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DEMBOWSKI-OSTROM POLYNOMIALS AND REVERSED DICKSON

POLYNOMIALS

NERANGA FERNANDO, SARTAJ UL HASAN, AND MOHIT PAL

Abstract. We discuss the problem of classifying Dembowski-Ostrom polynomials from the
composition of reversed Dickson polynomials of arbitrary kind and monomials over finite
fields of odd characteristic. Moreover, by using a variant of the Weil bound for the number
of points of affine algebraic curves over finite fields, we discuss the planarity of all such
Dembowski-Ostrom polynomials. Planar Dembowski-Ostrom polynomials have applications
in many areas including cryptography and coding theory.

1. Introduction

Denote, as usual, by Fq the finite field with q = pe elements, where p is an odd prime
number and e is a positive integer, and by F∗

q the multiplicative group of non-zero elements
of Fq. For any nonnegative integer k, the k-th Dickson polynomial of the first kind Dk(X, a)
over Fq was introduced by Dickson [7] in 1897, and is defined as follows

Dk(X, a) :=

⌊k
2
⌋∑

i=0

k

k − i

(
k − i

i

)
(−a)iXk−2i,

where a ∈ Fq is a parameter and D0(X, a) = 2. More than two decades later, Schur [21]
introduced a variant of Dickson polynomial of the first kind in 1923, which is now known
as Dickson polynomial of the second kind. For any nonnegative integer k, the k-th Dickson
polynomial of the second kind Ek(X, a) over Fq is defined as follows

Ek(X, a) :=

⌊k
2
⌋∑

i=0

(
k − i

i

)
(−a)iXk−2i,

where a ∈ Fq is a parameter and E0(X, a) = 1. A trigonometric approach for Dickson poly-
nomials has been recently considered by Lima and Panario [15]. Dickson polynomials have
also been used to study the c-differential uniformity of some functions over finite fields [10].
Dickson polynomials of the first and second kind over Fq were studied extensively, especially
with respect to their permutation behaviour. We recall that a polynomial f ∈ Fq[X] is a
permutation polynomial over Fq if the associated mapping X 7→ f(X) is a bijection from Fq

to Fq. For a non-zero element a in Fq, Nöbauer [17] proved that the Dickson polynomial of
the first kind Dk(X, a) permutes the elements of Fq if and only if (k, q2 − 1) = 1. However,
except for a few cases, the permutation behaviour of Dickson polynomials of the second kind
Ek(X, a) remains unresolved. One may refer to the monograph [13] for more on Dickson
polynomials.

The notion of k-th reversed Dickson polynomial (RDP) of the first kind was introduced
by Hou, Mullen, Sellers and Yucas [12] by simply reversing the roles of the variable X and
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the parameter a in the k-th Dickson polynomial of the first kind Dk(X, a). Moreover, the
authors showed that the reversed Dickson polynomials of the first kind are closely related to
what are known as almost perfect nonlinear (APN) functions. The permutation behaviour
of RDPs is also an interesting area of research. Hou and Ly [11] gave necessary conditions
for RDPs of the first kind to be permutation polynomials over Fq.

For any nonnegative integers k andm, the notion of k-th Dickson polynomial of the (m+1)-
th kind, denoted as Dk,m(X, a), was introduced by Wang and Yucas [22], and is defined as
follows

(1.1) Dk,m(X, a) :=

⌊k
2
⌋∑

i=0

k −mi

k − i

(
k − i

i

)
(−a)iXk−2i,

where 0 ≤ m ≤ p − 1, a ∈ Fq and D0,m(X, a) = 2 − m. The k-th RDP of the (m + 1)-th
kind is also defined in a similar way by just reversing the role of the variable X and the
parameter a in (1.1). More precisely, for any nonnegative integers k and m, the k-th RDP of
the (m+ 1)-th kind Dk,m(a,X) is defined as follows

(1.2) Dk,m(a,X) :=

⌊k
2
⌋∑

i=0

k −mi

k − i

(
k − i

i

)
(−X)iak−2i,

where 0 ≤ m ≤ p− 1, a ∈ Fq and D0,m(a,X) = 2−m. The k-th RDP of the (m+1)-th kind
also satisfies the following recurrence relation

(1.3) Dk,m(a,X) = mEk(a,X) − (m− 1)Dk(a,X).

It may be noted that the permutation behaviour of RDPs of the (m + 1)-th kind has been
studied by Fernando [8].

A function f : Fq → Fq is called planar if the mapping X 7→ f(X+ǫ)−f(X)−f(ǫ) induces
a bijection from Fq to Fq for each ǫ ∈ F∗

q. Since any function from a finite field Fq to itself
can be represented by a polynomial of degree at most (q − 1), one may simply consider the
planarity of polynomials over finite fields. It is clear from the definition of a planar function
itself that there is no planar function in the even characteristic as X and X + ǫ have the
same image under the mapping X 7→ f(X + ǫ) − f(X) − f(ǫ). A polynomial f ∈ Fq[X] is
called exceptional planar if it is planar over Fqe for infinitely many e. Planar functions are
very important due to their wide range of applications. For example, planar functions are
used to construct finite projective planes [6], relative difference sets [9] and error-correcting
codes [2].

A Dembowski-Ostrom (DO) polynomial over finite field Fq is a polynomial that admits
the following shape ∑

i,j

aijX
pi+pj ,

where aij ∈ Fq. DO polynomials have been used in designing a public key cryptosystem known
as HFE [18]. Note that DO polynomials provide a very rich source of planar functions. It
was conjectured by Rónyai and Szönyi [20] (see also [16, Conjecture 9.5.19]) that all planar
functions are of “DO type”. This conjecture is still open except in the case of characteristic
3 for which a counter example was given by Coulter and Matthews [4]. In 2010, Coulter and
Matthews [5] classified DO polynomials from Dickson polynomials of the first and second
kind and they also discussed the planarity of such DO polynomials.

In 2016, Zhang, Wu and Liu [24] classified DO polynomials from RDPs of the first kind
in the even characteristic case and they also characterized APN functions among all such
DO polynomials. In this paper, we shall extend the results of Zhang, Wu and Liu [24] to
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the odd characteristic case. In fact, we give a complete classification of DO polynomials
arising from the composition of RDPs of the (m + 1)-th kind and the monomial Xd, where
d is a positive integer, in odd characteristic, and we further characterize planar functions
among these DO polynomials. The motivation behind considering this composition actually
stems from the known fact that the exceptional planar polynomials X10 ± X6 − X2 are
essentially the composition of the Dickson polynomials D5(X,±1) and the monomial X2. DO
polynomials do not have any constant term. We shall, therefore, consider the polynomials

D̂k,m := Dk,m(a,Xd)−Dk,m(a, 0) for the purpose of classifying DO polynomials. Notice that

D̂k,m is given by

D̂k,m =

⌊k
2
⌋∑

i=1

k −mi

k − i

(
k − i

i

)
(−Xd)iak−2i.

For the sake of simplicity, we shall denote D̂k,0, D̂k,1, D̂k,2, D̂k,3, and D̂k,4 by D̂k, Êk, F̂k, Ĝk

and Ĥk, respectively. The paper has been organized as follows. In Section 2, we state some
lemmas that will be used in the subsequent sections. In Sections 3, 4, 5 and 6, we classify DO

polynomials from D̂k, Êk, Ĝk and Ĥk, respectively. The case m ≥ 5 has been considered in
Section 7. In Section 8, we consider the planarity of DO polynomials obtained in the previous
sections. The complete list of DO polynomials derived from reversed Dickson polynomials is
given in Appendix A.

Throughout the paper, we always assume that p is an odd prime, d is a positive integer, and
i, j, k, ℓ,m, n, s, t, α, β, γ, δ are nonnegative integers unless specified otherwise. The greatest
common divisor of positive integers a and b is denoted by (a, b).

2. Some useful lemmas

As alluded earlier, we shall first classify DO polynomials derived from the composition of
RDPs of the (m+ 1)-th kind and the monomial Xd, where d is a positive integer. Since DO
polynomials are closed under the composition with the monomial Xp, it would be sufficient
to consider the cases when (d, p) = 1. One may also note that the monomial Xrd, where r
is positive integer, is a DO monomial if and only if rd = pβ(pα + 1) for some nonnegative
integers α and β. Here, β is the highest exponent of p such that pβ | r. It is obvious that
whenever (r, p) = 1, we must have β = 0. In what follows, we shall invoke these assumptions
and conventions as and when required.

We now present some lemmas which will be useful in the sequel.

Lemma 2.1. Let d be a positive integer and p > 3 be a prime such that (d, p) = 1. Assume

that the coefficients of Xd and X2d in the polynomial D̂k,m are non-zero. Then the polynomial

D̂k,m is not a DO polynomial.

Proof. Assume that p > 3 and the coefficients of Xd and X2d in the polynomial D̂k,m are

non-zero. Therefore, if D̂k,m is a DO polynomial then d = pα +1 and 2d = pβ +1. Thus, we

have 2pα+1 = pβ, which is true if and only if α = 0, β = 1 and p = 3. This is a contradiction

to our assumption that p > 3, hence D̂k,m is not a DO polynomial. �

Lemma 2.2. Let d be a positive integer and p > 5 be a prime such that (d, p) = 1. Assume

that the coefficients of Xd and X3d in the polynomial D̂k,m are non-zero. Then the polynomial

D̂k,m is not a DO polynomial.

Proof. The proof follows using a similar reasoning as in the proof of Lemma 2.1. �
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Lemma 2.3. Let d be a positive integer and p > 3 be an odd prime such that (d, p) = 1.

Assume that the coefficients of X3d and X4d in the polynomial D̂k,m are non-zero. Then the

polynomial D̂k,m is not a DO polynomial.

Proof. The proof is along the similar line as in the proof of Lemma 2.1. �

Lemma 2.4. Let p = 3 and d be a positive integer such that (d, 3) = 1. Assume that the

coefficients of Xd and X4d in the polynomial D̂k,m are non-zero. Then the polynomial D̂k,m

is not a DO polynomial.

Proof. The proof follows by using a similar argument as in Lemma 2.1. �

Now we recall the following lemma from [14, Proposition 6.39], which will be used later.

Lemma 2.5. (Legendre’s formula) For any nonnegative integer ω and any prime p, Ep(ω!)
the largest exponent of p that divides ω! is given by

Ep(ω!) =
∞∑

i=1

⌊
ω

pi

⌋
=

ω − ωs

p− 1
,

where ωs is the sum of the digits in the representation of ω to the base p.

3. DO polynomials from RDPs of the first kind

Before we begin the classification of DO polynomials from RDPs of the first kind, we shall
slightly deviate and prove the following proposition that readily gives DO polynomials arising
from RDPs of the (m+ 1)-th kind when the parameter a is zero.

Proposition 3.1. The polynomial Dk,m(0,Xd) is DO if and only if k is even, m 6≡ 2 (mod p)
and kd is of the form 2pj(pi + 1), where i, j ≥ 0.

Proof. We know that

Dk,m(0,Xd) =

{
0 if k is odd;

(2−m)(−Xd)
k
2 if k is even.

Clearly, Dk,m(0,Xd) is a DO polynomial if and only if k is even, m 6≡ 2 (mod p) and kd =
2pj(pi + 1). �

In view of Proposition 3.1, we shall assume that a is non-zero for the rest of the paper.
We now consider RDPs of the first kind.
For a 6= 0, we write X = Y (a− Y ) with an indeterminate Y ∈ Fq2 . Then

Dk,0(a,X) = Y k + (a− Y )k;

see [8, Section 2]. Also, we have Dk,0(a, 0) = ak. Since Dkp,0(a,X) = (Dk,0(a,X))p and

Dkp,0(a, 0) = (Dk,0(a, 0))
p, we have D̂kp = D̂

p
k, where

D̂k = Dk,0(a,X
d)−Dk,0(a, 0) =

⌊k
2
⌋∑

i=1

k

k − i

(
k − i

i

)
(−Xd)iak−2i.

Since D̂kp = D̂
p
k, it would be sufficient to consider the cases when (k, p) = 1. The following

theorems give a complete classification of DO polynomials from polynomial D̂k for k odd and
k even, respectively.

Theorem 3.2. Let q be a power of an odd prime p, a ∈ F∗
q and k odd. The polynomial D̂k

is a DO polynomial over Fq if and only if one of the following holds.
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(i) p = 3, d = 2pn, k = 5pℓ, 7pℓ, where ℓ, n ≥ 0.
(ii) p > 3, d = pn(pα + 1), k = 3pℓ, where ℓ, n, α ≥ 0.

Proof. The sufficiency of the theorem is straightforward. It only remains to show the necessity.
Notice that when k is odd, then

D̂k = −kXdak−2 +
(k − 3)k

2!
X2dak−4 − (k − 4)(k − 5)k

3!
X3dak−6+

· · ·+ (−1)
k−3
2

(k − 1)k(k + 1)

24
X

d(k−3)
2 a3 + (−1)

k−1
2 k X

d(k−1)
2 a.

(3.1)

Since (k, p) = 1, the first term −kak−2Xd in D̂k will always exist. Thus, if D̂k is a DO
polynomial then d = pj(pi + 1). Since (d, p) = 1, we have j = 0. Therefore, we shall always
take d = pi + 1. Now we consider two cases, k 6≡ 3 (mod p) and k ≡ 3 (mod p).

Case 1. Let k 6≡ 3 (mod p). In this case, the coefficient of the second term in (3.1) is

non-zero. Therefore, if D̂k is a DO polynomial, then 2d = pβ(pα + 1) and d = pi + 1. Since
p is odd and (d, p) = 1, β = 0. Hence, the first equation reduces to 2d = pα + 1. Combining
these two equations, we obtain 2pi + 1 = pα, which is true if and only if p = 3, α = 1,
i = 0 and d = 2. Therefore, in this case, we shall always assume that p = 3 and d = 2. For

k = 5 and k = 7, the polynomials D̂5 = a3X2 +2aX4 and D̂7 = 2a5X2 +2a3X4 +2aX6, are

clearly DO polynomials. Now we claim that when p = 3 and k > 7 is odd, D̂k is never a DO
polynomial. Since (k, 3) = 1, we have only two cases to consider, namely, k ≡ 2 (mod 3) and
k ≡ 1 (mod 3).

In the case k ≡ 2 (mod 3), consider the second last term in (3.1) which is given by

(−1)
k−3
2

(k−1)k(k+1)
24 a3 Xk−3. If the coefficient of the second last term in (3.1) is non-zero,

then we claim that (k−3) cannot be written as 3i+3j for some nonnegative integers i and j.
On the contrary assume that k − 3 = 3i + 3j , which implies k − 2 = 3i + 3j + 1. Since k ≡ 2
(mod 3), k − 2 = 3i + 3j + 1 if and only if i = j = 0. But i = j = 0 implies k = 5, which is

a contradiction to our assumption that k > 7. Therefore D̂k is not a DO polynomial in this
case.

Now assume that the coefficient of the second last term in (3.1) is zero. In this case,
we shall show that the fourth term always exists. Note that the fourth term contains the
monomial X8 whose exponent cannot be written as 3i + 3j for some nonnegative integers i
and j. The coefficient of the fourth term is given by

(3.2)
k(k − 5)(k − 6)(k − 7)

24
ak−8.

Since (k, 3) = 1, 3 ∤ k and 3 ∤ (k − 6). Since k ≡ 2 (mod 3), where k is odd and greater
than 7, (k − 5)(k − 7) is a multiple of 24, i.e. (k − 5)(k − 7) = 24b, where b is an integer.
Then the coefficient of the fourth term in (3.2) becomes k(k − 6)b.

Now we show that 3 ∤ b. On the contrary, assume that 3 | b. Then we have, (k−5)(k−7) =
72e for some integer e. Since k ≡ 2 (mod 3), write k = 3e1 − 1 for some integer e1. Recall
that the second last term in (3.1) vanishes. By substituting 3e1 − 1 for k in the coefficient
of the second last term, we obtain e1 ≡ 0 (mod 3). Let e1 = 3n1 for some integer n1. Then
k = 3e1 − 1 = 9n1 − 1 ≡ −1 (mod 9). From (k − 5)(k − 7) = 72e and k ≡ −1 (mod 9), we
have 3 ≡ 0 (mod 9), which is a contradiction. Therefore, our assumption that 3 | b is wrong,
and hence the coefficient of X8 is non-zero. Therefore, when the second last term in (3.1)

vanishes, D̂k is not a DO polynomial.
In the case k ≡ 1 (mod 3), we first look at the fourth term. Recall that the fourth term

contains the monomial X8 whose exponent cannot be written as 3i+3j for some nonnegative
integers i and j. If the coefficient of the fourth term given in (3.2) is non-zero, then clearly
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D̂k is not a DO polynomial. In the case of the coefficient of the fourth term is zero, we claim
that the coefficient of the 7th term, which contains the monomial X14, is non-zero. The

coefficient of the 7th term is given by k(k−8)(k−9)(k−10)(k−11)(k−12)(k−13)
7! ak−14.

It is clear that the exponent of the monomial X14 cannot be written as 3i + 3j for some
nonnegative integers i and j. Since k is odd and k ≡ 1 (mod 3), it is clear that 3 | (k − 10),
6 | (k − 13), 9 ∤ (k − 10) and 12 ∤ (k − 13). Also, 3 ∤ k, 3 ∤ (k − 9), 3 ∤ (k − 12), 3 ∤ (k − 8)
and 3 ∤ (k − 11). Therefore, the coefficient of the 7th term is non-zero. Hence, in the case of

the coefficient of the fourth term is zero, D̂k is not a DO polynomial.
Case 2. Let k ≡ 3 (mod p). In this case, notice that if p = 3, then k ≡ 0 (mod 3),

which is a contradiction as (k, p) = 1. Therefore we shall assume that p > 3. For k = 3, the

polynomial D̂3 = −3aXd is a DO polynomial if and only if d = pi + 1. For k > 3, consider
the third term in (3.1), which contains the monomial X3d. Since k ≡ 3 (mod p), k 6≡ 4, 5

(mod p). Hence the coefficient of the third term is non-zero. Thus, if D̂k is a DO polynomial,
then d = pi+1 and 3d = pj +1. Combining these two equations, we have 3pi+2 = pj, which
is true if and only if i = 0, j = 1, p = 5 and d = 2. Notice that the coefficient of last term in

(3.1), which contains the monomial Xk−1, is non-zero. Thus, if D̂k is a DO polynomial then
k − 1 = 5j(5i + 1). Since k ≡ 3 (mod 5), k 6≡ 1 (mod 5), and hence j = 0. Also, notice that
if i = 0 then k = 3, which is a contradiction as k > 3. Therefore k− 1 = 5i +1 which implies

that k ≡ 2 (mod 5), a contradiction as k ≡ 3 (mod 5). Therefore for k > 3, D̂k is never a
DO polynomial. This completes the proof. �

Theorem 3.3. Let q be a power of an odd prime p, a ∈ F∗
q and k even. The polynomial D̂k

is a DO polynomial over Fq if and only if one of the following holds.

(i) d = pn(pα + 1), k = 2pℓ, where ℓ, n, α ≥ 0.
(ii) p = 3, d = 2pn, k = 4pℓ, where ℓ, n ≥ 0.

Proof. The sufficiency of the theorem is straightforward. It only remains to show the necessity.
Notice that when k is even, then

D̂k = −kak−2Xd +
k(k − 3)

2
ak−4X2d − k(k − 4)(k − 5)

6
ak−6X3d

+ · · ·+ (−1)
k
2
−1 k

2

4
a2Xd(k

2
−1) + (−1)

k
2 · 2 ·X dk

2 .

(3.3)

Since (k, p) = 1, the first term −kak−2Xd in D̂k will always exist. Thus, if D̂k is a DO
polynomial, then d = pj(pi + 1). Since (d, p) = 1, we have j = 0. Therefore, we shall always

take d = pi + 1. When k = 2, the polynomials D̂2 = −2Xpα+1 is clearly a DO polynomial.
For k ≥ 4, we consider two cases, k 6≡ 3 (mod p) and k ≡ 3 (mod p).

Case 1. Let k 6≡ 3 (mod p). In this case, the coefficient of the second term in (3.3), which

contains the monomial X2d, is non-zero. Thus, if D̂k is a DO polynomial, then 2d = pβ(pα+1)
and d = pi+1. Since p is odd and (d, p) = 1, we have β = 0. Combining these two equations,
we obtain p = 3, i = 0, α = 1 and d = 2. Therefore in what follows, we shall take p = 3 and

d = 2. In the case k = 4, the polynomial D̂4 = 2a2X2 + 2X4 is clearly DO polynomial.

Now for k > 4, even and k 6≡ 3 (mod 3), we claim that D̂k is not a DO polynomial.
Consider the fourth term, which contains the monomial X8. It is clear that 8 cannot be
written as 3i + 3j for some nonnegative integers i and j. If the coefficient of the fourth

term in (3.2) is non-zero, then D̂k is not a DO polynomial. Now consider the case where
the coefficient of the fourth term is zero. Note that the coefficient of the last term in (3.3),

which contains the monomial Xk, is always non-zero. Thus, if D̂k is a DO polynomial, then
k = 3i + 1. Clearly, i 6= 0, otherwise k = 2, a contradiction. If i > 0, then k ≡ 1 (mod 3).
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Now consider the second last term in (3.3), which contains the monomial Xk−2. Clearly, the

coefficient is non-zero as (k, 3) = 1. If D̂k is a DO polynomial and k ≡ 1 (mod 3), then
k − 2 = 3j + 1. If i = 0 then k = 4, which is a contradiction since k > 4. If i > 0, then

k = 3i+3. This contradicts the assumption that (k, 3) = 1. Thus D̂k is not a DO polynomial
in this case.

Case 2. Let k ≡ 3 (mod p). In this case, if p = 3, then k ≡ 0 (mod 3), which is a
contradiction as (k, p) = 1. Therefore, we shall always consider p > 3. Notice that the

coefficient of the last term in (3.3), which contains the monomial X
kd
2 , is non-zero. Thus, if

D̂k is a DO polynomial, then kd
2 = pβ(pα +1) and d = pi +1. Since (k, p) = 1 and (d, p) = 1,

β = 0. Hence, the first equation reduces to kd = 2pα + 2. Combining these two equations,
we get kpi + k = 2pα + 2. If i = 0, then k = pα + 1, which implies k ≡ 2 (mod p) or k ≡ 1
(mod p) depending on whether α = 0 or α > 0, respectively, a contradiction. If i > 0, then
α > 0, otherwise k(pi + 1) = 4, which is a contradiction as p > 3. Therefore k ≡ 2 (mod p),
a contradiction. This completes the proof. �

4. DO polynomials from RDPs of the second kind

Recall that Dk,1(a,X
d)−Dk,1(a, 0) is denoted by Êk, where

Êk = (1− k)ak−2Xd +
(k − 2)(k − 3)

2!
ak−4X2d − (k − 3)(k − 4)(k − 5)

3!
ak−6X3d + · · · .

(4.1)

The following theorems give necessary and sufficient conditions for RDPs of the second kind
to be DO polynomials for p = 3 and p ≥ 5, respectively.

Theorem 4.1. Let q be a power of the odd prime p = 3 and a ∈ F∗
q. The polynomial Êk is a

DO polynomial over Fq if and only if one of the following holds.

(i) k = 2, 3, 5, 6 and d = pn(pα + 1), where α, n ≥ 0.
(ii) k = 4 and d = pn(pα + 1)/2, where α, n ≥ 0.
(iii) k = 7, 10, 13, 19 and d = 2pn, where n ≥ 0.
(iv) k = 15 and d = 4pn, where n ≥ 0.

Proof. The sufficient part of the theorem is straightforward, therefore, we only prove the

necessary part. If the polynomials Ê2 = −Xd, Ê3 = −2aXd and Ê5 = 2a3Xd are DO

polynomial, then d is of the form pα + 1. Similarly, the polynomial Ê4 = X2d is a DO

polynomial only if d is of the form (pα + 1)/2. If the polynomial Ê6 = a4Xd + 2X3d is a DO

polynomial, then d = 3α + 1 and 3d = 3t(3β + 1). Since 3t | 3, t = 1. Therefore, Ê6 is a DO

polynomial only if d is of the form pα + 1. The polynomial Ê7 = a3X2d + 2aX3d is a DO
polynomial only if 2d = 3α + 1 and 3d = 3t(3β + 1). Since 3t | 3, t = 1. Combining these
two equations, we obtain β = 0, α = 1 and d = 2. For k ≥ 8, we shall treat all possible cases
depending on the value of k modulo 9.

Case 1. Let k ≡ 2, 8 (mod 9). In this case, k ≡ 2 (mod 3), therefore, k 6≡ 1 (mod 3) and
hence the coefficient of Xd in (4.1), is non-zero. Now, consider the fourth term

(4.2)
(k − 4)(k − 5)(k − 6)(k − 7)

4!
ak−8X4d.

It is clear that 3 ∤ (k − 4), 3 ∤ (k − 6) and 3 ∤ (k − 7). Also, since k ≡ 2, 8 (mod 9), k 6≡ 5
(mod 9), and hence the highest exponent of 3 which divides the numerator of the coefficient
of fourth term is 1. By Lemma 2.5, the highest exponent of 3 which divides 4! is 1. Therefore,

coefficient of the fourth term is non-zero and Êk is not a DO polynomial by Lemma 2.4.
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Case 2. Let k ≡ 0, 3 (mod 9). In this case, k ≡ 0 (mod 3) and hence, the coefficient
of Xd in (4.1) is non-zero. Now consider the fourth term as given in (4.2) again. Following
similar arguments as in the Case 1 above, it is easy to see that the coefficient of the fourth

term is nonzero and hence Êk is not a DO polynomial by Lemma 2.4.

Case 3. Let k ≡ 1 (mod 9). In this case, if the polynomial Ê10 = a6X2d + a4X3d + 2X5d

is a DO polynomial, then 2d = 3α + 1, 3d = 3t(3β + 1) and 5d = 3γ + 1. Since 3t | 3,
t = 1. Combining the first two equations, we obtain β = 0, α = 1 and d = 2. Now, putting
these values in third equation, we have 3γ = 9 and γ = 2. Similarly, if the polynomial

Ê19 = a15X2d+a13X3d+2a9X5d+2aX9d is a DO polynomial, then 2d = 3α+1, 3d = 3t(3β+1),
5d = 3γ +1 and 9d = 3s(3δ +1). Since 3t | 3 and 3s | 9, we have t = 1 and s = 2. Combining
first, second and fourth equation, we obtain β = 0, α = 1 and d = 2. Now, putting these
values in third equation, we have 3γ = 9 and γ = 2. For k ≥ 28, since k ≡ 1 (mod 3), k 6≡ 0, 2
(mod 3), and hence the coefficient of X2d is non-zero. Now, consider the 11th term

(4.3)
(k − 11)(k − 12)(k − 13) · · · (k − 19)(k − 20)(k − 21)

11!
ak−22(−Xd)11.

By Lemma 2.5, the highest exponent of 3 that divides 11! is 4. In the numerator of the
coefficient of 11th term, (k − 13), (k − 16), (k − 19) ≡ 0 (mod 3) and (k − 13), (k − 16) 6≡
0 (mod 9). Now, if k 6≡ 19 (mod 27), then the highest exponent of 3 which divides the

numerator is 4. Hence the coefficient of X11d is non-zero. Thus, if Êk is a DO polynomial
then 2d = 3α + 1 and 11d = 3β + 1. Combining these equations, we have 11 · 3α + 9 = 2 · 3β,
which forces α = 2 and 3β = 54, a contradiction. Therefore, Êk is not a DO polynomial in
this case. In the case k ≡ 19 (mod 27), we have k ≥ 46. In this case, consider the 20th term

(4.4)
(k − 20)(k − 21)(k − 22) · · · (k − 37)(k − 38)(k − 39)

20!
ak−40X20d.

The arguments of Case 1 can be invoked here to shows that the coefficient of X20d is non-

zero. Thus, if Êk is a DO polynomial, then 2d = 3α + 1 and 20d = 3β + 1. Combining
these equations, we have 10 · 3α + 9 = 3β , which forces α = 2 and 3β = 99, a contradiction.

Therefore, Êk is not a DO polynomial in this case.

Case 4. Let k ≡ 4 (mod 9). In this case, if the polynomial Ê13 = a9X2d + a3X5d + aX6d

is a DO polynomial, then 2d = 3α + 1, 5d = 3β + 1 and 6d = 3t(3γ + 1). Since 3t | 6, t = 1.
Combining these equations, we obtain α = 1, β = 2 and d = 2. Now, for k ≥ 22, since k ≡ 1
(mod 3), we have k 6≡ 0, 2 (mod 3), and hence the coefficient of X2d in (4.1) is non-zero. Now,
consider the 11th term as given in (4.3). By Lemma 2.5, the highest exponent of 3 that divides
11! is 4. In the numerator of the coefficient of 11th term, (k − 13), (k − 16), (k − 19) ≡ 0
(mod 3) and (k − 16), (k − 19) 6≡ 0 (mod 9). Now if k 6≡ 13 (mod 27), then the highest
exponent of 3 which divides the numerator is 4. Hence the coefficient of X11d is non-zero.

Thus if Êk is a DO polynomial, then 2d = 3α + 1 and 11d = 3β + 1. Combining these two
equations, we have 11 · 3α + 9 = 2 · 3β, which forces α = 2 and 3β = 54, a contradiction.

Therefore Êk is not a DO polynomial in this case. In the case k ≡ 13 (mod 27), k ≥ 22
is equivalent to k ≥ 40. In this case, consider the 20th term as given in (4.4). By similar
arguments as in the Case 1 one may prove that the coefficient of X20d is non-zero. Therefore,

if Êk is a DO polynomial, then 2d = 3α + 1 and 20d = 3β + 1. Combining these equations,

we have 10 · 3α + 9 = 3β , which forces α = 2 and 3β = 99, a contradiction. Therefore Êk is
not a DO polynomial in this case.

Case 5. Let k ≡ 5 (mod 9). In this case, if the polynomial Ê14 = 2a10X2d + a2X6d +X7d

is a DO polynomial, then d = 3α + 1, 6d = 3t(3β + 1) and 7d = 3γ + 1. Since 3t | 6, t = 1.
Combining the first two equations, we obtain α = 0, β = 1 and d = 2. Now putting these
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values in third equation, we have 3γ = 13, a contradiction. Therefore, Ê14 is not a DO
polynomial. Now, for k ≥ 23, consider the 10th term

(4.5)
(k − 10)(k − 11)(k − 12)(k − 13) · · · (k − 17)(k − 18)(k − 19)

10!
ak−20X10d.

By Lemma 2.5, the highest exponent of 3 that divides 10! is 4. In the numerator of the
coefficient of 10th term, (k − 11), (k − 14), (k − 17) ≡ 0 (mod 3) and (k − 11), (k − 17) 6≡
0 (mod 9). Now if k 6≡ 14 (mod 27), then the highest exponent of 3 which divides the

numerator is 4. Hence the coefficient of X10d is non-zero. Thus if Êk is a DO polynomial,
then d = 3α +1 and 10d = 3β +1. Combining these equations, we get 10 · 3α +9 = 3β, which

forces α = 2 and 3β = 99, a contradiction. Therefore Êk is not a DO polynomial in this case.
In the case k ≡ 14 (mod 27), k ≥ 23 is equivalent to k ≥ 41. Now, consider the 16th term

(4.6)
(k − 16)(k − 17)(k − 18) · · · (k − 29)(k − 30)(k − 31)

16!
ak−32X16d.

By way of similar arguments as done in Case 1, the coefficient of X16d is non-zero. Thus, if

Êk is a DO polynomial, then d = 3α + 1 and 16d = 3β + 1. Combining these equations, we

get 16 · 3α +15 = 3β , which forces α = 1 and 3β = 63, a contradiction. Therefore Êk is not a
DO polynomial in this case.

Case 6. Let k ≡ 6 (mod 9). In this case, if the polynomial Ê15 = a13Xd+2a9X3d+aX7d

is a DO polynomial, then d = 3α + 1, 3d = 3t(3β + 1) and 7d = 3γ + 1. Since 3t | 3, t = 1.
Combining these equations, we obtain α = 1, γ = 3 and d = 4. Now, for k ≥ 24, consider
the 10th term as given in (4.5). One may follow the similar arguments of Case 5 above to

shows that if k 6≡ 15 (mod 27), the coefficient of X10d is non-zero. Therefore Êk is not a DO
polynomial in this case. In the case k ≡ 15 (mod 27), k ≥ 24 is equivalent to k ≥ 42. In this
case, consider the 16th term as given in (4.6). Similar arguments as in the Case 1 show that

the coefficient of X16d is non-zero. Therefore Êk is not a DO polynomial in this case.
Case 7. Let k ≡ 7 (mod 9). In this case k ≥ 8 is equivalent to k ≥ 16. Also, since k ≡ 1

(mod 3), we have k 6≡ 0 or 2 (mod 3) and hence the coefficient of X2d in (4.1) is non-zero.
Now consider the 8th term, which is given by

(4.7)
(k − 8)(k − 9)(k − 10)(k − 11)(k − 12)(k − 13)(k − 14)(k − 15)

8!
ak−16X8d.

By following similar arguments as in the Case 1, it is not difficult to prove that the coefficient

of X8d is non-zero. Thus, if Êk is a DO polynomial, then 2d = 3α + 1 and 8d = 3β + 1.
Combining these equations, we have 4 · 3α + 3 = 3β , which forces α = 1 and 3β = 15,

a contradiction. Therefore Êk is not a DO polynomial in this case. This completes the
proof. �

Theorem 4.2. Let q be a power of an odd prime p ≥ 5 and a ∈ F∗
q. The polynomial Êk is a

DO polynomial over Fq if and only if one of the following holds.

(i) k = 2, 3 and d = pn(pα + 1), where α, n ≥ 0.
(ii) k = 7, p = 5 and d = 2pn, where n ≥ 0.

Proof. It is enough to prove the necessary part. If the polynomials Ê2 = −Xd and Ê3 =
−2aXd are DO polynomial, then d is of the form pα + 1. By Lemma 2.1, the polynomials

Ê4 = −3a2Xd +X2d and Ê5 = −4a3Xd + 3aX2d are not DO polynomials. The polynomial

Ê6 = −5a4Xd + 6a2X2d − X3d is a DO polynomial only if 2d = pα + 1 and 3d = pβ + 1.
Combining these equations, we get 3pα+1 = 2pβ, which forces α = 0, pβ = 2, a contradiction.

Therefore, Ê6 is not a DO polynomial. For the polynomial Ê7 = −6a5Xd+10a3X2d−4aX3d,
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we consider two cases, namely, p = 5 and p > 5. For p = 5, if Ê7 = 4a5Xd +X3d is a DO
polynomial, then d = 5α+1 and 3d = 5β+1. Combining these equations, we have 3 ·5α+2 =

5β , which forces α = 0, β = 1 and d = 2. For p > 5, Ê7 = −6a5Xd + 10a3X2d − 4X3d.

Since the coefficients of Xd and X2d are non-zero, Lemma 2.1 confirms that Ê7 is not a DO
polynomial. For k ≥ 8, we shall consider four cases, namely, k 6≡ 1, 2, 3 (mod p), k ≡ 1
(mod p), k ≡ 2 (mod p) and k ≡ 3 (mod p), respectively.

Case 1. Let k 6≡ 1, 2, 3 (mod p). In this case, the coefficients of Xd and X2d in (4.1) are

non-zero, therefore Êk is not a DO polynomial by Lemma 2.1.
Case 2. Let k ≡ 1 (mod p). In this case, we have (k − 2), (k − 3), (k − 4), (k − 5) 6≡ 0

(mod p). Therefore, the coefficients of X2d and X3d in (4.1) are non-zero. Thus, if Êk is a
DO polynomial, then 2d = pα + 1 and 3d = pβ + 1. Combining these equations, we have

3pα + 1 = 2pβ , which forces α = 0 and pβ = 2, a contradiction. Therefore Êk is not a DO
polynomial.

Case 3. Let k ≡ 2 (mod p). In this case, the coefficient of the first term in (4.1), which
contains the monomial Xd, is non-zero. Now we consider two cases, namely, p = 5 and p > 5.
In the case p = 5, k ≥ 8 is equivalent to k ≥ 12. We now show that if k 6≡ 7 (mod 25), then

the sixth term exists whose coefficient is given by (k−6)(k−7)(k−8)(k−9)(k−10)(k−11)
6! ak−12. Since

k ≡ 2 (mod 5), we have (k− 6), (k− 8), (k− 9), (k− 10), (k− 11) 6≡ 0 (mod 5). Also, if k 6≡ 7
(mod 25), then the highest exponent of 5 which divides the numerator is 1. By Lemma 2.5,
the highest exponent of 5 that divides 6! is 1. Therefore the coefficient of X6d is non-zero.

Thus, if Êk is a DO polynomial, then d = 5α+1 and 6d = 5β+1. Combining these equations,

we have 6·5α+5 = 5β , which forces α = 1 and 5β = 35, a contradiction. Therefore Êk is not a
DO polynomial in this case. Now if k ≡ 7 (mod 25), then the condition k ≥ 12 is equivalent
to k ≥ 32. In this case, using the similar arguments, we can show that the coefficient of X8d

is non-zero. Thus, if Êk is a DO polynomial, then d = 5α + 1 and 8d = 5β + 1. Combining
these equations, we have 8 · 5α + 7 = 5β, which forces α = 0 and 5β = 15, a contradiction.

Therefore Êk is not a DO polynomial in this case. In the case p > 5, since k ≡ 2 (mod p),
we have k 6≡ 1, 3, 4, 5 (mod p). Hence the coefficients of Xd and X3d in (4.1) are non-zero,

therefore Êk is not DO polynomial by Lemma 2.2.
Case 4. Let k ≡ 3 (mod p). In this case, the first term (1−k)Xd in (4.1) does not vanish.

Now we consider two cases, namely, p = 5 and p > 5. In the case p = 5, since k ≡ 3 (mod 5),
we have k 6≡ 0, 1, 2, 4 (mod 5), and hence the fourth term as given in (4.2) does not vanish.

Therefore, if Êk is a DO polynomial, then d = 5i + 1 and 4d = 5j + 1. Combining these
equations, we have 4 · 5i + 3 = 5j , which forces i = 0 and 5j = 7, a contradiction. Therefore

Êk is not a DO polynomial in this case. In the case p > 5, since k ≡ 3 (mod p), we have
(k−1), (k−4), (k−5), (k−6), (k−7), (k−8), (k−9) 6≡ 0 (mod p). Therefore, the fourth term

as given in (4.2) and the fifth term whose coefficient is given by (k−5)(k−6)(k−7)(k−8)(k−9)
5! ak−10,

do not vanish. Thus, if Êk is a DO polynomial, then d = pα+1, 4d = pβ +1 and 5d = pγ +1.
Combining the first two equations, we have 4pα + 3 = pβ, which forces α = 0, β = 1, p = 7
and d = 2. Now putting these values in third equation, we have 7γ = 9, a contradiction.

Therefore Êk is not a DO polynomial in this case. This completes the proof. �

One may recall from [22, Theorem 3.1] that RDPs of the second kind and RDPs of the
third kind admit the following relationship

Dk,2(a,X) = aDk−1,1(a,X).
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Thus, it is obvious that F̂k is a DO polynomial whenever Êk−1 is a DO polynomial. Conse-

quently, the classification of DO polynomials from RDPs of the third kind F̂k follows imme-
diately. In view of this, we shall consider RDPs of the fourth kind in the next section.

5. DO polynomials from RDPs of the fourth kind

Recall that Dk,3(a,X
d)−Dk,3(a, 0) is denoted by Ĝk, where

Ĝk = (3− k)ak−2Xd +
(k − 3)(k − 6)

2
ak−4X2d − (k − 4)(k − 5)(k − 9)

3!
ak−6X3d + · · · .

(5.1)

Also, from (1.3), it is easy to see that Ĝk = D̂k (mod 3). Therefore, for p = 3, Ĝk is a DO

polynomial whenever D̂k is a DO polynomial and the classification of DO polynomials from

D̂k has already been discussed in Section 3. Therefore, throughout this section, we consider
p ≥ 5. The following theorem gives a complete classification of DO polynomials derived from

Ĝk.

Theorem 5.1. Let q be a power of an odd prime p ≥ 5 and a ∈ F∗
q. The polynomial Ĝk is a

DO polynomial over Fq if and only if one of the following holds.

(i) k = 2 and d = pn(pα + 1), where α, n ≥ 0.
(ii) k = 6, 11, p = 5 and d = 2pn, where n ≥ 0.

Proof. It is enough to prove only the necessary part. If the polynomial Ĝ2 = Xd is a DO

polynomial, then d = pα + 1. The polynomial Ĝ3 is the zero polynomial and hence it is

not a DO polynomial. The polynomials Ĝ4 = −a2Xd − X2d, Ĝ5 = −2a3Xd − aX2d and

Ĝ7 = −4a5Xd + 2a3X2d + 2aX3d are not DO polynomials by Lemma 2.1. In the case of the

polynomial Ĝ6 = −3a4Xd + X3d, we consider two cases, namely, p = 5 and p > 5. In the

case p = 5, if Ĝ6 is a DO polynomial, then d = 5i + 1 and 3d = 5j + 1. Combining these
equations, we have 3 · 5i + 2 = 5j , which is true if and only if i = 0, j = 1 and d = 2. When

p > 5, Ĝ6 is not a DO polynomial by Lemma 2.2. For k ≥ 8, we consider two cases, namely,
p = 5 and p > 5.

Case 1. Let p > 5. Note that when k 6≡ 3, 6 (mod p), the coefficients of Xd and X2d in

Ĝk are non-zero. Therefore, Ĝk is not a DO polynomial by Lemma 2.1. In the case k ≡ 3

(mod p), the coefficient of X3d is non-zero and also, the coefficient of X4d in Ĝk, given by
(k−5)(k−6)(k−7)(k−12)

4! ak−8 is non-zero. Therefore, Ĝk is not a DO polynomial by Lemma 2.3.

When k ≡ 6 (mod p), the coefficients of Xd and X3d in Ĝk are non-zero, therefore, Ĝk is not
a DO polynomial by Lemma 2.2.

Case 2. Let p = 5. Notice that when k 6≡ 1, 3 (mod 5), the coefficients of Xd and

X2d in Ĝk are non-zero, therefore Ĝk is not a DO polynomial by Lemma 2.1. In the case

k ≡ 3 (mod 5), the coefficients of X3d and X4d in Ĝk are non-zero, therefore Ĝk is not

a DO polynomial by Lemma 2.3. For k ≡ 1 (mod 5), if the polynomial Ĝ11 = 2a9Xd +
a5X3d + 4aX5d is a DO polynomial, then d = 5α + 1, 3d = 5β + 1 and 5d = 5t(5γ + 1).
Since 5t | 5, t = 1. Thus, by combining these equations, we obtain α = 0, β = 1 and
d = 2. For k ≥ 16, since k ≡ 1 (mod 5), we have k 6≡ 0, 2, 3, 4 (mod 5) and hence the

coefficient of X3d in Ĝk is non-zero. Now consider the 6th term whose coefficient is given

by (k−7)(k−8)(k−9)(k−10)(k−11)(k−18)
6! ak−12. By Lemma 2.5, the highest exponent of 5 which

divides 6! is 1. Also, if k 6≡ 11 (mod 25), then highest exponent of 5 that divides the

numerator of coefficient of X6d is 1, hence the coefficient of X6d is non-zero. Thus, if Ĝk

is a DO polynomial, then 3d = 5α + 1 and 6d = 5β + 1. Combining these equations, we
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get 2 · 5α + 1 = 5β, which forces α = 0 and 5β = 3, a contradiction. Thus Ĝk is not a
DO polynomial in this case. In the case k ≡ 11 (mod 25), consider the 11th term whose

coefficient is given by (k−12)(k−13)···(k−19)(k−20)(k−21)(k−33)
11! ak−22. It is easy to verify that the

coefficient of X11d is non-zero. Thus, if Ĝk is a DO polynomial, then 3d = 5α + 1 and
11d = 5β + 1. Combining these equations, we have 11 · 5α + 8 = 3 · 5β , which forces α = 0

and 3 · 5β = 19, a contradiction. Thus Ĝk is not a DO polynomial in this case. �

6. DO polynomials from RDPs of the fifth kind

Here we consider RDPs of the fifth kind. Recall that Dk,4(a,X
d) −Dk,4(a, 0) is denoted

by Ĥk, where

Ĥk = (4− k)ak−2Xd +
(k − 3)(k − 8)

2
ak−4X2d − (k − 4)(k − 5)(k − 12)

3!
ak−6X3d + · · · .

(6.1)

It is easy to see from (1.3) that Ĥk = Êk (mod 3), thus for p = 3, Ĥk is a DO polynomial

whenever Êk is a DO polynomial. Thus, throughout this section, we take p ≥ 5.

Theorem 6.1. Let q be a power of an odd prime p ≥ 5 and a ∈ F∗
q. The polynomial Ĥk is a

DO polynomial over Fq if and only if one of the following holds.

(i) k = 2, 3 and d = pn(pα + 1), where α, n ≥ 0.
(ii) k = 4 and d = pn(pα + 1)/2, where α, n ≥ 0.

Proof. The sufficiency of the theorem is straightforward. It only remains to show the necessity.

If the polynomials Ĥ2 = 2Xd and Ĥ3 = aXd are DO polynomials, then d = pα+1. Similarly,

if the polynomial Ĥ4 = −2X2d is a DO polynomial, then d = (pα + 1)/2. In the case of

polynomials Ĥ5 = −a3Xd − 3aX2d, Ĥ6 = −2a4Xd − 3a2X2d + 2X3d and Ĥ7 = −3a5Xd −
2a3X2d + aX3d, the coefficients of Xd and X2d are non-zero. Therefore, Ĥ5, Ĥ6 and Ĥ7 are

not DO polynomials by Lemma 2.1. The polynomial Ĥ8 = −4a6Xd+8a2X3d−2X4d is not a

DO polynomial by Lemma 2.3. If the polynomial Ĥ9 = −5a7Xd+3a5X2d+10a3X3d−7aX4d

is a DO polynomial, then 2d = 5α + 1 and 4d = 5β + 1. Combining these equations, we get

2 ·5α+1 = 5β , which forces α = 0, 5β = 3, a contradiction. Thus Ĥ9 is not a DO polynomial.
For k ≥ 10, we consider two cases, p = 5 and p > 5.

Case 1. Let p = 5. Notice that when k 6≡ 3, 4 (mod 5), the coefficients of Xd and X2d

in Ĥk are non-zero, therefore, Ĥk is not a DO polynomial by Lemma 2.1. In the case k ≡ 3

(mod 5), the coefficients of Xd is clearly non-zero and also, the coefficient of X4d in Ĥk given

by (k−4)(k−5)(k−6)(k−7)
4! ak−8 is non-zero. Thus, if Ĥk is a DO polynomial, then d = 5α +1 and

4d = 5β + 1. Combining these equations, we have 4 · 5α + 3 = 5β, which forces α = 0 and

5β = 7, a contradiction. Thus Ĥk is not a DO polynomial in this case. When k ≡ 4 (mod 5),

the coefficient of X2d in Ĥk is non-zero. Also, if k 6≡ 9 (mod 25), the coefficient of X5d in

Ĥk given by (k−6)(k−7)(k−8)(k−9)(k−20)
5! ak−10 is non-zero. Thus, if Ĥk is a DO polynomial, then

2d = 5α+1 and 5d = 5t(5β+1). Since 5t | 5, t = 1 and hence, the second equation reduces to
d = 5β+1. Combining these equations, we have 2·5β+1 = 5α, which forces β = 0 and 5α = 3,

a contradiction. Thus Ĥk is not a DO polynomial. In the case k ≡ 9 (mod 25), the condition
k ≥ 10 is equivalent to k ≥ 34. Now consider the 9th term whose coefficient is given by
(k−10)(k−11)(k−12)···(k−16)(k−17)(k−36)

9! ak−18. Since k ≡ 9 (mod 25), we have k 6≡ 14 (mod 25).
Hence the highest exponent of 5, which divides the numerator is 1. By Lemma 2.5, highest
exponent of 5, which divides 9! is 1. Therefore, the coefficient of X9d is non-zero. Thus, if

Ĥk is a DO polynomial, then 2d = 5α + 1 and 9d = 5β + 1. Combining these two equations,
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we have 9 · 5α + 7 = 2 · 5β, which forces α = 0 and 5β = 8, a contradiction. Thus Ĥk is not a
DO polynomial.

Case 2. Let p > 5. Notice that when k 6≡ 3, 4, 8 (mod p), the coefficients of Xd and

X2d in Ĥk are non-zero, therefore Ĥk is not a DO polynomial by Lemma 2.1. In the case

k ≡ 3, 8 (mod p), the coefficients of Xd and X3d in Ĥk are non-zero, therefore Ĥk is not a

DO polynomial by Lemma 2.2. When k ≡ 4 (mod p), the coefficients of X2d and X4d in Ĥk

are non-zero. Thus, if Ĥk is a DO polynomial, 2d = pα+1 and 4d = pβ+1. Combining these

equations, we have 2 · pα +1 = pβ, which forces α = 0 and pβ = 3, a contradiction. Thus, Ĥk

is not a DO polynomial. This completes the proof. �

7. The case m ≥ 5

For m ≥ 5, we shall classify DO polynomials from the polynomial D̂k,m, where

D̂k,m = (m− k)ak−2Xd +
(k − 3)(k − 2m)

2
ak−4X2d − (k − 4)(k − 5)(k − 3m)

3!
ak−6X3d + · · · .

(7.1)

From (1.3), it is straightforward to see that for p = 3, D̂k,m = D̂k, Êk, and F̂k, whenever

m ≡ 0, 1 and 2 (mod 3), respectively. Similarly, for p ≥ 5, D̂k,m = D̂k, Êk, F̂k, Ĝk and Ĥk,
whenever m ≡ 0, 1, 2, 3 and 4 (mod p), respectively. Thus the only cases that remain to be
considered are p > 5 and m 6≡ 0, 1, 2, 3, 4 (mod p) for which we have the following theorem.

Theorem 7.1. Let q be a power of an odd prime p > 5 and a ∈ F∗
q. The polynomial D̂k,m

where m 6≡ 0, 1, 2, 3, 4 (mod p) is a DO polynomial over Fq if and only if one of the following
holds.

(i) k = 2, 3 and d = pn(pα + 1), where α, n ≥ 0.
(ii) k = 5, m ≡ 5 (mod p) and d = pn(pα + 1)/2, where α, n ≥ 0.
(iii) k = 5, 2m ≡ 5 (mod p) and d = pn(pα + 1), where α, n ≥ 0.

Proof. Only sufficiency of the theorem is required to be proved. If the polynomials D̂2,m =

(m− 2)Xd and D̂3,m = (m− 3)aXd are DO polynomials, then d is of the form pα + 1. The

polynomial D̂4,m = (m−4)a2Xd+(2−m)X2d is not a DO polynomial by Lemma 2.1. In the

case of the polynomial D̂5,m = (m−5)a3Xd+(5−2m)aX2d, we consider three cases, namely,
m ≡ 5 (mod p), 2m ≡ 5 (mod p) and m, 2m 6≡ 5 (mod p). In the case m ≡ 5 (mod p), if

D̂5,m = −5aX2d is a DO polynomial, then d is of the form (pα+1)/2. When 2m ≡ 5 (mod p)

and if D̂5,m = (m − 5)a3Xd is a DO polynomial, then d is of the form pα + 1. In the case

m, 2m 6≡ 5 (mod p), D̂5,m = (m−5)a3Xd+(5−2m)aX2d is not a DO polynomial by Lemma
2.1. For k ≥ 6, we consider four cases, namely, k 6≡ 3,m, 2m (mod p), k ≡ 3 (mod p), k ≡ m
(mod p) and k ≡ 2m (mod p).

Case 1. Let k 6≡ 3,m, 2m (mod p). In this case, the coefficients of Xd and X2d in D̂k,m

are non-zero, and therefore D̂k,m is not a DO polynomial by Lemma 2.1.
Case 2. Let k ≡ 3 (mod p). In this case, we have k 6≡ 4, 5 (mod p). Also, note that

k 6≡ m (mod p), otherwise m ≡ 3 (mod p). Similarly, k 6≡ 3m (mod p), otherwise m ≡ 1

(mod p). Therefore, the coefficients of Xd and X3d in D̂k,m are non-zero and hence D̂k,m is
not a DO polynomial by Lemma 2.2.

Case 3. Let k ≡ m (mod p). Notice that k 6≡ 3, 4 (mod p). Also, note that k 6≡ 2m, 3m

(mod p), otherwise m ≡ 0 (mod p). Therefore, the coefficient of X2d in D̂k,m is non-zero.

Also, when k 6≡ 5 (mod p), the coefficient of X3d in D̂k,m is non-zero. Thus, if D̂k,m is a
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DO polynomial, then 2d = pα + 1 and 3d = pβ + 1. Combining these equations, we get

3pα + 1 = 2pβ, which forces α = 0 and pβ = 2, a contradiction. Therefore, D̂k,m is not a DO
polynomial in this case. In the case k ≡ 5 (mod p), consider the coefficient of the fifth term
(k−6)(k−7)(k−8)(k−9)(k−5m)

5! ak−10. Since k ≡ 5 (mod p), we have (k−6), (k−7), (k−8), (k−9) 6≡
0 (mod p). Also, note that k 6≡ 5m (mod p), otherwise m ≡ 1 (mod p). Therefore, the

coefficients of X2d and X5d in D̂k,m are non-zero. Thus, if D̂k,m is a DO polynomial, then

2d = pα +1 and 5d = pβ +1. Combining these equations, we get 5pα +3 = 2pβ, which forces

α = 0 and pβ = 4, a contradiction. Therefore, D̂k,m is not a DO polynomial.
Case 4. Let k ≡ 2m (mod p). Notice that k 6≡ m (mod p), otherwise m ≡ 0 (mod p).

Therefore the coefficient of Xd in D̂k,m is non-zero. Also note that k 6≡ 3m (mod p) and
k 6≡ 4 (mod p), otherwise m ≡ 0 (mod p) and m ≡ 2 (mod p), respectively. When k 6≡ 5

(mod p), the coefficient of X3d in D̂k,m is non-zero and hence D̂k,m is not a DO polynomial
by Lemma 2.2. In the case k ≡ 5 (mod p), the condition k ≥ 6 is equivalent to k ≥ 13. Now
consider the fifth term again. By similar arguments as done in Case 3 above, it is easy to see

that the coefficient of X5d is non-zero. Thus, if D̂k,m is a DO polynomial, then d = pα+1 and

5d = pβ+1. Combining these equations, we get 5pα+4 = pβ, which forces α = 0 and pβ = 9,

a contradiction. Therefore D̂k,m is not a DO polynomial. This completes the proof. �

8. Discussion on planarity

We consider the planarity of DO polynomials obtained from RDPs of the (m+ 1)-th kind
as listed in the Appendix A. First, we shall discuss the tools and techniques that are needed
to understand the planarity of DO polynomials. These tools and techniques are similar to
the ones used in [5]. Recall that a polynomial function f : Fq → Fq is said to be planar if
the difference function ∆f (X, ǫ) = f(X + ǫ) − f(X) − f(ǫ) permutes the elements of Fq for
each ǫ ∈ F∗

q. If f happens to be a DO polynomial, the difference function ∆f (X, ǫ) for each
ǫ ∈ F∗

q, belongs to another well-known class of polynomials called linearized polynomials.
Therefore, a DO polynomial f is planar if and only if the linearized polynomial ∆f (X, ǫ)
is a permutation polynomial for each ǫ ∈ F∗

q. The permutation behaviour of linearized
polynomial is well-known. In fact, [14, Theorem 7.9] tells us that a linearized polynomial is
a permutation polynomial over Fq if and only if its only root in Fq is 0. Therefore, in order
to show that a DO polynomial f is not planar, it is sufficient to show that the difference
function ∆f (X,Y ) = f(X + Y )− f(X)− f(Y ) has a root in F∗

q × F∗
q.

We recall that a DO polynomial function f from Fq to itself is called 2-to-1 function if
the cardinality of the image set on F∗

q is (q − 1)/2. Qiu et al. [19] showed that the size of
the image set on F∗

q of a planar polynomial f over Fq must be at least (q − 1)/2. For a DO
polynomial f , Weng and Zeng [23, Theorem 2.3] gave the following necessary and sufficient
condition for f to be planar.

Lemma 8.1. Let f be a DO polynomial over Fq. Then f is planar if and only if f is 2-to-1.

Lemma 8.1 has further consequences. First, if a DO polynomial f has a root z ∈ F∗
q, then

−z is also a root of f . Therefore, the cardinality of image set of f on F∗
q is strictly less than

(q − 1)/2 and hence, in such a case, f is not planar.
For the second consequence, we begin with an easy observation that if f(X) is a DO

polynomial, then so is f(Xpn). We know that Xpn is a linearized permutation polynomial
over Fpe . Therefore, the cardinality of the image set of f(X) and f(Xpn) on F∗

q is same.

Hence if f(X) is planar, then f(Xpn) is also planar. Therefore in such situations, it would
be sufficient to consider the planarity of f(X).
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Another important tool that we would require to study the planarity of DO polynomials
is the following version of Weil bound as stated in [3, Lemma 2.4].

Lemma 8.2. Let f(X,Y ) be an absolutely irreducible polynomial in Fq[X,Y ]. Then the
number Nf of (u, v) ∈ Fq × Fq with f(u, v) = 0 satisfies

Nf ≥ q − (d− 1)(d− 2)
√
q − d− 1,

where d is the total degree of f .

We now describe the strategy for using the Weil bound to determine the planarity of
certain DO polynomials. Let f be a DO polynomial over Fq and consider the difference
function ∆f (X,Y ) = f(X + Y )− f(X)− f(Y ). If this difference function has an absolutely
irreducible factor, say h(X,Y ), of total degree dh, then Lemma 8.2 gives a lower bound for
the cardinality Nh of all the points (u, v) ∈ Fq × Fq such that h(u, v) = 0. If the degree of
the absolutely irreducible factor h(X,Y ) is not too large and q is large enough, then we have
many Fq-rational points on the affine algebraic curve defined by h(X,Y ) = 0. Moreover, if
Nh is strictly larger than the number of solutions to h(X,Y ) = 0 with either X = 0 or Y = 0,
then Lemma 8.2 yields the existence of a point (u, v) in F∗

q × F∗
q such that h(u, v) = 0 and

hence, for such a point, we have ∆f (u, v) = 0, i.e, ∆f (X,Y ) has a root in F∗
q × F∗

q. Thus, in
order to show that f is not exceptional planar (i.e., planar over infinitely many extensions of
Fq), it is sufficient to show that the difference function of f contains an absolutely irreducible
component with a solution in F∗

q × F∗
q.

It is straightforward to see that for b ∈ F∗
q, RDPs of the (m+1)-th kind admit the following

relationship

(8.1) bkdDk,m(a,Xd) = Dk,m(abd, (Xb2)d).

In view of (8.1), and due to the fact that the planarity property of a function f remains
invariant under linear transformations (i.e. if f(X) is planar so is αf(λX + µ) + β with
α, λ 6= 0), we have the following lemma.

Lemma 8.3. Let Dk,m(a,X) be the k-th RDP of the (m+ 1)-th kind. Then Dk,m(a,Xd) is

planar equivalent over Fq to Dk,m(abd,Xd) for any b ∈ F∗
q.

Over the algebraic closure Fq of Fq, we derive a useful consequence of Lemma 8.3. Note

that one may always choose b ∈ Fq that satisfies the equation aXd = 1. In this way the

factorizations of ∆Dk,m(a,Xd) and ∆Dk,m(1,Xd) over Fq are linearly related. As a consequence,

the absolutely irreducible factors of ∆Dk,m(a,Xd) are of the same form for all non-zero a.

Thus, without loss of generality, one may always take a = 1, while checking the absolute
irreducibility of certain polynomials.

Now we consider the planarity of the DO polynomials listed in the Appendix A in three
different cases.

Case 1. Let p = 3. The planarity of monomials D̂2 = X3α+1, Ê2 = 2X3α+1, Ê3 = aX3α+1,

Ê4 = X3α+1, and Ê5 = 2a3X3α+1 is well-known by [4, Theorem 3.3] and these monomials
are planar over F3e if and only if e/(α, e) is odd. It is easy to see that X = a is a root of

the polynomials D̂5 = 2aX4 + a3X2, Ê7 = 2aX6 + a3X4, D̂7 = 2aX6 + 2a3X4 + 2a5X2,

Ê13 = aX12+a3X10+a9X4 and Ê19 = 2aX18+2a9X10+a13X6+a15X4. Therefore, these DO
polynomials are not planar. Now we consider the planarity of the rest of the DO polynomials
one by one.

(i) In the case of binomial f(X) = D̂4 = 2X4 + 2a2X2, consider the difference function
∆f (X,Y ) = f(X+Y )− f(X)− f(Y ) = XY B(X,Y ), where B(X,Y ) = X2+Y 2−a2, which
is simply an irreducible conic since a is non-zero. Therefore, by Lemma 8.2, the number NB
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of (u, v) ∈ Fq×Fq with B(u, v) = 0 is greater than or equal to q−3. Note that we can obtain
at most 4 solutions (u, v) to B(X,Y ) = 0 by putting either X = 0 or Y = 0. Therefore,

when q − 3 > 4, there must exist a root (u, v) ∈ F∗
q × F∗

q of B(X,Y ). Therefore, D̂4 is not

planar when q > 7, i.e., e ≥ 2. For e = 1, D̂4 ≡ X2 (mod X3 −X) which is clearly a planar
function.

(ii) The DO binomial Ê6 = 2X3(3α+1) + a4X3α+1 can be written as composition of a
linearized polynomial and a monomial as (2X3 + a4X) ◦X3α+1. Now from [4, Theorem 2.3],

Ê6 is planar if and only if 2X3 + a4X is a permutation polynomial and X3α+1 is planar.
Now, since X = a2 is a root of the linearized polynomial 2X3 + a4X, 2X3 + a4X is not a

permutation polynomial. Hence, Ê6 is not planar.

(iii) In the case of the DO polynomial f(X) = Ê10 = 2X10 + a4X6 + a6X4, consider the
difference function ∆f (X,Y ) = XY h(X,Y ), where h(X,Y ) = 2(X8 + Y 8) − a4X2Y 2 +
a6(X2 + Y 2). The Magma algebra package [1] reveals that h(X,Y ) is absolutely irreducible.
Therefore, by Lemma 8.2, the number Nh of solutions (u, v) ∈ Fq × Fq of h(X,Y ) = 0
satisfies Nh ≥ q− 42

√
q− 9. Now h(X, 0) = 2X8 + a6X2 = X2(a+X)3(a−X)3 have in total

8 solutions in Fq. Similarly, h(0, Y ) = 2Y 8a + a6Y 2 = Y 2(a − Y )3(a + Y )3 have in total 8
solutions in Fq. Therefore, in total 16 solutions can be obtained either by putting X = 0 or
Y = 0. Now if q − 42

√
q − 9 > 16, i.e., q − 42

√
q − 25 > 0 then h(X,Y ) possesses a solution

(u, v) ∈ F∗
q × F∗

q. This is true for e ≥ 7, therefore, for e ≥ 7, Ê10 is not planar. For e = 1

Ê10 = X2 (mod X3 − X), which is clearly a planar polynomial. Computations show that

for 2 ≤ e ≤ 6, the cardinality of the image set of Ê10 on F∗
q is strictly less than (3e − 1)/2.

Therefore, by Lemma 8.1, Ê10 is not planar in these cases.

(iv) Consider the DO polynomial f(X) = Ê15 = aX28 + 2a9X12 + a13X4 = a(X7 +
2a8X3 + a12X) ◦ X4. This polynomial is never planar over F3e when e is even. Since in
this case 4 | (q − 1), the cardinality of image set of f(X) on F∗

q is at most (q − 1)/4 and
thus, by Lemma 8.1, f(X) is not planar. When e is odd, we consider the difference function
∆f (X,Y ) = aXY (X2 + Y 2) h(X,Y ), where

h(X,Y ) = a12 +

12∑

i=0

(−1)iX24−2iY 2i +

3∑

i=1

(−1)ia8X8−2iY 2i.

Again, the Magma algebra package [1] shows that the polynomial h′(X,Y ) obtained from
h(X,Y ) by putting a = 1, is absolutely irreducible. Therefore, by Lemma 8.2, the number
Nh′ of solutions (u, v) ∈ Fq×Fq of h

′(X,Y ) = 0 satisfiesNh′ ≥ q−506
√
q−25. Also, h′(X, 0) =

X24 + 1 and this has no root in odd degree extensions of F3. Similarly, h′(0, Y ) = Y 24 + 1
has no root in odd degree extensions of F3. Therefore, there is no solution to h′(X,Y ) = 0
corresponding to XY = 0. If q − 506

√
q − 25 > 0, then h′(X,Y ) has a root (u, v) ∈ F∗

q × F∗
q.

This holds true for all e ≥ 12. Therefore, Ê15 is not planar over F3e for e ≥ 12. In the case

e = 1, the polynomial f(X) = Ê15 = aX2 (mod X3 −X) which is clearly a planar function.

Computations show that for e = 5, 7, 9, 11, the cardinality of the image set of Ê15 on F∗
3e is

strictly less than (3e− 1)/2, therefore, Ê15 is not planar in these cases. In the case e = 3, Ê15

is planar for every choice of a ∈ F∗
27.

Case 2. Let p = 5. The planarity of DO monomials D̂2 = 3X5α+1, D̂3 = 2aX5α+1,

Ê2 = 4X5α+1, Ê3 = 3aX5α+1, Ĝ2 = X5α+1, Ĥ2 = 2X5α+1, Ĥ3 = aX5α+1, and Ĥ4 = 3X5α+1

is well-known by [4, Theorem 3.3] and these monomials are planar over F5e whenever e/(α, e)

is odd. It is straightforward to see that X = a is a root of the DO binomial Ê7 = 4a5X2+aX6
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and hence, it is not planar. Now we consider the planarity of the rest of the DO polynomials
one by one.

(i) For the DO binomial f(X) = Ĝ6 = 2a4X2 + X6, consider the difference function
∆f (X,Y ) = XY B(X,Y ), where B(X,Y ) = X4+Y 4−a4. It is easy to see that Y −a | Y 4−a4

and Y 4−a4 has no repeated roots. Therefore, by Eisenstein’s criterion, B(X,Y ) is absolutely
irreducible. Thus, by Lemma 8.2, the number of solutions (u, v) ∈ Fq × Fq of B(X,Y ) = 0
satisfies NB ≥ q−6

√
q−5. Now, at most 8 roots of B(X,Y ) can be obtained by putting either

X = 0 or Y = 0. Therefore, if q− 6
√
q− 5 > 8, B(X,Y ) will have a solution (u, v) ∈ F∗

q ×F∗
q,

which holds for all e ≥ 3. Therefore, Ĝ6 is not planar over F5e for e ≥ 3. When e = 1,
f(X) = 3X2(mod (X5 − X)) which is clearly a planar function. For e = 2, the number of
solutions of the equation X4+Y 4 = a4 in F52×F52 is 40, which is greater than 16. Therefore,

Ĝ6 is not planar in this case.

(ii) In the case of the DO trinomial f(X) = Ĝ11 = −aX10 + a5X6 + 2a9X2, consider the
difference function ∆f (X,Y ) = XY h(X,Y ), where h(X,Y ) = 3aX4Y 4+a5X4+a5Y 4+4a9.
The Magma algebra package [1] shows that h(X,Y ) is absolute irreducible. Therefore, by
Lemma 8.2, the number Nh of solutions (u, v) ∈ Fq × Fq of h(X,Y ) = 0 satisfies Nh ≥
q − 42

√
q − 9. Now, h(X, 0) = X4 − a4 = 0 can have at most 4 solutions. Similarly,

h(0, Y ) = Y 4 − a4 = 0 can have at most 4 solutions. Therefore, at most 8 solutions can be
obtained by putting either X = 0 or Y = 0. Now, if q− 42

√
q− 9 > 8, i.e., q− 42

√
q− 17 > 0

then h(X,Y ) will have a solution (u, v) ∈ F∗
q × F∗

q. This is true for e ≥ 5, therefore, for

e ≥ 5, Ĝ11 is not planar. For e = 1, Ĝ11 = 2aX2 is clearly a planar function. For e = 2, 4,

computations show that the cardinality of the image set of Ĝ11 on F∗
5e is strictly less than

(5e − 1)/2. Therefore, Ĝ11 is not planar in these cases. For e = 3, computations show that

Ĝ11 is planar for every choice of a ∈ F∗
125.

Case 3. Let p > 5. In this case, the only DO polynomials we are getting are the monomials
of the form bXpα+1 where b ∈ F∗

q and by [4, Theorem 3.3], these monomials are planar over
Fpe whenever e/(α, e) is odd.

In view of the foregoing discussion, the following theorem gives the list of planar DO
polynomials arising from RDPs of arbitrary kind.

Theorem 8.4. Let D̂k,m =

⌊k
2
⌋∑

i=1

k −mi

k − i

(
k − i

i

)
(−Xd)iak−2i as defined in the Introduction.

Then the following are the only planar DO polynomials arising from D̂k,m.

(i) X2 over Fpe.
(ii) Xpα+1 over Fpe with e

(α,e) odd.

(iii) 2a9X12 + a13X4 + aX2 over F27 with a ∈ F∗
27.

(iv) −aX10 + a5X6 + 2a9X2 over F125 with a ∈ F∗
125.

Acknowledgments

The authors would like to express their sincere appreciation for the reviewers’ careful
reading, beneficial comments and suggestions, and to the editors for the prompt handling
of our paper. The research of Sartaj Ul Hasan is partially supported by Start-up Research
Grant SRG/2019/000295 from the Science and Engineering Research Board, Government of
India



18 N. FERNANDO, S. U. HASAN, AND M. PAL

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic
Comput. 24 (1997) 235-265.

[2] C. Carlet, C. Ding, J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing
schemes, IEEE Trans. Inform. Theory, 51 (6) (2005), 2089-2102.

[3] J. S. Chahal, S. R. Ghorpade, Carlitz-Wan conjecture for permutation polynomials and Weil bound for
curves over finite fields, Finite Fields Appl., 54 (2018) 366-375.

[4] R.S. Coulter, R.W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr.,
10 (1997) 167-184.

[5] R. S. Coulter, R. W. Mattews, Dembowski-Ostrom polynomials from Dickson polynomials, Finite Fields
Appl., 16 (2010) 369-379.

[6] P. Dembowski, T. G. Ostrom, Planes of order n with collineation groups of order n2, Math. Z., 103 (1968)
239-258.

[7] L. E. Dickson, The analytic presentation of substitutions on a power of a prime number of letters with a
discussion of the linear group, Ann. of Math. 11 (1897), 65–120.

[8] N. Fernando, Reversed Dickson polynomials of the (k + 1)-th kind over finite fields, J. Number Theory,
172 (2017) 234-255.

[9] M.J. Ganley, E. Spence, Relative difference sets and quasiregular collineation groups, J. Combin. Theory
Ser. A, 19 (1975) 134-153.
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[20] L. Rónyai, T. Szönyi, Planar functions over finite fields, Combinatorica, Vol. 9 (1989) 315-320.
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Appendix A. The complete list of DO polynomials

Here, we present the complete list of DO polynomials obtained from polynomial D̂k,m over
a finite field of odd characteristic.

(1) The case p = 3.
(a) When m ≡ 0 (mod 3)

(i) k = 2 · 3ℓ, X3n+ℓ(3α+1) for nonnegative integers α, n and ℓ.
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(ii) k = 4 · 3ℓ, 2a2X2·3n+ℓ

+ 2X4·3n+ℓ

for nonnegative integers n and ℓ.

(iii) k = 5 · 3ℓ, a3X2·3n+ℓ
+ 2aX4·3n+ℓ

for nonnegative integers n and ℓ.

(iv) k = 7 · 3ℓ, 2a5X2·3n+ℓ
+ 2a3X4·3n+ℓ

+ 2aX2·3n+ℓ+1
for nonnegative integers

n and ℓ.
(b) When m ≡ 1 (mod 3)

(i) k = 2, 2X3n(3α+1) for nonnegative integers α and n.

(ii) k = 3, aX3n(3α+1) for nonnegative integers α and n.
(iii) k = 4, X3n(3α+1) for nonnegative integers α and n.

(iv) k = 5, 2a3X3n(3α+1) for nonnegative integers α and n.

(v) k = 6, a4X3n(3α+1) + 2X3n+1(3α+1) for nonnegative integers α and n.

(vi) k = 7, a3X4·3n + 2aX2·3n+1
for nonnegative integer n.

(vii) k = 10, a6X4·3n + a4X2·3n+1
+ 2X10·3n for nonnegative integer n.

(viii) k = 13, a9X4·3n + a3X10·3n + aX4·3n+1
for nonnegative integer n.

(ix) k = 15, a13X4·3n + 2a9X4·3n+1
+ aX28·3n for nonnegative integer n.

(x) k = 19, a15X4·3n + a13X2·3n+1
+ 2a9X10·3n + 2aX2·3n+2

for nonnegative
integer n.

(c) When m ≡ 2 (mod 3)

(i) k = 3, 2aX3n(3α+1) for nonnegative integers α and n.

(ii) k = 4, a2X3n(3α+1) for nonnegative integers α and n.

(iii) k = 5, aX3n(3α+1) for nonnegative integers α and n.

(iv) k = 6, 2a4X3n(3α+1) for nonnegative integers α and n.

(v) k = 7, a5X3n(3α+1) + 2aX3n+1(3α+1) for nonnegative integers α and n.

(vi) k = 8, a4X4·3n + 2a2X2·3n+1
for nonnegative integer n.

(vii) k = 11 a7X4·3n + a5X2·3n+1
+ 2aX10·3n for nonnegative integer n.

(viii) k = 14, a10X4·3n + a4X10·3n + a2X4·3n+1
for nonnegative integer n.

(ix) k = 16, a14X4·3n + 2a10X4·3n+1
+ a2X28·3n for nonnegative integer n.

(x) k = 20, a16X4·3n + a14X2·3n+1
+ 2a10X10·3n + 2a2X2·3n+2

for nonnegative
integer n.

(2) The case p = 5.
(a) When m ≡ 0 (mod 5)

(i) k = 2 · 5ℓ, 3X5n+ℓ(5α+1) for non negative integers α, n and ℓ.

(ii) k = 3 · 5ℓ, 2aX5n+ℓ(5α+1) for non negative integers α, n and ℓ.
(b) When m ≡ 1 (mod 5)

(i) k = 2, 4X5n(5α+1) for nonnegative integers α and n.

(ii) k = 3, 3aX5n(5α+1) for nonnegative integers α and n.
(iii) k = 7, 4a5X2·5n + aX6·5n for nonnegative integer n.

(c) When m ≡ 2 (mod 5)

(i) k = 3, 4aX5n(5α+1) for nonnegative integers α and n.

(ii) k = 4, 3a2X5n(5α+1) for nonnegative integer n.
(iii) k = 8, 4a6X2·5n + a2X6·5n for nonnegative integer n.

(d) When m ≡ 3 (mod 5)

(i) k = 2, 2X5n(5α+1) for nonnegative integers α and n.
(ii) k = 6, 2a4X2·5n +X6·5n for nonnegative integer n.

(iii) k = 11, 2a9X2·5n + a5X6·5n + 4aX2·5n+1
for nonnegative integer n.

(e) When m ≡ 4 (mod 5)

(i) k = 2, 2X5n(5α+1) for nonnegative integers α and n.



20 N. FERNANDO, S. U. HASAN, AND M. PAL

(ii) k = 3, aX5n(5α+1) for nonnegative integer n.

(iii) k = 4, 3X5n(5α+1) for nonnegative integer n.
(3) The case p > 5.

In this case, we are getting DO polynomials of the form bXpα+1 where b ∈ F∗
q.
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