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Abstract

We discover new hereditary classes of graphs that are minimal (with respect to set inclusion) of
unbounded clique-width. The new examples include split permutation graphs and bichain graphs.
Each of these classes is characterised by a finite list of minimal forbidden induced subgraphs. These,
therefore, disprove a conjecture due to Daligault, Rao and Thomassé from 2010 claiming that all
such minimal classes must be defined by infinitely many forbidden induced subgraphs.

In the same paper, Daligault, Rao and Thomassé make another conjecture that every hereditary
class of unbounded clique-width must contain a labelled infinite antichain. We show that the two
example classes we consider here satisfy this conjecture. Indeed, they each contain a canonical
labelled infinite antichain, which leads us to propose a stronger conjecture: that every hereditary
class of graphs that is minimal of unbounded clique-width contains a canonical labelled infinite
antichain.

Keywords: Clique-width; Rank-width; Hereditary class; Universal graph; Well-quasi-ordering

1 Introduction

In this paper, we study two notions: clique-width and well-quasi-ordering. The first of them is a rep-
resentative of the rich world of graph width parameters, which includes both parameters studied in the
literature for decades, such as path-width [26] or tree-width [27], and those that have been introduced
recently, such as Boolean-width [5] or plane-width [16]. The notion of clique-width belongs to the mid-
dle generation of graph width parameters. The importance of this and many other parameters is due to
the fact that many difficult algorithmic problems become tractable when restricted to graphs where one
of these parameters is bounded by a constant. For a recent and comprehensive survey of the research
landscape concerning clique-width, see Dabrowski, Johnson and Paulusma [9].

The second notion of our interest is well-quasi-ordering. This is a highly desirable property and
frequently discovered concept in mathematics and theoretical computer science [19]. However, only a
few examples of quasi-ordered sets possessing this property are available in the literature. One of the
most remarkable results in this area is the proof of Wagner’s conjecture stating that the set of all finite
graphs is well-quasi-ordered by the minor relation [28]. However, the induced subgraph relation is not a
well-quasi-order, because it contains infinite antichains, for instance, the set of all cycles. On the other
hand, for graphs in particular classes this relation may become a well-quasi-order, which is the case, for
instance, for cographs [11], and k-letter graphs [25].

1Partially supported by EPSRC Grant EP/J006130/1.
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In fact, both cographs and k-letter graphs possess a stronger property, namely that they are well-
quasi-ordered with respect to the labelled induced subgraph relation. If (W,≤) denotes a quasi-ordered
set of labels, a labelling of a graph G is a function ` : V (G)→W , and we call the pair (G, `) a labelled
graph. A labelled graph (H, k) is a labelled induced subgraph of (G, `) ifH is isomorphic to an induced
subgraph of G, and the isomorphism maps each vertex v ∈ H to a vertex w ∈ G so that k(v) ≤ `(w)
in W . We say that a class of (unlabelled) graphs is labelled well-quasi-ordered if it contains no set of
graphs that can form an infinite antichain when the vertices are labelled from a set (W,≤) that is itself
well-quasi-ordered.1

For classes of graphs that are not labelled well-quasi-ordered, a natural question to ask is whether
there exist subclasses that are. In this line of enquiry, Guoli Ding [12] was the first to observe a phe-
nomenon whereby a particular antichain is ‘unique’ in its class, in the sense that well-quasi-ordering for
subclasses can be determined by the presence or absence of elements of this antichain. Formally speak-
ing (and extending the notion to labelled well-quasi-ordering), we say that a labelled infinite antichainA
in a hereditary class C is canonical if any hereditary subclass of C that has only finite intersection with
(the underlying unlabelled graphs of) A is labelled well-quasi-ordered.

In this paper, we will prove the following result. For the formal definitions of the two classes and of
clique-width, see Section 2.

Theorem 1.1. The classes of bichain graphs and split permutation graphs are minimal hereditary classes
(with respect to inclusion) of unbounded clique-width, and each contains a canonical labelled infinite
antichain that uses two incomparable labels.

As both the class of bichain graphs and the class of split permutation graphs are characterised by
having only finitely many minimal forbidden induced subgraphs (see Section 2), Theorem 1.1 disproves
a conjecture due to Daligault, Rao and Thomassé [10, Conjecture 8], which stated that every minimal
class (with respect to set inclusion) of unbounded clique-width must be characterised by infinitely many
minimal forbidden induced subgraphs.

In the same paper, Daligault, Rao and Thomassé proposed another conjecture that relates labelled
well-quasi-ordering to boundedness of clique-width. We will postpone further discussion about this until
the concluding remarks, except to say that it is this conjecture that motivates us to study clique-width
and (labelled) well-quasi-ordering simultaneously, and to refer the interested reader to the survey of the
broader interplay between these two notions in Section 6 of [9].

The rest of this paper is organised as follows. In Section 2 we introduce basic definitions, includ-
ing results about the two classes we are considering that allows us to focus solely on bichain graphs
and ignore split permutation graphs thereafter. In Section 3 we will review existing constructions of so-
called ‘universal’ graphs for various classes, as well as introducing one further construction for the class
of bichain graphs. In Section 4 we will establish that the bichain graphs are minimal with unbounded
clique-width, and in Section 5 we will show that the bichain graphs contain a canonical 2-labelled in-
finite antichain. Section 6 contains some concluding remarks, including our proposed strengthening of
Daligault, Rao and Thomassé’s conjecture that relates clique-width to well-quasi-ordering.

2 Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops and multiple edges. We denote by
V (G) and E(G) the vertex set and the edge set of a graph G, respectively. While the edges in E(G)
are formally unordered pairs of vertices, we will use the more convenient notation uv (or, equivalently,

1By a slight abuse of notation, we will in future say that an unlabelled class of graphs contains a labelled infinite antichain
to mean that the class contains an infinite set of graphs that can be labelled in such a way as to form a labelled infinite antichain.
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vu, since graphs are undirected) to denote the edge {u, v}, for u, v ∈ V (G). Given a vertex v ∈ V (G),
we denote by NG(v), or simply N(v) where the context is clear, the neighbourhood of v, i.e. the set of
vertices adjacent to v.

Given a graph G and a subset U ⊆ V (G), we denote by G[U ] the subgraph of G induced by U ,
i.e. the subgraph of G with vertex set U and two vertices being adjacent in G[U ] if and only if they are
adjacent in G. We say that a graph H is an induced subgraph of G, or G contains H as an induced
subgraph, if H is isomorphic to G[U ] for some U ⊆ V (G). An embedding of H in G is an injective map
φ : V (H) → V (G) which witnesses H as an induced subgraph of G. Thus, vw ∈ E(H) if and only if
φ(v)φ(w) ∈ E(G). By a slight abuse of notation, we will often use the term φ(H) to mean the induced
subgraph of G on the vertex set φ(V (H)).

If no subset of V (G) induces the graph H , we say that G is H-free. The set of all H-free graphs
is denoted by Free(H), and, by extension, if {H1, H2, . . . } is a (possibly infinite) collection of graphs,
denote by Free(H1, H2, . . . ) the set of all graphs G that contain none of H1, H2, . . . .

A hereditary property of graphs (which in this paper we will also call a graph class) is a set of graphs
C such that whenever G ∈ C and H is an induced subgraph of G, then also H ∈ C. It is well-known that
for any hereditary property C there exists a unique (but not necessarily finite) set of minimal forbidden
graphs, {H1, H2, . . . }, such that C = Free(H1, H2, . . . ). If the set of minimal forbidden graphs for a
class C is finite, then we say that C is finitely-defined.

2.1 Split permutation graphs and bichain graphs

In this paper, we are concerned primarily with two specific classes of graphs, which in this subsection
we will define and then review some of their key properties. In a graph, a clique is a subset of pairwise
adjacent vertices, and an independent set is a subset of pairwise non-adjacent vertices. A graph G is a
split graph if its vertices can be partitioned into an independent set and a clique, and G is a bipartite
graph if its vertices can be partitioned into two independent sets (also called colour classes or simply
parts).

Our first class is the class of split permutation graphs. As the name suggests, these are split graphs
that also happen to be permutation graphs, although we will not use this characterisation in the sequel.
Instead, it was shown in [18] that the class of split permutation graphs is the same as the class of split
graphs having Dilworth number at most two, where the Dilworth number of a graph G is the size of a
largest antichain with respect to the following quasi-order � defined on the vertices of G:

x � y if and only if NG(x) ⊆ NG(y) ∪ {y}.

Importantly, we have the following fact.

Lemma 2.1 (Benzaken, Hammer and de Werra [3]). The split graphs of Dilworth number at most two
are characterised by seven minimal forbidden induced subgraphs.

For completeness, the forbidden induced subgraphs of split graphs with Dilworth number at most two
(and hence split permutation graphs2) are 2K2, C4, C5,Sun3,Co-sun3,Rising-sun and Co-rising-sun.

The second class we will study are the bichain graphs. We say that a set of vertices forms a chain if
their neighbourhoods form a chain with respect to set inclusion, i.e. if they can be linearly ordered under
the set inclusion relation. A bipartite graph will be called a k-chain graph if the vertices in each part of
its bipartition can be divided into at most k chains.

2Note that it is possible to compute the forbidden induced subgraphs of split permutation graphs directly by intersecting
the class of split graphs with the class of permutation graphs, both of whose sets of minimal forbidden induced subgraphs are
well-known.
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The 1-chain graphs are known simply as chain graphs, and a typical example of a chain graph is
illustrated in Figure 1. The importance of this example is due to the fact that the represented graph
contains as induced subgraphs all chain graphs with at most 5 vertices, i.e. it is ‘5-universal’. This
concept of ‘universality’ will be crucial later, and is introduced formally in Section 3.

Figure 1: 5-universal chain graph

The simple structure of chain graphs implies many nice properties. In particular, the clique-width of
chain graphs is at most three [13] and they are well-quasi-ordered by the induced subgraph relation [25].

The class of 2-chain graphs, also called bichain graphs, has a much richer theory, and is our second
class of study in this paper. We note here the following result from Korpelainen’s PhD thesis.

Proposition 2.2 (Korpelainen [17, Proposition 3.3.10]). The class of bichain graphs3 is equal to the
class of (P7, C6, 3K2)-free bipartite graphs.

Because the graph P7 excludes odd cycles on 9 or more vertices, we note that (by adding the cycles
C3, C5 and C7 to the list of forbidden graphs) the result above implies that the class of bichain graphs is
finitely-defined.

We have shown that both the class of bichain graphs and the class of split permutation graphs are
finitely-defined, but in fact, these classes (and their sets of minimal forbidden graphs) are closely con-
nected – from the definition of bichain graphs and the characterization of split permutation graphs in
terms of their Dilworth number we have the following.

Proposition 2.3 (See Korpelainen [17]). Let G be a split graph given together with a partition of its
vertex set into a clique C and an independent set I , and let G∗ be the bipartite graph obtained from G
by deleting the edges of C. Then G is a split permutation graph if and only if G∗ is a bichain graph.

The validity of the proposition can be seen by noting that when G is a split graph that is also a
forbidden induced subgraph for the split permutation graphs, then G∗ is a bipartite forbidden induced
subgraph for the bichain graphs, and vice-versa: if G is Sun3, then G∗ is 3K2, if G is Co-sun3, then G∗

is C6 and that if G is Rising-sun or Co-rising-sun, then G∗ is P7.

2.2 Clique-width and rank-width

In this subsection, we will introduce two graph parameters: clique-width, and its close relation rank-
width. In this paper, we will not actually require the formal definitions of either of these two concepts,
so we will introduce them only very briefly.

LetG be a graph. The clique-width ofG, denoted cwd(G), is the size of the smallest alphabet Σ such
that G can be constructed as a (labelled) graph using four operations: (1) adding a new vertex labelled
by i ∈ Σ; (2) adding an edge between every vertex labelled i and every vertex labelled j (for distinct
i, j ∈ Σ); (3) for i, j ∈ Σ, giving all vertices labelled i the label j; and (4) taking the disjoint union
of two previously-constructed (Σ-labelled) graphs. As alluded to in the introduction, the significance of
clique-width is in the study of algorithms. Specifically, Courcelle, Makowsky and Rotics [8] showed that

3Note that Korpelainen [17] uses the term ‘double bichain’ to mean ‘bichain’ as defined here.
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a large number of graph algorithms which are NP-hard in general can be solved in linear time for classes
where all the graphs have clique-width at most some fixed k.

The other parameter that we will utilise is the rank-width, first introduced by Oum and Seymour
in [24]. Unlike clique-width, it is not defined in terms of graph operations (although Courcelle and
Kanté [7] have since given such a characterisation). Roughly speaking, rank-width is instead defined in
terms of tree-like decompositions (called layouts) where each edge has a width determined by the rank
of a certain submatrix of the adjacency matrix of the graph.

Critically, from our perspective both rank-width and clique-width behave ‘the same’, in the following
sense.

Proposition 2.4 (Oum and Seymour [24, Proposition 6.3]). For any graph G,

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.

For a graph class C, we say that C has bounded clique-width (or, equivalently, bounded rank-width) if
there exists k such that cwd(G) ≤ k for all G ∈ C, otherwise we say that C has unbounded clique-width.
Furthermore, if C has unbounded clique-width but every proper subclass of C has bounded clique-width,
then we say that C is minimal of unbounded clique-width.

In [18], it was shown that the class of split permutation graphs has unbounded clique-width, and
is not well-quasi-ordered by the induced subgraph relation. Together with Proposition 2.3 this implies
the same conclusions for bichain graphs. Indeed, in [15] it was shown that a single application of the
operation of transforming a clique into an independent set does not change the clique-width of the graph
“too much”, i.e. under this operation any class of graphs of bounded clique-width transforms into a class
of bounded clique-width, and vice-versa.

Taking into account the relationship between these classes revealed in Proposition 2.3, the rest of this
paper will focus on the results for bichain graphs only.

3 Universal graphs

For a graph class C, we say that the graph G ∈ C is n-universal if every H ∈ C with n vertices is an
induced subgraph of G. In this section, we will introduce a number of universal graphs for different
graph classes.

3.1 Bipartite permutation graphs

The first class for which we will exhibit a universal graph is the class of bipartite permutation graphs.
Although distinct from the two classes of interest to us, it has a crucial role in our proofs.

Denote by Xm,n the graph with mn vertices arranged in m columns and n rows, in which any two
consecutive columns induce a chain graph – an example of the graphX6,6 is shown on the left of Figure 2.

The following theorem was proved in [22].

Theorem 3.1 (Lozin and Rudolf [22]). The graph Xn,n is an n-universal bipartite permutation graph,
i.e. it contains every bipartite permutation graph with n vertices as an induced subgraph.

We call any graph of the form Xn,n an X-grid. Since the X-grids are universal, the following
theorem allows us to conclude that the bipartite permutation graphs are minimal with unbounded clique-
width.

Theorem 3.2 (Lozin [20]). For every n, the clique-width of Xn,n-free bipartite permutation graphs is
bounded by a constant.
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X6,6 Z7,6 Y7,6

Figure 2: Graphs X6,6 (left), Z7,6 (middle), and Y7,6 (right). The graph Z7,6 and Y7,6 contains the edges
shown in the picture and the “diagonal” edges connecting every even column i to every odd column
i′ ≥ i+ 3 (these edges are represented by the curved lines at the top of the picture).

In our work here, we will need the following technical lemma to control how someX-grid can embed
into a larger one. We remark that the argument used here (which employs the pigeonhole principle) may
be unnecessarily wasteful, but this is of no consequence for our purposes.

Lemma 3.3. For any n ≥ 1, every embedding of the grid Xn,4n−1 into a larger X-grid XM,N contains
a copy of Xn,n that occupies exactly n contiguous columns, with each column of Xn,n embedding into a
column of XM,N .

Proof. First observe that the case n = 1 is trivial, so now we may assume that n > 1. Fix an arbitrary
embedding of Xn,4n−1 into XM,N with M ≥ n and N ≥ 4n − 1. We first claim that the entries of any
column ofXn,4n−1 must occupy at most two columns ofXM,N , and that these two columns have exactly
one column separating them.

To see this, let u, v be two distinct vertices in the same column of Xn,4n−1. Observe that there
exists at least one vertex w in Xn,4n−1 that is adjacent to both u and v (for example, the vertex at the
bottom of the column immediately to the right of u and v). This tells us that in the embedding into
XM,N , the vertices u and v must both be placed in a column of the same parity, since XM,N is bipartite.
Furthermore, u and v can have at most one column between them otherwise they can have no common
neighbourhood. This proves the claim.

Thus, for any column of Xn,4n−1 we have that at least 2n of the vertices are embedded into the same
column of XM,N , by the pigeonhole principle. Let v1, . . . , v2n be 2n vertices from the leftmost column
of Xn,4n−1, ordered from top to bottom, that embed in one column c1 of XM,N . Note that because the
neighbourhoods of v1, . . . , v2n are ordered by inclusion, they must embed in XM,N either in the correct
order, or in reverse. Appealing to the automorphism of X-grids obtained by rotating our standard picture
by 180◦, we may assume they embed in the correct order.

Now let v(j)i be the vertex of Xn,4n−1 that is in the same row as vi, and in the jth column from the
left (thus vi = v

(1)
i ). Note that v(j+1)

i is adjacent to all of v(j)1 , . . . , v
(j)
i , and none of v(j)i+1, . . . , v

(j)
2n .

Furthermore, because v1, . . . , v2n were embedded in XM,N from top to bottom, we conclude that the
only possible column of XM,N in which v(2)1 , . . . , v

(2)
2n−1 can embed is the one immediately to the right

of c1, and again they must embed from top to bottom. (Note that v(2)2n is adjacent to all of v1, . . . , v2n and
can thus be embedded in the column to the left of c1.)

If n = 2 we are now done, so assume n > 2. For i = 3, . . . , n we follow similar argument to
i = 2, and conclude inductively that because v(i−1)1 , . . . , v

(i−1)
2n−i+2 must embed from top to bottom in the
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(i−2)nd column to the right of c1, then v(i)1 , . . . , vi2n−i+1 must embed in the (i−1)th column. However,

this shows that the set {v(j)i : 1 ≤ i, j ≤ n} is a copy of Xn,n inside XM,N satisfying the statement of
the lemma.

3.2 Bichain graphs

For the class of bichain graphs, we will now introduce two universal constructions.
Denote by Zn,k the graph with the vertex set {zi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ k} and with zi,jzi′,j′ being

an edge if and only if

(1) i is odd, i′ = i+ 1 and j > j′,

(2) i is even, i′ = i+ 1 and j ≤ j′,

(3) i is even, i′ is odd and i′ ≥ i+ 3.

We call the edges of type (3) the diagonal edges. An example of the graphZn,k with n = 7 and k = 6
is represented in the middle picture of Figure 2, where for clarity the diagonal edges are represented by
the curved lines at the top. We have:

Theorem 3.4 (Brignall, Lozin and Stacho [4]). The graph Zn,n is an n-universal bichain graph.

Any graph of the form Zn,k will be called a Z-grid.
The other universal construction we need is another, related, grid construction which we will call the

Y -grid. Denote by Yn,k the graph with the vertex set {yi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ k} and with yi,jyi′,j′
being an edge if and only if

(1) i is odd, i′ = i+ 1 and j ≥ j′,

(2) i is even, i′ = i+ 1 and j < j′,

(3) i is even, i′ is odd and i′ ≥ i+ 3,

(4) i is odd, i′ = i− 1 and j = 1.

The graph Y7,6 is shown on the right of Figure 2. Note that the edges of type (4) simply connect the
odd-column vertices in the bottom row to all the vertices in the preceding column. The reason for this
anomaly will become evident in the next section, for the now we will simply refer to all the vertices that
lie in row 1 of a Y -grid as the vertices of the bottom row.

Y -grids and Z-grids are strongly related. Figure 3 demonstrates how Y8,9 contains an induced Z6,4,
and how Z8,9 contains an induced Y6,4. Indeed, this example easily generalises to the following obser-
vation.

Lemma 3.5. The graph Z2n,2n contains Yn,n as an induced subgraph, and the graph Y2n,2n contains
Zn,n as an induced subgraph.

Moreover, Zn,n can be embedded in Y2n,2n in such a way as to use none of the vertices in the bottom
row.

As a consequence, we note that Y2n,2n is an n-universal graph for the class of bichain graphs.

7



1 2 3 4 5 6 7 8 2 4 61 3 5

Figure 3: On the left, embedding Z6,4 in Y8,9. On the right, embedding Y6,4 in Z8,9.

4 Pivoting, universality and clique width

The proof of minimality of the class of bichain graphs which we present here takes an entirely different
approach to that for bipartite permutation graphs in [20]. Here, we reduce the problem to bipartite
permutation graphs by means of the so-called pivoting operation. We will show that an X-grid can
be ‘pivoted’ into a Y -grid, and when this is coupled with our Lemma 3.3 to control how X-grids can
embed in largerX-grids, we can conclude that any proper subclass of bichain graphs must have bounded
clique-width.

Let G = (V,E) be a graph, and v ∈ V a vertex. Following, Oum [23], define the local complemen-
tation of G at v to be the graph G ∗ v with vertex set V and edge set E4{xy : xv, yv ∈ E and x 6= y}
where 4 denotes the symmetric difference. In other words, G ∗ v is formed from G by replacing the
subgraph induced on the neighbourhood of v with its complement. Two graphs H and G are locally
equivalent if H can be obtained from G by a sequence of local complementations.

Proposition 4.1 (Oum [23, Corollary 2.7]). If H is locally equivalent to G, then rwd(H) = rwd(G).

Crucially, observe that the above proposition does not simply bound the rank-width of one graph
in terms of the rank-width of the other, but actually states that they are equal. Thus, we may apply
arbitrarily many such operations to a graph, and still obtain one whose rank-width is the same. Note
that Gurski [14] has recently studied the effect of various operations (including local complementation)
directly on clique-width (rather than via rank-width), but the effect of a single local complementation
can triple the clique-width.

One particularly important sequence of local complementations is the pivot: for an edge uv of G, the
pivot on uv is the graph G ∗ u ∗ v ∗ u. That this is well-defined (i.e. u and v can be interchanged in the
definition) is established in [23], and the effect of this process is to complement the edges between the
three sets of vertices N(u) ∩N(v), N(u) \N(v) and N(v) \N(u).4

We remark further that if G is a bipartite graph, then the pivot on an edge uv (formed by taking the
complement of the edges between N(u) \ {v} and N(v) \ {u}) gives rise to another bipartite graph

4Technically, pivoting on an edge of a bipartite graph also causes the labels of the two end-vertices to be interchanged, but
this is of no consequence here.
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(see [23]).

Lemma 4.2. The graph Y2n,2n can be obtained from X2n,2n by a sequence of n pivots, acting from right
to left on alternate edges in the bottom row of X .

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
(a) (b)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
(c) (d)

Figure 4: The pivoting sequence from X8,6 (diagram (a)) to Y8,6 (diagram (d)). From (a) to (b), the pivot
is on edge 7–8. From (b) to (c), the pivot is on edge 5–6, and from (c) to (d), pivot on edge 3–4.

Proof. This proof is illustrated in Figure 4. For ease of reference, let the sets of vertices contained in the
columns of X2n,2n be C1, . . . , C2n, working from left to right, and label the vertices in the bottom row
x1, . . . , x2n. We will pivot on the edges x2n−1x2n, x2n−3x2n−2, . . . , x1x2 in that order.

First, note that N(x2n) = C2n−1, and N(x2n−1) = C2n−2 ∪ {x2n}. Thus the effect of pivoting on
x2n−1x2n is to complement the edges between C2n−2 and C2n−1 \ {x2n−1}.

We now claim, by induction, that after the pivot on the edge x2i−1x2i, we take the complement of
the edges between C2i−2 and C2i−1 \ {x2i−1}, and every vertex in column C2i−2 becomes adjacent to
every vertex in column C2j−1 for all j = i+ 1, . . . , n.

The base case is the edge x2n−1x2n mentioned above, so now consider the pivot on x2i−1x2i for
some i < n. Since x2i ∈ C2i, by induction before pivoting we have N(x2i) = C2i−1 ∪ C2i+1 ∪ · · · ∪
C2n−1, and N(x2i−1) = C2i−2 ∪ {x2i}. Before pivoting on x2i−1x2i, the only edges between these
two neighbourhoods is the chain graph between C2i−2 and C2i−1, so after pivoting we obtain the edges
required by the inductive hypothesis.

Now, by inspection, the graph obtained after pivoting all n edges x2i−1x2i on the bottom row of
X2n,2n is precisely Y2n,2n.
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Note that the action of pivoting is an involution, thus the above proof also shows that we may pivot
from Y2n,2n to X2n,2n by using alternating edges in the bottom row of the Y -grid, but working from left
to right.

We are now ready to prove the first part of Theorem 1.1.

Theorem 4.3. The class of bichain graphs is a minimal hereditary class of unbounded clique-width.

Proof. First, note that, by Proposition 2.4, a class of graphs has unbounded clique-width if and only if it
has unbounded rank-width. Thus it suffices to prove that the bichain graphs are minimal of unbounded
rank-width.

Next, by the comment made at the end of Section 2, the class of bichain graphs has unbounded
clique- (and rank-)width, since the class of split permutation graphs does.

Now consider any proper subclass C of bichain graphs, formed by forbidding at least one bichain
graph H , which we may assume has k vertices. According to Theorem 3.4, any bichain graph with k
vertices can be embedded into the Z-grid Zk,k. In particular, since H is a forbidden graph of C with k
vertices, the subclass C does not contain the universal graph Zk,k.

For each G ∈ C on n-vertices, fix some arbitrary embedding φG of G into the n-universal bichain
graph Y2n,2n. With respect to φG, now form the graph G+ which comprises the induced copy of G
together with the set R of at most 2n further vertices so that G+ contains every vertex from the bottom
row of Y2n,2n. We will call these 2n vertices the pivot row of G+. Note that G+ is still a bichain graph.
Finally, form G∗ by pivoting on every other edge of the pivot row of G+, as per Lemma 4.2, and note
that G∗ is a bipartite permutation graph. By Proposition 4.1, we have rwd(G+) = rwd(G∗).

Denote by C∗ the set of graphsG∗ that we obtain in this way, i.e. C∗ = {G∗ : G ∈ C}. Note that C∗ is
a subset of the bipartite permutation graphs, but it need not be a hereditary class because the embeddings
of G into Y2n,2n were fixed arbitrarily.

We claim that no graph in C∗ contains the universal bipartite permutation graph X8k−1,2k as an
induced subgraph. This will complete the proof, as then we have shown that every graph G∗ belongs
to a proper subclass of the bipartite permutations graphs, and therefore there is an absolute bound on
the rank-width of any such G∗. Since rwd(G∗) = rwd(G+) and G is an induced subgraph of G+, we
conclude that G must also have bounded rank-width, as required.

For a contradiction, suppose that there existsG∗ ∈ C∗ that containsX8k−1,2k as an induced subgraph.
Now the graph G∗ is a bipartite permutation graph, and it comes with an implicit embedding into the
X-grid X2n,2n, inherited from the fixed embedding φG of G into Y2n,2n, together with the set R of
vertices from the bottom row of Y2n,2n. From this embedding of G∗ in X2n,2n, we restrict to the vertices
of G∗ that form an induced X8k−1,2k, to obtain an embedding of X8k−1,2k in X2n,2n. By Lemma 3.3
this embedding contains a copy of X2k,2k that lies in 2k consecutive columns, with 2k vertices in each
column.

We now pivot X2n,2n to Y2n,2n via the process in Lemma 4.2, and observe that the embedded copy
of X2k,2k gets pivoted to a graph H that has 2k vertices in each of 2k consecutive columns of Y2n,2n,
and which is an induced subgraph of G+. Note that by construction, this graph H is either isomorphic
to Y2k,2k, or it is isomorphic to an induced subgraph of Y2k+1,2k+1. (This latter case arises if not all
vertices of the pivot row of Y2k,2k are present in H , and/or if the leftmost column of H embeds into an
even-numbered column of Y2n,2n.)

Recalling that R denoted the extra vertices that were added to the embedded copy of G to form G+,
we can now find an induced subgraph H− of G by removing from H all vertices that were embedded
into vertices from R. Using the second part of Lemma 3.5, inside H we can find a copy of Zk,k that does
not use any vertices of the pivot row of Y2k,2k, and therefore we can also find Zk,k inside H−. However,
this implies that Zk,k is an induced subgraph of G, which implies G 6∈ C, a contradiction.
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5 Antichains and well-quasi-ordering

In this section we will show that the class of bichain graphs contains a canonical antichain with respect
to the labelled induced subgraph relation, and then we will remark on how this argument can be modified
to yield a canonical antichain for split permutation graphs.

We begin by defining the antichain. First, we define a sequence of graphs Sk as follows. Sk has
vertex set V (Sk) = {xi, yi : 1 ≤ i ≤ k}, and edge set defined by xiyj ∈ E(Sk) if and only if j = i or
j ≥ i+ 2. The graph S5 is pictured on the left in Figure 5.

y1

x1

y2

x2

y3

x3

y4

x4

y5

x5

y1

x1

y2

x2

y3

x3

y4

x4

y5

x5

y6

x6

y7

x7

Figure 5: On the left, the graph S5. On the right, the 2-coloured graph S◦7 .

First observe that the graphs Sk are all bichain graphs, since the induced subgraph on the odd vertices
is a chain graph, as is the induced subgraph on the even vertices. Next, notice that Sk embeds into Sk′
whenever k ≤ k′, but it must map into a consecutive set of pairs of vertices xi, yi. This is because the
only induced copies of 2K2 in the graph are formed by the vertices in two consecutive columns.

Consequently, we can form an infinite antichain with two labels from {Sk} as follows: from each
graph Sk, form a 2-coloured graph S◦k by colouring the vertices x1, y1, xk and yk of Sk white, and
all remaining vertices black. The graph S◦7 is illustrated in Figure 5. Without loss of generality we
can assume that black vertices cannot be embedded in white vertices (otherwise we can swap the roles
of black and white), so by the observation about embedding copies of 2K2, it follows that {S◦k} is an
infinite antichain in the labelled induced subgraph ordering.

It remains to prove that {S◦k} is a canonical labelled antichain. In other words, we need to prove that
every subclass of bichain graphs containing only finitely many graphs Sk is well-quasi-ordered by the
labelled induced subgraph relation.

5.1 Structure and well-quasi-ordering

Before we proceed to show that {S◦k} is a canonical labelled antichain in the class of bichain graphs, we
require a number of concepts relating to structure and well-quasi-ordering from the literature, which we
will briefly review here.

The tool we will use to prove well-quasi-orderability is the notion of letter graphs. For k ≥ 1, fix an
alphabet X of size k (for example, X = {1, 2, . . . , k}). A k-letter graph G is a graph defined by a finite
word x1x2 · · ·xn, with xi ∈ X for all i, together with a subset S ⊆ X ×X such that:

• V (G) = {1, 2, . . . , n}

• E(G) = {ij : i ≤ j and (xi, xj) ∈ S}

The importance of this notion is due to the following theorem:

Theorem 5.1 (Petkovšek [25]). For any fixed k, the class of k-letter graphs is well-quasi-ordered by the
labelled induced subgraph relation.

When combined with the following observation, we have that any collection of graphs which can
be embedded in a Z-grid with a fixed number of columns k is well-quasi-ordered with respect to the
labelled induced subgraph relation.
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Lemma 5.2. For any n, k ∈ N, Zn,k is a k-letter graph.

Proof. Let X = {1, 2, . . . , k}, and define three sets of relations from X ×X:

• R1 = {(2i− 1, 2i) : i = 1, 2, . . . , bk2c},

• R2 = {(2i+ 1, 2i) : i = 1, 2, . . . , dk2e − 1},

• D = {(2i, 2j + 1), (2j + 1, 2i) : 1 ≤ i < j ≤ dk2e − 1}.

By inspection, with S = R1∪R2∪D the k-letter graph associated with the word w = (k (k−1) · · · 1)n

is isomorphic to Zn,k, where the letters of the word w correspond to the vertices of the Z-grid. See
Figure 6 for the case k = 7.

7654321

7654321

7654321

7654321

7654321

n

n− 1

n− 2

2

1

...

Figure 6: Reading Zn,7 as a 7-letter graph

In order to apply Theorem 5.1 and Lemma 5.2, we require the following structural concept. For
any two disjoint bipartite graphs G1 = (X1, Y1, E1) and G2 = (X2, Y2, E2) define the following three
binary operations:

disjoint union G1 ⊕G2 = (X1 ∪X2, Y1 ∪ Y2, E1 ∪ E2);

join G1 ⊗G2 = (X1 ∪X2, Y1 ∪ Y2, E1 ∪ E2 ∪ (X1 × Y2) ∪ (X2 × Y1))
(that is, the bipartite complement of the disjoint union of the bipartite complements ofG1 andG2);

skew join G1 �G2 = (X1 ∪X2, Y1 ∪ Y2, E1 ∪ E2 ∪ (X1 × Y2)).

These three operations define a decomposition scheme known as the canonical decomposition, which
takes a bipartite graph G and whenever G has one of the following three forms G = G1 ⊕ G2, G =
G1 ⊗ G2, or G = G1 � G2, partitions it into G1 and G2, and then the scheme applies to G1 and G2

recursively.
Graphs that cannot be decomposed into smaller graphs under this scheme are called canonically

prime. The following theorem allows us to restrict our attention from now on to canonically prime
graphs only.

Theorem 5.3 (Atminas and Lozin [2]). Let C be a hereditary class of bipartite graphs. If the canonically
prime graphs in C are well-quasi-ordered by the labelled induced subgraph relation, then all graphs in
C are well-quasi-ordered by the labelled induced subgraph relation.
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5.2 The canonical antichain

We now have the concepts from the literature that we need to prove that {S◦k} is canonical. Our task now
is to show that the canonically prime graphs in a subclass of bichain graphs with only finitely many of
the (unlabelled) graphs {Sk} are embeddable into Zn,k for some k.

Every vertex v ∈ V (Zn,k) can be represented by its row/column coordinates, where row 1 is the
bottom row, and column 1 is the leftmost row. For notational convenience in our proofs, define row(v)
to mean the index of the row of Zn,k in which v lies, and col(v) to mean the index of the column of Zn,k

containing v.
We begin with a useful observation about how canonically prime graphs can embed into a Z-grid.

Lemma 5.4. Let G be a canonically prime bichain graph, and φ an embedding of G into Zn,k, for some
n, k. Then φ(G) occupies a consecutive set of columns of Zn,k.

Proof. Suppose that there exists a column in Zn,k that contains no vertices of φ(G), and suppose the
index of this column is c. Now let L be the induced subgraph on all vertices v ∈ φ(G) for which
col(v) < c, and R the induced subgraph on all vertices v ∈ φ(G) for which col(v) > c. Note that every
v ∈ φ(G) is in exactly one of L or R.

By inspection, except for the immediately preceding column, the vertices in any given column of
index c of the grid Zn,k are adjacent either to none of the vertices in the columns to the left of it (when
c is even), or they are adjacent to all even-indexed, and no odd-indexed columns to the left. From this,
the embedding φ(G) tells us that G = L � R is a skew join, which is impossible unless one of R or L
contains no vertices, completing the proof.

Our next lemma is the crucial step to understand the relationship between canonically prime graphs
and the graphs Sk.

Lemma 5.5. Let G ∈ Free(Sk, Sk+1, . . . ) be a canonically prime bichain graph. Then G can be em-
bedded in Zn,2k for some n.

Proof. Suppose that G does not embed in Zn,2k for any n. Aiming for a contradiction, we will show that
G contains Sk.

Let m = |G|. Since G is a bichain graph, by Theorem 3.4 it must embed in the m-universal graph
Zm,m. By Lemma 5.4, any such embedding must occupy a consecutive set of columns, since G is
canonically prime. Moreover, by our assumption that G does not embed in Zn,2k, every embedding of
G into Zm,m must occupy at least 2k + 1 consecutive columns. Pick one such embedding φ, and note
that we may assume that φ(G) contains at least one vertex in the first (i.e. leftmost) or second column of
Zm,m.

We now choose a sequence of vertices v1, v2, v3, . . . v2k from φ(G) as follows. We proceed induc-
tively, at each step choosing vi so that col(vi) ≤ i+ 1. If φ(G) contains a vertex in the leftmost column
of Zm,m, then set v1 to be the highest vertex in this column. Otherwise, set v1 to be the highest vertex
in the third column of Zm,m. In either case, there are still at least 2k− 1 contiguous columns containing
vertices from φ(G) lying in columns with index greater than col(v1).

Next, suppose v1, . . . , vi have been chosen for some 1 ≤ i < 2k, with col(vj) ≤ j + 1 for all
j = 1, . . . , i. The following argument is illustrated in Figure 7. Define

Ai = {v ∈ φ(G) : col(v) = col(vi) + 1 and row(v) < row(vi)},

that is, the set of all vertices of φ(G) in the column to the right of vi, and in a row strictly below vi. If
Ai 6= ∅, then choose vi+1 from Ai so that row(vi+1) is maximal.
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If Ai = ∅, then the set Bi = {v ∈ φ(G) : col(v) = col(vi) + 1 and row(v) ≥ row(vi)} must be
non-empty, since φ(G) has at least one vertex in the column with index col(vi) + 1 (since col(vi) ≤
i+ 1 < 2k + 1). Pick bi ∈ Bi so that row(bi) is minimal. Now define

Ci = {v ∈ φ(G) : col(v) = col(bi)− 1 and row(v) > row(bi)},

that is, all vertices of φ(G) in the column to the left of bi but above bi. Note that Ci must be non-empty,
otherwise G is a skew join: this can be seen by partitioning the vertices of φ(G) into two, namely all
vertices in columns with indices at most col(vi), and all those in columns with indices strictly greater
than col(vi). Thus, pick ci ∈ Ci so that row(ci) is minimal.

Next, define

Di = {v ∈ φ(G) : col(v) = col(ci)− 1 and row(v) > row(ci)}.

By a similar argument to that for Ci, observe that Di must be non-empty, otherwise G is a skew join
between vertices which φ maps to Ci or columns to the right of Ci, and all other vertices. Thus, pick
di ∈ Di so that row(di) is minimal.

Similarly, let

Ei = {v ∈ φ(G) : col(v) = col(di)− 1 and row(v) > row(di)},

which must be non-empty (consider the set of vertices in Di ∪ Ci ∪ {all vertices further right}), pick
ei ∈ Ei so that row(ei) is minimal. Finally, define

Fi = {v ∈ φ(G) : col(v) = col(ei)− 1 and row(v) > row(ei)},

which must be non-empty (consider Ei∪Di∪Ci∪{all vertices further right}). We now pick vi+1 ∈ Fi,
vi+2 ∈ Ei, vi+3 ∈ Di, vi+4 ∈ Ci and vi+5 ∈ Bi in turn, each chosen as high as possible while still
satisfying the condition row(vi+1) > row(vi+2) > row(vi+3) > row(vi+4) > row(vi+5). (If i+5 > 2k
then we can simply stop once we have picked v2k.) Note that the case Ai = ∅ can in fact only happen
when i ≥ 5, otherwise G fails to be canonically prime or v1 was not chosen correctly.

By inspection, we now observe that the vertices v1, . . . , v2k induces a copy of Sk, by setting xi =
v2i−1 and yi = v2i for i = 1, 2, . . . , k. Thus G contains Sk, which yields the desired contradiction.

We are now in a position to state and prove the main result of this section.

Theorem 5.6. The antichain {S◦k} is a canonical antichain for the class of bichain graphs, under the
labelled induced subgraph ordering.

Proof. First, by the comments at the start of this section, {S◦k} is an infinite antichain in the class of
bichain graphs, under the labelled induced subgraph ordering.

Next, consider any subclass C of the bichain graphs which has only finite intersection with the an-
tichain {S◦k}. This means that there exists k such that C ⊆ Free(Sk, Sk+1, . . . ).

By Lemma 5.5, for each canonically prime graph G in C there exists n such that G can be embedded
in Zn,2k. This implies, by Lemma 5.2, that all canonically prime graphs in C are 2k-letter graphs.

By Theorem 5.1, the canonically prime graphs of C are thus well-quasi-ordered with respect to the
labelled induced subgraph relation, and Theorem 5.3 allows us to conclude that the whole subclass C is
well-quasi-ordered with respect to the labelled induced subgraph relation, completing the proof.

The proof that split permutation graphs contains a canonical labelled antichain is analogous. The
antichain in this case is built upon a sequence of graphs Tk for which T ∗k = Sk (i.e. each graph Tk is
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Figure 7: The description of the setsAi, Bi, Ci, Di, Ei and Fi in the proof of Lemma 5.5, and the related
vertices when Ai = ∅.

formed from Sk by replacing one part of the bipartition with a clique). The labelled infinite antichain
is then {T ◦k }, in which the first and last pair of vertices of each graph are coloured differently from the
others (here, copies of P4 must embed in consecutive pairs of vertices, rather than the copies of 2K2

found in Sk).
To see that the grid Z∗n,k (formed by connecting together all vertices in all even columns) is a k-letter

graph, one needs only add pairs of letters corresponding to even columns in the set of connections given
in the proof of Lemma 5.2. Next, although we cannot directly use the notion of canonically prime, we
can define an analogue for split graphs with the same three constructions of disjoint union, join and skew
join, but where one side of the partition is always a clique. With this, the equivalent to Theorem 5.3
is readily obtained, following the techniques of [2]. The rest of the argument to prove that {T ◦k } is a
canonical labelled antichain follows.

Finally, it is worth observing that the antichain {T ◦k } of split permutation graphs is well-known in
the study of permutation classes, since it corresponds to the “Widdershins antichain” of permutations
(because of the way it appears to spirals anticlockwise). Thus, another (largely analogous) method to
establish that {T ◦k } is canonical for split permutation graphs would be to build on the structural results
of Albert and Vatter [1].

6 Concluding remarks

In this paper, we have exhibited two classes that possess the simultaneous properties of being finitely-
defined, minimal of unbounded clique-width, and of containing a canonical labelled infinite antichain.
We observe that while the class of split permutation graphs is self-complementary in the sense that G
belongs to the class if and only if the complement of G does, this is not the case for bichain graphs.
We can, therefore, describe one more class possessing all three properties (finitely-defined, minimal of
unbounded clique-width, and of containing a canonical labelled infinite antichain), namely, the class
of complements of bichain graphs. We believe that various other graph transformations (e.g. other se-
quences of local complementations) may lead to more examples of such classes: such methods have
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recently been used to exhibit infinitely many minimal classes of unbounded clique width, see [6].
The existence of classes possessing the first two of these three properties are sufficient to disprove

Conjecture 8 of Daligault, Rao and Thomassé [10]. However, in the same paper, the authors proposed
another conjecture that relate the second two properties, namely labelled well-quasi-ordering and clique-
width. Restricting our ordered set of labellings (W,≤) to the special case where |W | = 2 and W is an
antichain, the authors of [10] conjecture that a hereditary graph class which is well-quasi-ordered under
labellings by W must have clique-width that is bounded by a constant.

Note that this is equivalent to asking whether every minimal hereditary class of unbounded clique-
width has a labelled infinite antichain that uses at most two labels. Indeed, if a hereditary class C of
unbounded clique-width does not contain a minimal hereditary class of unbounded clique-width, then
one can construct an infinite strictly decreasing sequence of graph classes C = C0 ⊃ C1 ⊃ C2 . . .
of unbounded clique-width such that Ci+1 is obtained from Ci by forbidding a graph Gi ∈ Ci as an
induced subgraph. In this case, the sequence G0, G1, G2, . . . creates an (unlabelled) infinite antichain in
C. Therefore, the conjecture of Daligault, Rao and Thomassé can be restricted, without loss of generality,
to minimal hereditary classes of unbounded clique-width.

Prior to this paper, only two minimal classes with unbounded clique-width were known: bipartite
permutation graphs and unit interval graphs [20]. In both cases, they also contain a canonical (unlabelled)
infinite antichain. When combined with analogous results for the two classes we have considered in this
paper, we propose the following stronger conjecture.

Conjecture 6.1. Every minimal hereditary class of graphs of unbounded clique-width contains an infinite
set of graphs that forms a canonical labelled infinite antichain that uses at most two incomparable labels.

Note that dropping the requirement for labelled well-quasi-ordering is already known to be false: it
was recently shown in [21] that there exists a class of graphs that has unbounded clique-width, but which
is well-quasi-ordered with respect to the induced subgraph relation. This class, however, contains an
infinite antichain that uses two labels.
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