

`i `i+1

s

(a) An L-component

`i−1 `i `i+1

q s
t

(b) A 5-component

Figure 7: Marked leaves with their neighborhoods shaded. The neighborhood
nhpℓiq is confined to the component in both cases.

The following lemmata establish that there exists a constant fraction of
the marked leaves, which have pairwise disjoint neighborhoods. The counting
arguments follow those in [1] while they are further enhanced to account for
the unmarked leaves, which are arbitrarily distributed among the marked
leaves. We say that the neighborhood nhpℓq of a marked leaf ℓ is confined to
a component K if it is a subtree of K.

Lemma 2. In every component K, there exists a marked leaf ℓ P K whose
neighborhood is confined to K. This neighborhood may contain no L-node
and no extreme C-node.

Proof. Let K be an L-component and let s be the L-node that defines K.
Let ℓi and ℓi`1 be the two marked leaves of K. Since the neighborhoods
nhpℓiq and nhpℓi`1q are disjoint, at least one of them cannot contain s. This
neighborhood is, thus, entirely contained in the relevant subtree rooted at s,
see Figure 7a, and contains no labeled node.

Let K be a 5-component. Since a 5-component has two sides, at least
three out of the five marked leaves of the component must lie on the same
side of K, call them ℓi´1, ℓi and ℓi`1. Let q, s, and t be their corresponding
C-nodes, i.e., the first C-nodes in K reachable from ℓi´1, ℓi, and ℓi`1, respec-
tively, see Figure 7b. There are three cases. If t P nhpℓiq, then t R nhpℓi`1q

(since the two neighborhoods are disjoint), and thus, nhpℓi`1q is confined to
the subtree of t that contains ℓi`1. Similarly, if q P nhpℓiq, then q R nhpℓi´1q,
so nhpℓi´1q is confined to the subtree of q containing ℓi´1. If neither q nor t
are in nhpℓiq, then clearly nhpℓiq is confined to K. In all cases the confined
neighborhood cannot contain neither q nor t. So, at least one of the five

9

marked leaves must have a neighborhood confined to K and this neighbor-
hood cannot contain the extreme C-nodes in K.

Lemma 3. Let T be a marked tree with m marked leaves. At least 1
10
m

marked leaves must have pairwise disjoint neighborhoods such that no tree
edge may have its endpoints in two different neighborhoods.

Proof. Every spine of T has up to four ungrouped C-nodes. By Lemma 1,
there exists at least one L-component for every eight ungrouped C-nodes. By
Lemma 2, every component of T has at least one marked leaf whose neigh-
borhood is confined to the component. So, overall, at least 1

5
of the marked

leaves from each 5-component and at least 1
10

marked leaves of the remaining
nodes, which label ungrouped C-nodes or L-nodes, have a confined neigh-
borhood. The components are pairwise disjoint, so at least 1

10
marked leaves

have pairwise disjoint neighborhoods. Furthermore, confined neighborhoods
do not contain any L-node or extreme C-node, as shown in Lemma 2. Thus,
no tree edge may have its endpoints in two different neighborhoods.

We remark that the neighborhoods implied by Lemma 3 may not contain
any L-node nor any extreme C-node. We also remark that these neighbor-
hoods need not be of constant complexity as their counterparts in [1] are.
These neighborhoods may have complexity Θprq, where r “ n ´ m is the
number of unmarked leaves. Since r may be Θpnq, this poses a challenge on
how we can select these leaves efficiently.

4 Selecting leaves with pairwise disjoint neigh-

borhoods

Given a marked tree T withmmarked leaves, we have already established the
existence of 1

10
m marked leaves that have pairwise disjoint neighborhoods. In

this section, we present an algorithm to select a fraction p of these leaves, i.e.,
p
10
m marked leaves with pairwise disjoint neighborhoods, in time Op 1

1´p
nq,

where 0 ă p ă 1.
The main challenge over the algorithm of [1] is that the r unmarked

leaves are arbitrarily distributed among the m marked leaves, and thus, the
components of T and the neighborhoods of the marked leaves may have
complexity Θprq. If for each component we spend time proportional to its

10

size, then the time complexity of the algorithm will be Θpmrq, i.e., Θpn2q if
r,m P Θpnq.

To keep the complexity of the algorithm linear, we spend time up to
a predefined number of steps in each component depending on the ratio
c “

P

r
m

T

and the trade-off parameter p P p0, 1q. Our algorithm guarantees to
find at least a fraction p of the possible 1

10
m marked leaves in time Op 1

1´p
nq.

We first present a series of results necessary to establish the correctness of
the approach and then describe the algorithm.

Let ℓ1, . . . , ℓm be the marked leaves in T ordered in a counterclockwise
topological ordering. Let the interval pℓi, ℓi`1q denote the set of unmarked
leaves between ℓi and ℓi`1 in the same order. The interval tree of pℓi, ℓi`1q, de-
noted Tpℓi,ℓi`1q, is the minimal subtree of T that contains the marked leaves ℓi
and ℓi`1, including the unmarked leaves in pℓi, ℓi`1q, see Figure 8b. We show
the following pigeonhole lemma involving unmarked leaves and intervals.

Lemma 4. Suppose that r items (unmarked leaves) are distributed in k ě m
containers (intervals), and let c “

P

r
m

T

. For any natural number x ď r, let
kx denote the number of containers that contain more than x items. Then

kx ď
cm

x ` 1
.

Proof. Each of the kx containers contains at least x ` 1 items. Thus,

kxpx ` 1q ď r ñ kx ď
r

x ` 1
. (1)

c “

Q r

m

U

ñ c ě
r

m
ñ r ď cm (2)

p1q
p2q

ùñ kx ď
cm

x ` 1
(3)

For a component K, let δK denote the maximum number of topologically
consecutive unmarked leaves in K. The unmarked leaves counted in δK
belong to some interval pℓi, ℓi`1q.

Lemma 5. Let K be a component of T and let ℓi be a marked leaf whose
neighborhood nhpℓiq is confined to K.

a) If K is an L-component, then nhpℓiq has at most 4δK nodes.

b) If K is a 5-component, then nhpℓiq has at most 10δK nodes.

Proof. Let K be an L-component whose L-node is s, see Figure 8a. Since
nhpℓiq is confined to K then s R nhpℓiq. Thus, s disconnects nhpℓiq from the

11

`i

s

`i+1

`i-1

(a) An L-component.

a b

`a = `i `b`∗a `∗b

T(`j,`j+1) `j`j+1

(b) A 5-component with
ℓi “ ℓa. The interval tree
Tpℓj ,ℓj`1q is highlighted.

`i

a

`a

`b

b

`∗a

`∗b

(c) A 5-component with
ℓi R tℓa, ℓbu. The interval
trees Tpℓa,ℓ

˚
a q and Tpℓb,ℓ

˚
b q

are highlighted

Figure 8: Illustration of a component K in different settings for the proof of
Lemma 5. The neighborhood nhpℓiq is shaded gray. Marked leaves of K are
indicated with (‚) and the other marked leaves with (‚).

rest of T , making nhpℓiq disjoint from any interval tree, other than Tpℓi´1,ℓiq

and Tpℓi,ℓi`1q. Hence, nhpℓiq contains at most 2δK ` 1 leaves, and since it is a
proper binary tree, it can have at most 4δK nodes in total.

Suppose K is a 5-component. Since K contains exacly five marked leaves,
there can be at most seven interval trees that may share a node with K.
Let a and b be the two extreme C-nodes of K and let ℓa and ℓb be their
corresponding marked leaves, which labeled a and b as C-nodes. Let ℓ˚

a (resp.
ℓ˚
b q be the neighboring marked leaf of ℓa (resp. ℓbq in the topological ordering
of the marked leaves, which does not belong to K. Refer to Figure 8b and
Figure 8c. Neighborhood nhpℓiq is confined to K, thus, a, b R nhpℓiq. If
ℓi “ ℓa (resp. ℓi “ ℓb) the C-node a (resp. b), disconnects nhpℓiq from
the rest of T . Thus, nhpℓiq has a node in common with only two interval
trees, Tpℓi´1,ℓiq and Tpℓi,ℓi`1q, see Figure 8b. If ℓi R tℓa, ℓbu, then nodes a and
b disconnect nhpℓiq from the rest of T , thus, nhpℓiq is disjoint from both
Tpℓa,ℓ

˚
a q and Tpℓb,ℓ

˚
b q, see Figure 8c. Then nhpℓiq may have a node in common

with at most five out of the seven interval trees that could be related to K.
Concluding, nhpℓiq has at most 5δK `1 leaves, and since it is a proper binary
tree, it has at most 10δK nodes overall.

For each component K we define a so-called representative leaf and at

12

most two delimiting nodes. These are used by our algorithm to identify a
confined neighborhood within the component.

Definition 3. For a component K, we define its representative leaf and
delimiting nodes as follows:

a) If K is an L-component, there is one delimiting node, which is its L-node.
The representative leaf is the first marked leaf of K in the topological
ordering of leaves. In Figure 7a, ℓi is the representative leaf and s is the
delimiting node.

b) If K is a 5-component, consider the side of K containing at least three
marked leaves. The representative leaf is the second leaf among these
three leaves in the topological ordering. The delimiting nodes are the C-
nodes defined by the other two leaves in the same side. In Figure 7b, ℓi is
the representative leaf and q, t are the delimiting nodes.

Our algorithm takes as input a marked tree T and a parameter p P p0, 1q,
and returns p

10
m marked leaves that have pairwise disjoint neighborhoods.

A pseudocode description is given in Algorithm 1. The algorithm iterates
over all the components of T , and selects at most one marked leaf for each
component.

For each component K, the algorithm first identifies its representative
leaf and delimiting nodes (lines 6,13), and then traverses the neighborhood
of the representative leaf performing a depth-first-search in the component
up to a predefined number of steps (lines 7,14). If, while traversing the
neighborhood, a delimiting node is detected (lines 8,15,17), then a marked
leaf is selected (lines 9,16,18), following the case analysis of Lemma 2. If the
entire neighborhood is traversed within the allowed number of steps without
detecting a delimiting node (lines 10,19), then the representative leaf is se-
lected (lines 11,20). Otherwise, K is abandoned and the algorithm proceeds
to the next component.

Lemma 6. Algorithm 1 returns at least p
10
m marked leaves with pairwise

disjoint neighborhoods such that no tree edge has its endpoints in two different
neighborhoods.

Proof. Let K be a component. The algorithm traverses the neighborhood
of the representative leaf ℓi and takes a decision after at most 4z, or 10z,
steps. In Lemma 5, we proved that if nhpℓiq is confined, nhpℓiq has at most

13

Algorithm 1: Selecting leaves with pairwise disjoint neighborhoods.

Input : A marked tree T with n “ r ` m leaves and a parameter
p P p0, 1q.

Output: A set sol of marked leaves.

1 Obtain the labeling of T ;
2 Partition T into components as indicated in Definition 2;

3 sol Ð H; c Ð

Q r

m

U

; z Ð

Q

10c
1´p

U

´ 1;

4 for each component K of T do
5 if K is an L-component then
6 ℓi Ð representative leaf; s Ð delimiting node;
7 for at most 4z steps traverse nhpℓiq
8 if s is visited then
9 sol Ð sol Y tℓi`1u; break;

10 if nhpℓiq is traversed and s is not visited then
11 sol Ð sol Y tℓiu;

12 else if K is a 5-component then
13 ℓi Ð representative leaf, q, t Ð delimiting nodes;
14 for at most 10z steps traverse nhpℓiq
15 if q is visited then
16 sol Ð sol Y tℓi´1u; break;
17 if t is visited then
18 sol Ð sol Y tℓi`1u; break;

19 if nhpℓiq is traversed and q, t are not visited then
20 sol Ð sol Y tℓiu;

21 return sol;

4δK , or 10δK , nodes. Hence, if δK ď z, the algorithm will succeed to select
a marked leaf from K, because either nhpℓiq is confined to K, and thus, the
entire nhpℓiq is traversed (lines 10-11,19-20), or else a delimiting node gets
visited, and thus, the corresponding marked leaf is selected (lines 8-9,15-18).
In all cases, we follow the proof of Lemma 2 and the neighborhood of the
selected leaf is confined to K. Thus the selected leaf is among those counted
in Lemma 3.

If on the other hand δk ą z, then the algorithm may fail to identify a
marked leaf of K. We use the pigeonhole Lemma 4 to bound the number of

14

(`i, `i+1)K1 (`i, `i+1)K2

(`i, `i+1)

`i`i+1
(`i, `i+1)K3

K1 K2 K3

Figure 9: An interval pℓi, ℓi`1q related to three components K1,K2

and K3. Interval pℓi, ℓi`1q is further subdivided into three intervals
pℓi, ℓi`1qK1 ,pℓi, ℓi`1qK2 and pℓi, ℓi`1qK3 .

these components. To this aim, we consider the set I of all intervals induced
by the marked leaves and the component of T . For an interval pℓi, ℓi`1q,
which is not disjoint from K, let pℓi, ℓi`1qK :“ pℓi, ℓi`1q X K denote its sub-
interval of unmarked leaves that belong toK, see an example in Figure 9.
Let Iz be the intervals in I that contain more than z unmarked leaves. Then
the algorithm may fail in at most |Iz| components.

To bound |Iz|, we use Lemma 4 for x “ z “

Q

10c
1´p

U

´ 1. Then,

|Iz|
p3q

ď
cm

z ` 1
“

cm
Q

10c
1´p

U

´ 1 ` 1
ď

cm
10c
1´p

“
1 ´ p

10
m (4)

Thus, the algorithm may fail for at most 1´p
10

m components. By Lemma 1,
there exist at least 1

10
m components in T , thus, the algorithm will succeed

in selecting a marked leaf from at least

1

10
m ´ |Iz|

p4q

ě
1

10
m ´

1 ´ p

10
m “ m

p

10
(5)

components, concluding the proof.

Lemma 7. Algorithm 1 has time complexity Op 1
1´p

nq.

Proof. Labeling and partitioning the tree T into components can be done in
Θpnq time. Then, for each component the algorithm traverses a neighborhood
performing at most 10z “ Θp c

1´p
q steps. There are Θpmq components, so we

have Op c
1´p

¨ mq time complexity. Recall that c “
P

r
m

T

. If m “ Θpnq, then

15

c “ Θp1q, so cm “ Θpnq. Else if m “ opnq, then cm “ Θprq “ Θpnq. In all
cases, the time complexity of the algorithm is Op 1

1´p
nq.

By combining Lemmas 3, 6 and 7 we establish (and re-state) Theorem 2.

Theorem 2. Let T be a marked tree of n total leaves and m marked leaves.
Then there exist at least 1

10
m leaves in T with pairwise disjoint neighborhoods

such that no tree edge has its endpoints in two different neighborhoods. We
can select at least a fraction p of these 1

10
m marked leaves in time Op 1

1´p
nq,

for any p P p0, 1q.

If the parameter p P p0, 1q is a constant, then the algorithm returns
a constant fraction of the marked leaves and the time complexity of the
algorithm is Opnq.

References

[1] A. Aggarwal, L. Guibas, J. Saxe, and P. Shor. A linear-time algorithm
for computing the Voronoi diagram of a convex polygon. Discrete &
Computational Geometry, 4:591–604, 1989.

[2] C. Bohler, R. Klein, A. Lingas, and C.-H. Liu. Forest-like abstract
Voronoi diagrams in linear time. Computational Geometry, 68:134–145,
2018.

[3] L. P. Chew. Building Voronoi diagrams for convex polygons in linear
expected time. Technical report, Dartmouth College, Hanover, USA,
1990.

[4] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a
simple polygon in linear time. Discrete & Computational Geometry,
21(3):405–420, 1999.

[5] K. Junginger, I. Mantas, and E. Papadopoulou. On selecting a fraction
of leaves with disjoint neighborhoods in a plane tree. Discrete Applied
Mathematics, 319:141–148, 2022.

[6] K. Junginger and E. Papadopoulou. Deletion in abstract Voronoi di-
agrams in expected linear time and related problems. arXiv preprint
arXiv:1803.05372, 2018.

16

[7] E. Khramtcova and E. Papadopoulou. An expected linear-time al-
gorithm for the farthest-segment Voronoi diagram. arXiv preprint
arXiv:1411.2816, 2017.

[8] R. Klein and A. Lingas. Hamiltonian abstract Voronoi diagrams in linear
time. In Proceedings of the 5th International Symposium on Algorithms
and Computation (ISAAC 1994), pages 11–19. Springer, 1994.

[9] D.-T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE
transactions on computers, 100(6):478–487, 1982.

[10] A. M.-C. So and Y. Ye. On solving coverage problems in a wireless
sensor network using Voronoi diagrams. In Proceedings of the 1st Work-
shop on Internet and Network Economics (WINE 2005), pages 584–593.
Springer, 2005.

17

	Introduction
	Preliminaries
	Existence of leaves with pairwise disjoint neighborhoods
	Selecting leaves with pairwise disjoint neighborhoods

