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4-COP-WIN GRAPHS HAVE AT LEAST 19 VERTICES

JÉRÉMIE TURCOTTE AND SAMUEL YVON

Abstract. We show that the cop number of any graph on 18 or fewer vertices is at most 3. This
answers a question posed by Andreae in 1986, as well as more recently by Baird et al. We also find
all 3-cop-win graphs on 11 vertices, narrow down the possible 4-cop-win graphs on 19 vertices and
make some progress on finding the minimum order of 3-cop-win planar graphs.

1. Introduction

The game of cops and robbers was first defined by Quilliot in [29] and Nowakowski and Winkler in
[27]. Playing on the vertices of a connected, undirected and finite graph, a group of cops pursues a
robber. On the first turn of the game, each cop selects a vertex as its initial position, followed by the
robber. The cops and the robber then alternate turns with the cops going first. On the cops’ turn
(resp. robber’s turn), each cop (resp. the robber) must choose either to remain on its current vertex
or go to a vertex in the neighbourhood of its current position. If at some point during the game a cop
and the robber are on the same vertex, the robber is said to be caught and the cops win. The robber
wins if it has a strategy ensuring it is never caught by the cops. At all times, the positions of the cops
and of the robber are known by all. Furthermore, the cops may coordinate their strategies, and are
allowed to share vertices. An alternative formulation is to define the game of cops and robbers as a
two-player game in which the first player controls some number of pieces named the cops, the second
player controls a single piece named the robber, and the graph is the game board (for example as in
[23]).

For a connected graph G, we denote by c(G) the minimum number of cops which can always catch
the robber on G. Introduced by Aigner and Fromme in [2], c(G) is called the cop number of G. If
c(G) = k, we say G is k-cop-win.

The cop number has been the main focus of most articles on cops and robbers, but other parameters,
such as the capture time, are also studied. See [10] for a quick overview of this field or [13] for a more
in-depth introduction. Although in this paper we study the classical version of the game, a multitude
of variants of this game have been considered in recent years. For instance, we can allow the robber
to move multiple edges at once [19], or loosen the winning condition to the cops being within some
distance of the robber [11].

While there has been a significant amount of research on the cop number, often on specific classes
of graphs (for instance in [3, 18, 23]), there are still surprisingly many elementary open questions. We
consider here the problem of finding the minimum order of a k-cop-win graph, more specifically for
k = 4. This question was first posed by Andreae in [3]. It is also raised, seemingly independently, by
Baird et al. in [5].

The case of k = 3 has already been solved. Andreae claimed without proof in [3] that the Petersen
graph (see Figure 1) is the unique smallest 3-cop-win graph. This statement was later proved by Baird
et al. in [5].

For a given graph G, we denote by V (G) and E(G), respectively, the set of vertices and of edges
of G. We denote by Mk the minimum order of a k-cop-win graph; formally,

Mk = min{|V (G)| : G is a connected graph, c(G) = k}.
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Hosseini proved in [21] that Mk < Mk+1, confirming the intuition that if one scans all graphs by
increasing order, one cannot find a (k + 1)-cop-win graph before finding a k-cop-win graph.

Although interesting by itself, the concept of minimum k-cop-win graphs is also useful in regards
to Meyniel’s conjecture [17], which asks whether the cop number G is O(

√
n), where n is the order of

G. Currently the best known upper bound is n2−(1+o(1))
√

log
2
n, as proved by Lu and Peng [25], Scott

and Sudakov [32], and Frieze, Krivelevich and Loh [19]. A deeper survey of Meyniel’s conjecture is [6].
It was proved by Baird et al. in [5] that Meyniel’s conjecture is equivalent to proving that Mk ∈ Ω(k2).

The specific problem of finding the minimum order of a 4-cop-win graph has received some interest.
Hosseini proved in [20] that M4 ≥ 16, and that such a minimal graph is 3-connected, provided it does
not contain a vertex of degree 2. The problem is also briefly referenced in [10]. It was suggested in
[3, 5] that the value of M4 might be 19. Indeed, the smallest known 4-cop-win graph is the Robertson
graph (see Figure 1). This graph was first discovered by Robertson in [31] as the smallest 4-regular
graph with girth 5.

Aigner and Fromme proved in [2] that graphs with girth at least 5 have a cop number of a least
their minimum degree. This result has since been generalized by Frankl in [17], and more recently by
Bradshaw et al. in [14], where they prove stronger lower bounds on the cop number of graphs with
high girth. One deduces that the cop number of the Robertson graph is therefore at least 4. It is
easily seen in Figure 1 that placing a cop on each of the three exterior vertices (a, b, c) only leaves 4
unprotected vertices, which form independent edges. A last cop may then capture the robber, hence
the Robertson graph is 4-cop-win (this argument appears in [8]).

More generally, it was suggested in [5] that the smallest d-cop-win graphs might be the (d, 5)-cages
for d ≥ 3. A (d, g)-cage is a regular graph of degree d and girth g of minimum order. In particular,
the Petersen graph is the unique (3, 5)-cage and the Robertson graph is the unique (4, 5)-cage.

α1

α2

α3 α4

α5

β1

β2

β3 β4

β5

(a) The Petersen graph

c

b

a

(b) The Robertson graph1

Figure 1. Some small (d, 5)-cage graphs

The main result of this article is to confirm that M4 = 19. Although we are not able to prove a
complete uniqueness result, we narrow down the possible 4-cop-win graphs on 19 vertices by proving
there are no 4-cop-win graphs on 19 vertices with maximum degree at most 4 or at least 7, except for
the Robertson graph.

1Computer-generated drawing [34].
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Although our proof is not directly based on those in [20] and [5] (we however use two results
from the latter), there are certainly some common elements between those arguments and ours. In
particular, we similarly break down the problem by maximum degree and gradually develop properties
of potential 4-cop-win graphs by constructing explicit winning strategies for 3 cops if those properties
do not hold.

While we are able to obtain many interesting results using structural properties, this article makes
extensive use of computational methods to verify the remaining cases. All of the code and data
produced in the writing of this article is available online at [33]. This includes not only the final
results, but the graphs we generate in the intermediate algorithms, precise counts of the number of
graphs we generate at every step in these algorithms, and the time required for almost all computations.
All of the computations are split up in small parts to facilitate verification. At various points in this
article, we will also discuss possible improvements and alternative computational approaches.

The structure of this article is as follows. In Section 2, we present the previously known results
which we will need in our proof. In Section 3, we compute the 3-cop-win graphs on 11 to 14 vertices
(with some maximum degree restrictions), which we will use in later sections to construct all graphs
which are possibly 4-cop-win. In Section 4, by considering graphs containing the Petersen graph, we
show that all graphs on n ≤ 18 vertices with maximum degree n−12 or n−11 have at most 3 vertices.
By refining the techniques used for n ≤ 18, we will be able to expand the result to n = 19. In Section
5, we present the results of an exhaustive search which shows there are no 4-cop-win subcubic graphs
on n ≤ 20 vertices, and mention an application to a related problem. In Section 6, we introduce the
Merging Algorithm in order to tackle the cases with maximum degree 3 < ∆ < n− 12. These are be
the last remaining cases, and will allow us to prove in Section 7 that the minimum order of 4-cop-win
graphs is 19. A visual aid to how each part will be used in the proof is provided in Table 7.

2. Notation and previous results

In this section, we introduce most of the notation used in the article. We also cite previously known
results that will be useful in the following sections.

When considering a graph G, we will respectively denote by n(G), dG(u), δ(G) and ∆(G) the
number of vertices of G, the degree of a vertex u in G, the minimum degree of G and the maximum
degree of G. If u is a vertex of G, NG(u) will denote the (open) neighbourhood of u and NG[u] =
NG(u) ∪ {u} will denote the closed neighbourhood of u. For these symbols, we will usually omit the
G when the choice of graph is easily deduced.

For S ⊆ V (G), Sc will denote the complement (relative to V (G)) of S, 〈S〉 will denote the subgraph
of G induced by S, and G−S will denote 〈Sc〉. When S = {x}, we will use the notation G−x instead
of G−S. Similarly, if H is a subgraph of G, then G−H will denote G−V (H). When G is isomorphic
to a graph G′, we will write G ≃ G′.

Denote by P0 the Petersen graph, as seen in Figure 1. As P0 is 3-regular with girth 5, we know
that c(P0) ≥ 3, and as it contains a dominating set of size 3, we know that c(G) = 3. As noted in the
introduction, the following theorem was stated by Andreae in [3] and proved by Baird et al., first by
computer verification, as well as by using structural properties.

Theorem 2.1. [3, 5] Let G be a connected graph.

(1) If n ≤ 9, then c(G) ≤ 2.
(2) If n = 10, then c(G) ≤ 2, unless G is the Petersen graph.

In particular, M3 = 10.

The proof of the previous theorem makes use of the following lemma, which will also be useful to
us.

Lemma 2.2. [5] Let G be a connected graph. If ∆ ≥ n− 5, then c(G) ≤ 2.

A simple, visual proof of this lemma is available in [8]. We now introduce the concept of a retract,
a tool often used to study the game of cops and robbers (see for example [2, 27]). The following is
based on [7].
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Definition 2.3. Let G be a graph. If H is an induced subgraph of G, we say H is a retract of G if
there exists a mapping f : V (G) → V (H) such that:

(1) If xy ∈ E(G), then f(x)f(y) ∈ E(H) or f(x) = f(y).
(2) f |V (H) : V (H) → V (H) is the identity mapping.

Such a mapping f is called a retraction.

This definition formalizes the intuitive idea that G can be "folded" onto H , where each edge must
either be sent onto an edge or onto a vertex. Those familiar with graph homomorphisms will notice
that condition (1) states that f is a homomorphism from G to H if we consider H to be reflexive
(that is, if we add a loop at each vertex of H). Reflexivity is necessary as consequence of allowing the
cops and the robber to stay on a vertex at their turn, implying a loop on each vertex. The concept of
retracts has been central in the study of the game of cops and robbers, for instance also appearing in
[27].

If G is disconnected, denote G1, . . . , Gt the connected components of G. By extension, we may
define the cop number of a disconnected graph by c(G) = max1≤i≤t c(Gi). These definitions allow us
to state the following result of Berarduci and Intriglia, which we will use many times to reduce the
number of cases we need to consider.

Theorem 2.4. [7] If G is a connected graph and H is a retract of G, then

c(H) ≤ c(G) ≤ max{c(H), c(G−H) + 1}.
A specific case of this theorem is the following reformulation of a corollary in [7], which will often

be easier to use.

Corollary 2.5. If G is a connected graph, u is a vertex of G and K is a union of some connected
components of G−N [u], then

c(G−K) ≤ c(G) ≤ max{c(G−K), c(K) + 1}.
In particular, if c(K) ≤ k − 1, then c(G) ≤ k if and only if c(G−K) ≤ k.

Proof. It is easy to verify that f : V (G) → V (G−K) defined by

f(x) =

{
u if x ∈ V (K)

x otherwise

is a retraction. It is only left to apply Theorem 2.4 to H = G−K. �

One trivial consequence of this corollary is that if the cop number of every component of G−N [u]
is at most k− 1, then c(G) ≤ k. One can also see this directly by leaving a fixed cop on u and playing
with k − 1 cops on the connected component of G−N [u] in which the robber is located.

We then easily get the following result, which is implicit in [20].

Corollary 2.6. If G is a connected graph and ∆ > n− 11, then c(G) ≤ 3.

Proof. If ∆ > n − 11 and u is a vertex of maximum degree, then |V (G − N [u])| < 10. By Theorem
2.1, every connected component of G − N [u] has cop number at most 2. The last remark yields the
result. �

Finally, we recall a well known concept in the study of the game of cops and robbers.

Definition 2.7. Let x, u be distinct vertices of a graph G. If N(x) ⊆ N [u], we say x is cornered by
u or that x is a corner.

We note that this is a slight variation on the classical notion of a corner (or irreducible vertex), as
it normally requires ux to be an edge, see [27]. We may now get the following well-known result as a
further simplification of Corollary 2.5.

Corollary 2.8. Let G be a connected graph and x be a corner of G. If c(G − x) ≥ 2, then c(G) =
c(G− x). If c(G− x) = 1, then c(G) ∈ {1, 2}.
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Proof. Let u be a vertex cornering x. First define f : V (G) → V (G− x) by

f(y) =

{
u if y = x

y otherwise.

It is easily seen that the condition that x be cornered by u implies that f is a retraction. The statement
then follows from Theorem 2.4. �

3. Computational results for small 3-cop-win graphs

In this section, we find some 3-cop-win graphs on at most 14 vertices respecting some degree
conditions. We will do this by computing the cop number of every graph of the desired orders and
degrees. The results will be useful in the following sections.

Graph generation in this section and in Section 5 is done using the geng function provided with
the nauty/Traces package (version 26r12) [26]. The algorithm to compute the cop number is similar
to that proposed, in particular, in [11, 16, 30], which we have implemented for cop numbers 1, 2, 3 in
the Julia language [9, 15]. For a given k (which will be between 1 and 3 in our case), the algorithm
determines whether c(G) ≤ k or c(G) > k. Hence, if we run the algorithms for 1, . . . ,m cops on a
graph, we can determine the cop number exactly if it is a most m, or if not then say that c(G) ≥ m+1.

To test the validity of our implementation, we have compared the results for the cop number of
connected graphs up to 10 vertices to those in [5]. Following a small discrepancy between the counts,
our tallies of cop-win graphs were also verified to be correct by implementing a dismantling algorithm
[27] and by comparing with the implementation at [1]. To test our code for higher cop numbers, it
was also run on some cage graphs which we know 3 cops lose. Based on the results of these tests, we
are confident in the correctness of our implementation.

We first define a variant of the Petersen graph.

Definition 3.1. We say a connected graph G is a cornered Petersen graph if G contains a corner m
such that G−m ≃ P0. There are 6 such graphs up to isomorphism. We denote them Pi, i = 1, . . . , 6,
as seen in Figure 2.

m′ m

P1

m′ m

P2

m′ m

P3

m′ m

P4

m′ m

P5

m′ m

P6

Figure 2. The cornered Petersen graphs

We now solve a question raised in [5], classifying the 3-cop-win graphs on 11 vertices, albeit com-
putationally.
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Proposition 3.2. If G is a connected graph such that n = 11, then c(G) = 3 if and only if G ≃ Pi

for some 1 ≤ i ≤ 6. Otherwise, c(G) ≤ 2.

Proof. Firstly, it is clear by Theorem 2.1 and Corollary 2.8 that the cornered Petersen graphs are
3-cop-win. We would like to show that these graphs are the only graphs on 11 vertices with cop
number 3, and that all other graphs have cop number at most 2.

By Lemma 2.2, we may only consider graphs such that ∆ ≤ n− 6 = 5. We generate all connected
graphs on 11 vertices such that ∆ ≤ 5 and classify each graph according to its cop number (by running
the algorithm for k = 1, 2). The results are presented in Table 1 (the counts are up to isomorphism).
The 6 graphs found are the graphs Pi for i = 1, . . . , 6, which concludes the proof. �

This is an interesting phenomenon: the unique 3-cop-win graph on 10 vertices is a retract of all
the 3-cop-win graphs on 11 vertices. This behaviour does not occur for the 2-cop-win graphs: the
minimum 2-cop-win graph is the 4-cycle, on which the 5-cycle does not retract. Although we will
not have any answer for this question in this article, it would be interesting to know whether in
general (even for 4-cop-win graphs only), the k-cop-win graphs on Mk + 1 vertices can be retracted
on k-cop-win graph(s) on Mk vertices.

In Section 6, we will also need the following lemma.

Lemma 3.3. There exist

• 80 connected graphs G on 12 vertices with ∆ ≤ 4,
• 173 connected graphs G on 12 vertices with ∆ ≤ 5,
• 1105 connected graphs G on 13 vertices with ∆ ≤ 4, and
• 16523 connected graphs G on 14 vertices with ∆ ≤ 4

such that c(G) = 3. All other connected graphs G considered with these orders and maximum degrees
satisfy c(G) ≤ 2.

Proof. Firstly, all graphs on at most 14 vertices have cop number at most 3. For cases where ∆ ≥ 4,
this is a direct consequence of Corollary 2.6. For ∆ = 2, the graph is either a path or a cycle. For
∆ = 3, see the results of Table 4. This is also a direct consequence of knowing that M4 ≥ 16, see [20].

We generate, up to isomorphism, all connected graphs on 12 vertices such that ∆ ≤ 5 and on 13
and 14 vertices such that ∆ ≤ 4. We classify these graphs according to their cop number (by running
the algorithm for k = 1, 2). Afterwards, we also count which of the graphs on 12 vertices with ∆ ≤ 5
and c(G) ≥ 3 are such that ∆ ≤ 4. The results are in Table 1. �

Cop number
n Degree bounds Number of graphs 1 2 ≥ 3
11 ∆ ≤ 5 21503340 69310 21434024 6
12 ∆ ≤ 4 - - - 80
12 ∆ ≤ 5 471142472 295377 470846922 173
13 ∆ ≤ 4 68531618 73876 68456637 1105
14 ∆ ≤ 4 748592936 247022 748329391 16523

Table 1. Cop number breakdown for connected graphs on 11-14 vertices with some
degree restrictions

While the counts are presented to summarize the results, the precise 3-cop-win graphs are the focus
of our attention as we use them in the following sections.

We now discuss some possible improvements to our approach. This part is not essential to prove the
main result, but may be helpful in motivating the methods of Section 6. To achieve these results, we
exhaustively computed the cop number of every connected graph that satisfied our maximum degree
constraints. Since we proceeded by exhaustion, the run time of these computations is somewhat long
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due to the high number of graphs, especially in the case of ∆ = 14. We note that a more clever
approach might yield faster calculation time.

The first and most obvious improvement would be to only look at graphs with a minimum degree
of at least 2, which can reduce the number of graphs to consider by up to around 50%. If we already
know the 3-cop-win graphs on one fewer vertices, we can then just consider all possible ways to attach
an extra vertex of degree 1 to those graphs. Using this method, we can get all connected 3-cop-win
graphs of a given order.

However, this method is still an exhaustive search. A more clever approach would be to consider
every (not necessarily connected) 2-cop-win graph G′ on n − ∆ − 1 vertices, add a vertex u with
∆ neighbours new neighbours and consider each way of adding edges between N(u) and G′ (up to
isomorphism), then checking which of these graphs are 3-cop-win. We would recommend the interested
reader try this approach.

A more refined approach of this would be to use the algorithm of Section 6 to build candidate
3-cop-win graphs, by merging 2-cop-win graphs on fewer vertices. We will see later that although this
method can reduce significantly the computation time, in practice it requires some effort to make sure
all the possible cases are considered. For the size of graphs we are considering, this approach does not
appear worthwhile.

4. Graphs with high maximum degree

In this section, we consider the cop number of graphs G such that ∆ = n− 11 or ∆ = n− 12. We
start by investigating some properties of the game of cops and robbers on the Petersen graph (denoted
by P0) and its variants, the cornered Petersen graphs (denoted by Pi for 1 ≤ i ≤ 6). Many of the
arguments in this section are extremely simple once visualized. For this reason, we have provided
many figures representing parts of the proofs. Of course, we cannot provide figures for every case,
so we encourage the reader draw out the graphs while following the proofs, especially regarding the
movements of the cops and the robber.

By considering the Petersen graph as the Kneser graph KG5,2 [4], one easily gets the following
well-known result (although maybe not with this precise formulation), an illustration of the fact that
the Petersen graph is highly transitive.

Definition 4.1. We say a set of 3 vertices {x, y, z} is a strong stable set if it is a stable set and if
N(x) ∩N(y) ∩N(z) = ∅.
Lemma 4.2.

(a) If {x, y, z} and {x′, y′, z′} are strong stable sets of P0, then there exists an automorphism φ1
of P0 such that φ1(x) = x′, φ1(y) = y′ and φ1(z) = z′.

(b) If ab and a′b′ are two edges of P0, then there exists an automorphism φ2 of P0 such that
φ2(a) = a′, φ2(b) = b′. This property is known as being arc-transitive.

We use the labels m, m′ on the graphs Pi for i = 1, . . . , 6, as shown in Figure 2. In particular, for
each of these graphs, Pi −m ≃ P0. We also see that m′ always corners m, which will be very useful.
We also note that as m,m′ /∈ V (P0), we can say that P0 −m = P0 −m′ = P0.

As stated in Theorem 2.1, we know that c(P0) = 3. In the next two lemmas, we show that although
two cops do not have a winning strategy, they have a lot of power as to which positions can be reached.
We will later use these lemmas as parts of strategies on graphs containing the Petersen or the cornered
Petersen graph. These lemmas would be very easy to establish computationally, but we consider a
proof to be worthwhile.

Lemma 4.3. Let 0 ≤ i ≤ 6. If {x, y, z} is a strong stable set of Pi −m, then there exists a strategy
for 2 cops on Pi to reach the following situation.

(1) The robber is on x, except in the case x = m′ and i ∈ {5, 6}, where the robber is either on m′

or m.
(2) The cops are on y and z.
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(3) It is the cops’ turn.

Proof. Let us first consider the case of P0. Consider the labelling of P0 with αi and βi as shown
in Figure 1. For any j, j′, observe that if two cops are on βj , βj+1 (working in modulo 5), they can
directly move to the pair βj′ , βj′+1.

Without loss of generality, we may consider that x = α1, y = β2, z = β3, as for all other strong
stable sets we can apply the automorphism of Lemma 4.2(a). For some k, we start the game with two
cops on βk and βk+1 (modulo 5). The robber must choose one of the αℓ as its starting vertex. Notice
that if the robber is on αj , moving the cops to βj and βj+1 forces the robber to move to αj−1. By
repeating this strategy, the cops can essentially make the robber turn in circles on the outer 5-cycle
of P0. At the end of every cops’ turn (except the first), the robber is on αj and the cops are on βj
and βj+1, for some j. The cops repeat until the robber is on α1 (unless the robber is already on α1 on
the first turn, in which case the cops make the robber do a full circle around the graph); it is now the
cops’ turn and the game is in the desired situation. Observe that this strategy works for any initial
choice of k. This will be useful later, as for any vertex w ∈ P0, we may choose an initial position such
that one of the cops is in N [w]. We call this the chasing strategy for the Petersen graph. An example
is illustrated in Figure 3. Even though this might be a very simple idea, this strategy is critical for
the rest of this section as it will enable us to construct more complicated strategies.

r

c

c

(a) Initial position

r

c c

(b) After 1 cop turn

r

c c

(c) After 1 robber turn

r
c

c

(d) After 2 cop turns

r

c

c

(e) Desired position

Figure 3. Typical application of the chasing strategy on the Petersen graph.

We now consider the cases of P5 and P6. In both cases, observe that m and m′ are completely
indistinguishable: N(m) = N(m′). It is then easily seen that the strategy for 2 cops on P5 or P6 will
be the same as the strategy developed above for P0, except that the robber may choose to go to either
m or m′. We apply the strategy for P0 by considering the robber to be on m′ whenever it is actually
on m. This is essentially a simplified version of the well-known argument used to prove, in particular,
Theorem 2.4.

Finally, we consider the cases Pi, i ∈ {1, . . . , 4}. Our goal is to apply the strategy of P0 developed
above, with only slight modifications. Using that strategy, we choose initial positions for the cops in
Pi−m such that one of the cops is in N [m′] (it is described above why this is possible). If the robber
chooses m as an initial position, this cop may then move to m′. As m′ corners m, the robber cannot
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move without being captured. The other cop may then, within a few turns, capture the robber. Thus,
the robber will choose an initial vertex in Pi −m. Now, as long as the robber is not on m, copy the
strategy for P0. Suppose that, at some point, the robber moves to m. In the strategy for P0, the
robber is adjacent to a cop before every one of its turns. Thus, this cop can move to a vertex adjacent
to m. One easily verifies that in all graphs Pi for i ∈ {1, . . . , 4}, if one cop is adjacent to m, there is at
most one other escape route t for the robber. As Pi−m ≃ P0 has diameter 2, the other cop can move
to block this escape route by moving to some vertex in N [t]. Thus, while applying this strategy, the
robber will never move to m. Hence, the strategy copied from P0 yields the desired final position. �

By weakening the condition that it is the cops’ turn at the end of the strategy, we can get more
freedom as to where we can place the cops, enabling more strategies.

Lemma 4.4. Let 0 ≤ i ≤ 6. If x, y, z are any three distinct vertices of Pi −m, then there exists a
strategy for 2 cops on Pi to reach the following situation.

(1) The robber is on x, except in the case x = m′ and i ∈ {5, 6}, where the robber is either on m′

or m.
(2) The cops are on y and z.
(3) It is the robber’s turn.

Proof. Without loss of generality, we show the statement for P0. For this lemma, generalizing to the
cornered Petersen graphs is immediate.

We first consider the case where xz ∈ E(P0). We will enumerate the main cases and conclude by
symmetry for the others. We may assume that x = α1 and z = β1 (using the labelling from Figure
1), all other possibilities can be solved using the automorphisms of Lemma 4.2 (b). We apply Lemma
4.3 to place the robber on vertex α1 and the cops on the vertices specified in Table 2 (always forming
a strong stable set), and then specify the additional move required to place the cops in the desired
final position.

Final position for cops (y, z) Position after applying Lemma 4.3 Movements
α2, β1 β2, β3 β2 → α2, β3 → β1
β2, β1 β2, β3 β2 → β2, β3 → β1
β3, β1 β4, β5 β4 → β1, β5 → β3
α3, β1 α3, β4 α3 → α3, β4 → β1

Table 2. Strategy on P0 to bring the robber to α1 with the cops in the desired final
position, when at least one cop needs to be adjacent to robber.

It is easily seen that all other choices of y are analogous by reflection of the graph relative to the
vertical axis.

We use a similar approach for the case where xz /∈ E. We may suppose without loss of generality
that x = α1 and z = β2: it is easily verified that any two non-adjacent vertices can be expanded into
a strong stable set, then apply Lemma 4.2 (a). We must still verify the position can be reached for
the different possible y. To further reduce the number of cases, we can also assume that xy /∈ E (if
xy ∈ E, switching the roles of y and z brings us back to the previous case), as we can see in Table 3.

�

In the next lemmas, we will consider graphs with the following properties, with the goal of eventually
showing that they do not exist. We state these properties now to avoid repetition.

Hypothesis 4.5. Let G be a connected graph such that c(G) > 3 and u ∈ V (G) such that G−N [u] ≃
Pi, for some 0 ≤ i ≤ 6.

In the cases of 1 ≤ i ≤ 6, we may in particular consider that m,m′ ∈ V (G) by fixing the isomor-
phism. In the cases of i = 5, 6, as the labels m and m′ can be switched, we will always suppose m′

to be the vertex of the two which has the greatest degree in G (if both have the same degree, then
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Final position for cops (y, z) Position after applying Lemma 4.3 Movements
α3, β2 α3, β4 α3 → α3, β4 → β2
α4, β2 α3, β4 α3 → α4, β4 → β2
β3, β2 β3, β2 β3 → β3, β2 → β2
β4, β2 β4, β5 β4 → β4, β5 → β2
β5, β2 β4, β5 β4 → β2, β5 → β5

Table 3. Strategy on P0 to bring the robber to α1 with the cops in the desired final
position, when neither cop needs to be adjacent to robber.

we choose arbitrarily). To simplify notation, we will denote Bu = V (G−N [u]−m). It is easily seen
that in all cases 〈Bu〉 ≃ P0, that is Bu induces a Petersen graph.

The approach will be to build up a number of structural properties of G by showing that otherwise
there exists a winning strategy for 3 cops, yielding a contradiction. We start by proving that all
vertices in Bu have a neighbour in N(u).

Lemma 4.6. Consider Hypothesis 4.5. For all x ∈ Bu, |N(x) ∩N(u)| ≥ 1.

Proof. Let x ∈ Bu. We prove a restricted version of the statement before proving it generally: we
first suppose that there exists a neighbour v 6= m′ of x in Bu such that |N(v) ∩ N(u)| ≥ 1. In the
case of P0, then m′ does not exist so v could be any vertex of Bu. Suppose that |N(x) ∩N(u)| = 0,
with the goal of reaching a contradiction. We note that in the case with x = m′, then by our choice
of m′ we also know that m also has no neighbours in N(u). We show this situation yields a winning
strategy for 3 cops.

Let y, z be the other neighbours of x in Bu and let w ∈ N(v) ∩N(u). The situation is portrayed
in Figure 4. We start by placing a cop on u, which will only move if the robber enters N [u]. This
cop is commonly referred to as a stationary cop. As long as this cop stays on u, the robber is stuck
in G−N [u] ≃ Pi. Thus, the two other cops may apply the strategy from Lemma 4.4 on G−N [u] to
place the robber on x, a cop on y and a cop on z. In the special case where i ∈ {5, 6} and x = m′,
the robber might actually be on m.

z

v

x
y

m

uw

N(u)

Figure 4. Example situation during the proof of Lemma 4.6. Unused or unknown
vertices and edges are omitted.

During the last turn of this strategy, the cop on u moves to w. It is now the robber’s turn. All
of the robber’s neighbours in Bu are protected by cops, there is a cop adjacent to the robber, and
the robber has no neighbour in N(u). Note that this statement is also true if the cop is on m, in the
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special case with i = 5, 6 and x = m′, as m and m′ have the same neighbours v, y, z, in Bu (and both
don’t have neighbours in N(u) as stated above).

The robber is caught unless it can move to an unprotected vertex outside Bu, which must necessarily
be m. Note that there are some cases in which m is still protected, for instance the special case
discussed above. The robber was on x and is now on m, so x is adjacent to m. If one of the cops is
adjacent to m, the robber is caught, so we assume otherwise, that m is adjacent to neither y nor z.

If x = m′, the cop on w moves back to u and the cop on y moves to m′: as m′ covers all neighbours
of m in Bu and u covers all neighbours in N(u), the robber is trapped and will be caught one turn
later.

Now, suppose that x 6= m′. As x is adjacent to m, x is also adjacent to m′. Recall that we supposed
that v 6= m′. Thus, m′ is either y or z. The cop on m′ stays put and the cop on w moves back to u,
trapping the robber on m. The last cop may then capture the robber within a few turns.

In all cases, a contradiction is reached with the hypothesis that c(G) > 3. This proves the specific
case in which x has a neighbour v ∈ Bu (respecting v 6= m′) which has at least one neighbour in N(u).
We now wish to prove the full statement without this condition.

With what we have proved so far, we know that as soon as a vertex of Bu (other than m′) has
a neighbour in N(u), we can say the same for its 3 neighbours in Bu (and then we can repeat this
argument to their neighbours, etc.). Thus, in order to prove the lemma, it suffices to show that there
exists at least one vertex of Bu \ {m′} that has a neighbour in N(u) (because 〈Bu〉−m′ is necessarily
connected).

Suppose the contrary: that no vertex of Bu \ {m′} has a neighbour in N(u). If we are in the case
of G − N [u] ≃ P0, then G would be disconnected (as Bu \ {m′} = Bu), which is a contradiction.
In the remaining cases, we give a winning strategy for 3 cops. Place a stationary cop on a vertex
t ∈ N [m]∩N [m′]∩Bu, place one cop on u, and place the third cop anywhere. The robber must choose
an initial position in Bu \ N [t]. As any exit from Bu will go through m or m′ (by our hypothesis),
the stationary cop on t guarantees that the robber will never leave Bu. The two other cops then
have a winning strategy on the component of 〈Bu〉 −N [t] containing the robber, which has at most 6
vertices. �

We will frequently use this idea of applying the chasing strategy on G−N [u] while we leave a cop
on u. As long as there is a cop on u, it is as if we were playing on G−N [u]. Moving the cop from u
during the last move of this strategy does not affect it, as it happens after the last robber move which
is part of that strategy.

Similarly to in the first part of the last proof, many of the arguments in this section will end with
the only remaining possible situation being that there is a cop on u, a cop on m′, and the robber on
m. In this situation, the robber cannot move, as m′ corners m in G − N [u], and a third cop may,
within a few turns, capture the robber.

We now characterize the neighbourhoods in Bu of vertices in N(u).

Lemma 4.7. Consider Hypothesis 4.5. If w ∈ N(u), then N(w) ∩ Bu does not contain a subset
{a, b, c} of distinct vertices such that :

(1) ab /∈ E(G);
(2) c /∈ N(a) ∩N(b) (c is not the common neighbour of a and b in 〈Bu〉);
(3) c /∈ N(x) where {x} = N(a)∩N(b)∩Bu (c is not adjacent to the common neighbour of a and

b in 〈Bu〉).
Proof. Suppose that N(w) ∩Bu does contains a subset {a, b, c} respecting these conditions. We give
a winning strategy for 3 cops on G, which will lead to a contradiction. We denote by x the common
neighbour of a and b in Bu, which exists by condition (1) as vertices of distance 2 in a Petersen graph
have exactly one common neighbour. Furthermore by condition (2), c 6= x. Denote by d the neighbour
of x in Bu that is neither a or b. Then by condition (3), c 6= d.

Let z be a vertex of Bu such that {x, c, z} is a strong stable set of 〈Bu〉 (it is easily seen that any
stable set of size 2 in the Petersen graph can be expanded into a strong stable set). The situation
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is portrayed in Figure 5. We place a cop on u at the start of the game, and then use Lemma 4.3 to
place the other cops on c and z, and the robber on x (or if x = m′ and i ∈ {5, 6} possibly on m). As
stated in Lemma 4.3, it is now the cops’ turn.

d

z

a

x

c

b

m

uw

N(u)

Figure 5. Example situation during the proof of Lemma 4.7. Unused or unknown
vertices and edges are omitted.

The cop on c moves to w, the cop on z moves to either d or a neighbour of d (this is possible
because the Petersen graph has diameter 2), and the cop on u stays still. All neighbours of x in N(u)
are covered by the cop on u, the vertices a and b are covered by the cop on w, and d is covered by the
3rd cop, which is either on d or on a neighbour of d. Hence, after the robber’s move the robber must
either be on x or on m (if m exists, that is 1 ≤ i ≤ 6, and if moving to m from x is possible). We
note that in the special case with x = m′ and i ∈ {5, 6} the robber might have already been on m,
but then the same argument as above shows that the robber could not have moved outside of either
x = m′ or m.

If the robber is still on x, but cannot be immediately captured, the cop which is adjacent to d
moves to d. Now, the robber cannot stay put without being captured. Hence, for the rest of the proof
we can assume the robber has now moved to m or was already on m (in the latter case, there is not
necessarily a cop now on d, as we only do this move if the robber was still on x). This in particular
excludes the case i = 0.

If m′ is a or b, the cop on w moves to m′. If m′ = d, the cop that is adjacent to d or on d moves to
(or stays on) d. In both cases, there is now a cop on m′, which, together with the cop on u, guarantees
that the robber is now stuck on m. The third cop may capture the robber within a few turns.

If m′ = x, then, by definition, N(m) ∩Bu ⊆ {a, b, d, x}. As previously done, move a cop to d (if it
is not already there). The pair of cops on d and w cover this set, hence the robber cannot move. At
the next cops’ turn, the cop on d moves to m′. Then, we are in the same situation as above.

In all cases, there is a contradiction as c(G) > 3. �

Although the statement of the previous lemma appears somewhat convoluted, it can essentially be
reformulated as the following lemma.

Lemma 4.8. Consider Hypothesis 4.5. If w ∈ N(u), then there exists a vertex of Bu dominating
N(w) ∩Bu.

Proof. Recall that 〈Bu〉 is a Petersen graph. The result is trivial if |N(w) ∩ Bu| ≤ 2 as the diameter
of 〈Bu is 2. If |N(w) ∩ Bu| ≥ 3, suppose the statement is false. As 〈Bu〉 does not contain a triangle,
not all vertices of N(w) ∩Bu can be pairwise adjacent, so we can choose a, b ∈ N(w) ∩Bu such that
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a, b are not adjacent. Denote x the common neighbour of a, b in Bu. By our supposition, x does
not dominate N(w) ∩ Bu, thus we can choose c ∈ N(w) ∩ Bu not in N [x]. The subset {a, b, c} then
contradicts Lemma 4.7. �

In particular, every vertex of N(u) can have at most 4 neighbours in Bu because 〈Bu〉 is 3-regular.
We also note that in some of the cases there is a unique choice for this dominating vertex, in particular
when N(w) ∩Bu has 3 or 4 vertices. We are now ready to strengthen Lemma 4.6.

Lemma 4.9. Consider Hypothesis 4.5. For all x ∈ Bu, the following holds.

(1) If x /∈ N [m′], then |N(x) ∩N(u)| ≥ 3.
(2) If x ∈ N [m′], then |N(x) ∩N(u)| ≥ 2.

Proof.
(1) Suppose the contrary: there exists x ∈ Bu \ N [m′] such that |N(x) ∩ N(u)| ∈ {1, 2} (as by

Lemma 4.6, |N(x) ∩ N(u)| ≥ 1). We give a winning strategy for 3 cops on G. Denote by
w1, w2 the neighbours of x in N(u) (if there is only one neighbour, set w1 = w2) and by
y1, y2, y3 the neighbours of x in Bu.

By Lemma 4.8, there exists a vertex of Bu dominating the neighbourhood of w1 in Bu. As
x is in this neighbourhood, we know this dominating vertex (there might be more than one
possible choice) is in {y1, y2, y3, x}. This is also true for w2. Thus, we can pick at most 2
elements of {y1, y2, y3, x} that dominate all neighbours of w1, w2 in Bu.

Without loss of generality (by symmetry of y1, y2, y3 in the Petersen graph), we assume the
vertices dominating the neighbourhoods of w1 and of w2 in Bu are in {y1, y2, x}. By Lemma
4.6, y3 must have a neighbour t in N(u). The situation is portrayed in Figure 6.

y3

y1

x
y2

m

u

w1

w2

t

N(u)

Figure 6. Example situation during the proof of Lemma 4.9 (1). Unused or unknown
vertices and edges are omitted.

We place one cop on u. We use Lemma 4.4 to place the robber on x and the two other
cops on y1, y2. During the last move of this strategy, the cop on u moves to t. It is now the
robber’s turn. The robber on x cannot move to a neighbour inside of Bu (there are cops on
y1 and y2, and y3 is covered by the cop on t) and there are cops adjacent to the robber. As
x /∈ N [m′], we know that m /∈ N(x). Thus, the robber has no choice but to move to either
w1 or w2. Let us say the robber moves to w1 (the strategy for w2 is analogous).

Denote by a the vertex dominating the neighbours of w1 in Bu. We recall that a is either
y1, y2 or x. We now move the cop on t back to u. Of the two cops on y1 and y2, one must be
able to move to a, and does so. If m′ ∈ Bu (that is, if we are not in the case of P0), the third
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cop moves to either m′ or a neighbour of m′. After this move, all escapes in N(u) are covered
by the cop on u, all escapes in Bu are covered by the cop on a, and the robber cannot stay
still as u is adjacent to w1. Thus, the robber is caught one move later unless the robber can
move to m. In this case, the third cop can now move to m′ and trap the robber. Leaving the
cops on u and m′ fixed, the cop on a can then go capture the robber. This is a contradiction
as c(G) > 3.

(2) As the proof will be very similar to the previous case, we outline the main differences. We
suppose the statement is false, so that m′ has at most one neighbour in N(u) (and so exactly
1, by Lemma 4.6).

If x = m′ and i ∈ {5, 6}, recall that m′ is chosen to be of higher degree (or equal) than m,
so m′ has exactly one neighbour in N(u), and m has at most one neighbour in N(u). Then,
we denote by w1 and w2 these neighbours and apply the same strategy as above. Even though
the robber will have chosen to go to either m′ or m, both cases for its subsequent move will
be covered using the strategy above. In particular, we note that the robber will not be able
to stay on either x = m′ or m, as both are adjacent to y1, y2, so the robber will indeed have
to move to either w1 or w2. Thus, either m or m′ must have 2 or more neighbours in N(u).
As we have selected m′ to have the greatest degree of the two, the statement follows for this
case.

Consider now that x ∈ N [m′] but x 6= m′ or i /∈ {5, 6} (as we covered that case above).
Our goal is to prove that x cannot have a unique neighbour in N(u). Since we are supposing
the contrary, let w1 be a unique neighbour of x in N(u). As in the above strategy, one cop’s
role will be to cover the vertex dominating the neighbourhood of w1 in Bu, or if this is x,
then to be on an adjacent vertex. We will also want a cop to be on m′, or on a neighbour of
m′ if x = m′. In the notation of the original case, this could informally be seen as considering
w2 to be m. If the robber moves to w1, we follow a similar strategy to above. If the robber
moves to m, then one of the cops will move to m′. Recalling that another robber will return
to u, the last cop will be able to go capture the robber.

�

We are now ready to prove the desired results.

Proposition 4.10. If G is a connected graph such that ∆ ∈ {n − 12, n − 11} and n ≤ 18, then
c(G) ≤ 3.

Proof.
(1) We consider ∆ = n−11. Let u be a vertex of maximum degree. We know that |V (G−N [u])| =

10. If G − N [u] is disconnected, each one of its connected components has cop number at
most 2, as no connected component can contain at least 10 vertices. Applying Corollary 2.5
yields the desired result. Otherwise, G − N [u] must be connected. Suppose that c(G) > 3.
Then, c(G − N [u]) > 2, and by Theorem 2.1, G −N [u] must be isomorphic to P0. Then, G
and u satisfy the conditions of Hypothesis 4.5.

By Lemma 4.9, every vertex of Bu has at least 3 neighbours in N(u) (recall that m′ does
not exist in P0). As Bu has 10 vertices, this means there are at least 30 edges between N(u)
and Bu.

As n ≤ 18, we have that ∆ ≤ 7. By Lemma 4.8, every vertex of N(u) has at most 4
neighbours in Bu. Thus, there are at most 4∆ ≤ 28 edges between N(u) and Bu. This is a
contradiction, as we have claimed there are at least 30 but at most 28 edges between N(u)
and Bu. Thus, c(G) ≤ 3.

(2) We consider ∆ = n−12. Let u be a vertex of maximum degree. We know that |V (G−N [u])| =
11. Let us first consider the case whereG−N [u] is disconnected. If every connected component
has cop number at most 2, then, as in the previous case, we are done. By Theorem 2.1, the
only other case is if one component is isomorphic to P0 and the other is an isolated vertex x.
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By applying Corollary 2.5 (or Corollary 2.8), c(G) ≤ 3 if and only if c(G− x) ≤ 3. As G− x
satisfies the conditions of the previous case of this proposition, we conclude that c(G−x) ≤ 3.

We may now consider that G−N [u] is connected. Suppose c(G) > 3. By Proposition 3.2,
G−N [u] ≃ Pi, for some 1 ≤ i ≤ 6. Then, G and u satisfy the condition of Hypothesis 4.5.

By Lemma 4.9, every vertex of Bu has at least 2 neighbours in N(u), and in fact those not
in N [m′] (of which there are at least 6) have at least 3 neighbours in N(u). In total, there are
at least 26 edges between N(u) and Bu.

By Lemma 4.8, each vertex of N(u) has at most 4 neighbours in Bu. As n ≤ 18, we
have that ∆ ≤ 6. Thus, there are at most 4∆ ≤ 24 edges between N(u) and Bu. This is a
contradiction, as we have claimed there are at least 26 but at most 24 edges between N(u)
and Bu, hence c(G) ≤ 3.

�

These results will be used to prove that M4 = 19 in Section 7. Readers only interested in the main
result may skip the remainder of this section, as it concerns reducing the number of possible 4-cop-win
graphs on 19 vertices. We first need the following definition.

Definition 4.11. Consider Hypothesis 4.5. Let w ∈ N(u) such that |Bu ∩ N(w)| = 4. The vertex
x ∈ Bu dominating Bu ∩N(w) will be called the projection of w. If x is the projection of k vertices
of N(u), we will call p(x) = k the projection multiplicity of x.

By Lemma 4.8, this is well defined and the projection of a vertex is unique.

Observation 4.12. Consider Hypothesis 4.5. If x ∈ Bu, |N(x) ∩ N(u)| ≥ ∑
y∈N [x]∩B(u) p(y). In

particular, if y ∈ Bu has projection multiplicity k, then each vertex in N(y) ∩ Bu has at least k
neighbours in N(u).

Proof. We recall that when a vertex y has projection multiplicity k, this means that k vertices of
N(u) have for neighbours in Bu exactly N [y]∩Bu, giving each vertex in this set at least k neighbours
in N(u).

Noting that the projection of a vertex is unique, we see that the neighbours that x inherits from each
projection on x or on its neighbours in Bu are pairwise distinct. The lower bound follows immediately
by summing the projection multiplicity for each vertex in N [x]. �

We now see an interesting property of projections.

Lemma 4.13. Consider Hypothesis 4.5. Let x ∈ Bu \N [m′].

(1) If |N(x) ∩N(u)| = 3, then p(x) = 0.
(2) More generally, p(x) ≤ |N(x) ∩N(u)| − 2.

Proof.
(1) Supposing the contrary, we give a winning strategy for 3 cops. Let us say that x is the

projection of a vertex w of N(u): w is adjacent to x and to each neighbour of x in Bu. As
|N(x)∩N(u)| = 3, x has two other neighbours in N(u), which we will denote by t1 and t2. If
t1 has a neighbour in Bu other than x, choose one and denote it r1. If not, then choose r1 to
be any neighbour of x in Bu. We choose r2 similarly. The situation is portrayed in Figure 7.

We start by placing one cop on u. Using Lemma 4.4 (recall that x 6= m′, which avoids the
exceptional case), we place the robber on x and the two other cops on r1 and r2 (if r1 = r2,
then place one cop there and another cop on any vertex in Bu \{x, r1}). During the last move
of that strategy, move the cop from u to w. It is now the robber’s turn. As there is a cop on
w, the robber cannot stay in Bu. As x /∈ N [m′], x is not adjacent to m. If t1 had a neighbour
in Bu other than x, then the cop on r1 blocks the robber from moving to t1, and similarly for
t2.

Thus, the only scenario in which the robber does not get captured immediately after moving
is if (without loss of generality), t1 only has one neighbour in Bu, and the robber moves to
t1. In this case, we chose r1 to be some neighbour of x. The cop on w moves back to to u,
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r2

r1

x

u

t1

w

t2

N(u)

Figure 7. Example situation during the proof of Lemma 4.13 (1). Unused or un-
known vertices and edges are omitted.

and the cop on r1 moves to x. The third cop moves to m′ or a neighbour of m′ (if m′ is in
the graph). The robber is caught one turn later, as x is the only neighbour of t1 in Bu and
u dominates N(u), unless the robber can move to m. In this case, the third cop can move
to m′ and trap the robber. The cop on x can capture the robber within a few turns. This
contradicts that c(G) > 3.

(2) The strategy is similar to the previous case. Suppose, to the contrary, that x has projection
multiplicity at least |N(x) ∩ N(u)| − 1. Then, there is at most 1 neighbour of x in N(u)
which does not project onto x. Choose t1 to be this vertex (if there is any) and select the
corresponding r1 as above. Choose r2 to be any other neighbour of x in Bu: r2 covers all
vertices projecting onto x. The rest of the strategy is identical.

�

We are now ready for the desired result.

Proposition 4.14. If G is a connected graph such that n = 19 and ∆ ∈ {7, 8}, then c(G) ≤ 3.

Proof. Suppose c(G) > 3. Let u be a vertex of maximal degree in G.

(1) We consider ∆ = 8. Recall the arguments of the proof of Proposition 4.10. In particular, we
can consider that G−N [u] ≃ P0.

There are at most 4∆ = 32 edges between N(u) and Bu, by Lemma 4.8. By Lemma 4.9,
each vertex in Bu has at least 3 neighbours in N(u): there are at least 30 edges between Bu

and N(u). Thus, there are at most 2 extra edges. By extra edges, we mean that these are
edges which, if removed, would leave each vertex in Bu with exactly the lower bound number
of neighbours in Bu, as specified in Lemma 4.9. Then, there are at least 8 vertices in Bu

which have no extra edges, having exactly 3 neighbours in N(u).
Furthermore, if there are fewer than 6 vertices of N(u) that each have exactly 4 neighbours

in Bu, then there cannot be at least 30 edges between N(u) and Bu. Thus,
∑

x∈Bu

p(x) ≥ 6.

Recall that Lemma 4.13 states that no vertex in N(u) with exactly 3 neighbours in Bu =
Bu \N [m′] can be a projection. Hence, only the vertices with extra edges may have non-zero
projection multiplicity. The first consequence of this is that it is impossible for all vertices
of Bu to have exactly 3 neighbours in N(u). Furthermore, we have seen that there are at
most 2 vertices which have extra edges (these are the vertices of Bu that have either 4 or 5
neighbours in N(u)). Denote them by a1, a2 (if there is only one vertex, let a1 = a2). Then,
p(a1) + p(a2) ≥ 6 (if a1 = a2, then simply say p(a1) ≥ 6). Let x ∈ N [a1] ∩N [a2] ∩Bu (which
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exists as P0 has diameter 2). As x is adjacent to all projections, x must be adjacent at least
6 vertices of N(u) (Observation 4.12). As x also has 3 neighbours in Bu, the degree of x is at
least 9, which is a contradiction.

(2) We consider ∆ = 7. Recall the arguments of the proof of Proposition 4.10. In particular, we
can say that G−N [u] ≃ Pi, for some 1 ≤ i ≤ 6.

There are at most 4∆ = 28 edges between N(u) and Bu, by Lemma 4.8. By Lemma 4.9,
each vertex in Bu \ N [m′] has at least 3 neighbours in N(u) and each vertex in Bu ∩ N [m′]
has at least 2 neighbours in N(u): in total, there are at least 26 edges between Bu and N(u).
Using the same argument as above, depending on the number of edges between Bu and N(u),
we can find between 5 and 7 vertices in N(u) which have 4 neighbours each in Bu, and thus
the total projection multiplicity of Bu is as follows.
(a) 26 edges:

∑
x∈Bu

p(x) ≥ 5;

(b) 27 edges:
∑

x∈Bu

p(x) ≥ 6;
(c) 28 edges:

∑
x∈Bu

p(x) = 7 (as there are exactly 7 vertices in N(u) there cannot be more

than 7 projections).
Recall that Lemma 4.13 states that no vertex in Bu \N [m′] with 3 neighbours in N(u) can

be a projection. Also, if x ∈ Bu \N [m′], p(x) ≤ |N(x) ∩N(u)| − 2: if x has 4 neighbours in
N(u) it can be the projection of at most 2 vertices.

If all vertices in Bu \N [m′] have exactly 3 neighbours in N(u), then this implies all projec-
tions will be vertices in N [m′]: at least 5 vertices project on m′ or on a neighbour. Thus, m′

will have at least 5 neighbours in N(u). As m′ also has at least 3 neighbours in Bu, d(m′) ≥ 8,
which is impossible as ∆ = 7. This situation includes the case in which there are exactly 26
edges between Bu and N(u).

Suppose there is exactly one vertex x of Bu \ N [m′] with exactly 4 neighbours in N(u),
with all others having exactly 3. This vertex will have projection multiplicity at most 2, so
the total projection multiplicity of vertices of N [m′] is at least 4. Thus, m′ will have at least
4 neighbours in N(u), which is impossible as this would imply there are 29 edges between Bu

and N(u) (x has 4, the other 5 vertices in Bu \N [m′] have 3, m′ has at least 4, and each of
the 3 vertices of Bu ∩N(m′) has at least 2).

Suppose now there are 2 vertices x1, x2 of Bu \ N [m′] with 4 neighbours in N(u). These
two additional edges bring the total to 28. Thus, the total projection multiplicity is 7. There
are at most 2 vertices projecting onto x1 and 2 vertices projecting on x2 (and none on the
other vertices in Bu \N [m′]). Thus, at least 3 vertices project onto vertices in N [m′]. This a
contradiction, as m′ must have exactly 2 neighbours in N(u), otherwise there would be more
than 28 edges between Bu and N(u). Considering that with ∆ = 7, no vertex of Bu can have
5 or more neighbours in N(u), there are no cases left.

In all possible cases, a contradiction was found. Thus, c(G) ≤ 3. �

5. Graphs with maximum degree 3

In this section, we consider the cop number of graphs with maximum degree 3. We start with the
main result of this section.

Proposition 5.1. If G is a connected graph such that ∆ ≤ 3 and n ≤ 20, then c(G) ≤ 3.

Proof. We first prove the statement for δ ≥ 2. For 10 ≤ n ≤ 20, we generate all graphs such that
δ ≥ 2 and ∆ ≤ 3, and then classify each graph according to its cop number. Both steps use the same
software and scripts as in Section 3. We present the results in Table 4, which shows that no such
graph with cop number at least 4 exists. We have also saved the precise 3-cop-win graphs.

We now considers graphs which contain vertices of degree 1. We know that removing a vertex of
degree 1 from a graph does not change the cop number nor the fact that it is connected (as the vertex
of degree 1 is cornered by its neighbour, see Corollary 2.8). We successively remove vertices of degree
1 from the graph. We eventually either get to a graph such that δ ≥ 2 and n ≥ 10 (in which case the
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Cop number
n G : δ ≥ 2,∆ ≤ 3 1 2 3 ≥ 4
10 458 7 450 1 0
11 1353 12 1341 0 0
12 4566 21 4543 2 0
13 15530 35 15495 0 0
14 56973 63 56901 9 0
15 214763 114 214642 7 0
16 848895 211 848622 62 0
17 3454642 388 3454093 161 0
18 14542574 735 14540858 981 0
19 62871075 1389 62865352 4334 0
20 279175376 2664 279147564 25148 0

Table 4. Cop number breakdown for connected subcubic graphs.

above results can now be applied) or we eventually get to a graph of order at most 9 (in which case
we apply Theorem 2.1). �

We will use this proposition to prove our main result in Section 7. The remainder of this section is
not essential and mostly concerns possible improvements and applications of this proposition.

Notwithstanding the slight improvement of considering δ ≥ 2, the approach here is clearly far
from optimal. The algorithm described in the Section 6 is an example of a possibly better strategy.
However, as we will see, this algorithm would not be the most efficient for maximum degree 3 : to
compute potential 4-cop-win graphs on 19 vertices, one would still need to compute subcubic 3-cop-
win graphs on 15 vertices. A potentially more interesting algorithm for building possible 4-cop-win
subcubic graphs would consist in building graphs around long shortest paths (see [2, Lemma 4], which
describes how a cop can protect a shortest path) by adding the desired number of other vertices
and considering all possible ways to add edges. Nonetheless, our exhaustive testing approach is not
without its advantages, as we can use it to gain further knowledge on the cop number of small graphs.

In fact, Hosseini, Mohar and González Hermosillo de la Maza [22] have recently shown that studying
the cop number of graphs with ∆ ≤ 3 is of interest for the study of the cop number at large. More
precisely, they show that if it were true that the cop number of subcubic graphs is in O(

√
n), then the

cop number of general graphs is in O(nα) for all α > 3
4 . In other words, proving Meyniel’s conjecture

for subcubic graphs would substantially improve the best known upper bound on the cop number.
Hence, we consider that getting a distribution of the cop-number of small subcubic graphs might be
interesting, even if it is somewhat skewed by adding the condition δ ≥ 2. Our computations show that
not only there are no 4-cop-win subcubic graphs on at most 20 vertices, but that subcubic 3-cop-win
graphs are overwhelmingly rare for these orders.

The exhaustive search approach also gives us progress on a related problem. Arguably the best-
known result on the game of cops and robbers is Aigner and Fromme’s proof that the cop number
of any planar graph is at most 3, see [2]. This yields the analogous question of finding the minimum
order of a 3-cop-win planar graph, and an enumeration of such graphs. The smallest known planar
3-cop-win graph is the dodecahedral graph (see Figure 8), which has 20 vertices. It is easy to see that
this graph requires 3 cops, as it has girth 5 and is 3-regular. It has been asked, first in [3], as well as
in [12], whether the dodecahedral graph is the unique smallest 3-cop-win planar graph.

There are some partial results for this problem. In [20], Hosseini proves that a 3-cop-win planar
graph of minimum order must be 2-connected. Furthermore, Pisantechakool and Tan have shown in
[28] that any planar graph on 19 or fewer vertices must contain a winning position for 2 cops, although
it has not been proved that the cops can bring the game to this winning state. Using the computations
in the proof of Proposition 5.1, we are able to get more evidence supporting the conjecture.
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Figure 8. The dodecahedral graph2

Corollary 5.2. If G is a connected planar graph such that ∆ ≤ 3 and n ≤ 20, then c(G) ≤ 2, unless
G is the dodecahedral graph.

Proof. We simply test the 3-cop-win graphs found in the proof of Proposition 5.1 for planarity [34].
The only graph which was planar was the dodecahedral graph. The arguments relating to the fact
that we only computed the graphs such that δ ≥ 2 still apply here. �

6. Remaining cases

In this section, we consider the few remaining cases needed to prove that M4 = 19, and also work
towards reducing the possible 4-cop-win graphs on 19 vertices. More precisely, we consider graphs
such that n = 17 with ∆ = 4, n = 18 with ∆ = 4, 5 and n = 19 with ∆ = 4.

As in Section 4, our main tool will be knowing that if a graph G is 4-cop-win, then for each vertex
u, c(G − N [u]) ≥ 3. We know there are relatively few such graphs. In the cases of ∆ = n − 11 or
∆ = n−12, if u is a vertex of maximum degree, we know that these G−N [u] can only be the Petersen
graph and cornered Petersen graphs (at least in the connected case). As these are very few and very
similar, we were able to build structural properties that allowed us to show that G had cop number
at most 3. Having somewhat a large maximum degree, a computational approach would have been
difficult due to the fact that there are too many possible edges to consider to effectively construct all
possible graphs.

For the cases we will now consider, a computational approach is possible as the maximum degree
is not too high. On the other hand, a proof similar to the one of Section 4 for these cases would be
difficult, although certainly not impossible given a large amount of time. Indeed, there are too many
possible choices for G−N [u], and they are not similar enough. As most graphs found in Lemma 3.3
contain the Petersen graph as an induced subgraph, modifying the strategy to take these vertices into
account could seem reasonable. However, we saw that adding even a single corner to the Petersen
graphs yields significant complications for the proof. Adding multiple vertices to the Petersen graph
would likely be much more complex. Furthermore, some of the graphs found in Lemma 3.3 do not
contain the Petersen graph as an induced subgraph at all, and would need to be considered separately.
For these reasons, we have mostly investigated the computational approach.

Our goal is to build graphs which are possibly 4-cop-win: graphs G for which we cannot say that
c(G) ≤ 3 simply by looking at G − N [u] for the vertices u of maximum degree, which we will call
candidate 4-cop-win graphs.

2Computer-generated drawing [34].
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The simplest idea, which we have briefly discussed in Section 3, would be simply to consider a
3-cop-win graph G′ on 12 or 13 vertices, add a vertex u of chosen maximum degree and its neigh-
bourhood, and then look at every possible ways of joining N(u) to G′ by respecting the maximum
degree condition. Then we could compute the cop number of each of these graphs. Even by reducing
the number of cases by isomorphism, the number of graphs to consider is massive, especially in the
case ∆ = 5, so we must be a tad smarter. We present the Merging Algorithm as a way to generate
candidate 4-cop-win graphs, which we then test using a standard cop-number algorithm.

We briefly introduce some notation. In general, when considering a graph G and a vertex u, the
degree of u will always refer to the degree of G in u. If we want to discuss the degree of u in some
induced subgraph H , we will refer to it as the H-degree of u. In general, if we say "there exists a
vertex of H-degree r", then we are also implicitly stating that this vertex is in H . Given some function
φ defined on some set containing T , we will use the notation φ(T ) = {φ(t) : t ∈ T }.
6.1. Presentation of the Merging Algorithm.

6.1.1. Quick Overview. Our approach to build candidate 4-cop-win graphs G will be the following.
Let v1 and v2 be non-adjacent vertices, which we will in general choose to be a pair with the highest
possible degrees. Denoting G1 = G − N [v2] and G2 = G − N [v1], we know that if G is to be a
candidate 4-cop-win graph, the cop number of G1 and G2 must have cop number at least 3 (we will
see later that we can consider G1 and G2 to be connected).

In Section 3, we computed the 3-cop-win graphs on specific numbers of vertices and with some
maximum degree conditions. As we have a few different cases to consider, the possible choices of
G1 and G2 will vary. For now, we can simply denote by L1 and L2 some sets of 3-cop-win graphs.
Our goal is to determine every possible graph G, with maximum degree ∆, for which G1 ∈ L1 and
G2 ∈ L2. We will call the process the Merging Algorithm, which we will now detail.

6.1.2. Input of the Algorithm. Integers n,D1, D2 and sets of (isomorphism classes of) graphs L1 and
L2, such that

(1) the graphs in L1 and L2 are connected, 3-cop-win and have maximum degree at most ∆, and
(2) the graphs in L1 have n−D2 − 1 vertices and the graphs in L2 have n−D1 − 1 vertices.

6.1.3. Output of the Algorithm. The algorithm returns all connected graphs G on n vertices and
maximum degree ∆ = D2 which contain a pair of non-adjacent (and distinct) vertices v1 and v2, with
the following 4 properties. Denote G1 = G−N [v2] and G2 = G−N [v1]. Then,

(1) v1 and v2 have degree respectively D1 and D2,
(2) G1 ∈ L1 and G2 ∈ L2,
(3) for all other vertices u of maximum degree (d(u) = ∆), G−N [u] ∈ L1, and
(4) if D1 < D2, then the set of vertices of G of maximum degree forms a clique and v1 and v2

have at least 1 common neighbour.

Isomorphic graphs may be omitted from the results, as we are not interested in the precise labellings
of the graphs.

6.1.4. Required definitions. We define a few concepts which will be useful in the description of the
algorithm.

A partially-constructed graph is a triple (Ĝ,F , R) where Ĝ is a graph, F is a partition of V (Ĝ), and

R ⊆ V (Ĝ). The graph Ĝ is a graph to which we might still add edges in later steps of the algorithm.

The set F will be used to contain some information on how Ĝ was constructed. We will use R to
denote some set of vertices which must have degree strictly smaller than D2 = ∆, which will be useful
to reduce the number of cases we need to verify.

We say φ is a strong isomorphism between (Ĝ,F , R) and (Ĝ′,F , R) (we suppose both graphs have

the same extra structure given to them, in particular V (Ĝ) = V (Ĝ′)) if φ is an isomorphism between

Ĝ and Ĝ′ such that φ(S) = S for each S ∈ F and such that φ(R) = R, i.e. φ is an isomorphism that
preserves the extra structure we attach to our graphs.
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Let G1 ∈ L1. We define an equivalence relation on V (G1) as follows: u ∼G1
v if there is some

automorphism ψ of G1 such that ψ(u) = v. Then, we can define a total ordering ≤G1
on V (G1)/ ∼G1

by comparing the vertices themselves as follows: if u, v are two distinct (equivalence classes of)
vertices, we set u <G1

v if dG1
(u) < dG1

(v), and if u, v have the same degree, then we choose the
order arbitrarily.

6.1.5. Phase 1 of the Algorithm. First choose some G1 and G2 from L1 and L2 respectively. The rest
of the algorithm will be repeated for each possible choice of G1 and G2. Also choose strictly positive
integers d1 and d2 such that D2 − d2 = D1 − d1, d1 ≤ D1 and d2 ≤ D2. Again, every possible choice
will be considered. When D1 < D2, it will suffice to pick d1 such that d1 < D1 (and thus d2 < D2).

Then consider every possible choice of v1 ∈ V (G1) and v2 ∈ V (G2) such that v1 has G1-degree d1
and v2 has G2-degree d2 (of course, v1 and v2 can be considered up to automorphism in G1 and in G2).
For each choice of vertices, consider every possible way of identifying G1 −N [v1] and G2 −N [v2] by
computing every isomorphism between these graphs. If there are none, this branch of the algorithm
simply doesn’t yield a graph. For each identification, the graphs may be merged by union, keeping
the closed neighbourhoods of v1 and v2 distinct.

In the case D1 = D2, let R = {u ∈ V (G1) : u >G1
v1} be the set of vertices of G1 strictly greater

than v1 in the ordering defined above. In the second main case of the algorithm, when D1 < D2, set
R = V (G1). Note that as R is a subset of the vertices of V (G1), it is also a subset of the vertices in
the graph resulting from the identification above. If the merging process above has created vertices
of degree greater than D2 = ∆, the graph is thrown out: as the rest of the algorithm can only raise
the degree again, it would yield graphs we do not want to consider. Similarly, throw out the graphs
in which any vertex in R has maximum degree. Finally, add D2 − d2 = D1 − d1 common neighbours
to v1 and v2 (these are new vertices). Now v1 has degree D1 and v2 has degree D2. Note that in the
case D1 < D2, we limited d1 to d1 < D1, so v1 and v2 have at least 1 common neighbour.

Denote by Ĝ some graph resulting from these operations. It is easily seen in Figure 9 that the
construction implicitly partitions the vertices into 6 sets (or "types" of vertices) :

F = {{v1}, N(v1) \N(v2), (N [v1] ∪N [v2])
c, N(v1) ∩N(v2), N(v2) \N(v1), {v2}}

where the complement is taken relative to V (Ĝ). We call the partially-constructed graph (Ĝ,F , R) a

base graph. We will sometimes call Ĝ itself a base graph, as the remaining structure is usually clear.

Suppose Ĝ and Ĝ′ are generated in Phase 1 of the algorithm with the same properties, that is, they
are produced from same algorithm inputs and the same choices of G1, G2, d1, d2, v1, v2 but by choosing
a different identification in the merging step. In this case, it is clear that F , R are identical for both.

If (Ĝ,F , R) and (Ĝ′,F , R) are strongly isomorphic, we can consider these graphs to be duplicates:
only one needs to be sent to Phase 2 of the algorithm. We will see later that, up to isomorphism,
these strongly isomorphic base graphs necessarily result in isomorphic candidate 4-cop-win graphs.

The result of Phase 1 should then be some (usually large) collection of base graphs, as we have to
consider every choice of G1, G2, d1, d2, v1, v2 and identification of G1 −N [v1] and G2 −N [v2].

6.1.6. Phase 2 of the Merging Algorithm. The goal of this phase is to complete the construction of
the 4-cop-win candidates graphs by adding edges to the base graphs. We will run Phase 2 for every

base graph from Phase 1. Suppose we have some base graph (Ĝ,F , R). We know that we do not want
to add any edge such that both ends are in G1 or both ends in G2, as we want these to be induced
subgraphs of G. Furthermore, we have already created all incident edges to either v1 or v2, by giving
them the desired number of neighbours. Thus, we only need to consider adding edges which are either

(1) between N(v1) ∩N(v2) and {v1, v2}c, including edges with both ends in N(v1) ∩N(v2), or
(2) between N(v2) \N(v1) and N(v1) \N(v2).

We fix an order on the vertices of N(v2) as follows : first the vertices in N(v1)∩N(v2), then those
in N(v2) \N(v1). Denote ai to be i-th vertex in this order, which will be considered at the i-th step
of Phase 2.
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v2

v1

G2

G1

N(v1) \N(v2)

N(v2) \N(v1)N(v1) ∩N(v2)

(N [v1] ∪N [v2])
c

Figure 9. Example from Phase 1 of the Merging Algorithm. Here, the base graph
was generated using parameters n = 18, D1 = D2 = ∆ = 5 and d1 = d2 = 3.

At the i-th step of Phase 2, a new partially-constructed graphs is created for each way of adding
edges incident to ai of the form described above, with the following restrictions:

(1) not to add an edge if one of its end vertices already has degree ∆,
(2) not to add an edge if one of its end vertices is in R and adding this edge would bring that

vertex to degree ∆, and
(3) not to add an edge between aiaj if i > j.

Then, for each of these newly created graphs, repeat the process by moving on to ai+1, and so on.
Hence restriction (3) comes from the fact that such an edge aiaj has already been considered at the
j-th step.

In this phase, we will also reduce some cases by strong isomorphism. Let Ai = {a1, . . . , ai}. If
ai ∈ N(v1) ∩N(v2), let

Ti = {N(v1) ∩N(v2) ∩ Ai, (N(v1) ∩N(v2)) \Ai, N(v2) \N(v1)}.
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Otherwise, if ai ∈ N(v2) \N(v1), then let

Ti = {N(v1) ∩N(v2), (N(v2) \N(v1)) ∩ Ai, (N(v2) \N(v1)) \Ai}.

Finally, define

Fi = {{v1}, N(v1) \N(v2), (N [v1] ∪N [v2])
c, {v2}} ∪ Ti.

In other words, we refine F by distinguishing the vertices for which we have already considered adding
extra edges.

Hence, we will attach to the graphs produced in i-th step of Phase 2 this extra structure, meaning

the i-th step produces partially-constructed graphs of the form (Ĝ′,Fi, R). Note that Fi only depends
on the base graph and at the step number in the edge adding procedure, and not the choices of edges
added in steps 1, . . . , i. Hence, we may compare partially-constructed graphs and remove strongly
isomorphic repetitions (we remind the reader that this is only for those constructed from the same
base graph). As this procedure is often lengthy, we only remove graphs by strong-isomorphism in
some cases.

In the case D1 < D2, if at any point the (partially-constructed) graph contains non-adjacent
vertices both of degree ∆, we can throw out this graph, since these vertices will necessarily remain
non-adjacent in final graphs.

After considering every possible way of adding edges (after the |N(v2)|-th step), all graphs G such
that there is some vertex u of maximum degree where G − N [u] is not in L1 are thrown out (by
construction, we do not need to verify this for v1 and v2). From the remaining graphs, we also
remove isomorphic graphs. Note that since we have split up the computations in many pieces, we
only compare for isomorphism graphs which were generated from the same base graph.

6.1.7. Comments on the Merging Algorithm. We note that in practice, in order to verify strong iso-
morphism, we do not need to test whether φ(R) = R holds. Indeed, as φ preserves in particular
{v1}, N(v1) \ N(v2) and V (G) \ (N [v1] ∪ N [v2]), we know that φ restricted to the vertices of G1

is an automorphism of G1. Recall that R was constructed using the ordering ≤G1
on V (G1)/ ∼G1

(when D1 = D2) or was chosen to be V (G1) (when D1 < D2). Hence R is always closed under under
automorphism of G1, so in particular φ(R) = R.

In Phase 1, one particular consequences of having a set R is the following. Suppose D1 = D2 and
G1 already (before merging) contains multiple vertices of degree D1 = D2 = ∆. Let u be some vertex
maximal relative to ≤G1

(it is unique up to automorphisms). Then, in Phase 1 when v1 is not u, no
graph will be generated. Indeed, in this case u ∈ R but u necessarily has degree ∆ after merging, a
case we have excluded. For this reason, when G1 contains a vertex of degree ∆, we do not need to try
multiple choices of v1. In particular, when ∆(G1) = ∆, we can only consider the case d1 = D1 = ∆.

6.1.8. Validity of the Merging Algorithm. Considering that the algorithm itself is relatively straight-
forward, we do not present a complete proof of the validity of the algorithm. We however present a
few key points.

Consider a graph G respecting the conditions described in the Section 6.1.3. Our goal is to show
that G, or a graph isomorphic to G, is constructed by the Merging Algorithm. Choose v2 to be any
vertex of degree D2 in G such that V (G)\N [v2] contains at least one vertex respecting the conditions
for v1 in Section 6.1.3. Denote by S this non-empty set of possible choices for v1. In the case D1 < D2,
we choose v1 to be any vertex of S. If D1 = D2, then choose v1 to be maximal in S relative to the
ordering ≤G1

. Then, write G1 = G−N [v2], G2 = G−N [v1], D1 = dG(v1), D2 = dG(v2), d1 = dG1
(v1)
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and d2 = dG2
(v2). It is easy to verify that

d2 − d1 = dG2
(v2)− dG1

(v1)

= |NG−N [v1](v2)| − |NG−N [v2](v1)|
= |N(v2) \ (N [v1] ∩N(v2))| − |N(v1) \ (N(v1) ∩N [v2])|
= |N(v2) \ (N(v1) ∩N(v2))| − |N(v1) \ (N(v1) ∩N(v2))|
= (|N(v2)| − |N(v1) ∩N(v2)|)− (|N(v1)| − |N(v1) ∩N(v2)|)
= |N(v2)| − |N(v1)|
= D2 −D1.

Thus, the pair of degrees d1 and d2 is indeed considered in the Merging Algorithm. It is then
easy to see that the Phase 1 of the algorithm will have some branch considering this exact choice of
G1, G2, d1, d2, v1, v2 and the actual isomorphism between G1−N [v1] and G2−N [v2]. Note that in the
case D1 = D2, choosing v1 as maximal in S relative to ≤G1

guarantees that all vertices of G−N [v2]
which are strictly greater to v1 in this order do not have maximal degree in G, which is consistent
with how we use R in the algorithm.

Then, as in Phase 2 of the algorithm we consider adding every possible edge not totally contained
in G1 or G2 (precisely the edges between N(v1)∩N(v2) and {v1, v2}c, or between N(v2) \N(v1) and
N(v1) \N(v2)) while still respecting some degree conditions, G must have been constructed.

Other steps in the algorithm, such as requiring that G − N [u] ∈ L1 for u of maximum degree, or
in the case D1 < D2 removing graphs with non-adjacent vertices of maximum degree, are consistent
with Section 6.1.3.

In fact, what we have stated so far is only true up to the removal of partially-constructed graphs
using strong isomorphism. Indeed, although we claim a graph isomorphic to G has necessarily been

constructed, the graph G might not have been constructed itself. To see this, suppose that (Ĝ,F , R)
was thrown out at some step because it was strongly isomorphic to (Ĝ′,F , R) (where the strong

isomorphism is φ : V (Ĝ) → V (Ĝ′)). We wish to prove that every graph that would be constructed

from (Ĝ,F , R) (had it not been pruned) can be constructed from (Ĝ′,F , R), up to isomorphism.
Suppose that the edges we want to add are E1 = {w1z1, w2z2, . . . , wkzk}, which we can note as

G = Ĝ + E1. Then, it is simple to see that φ is also an isomorphism between G = Ĝ + E1 and

G′ = Ĝ′ + E2, where E2 = {φ(w1)φ(z1), φ(w2)φ(z2), . . . , φ(wk)φ(zk)}. It remains to see that Phase 2

algorithm allows us to add the edges in E2 to Ĝ′, that is that Ĝ′+E2 will actually be constructed. For

now, suppose that none of the partially-constructed graph in the intermediate steps between (Ĝ′,F , R)
and G′ are throw out because of some other strong isomorphism.

As φ is a strong isomorphism, the sets {v1}, N(v1)\N(v2), (N [v1]∪N [v2])
c, N(v1)∩N(v2), N(v2)\

N(v1), {v2} are preserved by φ (the permutations between vertices are inside these sets). Hence, if
wizi is between N(v1)∩N(v2) and {v1, v2}c, then φ(wi)φ(zi) is between N(v1)∩N(v2) and {v1, v2}c
as well. The same goes for the other type of edge we add. In Phase 2, we also required that φ preserves
the vertices in N(v1) ∩N(v2) and in N(v2) \ N(v1) to which we have already added (possibly zero)
edges (recall the refinement Fi or F). Hence, if some vertex a ∈ N(v2) has not yet been considered

in Phase 2 by the time we throw out (Ĝ,F , R), neither has φ(a) in (Ĝ,F , R). This excludes the
possibility that because of the strong isomorphism some vertex which had to eventually be considered
never is. When adding edges, some degree conditions also had to be respected. In particular, there is
a fixed maximum degree, and the vertices in R must have degree strictly smaller than the maximum

degree. Let x be a vertex in V (Ĝ). As φ is an isomorphism, the degrees of x and φ(x) are identical.
As φ is a strong isomorphism, x ∈ R if and only if φ(x) ∈ R = φ(R). Hence, the maximum number of
edges that we can add to a vertex x is the same as φ(x). Therefore, as the edge wizi was authorized

to be added to Ĝ, there will be no degree restrictions forbidding the edge φ(wi)φ(zi) to be added to

Ĝ′.
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This shows that for every G that would be constructed from (Ĝ,F , R), there is some G′ constructed

from (Ĝ′,F , R) which is isomorphic to G, proving that throwing away (Ĝ,F , R) is valid. However,

this supposed that during the steps between (Ĝ′,F , R) and G′, none of the intermediate partially-
constructed graphs were thrown out by some other strong isomorphism. We may now suppose the

contrary. Consider that at some point, the intermediary graph (Ĝ′+E′
2,F , R) (in particular E′

2 ⊂ E2)

was thrown out in favour of some other graph (Ĝ′′,F , R). While neither G nor G′ was constructed,

we wish to show there is some G′′ = G′ + E3 constructed from (Ĝ′′,F , R) which is isomorphic to G′

(and to G). We can apply the same argument as above to show that one such G′′ exists, assuming

that between Ĝ′′ and G′′ no intermediate graph is removed by strong isomorphism. If it is, then by
repeating this argument (at most |N(v2)| times, the number of iterations), we will eventually find
some graph constructed that was isomorphic to G.

We note that even if (Ĝ,F , R) and (Ĝ′,F , R) are strongly isomorphic graphs, the partially-
constructed graphs they lead to one step later are not necessarily strongly isomorphic, in particular
as the ordering of the vertices ai is not preserved by φ (not completely, although the information on
whether ai has been considered or not by Phase 2 yet is preserved). Hence, the proof above requires
finding a correspondance between the final graphs they produce, and not tracking the constructions
step by step.

6.2. Results. We will now use the Merging Algorithm to build all possible 4-cop-win graphs. Our
implementation of the algorithm is done in the Wolfram language [34].

To lighten the proof, we will use the following notation. Define a property P with the usual
definition: a property P is a function from a set to a Boolean value. For instance, if C3 is the graph
property of being 3-cop-win, then C3(P0) is whether the Petersen graph is 3-cop-win (which is true).

Proposition 6.1. Let G be a connected graph such that either

(1) n = 17 and ∆ = 4,
(2) n = 18 and ∆ ∈ {4, 5}, or
(3) n = 19 and ∆ = 4.

If every proper induced connected subgraph H of G respects c(H) ≤ 3, then c(G) ≤ 3, unless G is the
Robertson graph (see Figure 1).

Proof. Let u be any vertex of G. We know that G − N [u] has at most n − 2 ≤ 17 vertices. If
G − N [u] is disconnected, it must contain at least one component K which has at most 8 vertices.
Then, Theorem 2.1 implies that c(K) ≤ 2. Furthermore, our hypothesis implies that c(G −K) ≤ 3,
as G − K is necessarily a connected induced subgraph of G. By Corollary 2.5, we get that c(G) ≤
max{c(G−K), c(K) + 1} ≤ 3. Thus, for the remainder of the proof, we assume that for every vertex
u, G−N [u] is connected. Likewise, we can assume that G does not contain a corner x. Indeed, G−x
is necessarily connected and has cop number at most 3, therefore Corollary 2.8 implies that G also
has cop number at most 3. We may also assume that c(G−N [u]) = 3: if c(G−N [u]) ≤ 2, placing a
stationary cop on u implies that c(G) ≤ 3.

We can bring together these assumptions by defining the property M(G) as follows : G is a graph
respecting the hypotheses of the proposition and such that G−N [u] is a connected 3-cop-win graph
for every vertex u of G and such that G does not contain a corner. By the previous discussion, it
suffices to show the proposition for graphs respecting M .

We now define property P1. A graph G is said to have property P1 if G contains two non-adjacent
vertices of maximum degree ∆. We use the Merging Algorithm to generate all graphs G such that
M(G) holds and that respect property P1, and then compute their cop numbers. More precisely, we
choose n and ∆ according to the case we are considering, we set D1 = D2 = ∆, and choose L1 = L2

to be the set of 3-cop-win graphs on n−∆−1 vertices with maximum degree at most ∆, as computed
in Lemma 3.3. We note that the Merging Algorithm computes a somewhat larger class of graphs than
we want. In particular, the Merging Algorithm does not exclude graphs which contain corners and
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in its last step only tests whether G−N [u] is 3-cop-win (if G−N [u] ∈ L1) for vertices of maximum
degree.

Cop number
∆ n ∆1 G1 d1 Base graphs Final graphs 1 2 3 ≥ 4

4

17
4 78 4 123 0 0 0 0 0
3 2 3 10 0 0 0 0 0

18 4 1105 4 1668 0 0 0 0 0

19
4 16514 4 33785 3 0 0 0 3
3 9 3 911 0 0 0 0 0

5 18

5 93 5 14232 24416 0 5484 18932 0

4 78

4 10062 39318 0 7410 31908 0
3 534 18645 0 3455 15190 0
2 111 24238 0 1494 22744 0
1 88 698809 0 82882 615927 0

3 2 3 22 12778 0 4960 7818 0

Table 5. Results of the first wave of computations using the Merging Algorithm.
It presents the counts for the graphs built with the property that they contain 2
non-adjacent vertices of maximum degree. In particular, d1 = d2 and ∆ = D1 = D2.
Furthermore, G1 is chosen with maximum degree ∆1.

The summary results are presented in Table 5. For more detail, we also split up the graphs relative
to the various possible maximum degrees of G1, although we of course always merge with all of the
possible graphs G2, not only the G2 with the same maximum degree. We note that there are no
3-cop-win graphs with maximum degree 3 on 13 vertices (which can also be seen in Table 4), and that
the 3-cop-win graphs with maximum degree 3 on 12 and 14 vertices are 3-regular (and thus the only
possible value of d1 is 3).

We note that the 4-cop-win graphs found on 19 vertices are actually all copies of the Robertson
graph. In fact, the 3 copies correspond to 3 different choices of G1 which can yield the Robertson
graph.

With these results, we will then only consider graphs which do not have property P1. In other
words, the graphs left to consider are those such that the set of vertices of maximum degree of G
forms a clique. This is a very restrictive property, and will be very useful.

We see that graphs G such that M(G) holds and for which ∆ = 4 necessarily respect property
P1. Indeed, let u be a vertex of maximum degree in G. Consider G′ = G − N [u]. If G′ contains a
vertex of degree 4, P1(G) is satisfied. Otherwise, we must have ∆(G′) = 3. If G′ is not 3-regular, it is
at most 2 cop-win (this holds for orders 12 to 14 as mentioned above) and therefore M(G) does not
hold. Therefore, any vertex in G′ that was adjacent to a vertex of N(u) is also of degree 4 in G and
not adjacent to u. Hence P1(G) holds. We can therefore suppose ∆(G) = 5 for the remainder of the
proof. Furthermore, since P1(G) is false, we can assume that if there exists two vertices of maximum
degree, they must be adjacent (hence they must form a clique).

We now define property P2. We say a graph G has property P2 if G contains two non-adjacent
vertices v1 and v2 such that v1 has degree either 3 or 4, v2 has degree 5, v1 and v2 have a common
neighbour, and G − N [v1] has maximum degree at most 4. Then, we compute the graphs G such
that M(G) holds and P2(G) holds, but not P1(G). Precisely, run the Merging Algorithm by setting
n = 18, D2 = ∆ = 5, D1 to respectively either 3 or 4, L1 to be the 3-cop-win graphs on 12 vertices
with maximum degree at most 4 (if u is a vertex of degree 5 and G − N [u] has maximum degree 5,
then G necessarily respect property P1), and L2 to be the 3-cop-win graphs on respectively either 14
or 13 vertices with maximum degree at most 4. We have computed these lists L1 and L2 in Lemma
3.3. The results of this computation are presented in Table 6.
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We note that as the number of possible vertices of maximum degree is generally smaller than before,
there are fewer graphs thrown out because of some vertex u of maximum degree such that G−N [u] is
not a 3-cop-win graph. Furthermore, we note that as the graphs on 14 vertices with maximum degree
3 are 3-regular, when choosing any of these graphs as G1 it is impossible for d1 to be anything other
than 3.

Cop number
D1 G2 ∆1 G1 d1 Base graphs Final graphs 1 2 3 ≥ 4

4 1105
4 78

3 993 41872 0 9299 32573 0
2 504 70224 0 4278 65946 0
1 1138 3350712 0 417144 2933568 0

3 2 3 153 41006 0 15440 25566 0

3 16523 4 78
2 2419 83509 0 4187 79322 0
1 10582 6293171 0 786173 5506998 0

Table 6. Results of the second wave of computations with the Merging Algorithm.
It presents the counts for the graphs G built with the property that G − N [v1] has
maximum degree 4, v1 and v2 always have a common neighbour (in particular d1 <
D1) and the vertices of maximum degree form a clique. Here, we always have n = 18
and D2 = ∆ = 5, and G1 is chosen with maximum degree ∆1.

We see that none of the graphs are 4-cop-win. We claim that for all graphs G, if M(G) holds
then either P1(G) holds or P2(G) holds. Supposing the contrary, let G be as graph such that M(G)
holds, but for which neither P1(G) nor P2(G) holds. We attempt to find a contradiction. As discussed
earlier, we may only consider the case where ∆ = 5 as P1 is always respected for ∆ = 4.

Let v2 be a vertex of maximum degree, and denote G1 = G−N [v2]. As G1 is 3-cop-win (in order
for M(G) to hold), G1 contains at most 2 vertices of degree 1. Otherwise, removing these vertices of
degree 1, which does not change the cop number, would yield a graph with at most 9 vertices and
having cop number at most 2 (by Theorem 2.1). By our supposition, we know there cannot be a vertex
v1 ∈ N [v2]

c of degree either 3 or 4 such that v1 and v2 have a common neighbour and G−N [v1] has
maximum degree at most 4. A sufficient condition for this last requirement is that v1 has a neighbour
a which is adjacent (or equal) to all vertices of maximum degree.

We first consider the case that G contains a unique vertex of degree 5. For any choice of v1 in
N [v2]

c, if v1 and v2 have a common neighbour, v1 trivially has a common neighbour with all vertices
of degree 5. So, there are no vertices of N [v2]

c of degree 3 or 4. Then, no vertex of G1-degree 2
or 3 has a neighbour in N(v2), and no vertex of G1-degree 1 has more than 1 neighbour in N(v2).
Therefore, only vertices of G1-degree 1 can have a neighbour in N(v2), and even then they can only
receive 1 each, implying there are at most 2 edges between N(v2) and N [v2]

c. On the other hand, as
G does not contain a corner, each vertex in N(v2) must have at least 1 neighbour in N [v2]

c. Thus,
there are at least 5 edges between N(v2) and the vertices of N [v2]

c. Hence, there is a contradiction
in this case.

The other main case is if N(v2) contains at least one other vertex of degree 5. We recall that these
vertices of degree 5 must form a clique as G does not respect property P1. Hence, if there is a vertex
v1 in N [v2]

c which has a neighbour x ∈ N(v2) of degree 5 (necessarily in N(v2)) and such that v1
has degree 3 or 4, then we have a contradiction as x is adjacent (or equal) to all vertices of degree
5. Hence, no vertex of degree 5 in N(v2) can be adjacent to a vertex of G1-degree 2 or 3, and its
neighbours (of G1-degree 1) can have no other neighbours in N(v2). As G does not contain a corner,
each vertex in N(v2) must have at least 1 neighbour in N [v2]

c. Hence, as there are at most 2 vertices
of G1-degree 1, there can be only be at most 2 vertices of degree 5 in N(v2).

We first consider the case with 2 vertices x1, x2 ∈ N(v2) of degree 5. Therefore, x1 and x2 each
have exactly one neighbour in N [v2]

c (which are different). This means that there are 2 vertices of
G1-degree 1, one of which is adjacent to x1 and the other is adjacent to x2. Hence both x1 and x2,
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having degree 5, must have 3 neighbours in N(v2) (possibly including each other). In particular, x1
and x2 must have at least one common neighbour in N(v2), as N(v2) has 5 vertices. Denote this
common neighbour y. We know that y must have a neighbour in N [v2]

c (otherwise y is cornered by
v2), which will be our choice of v1. As both vertices of G1-degree 1 cannot have more edges with
vertices in N(v2), v1 necessarily has degree either 3 or 4. As y is a common neighbour to v2, x1 and
x2, this choice of v1 yields a contradiction.

We can similarly consider the case with exactly 1 vertex x of degree 5 in N(v2). Then, x has at
most 2 neighbours (of G1-degree 1) in N [v2]

c. Hence, to have degree 5, x has at least 2 neighbours
y1, y2 in N(v2). We have already seen that they cannot be adjacent to the neighbours of x in N [v2]

c.
If one of them (say y1) is adjacent to a vertex of G1-degree 2 or 3, let v1 be this last vertex. Then, v1
is a vertex of degree 3 or 4, and its neighbour y1 is adjacent to both vertices of maximum degree (v2
and x), which is a contradiction. Otherwise, y1 and y2 are both adjacent to some vertex of G1-degree
1 (to which x was necessarily not adjacent). Choose v1 to be this last vertex of G1-degree 1. It has
degree at least 3 (one neighbour in G1 as well as y1, y2), and its neighbour y1 is adjacent to both
vertices of maximum degree (v2 and x). This is a contradiction.

Thus, our claim is verified: all graphs G that satisfy M respect either P1 or P2. We have computed
the cop number of graphs such that M(G) and P1(G) hold, and graphs such that M(G) and P2(G)
hold but not P1(G). Hence, we have computed the cop number of all graphs such that M(G) holds.
This proves the current proposition. �

It is interesting that in the first part of computations, for all cases with ∆ = 4, not only is the
Robertson graph the only 4-cop-win graph, but there are no other candidate 4-cop-win graphs. A
reasonable explanation for this might be that when merging, too many vertices of high degree are
created: either a vertex of degree 5 or more is created (in which case the graph is immediately thrown
out) or there are "too many" vertices of degree 4, such that there is always some u of maximum degree
for which G−N [u] not 3-cop-win.

6.3. Possible improvements. This is only one of many possible computational approaches to solving
the problem. We now discuss a few improvements and alternatives that the interested reader may
want to apply.

Our approach was based on merging 3-cop-win graphs by looking at non-adjacent vertices v1, v2.
It is easy to see that one could also choose v1 and v2 to be adjacent. Even if the construction would
be somewhat different, the ideas are similar. In particular, after proving that G does not contain
non-adjacent vertices of maximum degree, we could have proved that G does not contain any adjacent
vertices of maximum degree, instead of considering v1 of smaller degree. This would then leave only
the case with a single vertex of maximum degree to be treated. With some additional heuristics or
with a simplification of the methods we used, this case could be dealt with more specifically.

We decided against this approach for few reasons. Although our approach required us to compute
more 3-cop-win graphs than otherwise needed, it allowed us to implement only one Merging Algorithm.
Furthermore, computing the 3-cop-win graphs on 14 vertices with maximum degree (at most) 4 allowed
us to simultaneously handle on the case on n = 18 with d(v1) = 3, and build the candidate 4-cop-win
graphs on 19 vertices with maximum degree 4.

Another method would be to not only merge graphs relative to pairs of vertices, but varying sizes
of subsets. This approach would certainly reduce the number of intermediate graphs generated by
the algorithm: instead of pruning graphs after adding edges, we could build up a larger part of the
graph. The difficulty lies in implementing this approach. In particular, the structure of the partially-
constructed graphs would not be as simple, as there will be much more than 6 or 7 types of vertices.

Although at the expense of some computation time, we have chosen not to implement these im-
provements in order to keep the code as simple as possible. Indeed, the simplicity of the code reduces
the chances of it being erroneous, as well as making it easier to verify. As the proof is completely
dependent on the results of the algorithm, we felt this compromise was justified.
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A last idea essentially combines the processes of generating the graphs and testing their cop number.
Let G be a connected graph and e be some edge of G. In general, it is unclear whether removing
e will help the robber or help the cops, as this depends on many other factors. If we consider a
slightly modified ruleset so that the robber can use the edge e but not the cops, we might achieve
some results. Denote c′ the cop number of this modified game. With these rules, c(G) ≤ c′(G), as the
new restrictions on e can only benefit the robber. Furthermore, c′(G− e) ≤ c′(G) because removing e
can only help the cops, as they were not allowed to use it anyway. Thus, both c(G) and c(G− e) are
bounded above by c′(G). If we modify the algorithm which calculates the cop number to take into
account the robber-only edge e (a fairly easy modification), we could then determine simultaneously
whether both G and G − e have cop number at most 3. This generalizes to larger subsets of edges.
Hence, in theory, we can reduce by a significant amount the number of cases to consider by not
distinguishing G and G − e. If done for many edges, this idea could decrease the number of graphs
to consider exponentially. It is not clear how many such "special edges" we can take in G before
the cop number with the special edges diverges from the cop number without those edges. We leave
implementing and studying this approach as a problem. Note that modifying slightly the rules of the
game to study the cop number has been done many times before. For instance, cop-only edges are an
important tool in [18] and allowing the cops to teleport is used in [24].

7. Main results

We are now ready to prove the desired results.

Theorem 7.1. If G is a connected graph such that n ≤ 18, then c(G) ≤ 3.

Proof. The statement for all cases except n = 17 with ∆ = 4 and n = 18 with ∆ = 4, 5 follows from
Corollary 2.6 and Propositions 4.10 and 5.1. Then, apply Proposition 6.1 first for n = 17 then for
n = 18. Indeed, applying our results in this order will allow us to know that every proper induced
connected subgraph H of G respects c(H) ≤ 3 as H necessarily has smaller order.

See Table 7 for a visual guide to which proposition to apply in each case. �

n
∆ ≤ 14 15 16 17 18 19
≤ 3 5.1 5.1 5.1 5.1 5.1 5.1
4 2.6 4.10 (1) 4.10 (2) 6.1 6.1 6.1
5 2.6 2.6 4.10 (1) 4.10 (2) 6.1
6 2.6 2.6 2.6 4.10 (1) 4.10 (2)
7 2.6 2.6 2.6 2.6 4.10 (1) 4.14 (2)
8 2.6 2.6 2.6 2.6 2.6 4.14 (1)

≥ 9 2.6 2.6 2.6 2.6 2.6 2.6

Table 7. Proposition/corollary to apply for each case in Theorems 7.1 and 7.3. For
Propositions 4.10 and 4.14 we specify the case using the numbering from the proof.

Considering there exists a known 4-cop-win graph on 19 vertices, the Robertson graph, we get the
following corollary.

Corollary 7.2. M4 = 19.

We also want to narrow down the possible 4-cop-win graphs on 19 vertices.

Theorem 7.3. Let G be a connected graph such that n = 19. If ∆ ≤ 3 or ∆ ≥ 7, then c(G) ≤ 3. If
∆ = 4, then c(G) ≤ 3, unless G is the Robertson graph.

Proof. This is a direct consequence of Corollary 2.6 and Propositions 4.14, 5.1 and 6.1 (in the last
case using Theorem 7.1 to say that c(H) ≤ 3 when H is a proper induced connected subgraph of G).

See Table 7 for a visual guide to which proposition to apply in each case. �



30 JÉRÉMIE TURCOTTE AND SAMUEL YVON

We leave filling the missing cases in this theorem as a conjecture.

Conjecture 7.4. There does not exist a connected graph G such that n = 19, ∆ ∈ {5, 6} and c(G) = 4.

This would show that the Robertson graph is the unique 4-cop-win graph on 19 vertices. With a
better implementation of the algorithm, in some low overhead programming language such as C, and
with a few additional good ideas, this problem seems within reach. On the other hand, finding M5

with the methods used in this article is out of reach. A fully non-computational proof M4 = 19 would
also be of great interest, and may be more instructive on how to approach M5.

It is asked in [5] whether the minimum d-cop-win graphs are (d, 5)-cage graphs for every d. Although
we now have further evidence pointing towards this conjecture, any general proof of this statement is
still beyond our grasp.
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