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a b s t r a c t

The anti-Ramsey number, ar(G,H) is the minimum integer k such that in any edge
colouring of G with k colours there is a rainbow subgraph isomorphic to H , namely, a copy
of H with each of its edges assigned a different colour. The notion was introduced by
Erdös and Simonovits in 1973. Since then the parameter has been studied extensively.
The case when H is a star graph was considered by several graph theorists from the
combinatorial point of view. Recently this case received the attention of researchers from
the algorithm community because of its applications in interface modelling of wireless
networks. To the algorithm community, the problem is known as maximum edge
q-colouring problem: Find a colouring of the edges of G, maximizing the number of
colours satisfying the constraint that each vertex spans at most q colours on its incident
edges. It is easy to see that the maximum value of the above optimization problem
equals ar(G, K1,q+1) − 1.

In this paper, we study the maximum edge 2-colouring problem from the approx-
imation algorithm point of view. The case q = 2 is particularly interesting due to its
application in real-life problems. Algorithmically, this problem is known to be NP-hard
for q ≥ 2. For the case of q = 2, it is also known that no polynomial-time algorithm
can approximate to a factor less than 3/2 assuming the unique games conjecture. Feng
et al. showed a 2-approximation algorithm for this problem. Later Adamaszek and Popa
presented a 5/3-approximation algorithm with the additional assumption that the input
graph has a perfect matching. Note that the obvious but the only known algorithm issues
different colours to the edges of a maximum matching (say M) and different colours
to the connected components of G \ M . In this article, we give a new analysis of the
aforementioned algorithm to show that for triangle-free graphs with perfect matching
the approximation ratio is 8/5. We also show that this algorithm cannot achieve a factor
better than 58/37 on triangle free graphs that has a perfect matching. The contribution of
the paper is a completely new, deeper and closer analysis of how the optimum achieves
a higher number of colours than the matching based algorithm, mentioned above.

© 2021 Published by Elsevier B.V.

1. Introduction

A k-edge colouring of a graph is a function f : E(G) → [k]. Note that f does not need to be a proper colouring of the
edges, i.e., edges incident to the same vertex may receive the same colour. A subgraph H of G is called a rainbow subgraph
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(heterochromatic subgraph) with respect to a k-edge colouring f if all the edges of H are coloured distinctly. For a pair
f graphs G and H the anti-Ramsey number, ar(G,H), denotes the minimum number of colours k such that in any k-edge
olouring of G there exists at least one subgraph isomorphic to H which is a rainbow subgraph. Equivalently if k′ is the
aximum possible number of colours in an edge colouring f of G such that there exists no rainbow subgraph isomorphic

o H with respect to f then ar(G,H) = k′
+ 1. We call the first parameter of ar(G,H), G as the input graph and the second

arameter H as the pattern graph.
The notion, anti-Ramsey number, was introduced by Erdös and Simonovits in 1973 [6]. Most of the initial research on

his topic focused on complete graphs (Kn) as the input graph and pattern graphs that possess a certain nice structure,
or example, path, cycle, complete graph etc. The exact expression of ar(Kn, Pk), when the pattern graph is a path of
ength k (Pk), was reported in the article written by Simonovits and Sós [22]. On the other hand, the simple case of the
attern graph is a cycle of length k (Ck) took years to get solved completely. It was proved by Erdös, Simonovits and
ós that ar(Kn, C3) = n − 1 [6]. In the same paper it was conjectured that ar(Kn, Cn) = ( k−2

2 +
1

k−1 )n + O(1) for k ≥ 4.
The conjecture was verified affirmatively for the case k = 4 by Alon [3]. Later it was studied by Jiang and West [14].
Almost thirty years after it was conjectured, Montellano-Ballesteros and Neumann-Lara reported proof of the statement
in 2005 [19]. A lower bound considering the pattern graph as the clique of size n− 1 (Kn−1) was reported in [16]. Schier-
meyer and Montellano-Ballesteros together with Neumann-Lara independently reported the exact value of ar(Kn, Kr ) [18,
21]. In the same article Schiermeyer also studied the case when pattern graph is a matching. Haas and Young later studied
the case when pattern graph is a perfect matching [11]. A tighter bound on matching was reported in the article by Fujita
et al. [8]. The article by Jiang and West reported bounds on ar(G,H) when H is a tree [15]. Jiang also derived an upper
bound on ar(G,H) when H is a complete subdivided graph relating the parameter ar(G,H) with Turán number, that is the
aximum cardinality of edges of an n-vertex graph that does not contain a subgraph H [12].
The study of anti-Ramsey number was not entirely restricted to the case when the input graph is a complete graph.

Axenovich et al. studied the case when the input graph is a complete bipartite graph [4]. A t-round variant of anti-Ramsey
umber was introduced and studied in [5].
In this paper, we consider the pattern graph as the claw graph, i.e. the star graph with exactly 3 leaves, denoted by K1,3.

The study of anti-Ramsey number where the pattern graph is the claw or more generally the star graph was initiated in
the work of Manoussakis et al. [16]. The bound was later improved in [13]. In the same article exact value of the bipartite
variant of the problem ar(Kn,n, K1,q) was also reported. Gorgol and Lazuka computed the exact value of ar(G,H) when
H is K1,4 with an edge added to it [9]. Montellano-Ballesteros relaxed the condition on input graph and considered any
graph as input in their study [17]. The study of anti-Ramsey number with claw graph as pattern graph was revisited
recently due to its application in modelling channel assignment in a network equipped with a multi-channel wireless
interface [20]. They introduced the problem as maximum edge q-colouring problem, thus initiating the exploration of the
algorithmic aspects of this parameter, ar(G, K1,t ).

For a graph G, an edge q-colouring of G is an assignment of colours to edges of G such that no more than q distinct
colours are incident at any vertex. An optimal edge q-colouring is one which uses the maximum number of colours. It is
easily seen that the number of colours in maximum edge q-colouring of G is ar(G, K1,q+1) − 1.

In [1], it was reported that the problem is NP-hard for every q ≥ 2. Moreover, they showed that it is hard to
approximate within a factor of (1+1/q) for every q ≥ 2, assuming the unique games conjecture. A simple 2-factor algorithm
for maximum 2-colouring problem was reported in [7]. A description of the algorithm is provided in Algorithm 1.
Henceforth we refer to this algorithm as the matching based algorithm. In a recent article [2], authors reported a 5/3
approximation factor for the same algorithm assuming that the input graphs have a perfect matching. Approximation
bounds for the matching based algorithm when the input graph has certain degree constraints were reported in [23]. A
fixed-parameter tractable algorithm was reported for the case q = 2 in [10].

In the present article, our focus is on the case when q = 2, and when the graph G has a perfect matching. It is worth
mentioning here, although Montellano-Ballesteros reported bounds on ar(G, K1,q), their expression is not enough to draw
any inference in this particular scenario. Their technique is useful for deriving bounds when the input graph has certain
regular structures such as complete graph, complete t-partite graph, hypercube etc.

Algorithm 1 Matching based algorithm for edge 2-colouring

Input: A graph G which has perfect matching.
1: Compute the maximum matching M of G.
2: Assign distinct colour to each edge of M .
3: Assign a new colour to each component of G \ M .
4: return The colour assigned graph.

2. Key notation and main result

Throughout this article (except possibly the last section), we consider G to be a graph which has a perfect matching
. We use C , . . . , C to denote the components of G\M , where h is the number of such components.
1 h
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Fig. 1. Circles denote subgraphs formed by non-matching colours. The figure shows the case when all the subgraphs can be connected by disjoint
paths between them.

Let C be an optimal edge 2-colouring of G using colours [c] := {1, . . . , c}. Let CM and CN denote the colours used in the
matching M , and those not used in the matching M respectively. Clearly CM ⊎ CN = [c]. We call colours in CM matching
colours and colours in CN as non-matching colours. For an edge e, we denote the colour assigned to e in colouring C by
col(e). For a vertex u, the colour assigned to the matching edge at u is denoted by mcol(u).

For a colour i ∈ [c], let G[i] denote the subgraph spanned by the edges coloured i. We note that, in an optimal
olouring C, G[i] is connected for all colours i ∈ [c], since otherwise we can increase the number of colours. For a non-
atching colour i, G[i] is a subgraph of a unique component Cj. For convenience, we often refer to a connected subgraph

spanned by edges of a colour as colour component. Subgraphs corresponding to matching colours are called matching
olour components, while those corresponding to non matching colours are called non matching colour components. With
he notation as discussed, the following are the main contributions of this paper:

heorem 1. Let G be a graph having a perfect matching M. Let OPT denote the number of colours in an optimal max 2-edge
colouring of G. Then:

(a) OPT ≤
5
3 (|M| + h) [1,2].

(b) OPT ≤
8
5 (|M| + h) when G is additionally triangle-free.

Corollary 1. Algorithm 1 guarantees an approximation factor 5/3 for graphs with perfect matching and an approximation
factor of 8/5 for triangle free graphs with perfect matching.

3. Overview

We start with an overview of some structural observations about an optimal colouring which help us establish the
approximation factor. Let C be one of the components of G\M and let Hi = G[i] and Hj = G[j] be connected subgraphs
of C spanned by some non-matching colours i and j. Note that V (Hi)∩V (Hj) = ∅, since any vertex v ∈ V (Hi)∩V (Hj) would
be incident to three colours: i, j and mcol(v). Our next lemma shows that any Hi-Hj path contains two distinct vertices u
and v such that the matching edges incident at u and v have the same colour. Let us call (u, v) as the colour repetition
pair.

Lemma 1. Let u0u1 · · · uk be a path in G\M such that mcol(u0) = col(u0u1) and mcol(uk) = col(uk−1uk). Then there exist
≤ i < j ≤ k such that mcol(ui) = mcol(uj).

roof. For k = 1 the lemma is obvious. Let k ≥ 2. Let j be maximal so that the path u0 · · · uj is monochromatic. If
col(u0) = mcol(uj) then 0 and j satisfy the assertion of the lemma. Otherwise, clearly j < k and col(ujuj+1) = mcol(uj).
ence, the lemma follows by applying induction on the path uj · · · uk. □

We observe that any Hi-Hj path satisfies the conditions in Lemma 1 at its end-points. This is because if (u, v) is an edge
oming out of the non-matching colour component Hi, with u ∈ Hi and v /∈ Hi, col(uv) has to be the same as mcol(u).
ow suppose C has k such non-matching colours. Then we can find at least k − 1 paths connecting all of these colour
omponents. If these paths are all disjoint (as in Fig. 1), we would have k−1 colour repetition pairs by applying Lemma 1
n each of these paths. Intuitively, a lot of such pairs should imply ‘‘repetition’’ of colours among matching edges, and
ence help us bound the number of distinct matching colours. In later sections, we try to quantify the repetition implied

y these colour repetition pairs. Our focus here and in the next section is to exhibit a large number of such pairs.

3
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Evidently, the non-matching components may not be nicely connected as in Fig. 1. In Section 4, we show that one
an still find k− 1 distinct colour repetition pairs from a component containing k non-matching colours. In Section 5, we
estimate quantitatively the repetition in matching colours. The result is given in Lemma 8. We use it to prove our main
theorem in the same section.

4. Colour repetition pairs

We begin by generalizing Lemma 1 to rooted trees, where the endpoint conditions in Lemma 1 are satisfied at the root
and the leaves of the tree. For a tree T , let r(T ) and l(T ) denote the root and the set of leaves of T respectively. Further,
we assume that T has a depth first ordering, where dfs(v; T ) denotes the index of vertex v ∈ V (T ) in the ordering. We
ssume that when v is a descendant of u in T , we have dfs(u; T ) < dfs(v; T ). Thus the root has minimum index. We use
he depth first ordering to define an ordering ⪯ on vertices of T , where u ⪯ v if dfs(u; T ) ≥ dfs(v; T ). We will use u ≺ v
o denote u ⪯ v with u ̸= v. Note that this ordering contains the usual hierarchical ordering with root as the maximum
lement. This is same as the post order traversal of trees found in the literature. We are now in a position to state our
ext lemma.

emma 2. Let T , |V (T )| > 1, be a rooted tree in G\M with r := r(T ) and L := l(T ). Further for u ∈ L ∪ {r}, the colour of the
dges in T incident at u is the same as the matching colour at u. Then we have a set P := {(ui, vi) : i = 1, . . . , |L|} of pairs of
ertices of T such that:

(a) For i ̸= j, we have ui ̸= uj.
(b) ui ≺ vi for all 1 ≤ i ≤ |L|.
(c) mcol(ui) = mcol(vi) for all 1 ≤ i ≤ |L|.
d) The path uiTvi is monochromatic, with edges coloured mcol(ui) for all 1 ≤ i ≤ |L|.
(e) For an internal vertex z in the path uiTvi, we have mcol(z) ̸= mcol(ui) for 1 ≤ i ≤ |L|.
(f) For i ̸= j and uivi, ujvj ∈ M, the paths uiTvi and ujTvj do not share an internal vertex.

We call the tuples in P as the repetition pairs. Statements (b) and (c) can be seen as generalization of the notion of
olour repetition pairs for paths in a tree. As in the proof of Lemma 1, for a repetition pair (u, v), v was the vertex with
he same incident matching colour as u but with an index to the right of v closer to root. Similarly in a tree, we have vi’s
‘closer’’ to the root in depth first ordering than ui’s. The statements (d)–(f) establish further structural properties of these
epetition pairs that are needed subsequently.

roof of Lemma 2. We first prove the Lemma for the case when T is monochromatic. Let a be the colour of all the edges
f T . From the colouring constraints that T satisfies at the root and the leaves, it follows that mcol(u) = a for u ∈ L∪ {r}.
or u ∈ L, define f (u) to be the closest vertex to u on the path uTr such that mcol(f (u)) = mcol(u) = a. Observe that
(u) exists for each u as the root r satisfies mcol(r) = a. Let P := {(u, f (u)) : u ∈ L}. Then P is trivially seen to satisfy
tatements (a)–(e). To prove (f), we assume the contrapositive, i.e, there exist u ̸= v such that uf (u) ∈ M , vf (v) ∈ M and
he paths u-f (u) and v-f (v) in T have a common internal vertex. Let w be the common internal vertex. Then u and v are
escendants of w, while f (u), f (v) are ancestors of w. But f (u) and f (v) are the first vertices on uTr and vTr respectively
ith matching colour as a. Since the paths uTr and vTr share the sub-path wTr , it must be that f (u) = f (v). But then their
atching partners must also be the same, i.e., u = v, which contradicts the assumption that u ̸= v. This contradiction
roves (f).
Next consider the case when T is not monochromatic. We proceed by induction. Let v be a vertex of minimum height,

uch that v witnesses edges of two colours in T . Let a and b be the colours incident at v. Without loss of generality, let
be the colour of the matching edge at v, i.e., mcol(v) = a. Let Tv be the subtree of T rooted at v. Let Ta and Tb be the
ubtrees of Tv consisting of edges of colours a and b respectively. We consider three cases, viz:

a is non-empty and Tb is also non-empty: Let La denote the leaves in Ta. Now Ta is monochromatic and satisfies the end
oint constraints required by the lemma. Thus we have the set Pa with |Pa| = |La| of pairs of vertices of Ta satisfying the
tatements (a)–(f) because of the previous case. Let T ′ be the tree obtained from T by deleting all descendants of v in Ta.
et L′ be the set of leaves in T ′. Notice that La ⊎ L′

= L. Now, by induction hypothesis, we have a set P ′ of pairs of vertices
f T ′ satisfying (a)–(f). Thus both Pa and P ′ satisfy the statements (a)–(f) with respect to the trees Ta and T ′. We claim that
= Pa ∪ P ′ satisfies (a)–(f) for the tree T . It is trivially seen that (a)–(e) hold. To see that (f) also holds we observe that
nly vertex that is possibly shared between Ta and T ′ is u, and u is not an internal vertex of any u′Tav′ path in Ta where
u′, v′) ∈ Pa.

a is non-empty and Tb is empty: Let w0 = v and let w0, w1, . . . wj be the subpath of vTr such that wj has degree more
han 2 in T and height of wj is minimum among all the vertices with this property. Let the subtree rooted at wj which
ontains v be T1. Let T ′ be the tree obtained from T by removing all descendants of wj in T1 (possibly T ′

= ∅). Since wj is
ot an internal vertex of T ′ we see that T ′ satisfies the end point constraints required by the lemma. Let leaves of T ′ be L′.
bserve that L = L′

⊎ La. Now, by induction hypothesis, we have a set P ′ of pairs of vertices of T ′ satisfying (a)–(f) and
′
set Pa of pairs of vertices of Ta satisfying (a)–(f). We claim that P = Pa ∪ P satisfies (a)–(f) for the tree T . It is trivially

4
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seen that (a)–(e) hold. To see that (f) also holds we observe that only vertex that is possibly shared between Ta and T ′ is
j, and wj is not an internal vertex of any u′Tav′ path in Ta where (u′, v′) ∈ Pa.

Ta is empty: Clearly, Tb must be non-empty in this case. Let Lb denote the leaves in Tb. Note that the colour of incident
dges at v in Tb is not the same as the matching colour at v, and hence we cannot define the pairs (u, f (u)) as in the
onochromatic case. Let w be the leaf such that dfs(w; T ) is maximum in Lb. For each u ∈ Lb, u ̸= w define g(u) as the
losest vertex to u on the path uTbw such that mcol(g(u)) = b. Again, observe that g(u) exists for all u ∈ Lb\{w} because
col(u) = mcol(w) = b. Define Pb = {(u, g(u)) : u ∈ Lb\{w}}. Statements (a)–(e) follow for Pb (w.r.t the tree Tb) almost by
efinition of function g . Statement (f) can be proven in the following way. There is a unique path between any two pairs
f vertices. Then at some point, the two paths have a vertex in common. Thus, the pairs Pb satisfy (a)–(f) for the tree Tb,
xcept that the number of pairs is one short of the number of leaves in Tb. We recover the deficit in the remaining tree.
s before, let T ′ be the tree obtained from T by removing the descendants of v in Tb. Let L′ denote the leaves in T ′.
ince Ta was empty and v witnesses two colours, we have v ∈ L′ and it is incident with an a-coloured edge in T ′. By
nduction hypothesis, we have pairs P ′ of vertices of T ′ with |P ′

| = |L′
| satisfying statements (a)–(f). Again, we claim that

= Pb ∪ P ′ satisfy the requirements of the lemma for T . Statements (a)–(e) are easily verified. For (f), we note that v is a
eaf of T ′ and hence is not an internal vertex of any path u′T ′v′ in T ′ for (u′, v′) ∈ P ′. Thus, (f) also holds for the pairs P .
inally, we note that |P| = |L|, as we compensate the loss of leaf w in Tb with an extra leaf v in T ′ since |Pb| = |Lb| − 1
nd |P ′

| = |L| − |Lb| + 1. □

Lemma 2 can be easily extended to a forest consisting of rooted trees. Let F be a forest containing rooted trees. Let
(F ) denote the set of roots of trees in the forest, and l(F ) denote the set of leaves in the forest F . We define a partial
rder ⪯ on the vertices of the forest which restricts to the (total) order ⪯T (as defined earlier) on each component tree T .
f two vertices belong to different component trees, they are incomparable under ⪯. As before u ≺ v denotes u ⪯ v, but
̸= v. We now state the extension of Lemma 2 to forests.

emma 3. Let F be a forest in G\M with R := r(F ) and L := l(F ). Suppose that for each u ∈ R ∪ L, the colour of edges in F
ncident at u is the same as the matching colour at u. Then, there exists set P = {(ui, vi) : i = 1, . . . , |L|} of pairs of vertices of F
atisfying:

(a) For i ̸= j, we have ui ̸= uj.
(b) ui ≺ vi for all 1 ≤ i ≤ |L|. In particular, the path uiFvi exists for all 1 ≤ i ≤ |L|.
(c) mcol(ui) = mcol(vi) for all 1 ≤ i ≤ |L|.
d) The path uiFvi is monochromatic, with edges coloured mcol(ui) for all 1 ≤ i ≤ |L|.
(e) For an internal vertex z in the path uiFvi, we have mcol(z) ̸= mcol(ui) for 1 ≤ i ≤ |L|.
(f) For i ̸= j and uivi, ujvj ∈ M, the paths uiFvi and ujFvj do not share an internal vertex.

roof. The proof follows by taking union of pairs satisfying Lemma 2 for each component tree in the forest. □

Let us return to the question of finding k−1 colour repetition pairs in a component C ∈ G\M containing k non-matching
olour components. We could use Lemma 1, when the non-matching components can be connected using pairwise disjoint
aths as in Fig. 1. Lemma 3 allows us to exhibit k−1 repetition pairs, as long as we have a non-matching colour component
∗ from which we can reach all other k − 1 non-matching colour components without passing through other colour
omponents. Fig. 2 illustrates such an arrangement, and the corresponding forest F to which we can apply Lemma 3.
ote that root of both trees in the forest is in H∗. The H∗Hi path does not intersect with any other colour component
ther than H∗ and Hi. For each i ̸= j, we can construct a Hi-Hj path avoiding vertices of other colour component Hl where
̸∈ {i, j}.
Our final technical effort in this section is to show that we can find k − 1 repetition pairs in a component with k

on-matching colours, even if we do not have a non-matching colour component, from which all other non-matching
omponents are accessible without passing through some vertex of an intermediate component. The situation is illustrated
n Fig. 3.

.1. Cascading sequence of forests

We call an ordered pair (T1, T2) of rooted trees to be a cascading pair if T1 and T2 are vertex disjoint or r(T2) ∈ l(T1)
nd |V (T1) ∩ V (T2)| = 1. We call F = {F1, . . . , Fl} a cascading sequence of forests if (i) V (Fi) ∩ V (Fj) = ∅ for |i − j| ≥ 2 and
ii) For, Ti ∈ Fi and Ti+1 ∈ Fi+1, the pair (Ti, Ti+1) is a cascading pair for 1 ≤ i ≤ l − 1.

Let F be a cascading sequence of forests. We use the notation V (F) :=
⋃
F∈F

V (F ) to denote the vertices in the collection

. We call v ∈ V (F) an internal vertex of F if v is an internal vertex of some (at most one) forest F ∈ F . The notation
nt(F) will denote the set of internal vertices in the collection F . We record the following easy observation as a lemma.

emma 4. Let F be a cascading sequence of forests. Then for any two distinct vertices x, y, there exists at most one forest
∈ F such that F contains the x-y path.
5
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Fig. 2. Non-matching colour components which can be connected in a tree-like fashion from a component. The dashed lines denote paths in G\M ,
here we have not explicitly marked all vertices outside the non-matching components. The requisite number of repetition pairs are obtained by
pplying Lemma 3 to the forest consisting of dashed trees.

Fig. 3. There is no component which can directly reach all other components. Choosing H1 as root, the first level forest F1 consists of two trees
indicated by thin dashed lines. Choosing leaf components H3,H7 in F1 as root components, we reach other components using forest F2 denoted by
hick lines.

This lemma says that for any two distinct vertices x and y in the cascading sequence of forests F (precisely in V (F))

here is at most one (if any) forest F that contains the entire x-y path. This is because the forests in the cascading sequence

re ‘‘internally’’ disjoint. If x and y are vertices in different layers, then no forest contains the entire x-y path.

efinition 1 (Order on Cascading Sequence of Forests). Let F be an cascading sequence of forests. We define the partial

rder ⪯F on
⋃

V (F ) as: x ⪯F y if and only if x ⪯F y for some (at-most one) F ∈ F . Otherwise x and y are incomparable

F∈F

6
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under ⪯F . Transitive closure of this relation is the order we consider. (By abuse of notation, we will use ⪯F for transitive
closure of this relation.)

For a cascading sequence of forests F and vertices x and y, the notation xFy denotes the path xFy if there exists a
orest (at-most one) F ∈ F such that F contains x-y path. We now state a version of Lemma 3 for a cascading sequence
f forests.

emma 5. Let F be a cascading sequence of forests in G\M. Then, there exist pairs P = {(ui, vi) : i = 1, . . . , L} of vertices in
(F ) where L :=

∑
F∈F

|l(F )|, satisfying:

(a) For 1 ≤ i < j ≤ L, we have ui ̸= uj.
(b) ui ≺F vi for all 1 ≤ i ≤ L. In particular for all 1 ≤ i ≤ L, the path uiFvi exists.
(c) mcol(ui) = mcol(vi) for all 1 ≤ i ≤ L.
d) The path uiFvi is monochromatic, with edges coloured mcol(ui) for all 1 ≤ i ≤ L.
(e) For an internal vertex z in the path uiFvi, we have mcol(z) ̸= mcol(ui) for 1 ≤ i ≤ L.
(f) For i ̸= j and uivi, ujvj ∈ M, the paths uiFvi and ujFvj do not share an internal vertex.

Proof. The proof follows by taking union of pairs satisfying Lemma 3 for each forest in the collection F . The properties
(a)–(e) are easily verified. The property (f) holds for the union of pairs because the limited intersection of trees between
different forests implies that a vertex can be an internal vertex in at most one forest. □

We will exhibit a cascading sequence of forests in G\M which essentially link up all the non matching colour
components.

Lemma 6. There exists a collection F of cascading sequence of forests in G\M such that:

(a)
∑
F∈F

|l(F )| =

h∑
i=1

(ki − 1).

(b) Int(F) ∩ V (H) = ∅ for all non-matching colour components H.
(c) for all F ∈ F and for all u ∈ r(F ) ∪ l(F ), the colour of edges in F incident at u is the same as the matching colour at u.

Proof. For each m = 1, . . . , h, we will exhibit a cascading sequence of forests Fm in Cm satisfying
∑

F∈Fm

|l(F )| = km − 1

nd Int(Fm) ∩ H = ∅ for all non-matching colour components H contained in Cm. Then it is easily seen that F :=

h⋃
m=1

Fm

atisfies the requirements of the lemma. Let C := Cm be an arbitrary but fixed component of G\M . Let H1, . . . ,Hk (where

= km) be the non-matching colour components contained in C . Let VH :=

k⋃
i=1

V (Hi). Let F1 be a maximal forest with (i)

(F1) ⊆ V (H1), (ii) |F1 ∩ Hj| ≤ 1 for j ∈ [k] \ {1} (iii) |l(F1)| is maximal under this condition. Suppose forests F1, . . . , Fj
ave been constructed such that they form a cascading sequence. Define F ′

j := {F1, . . . , Fj}, Ij := {i : V (F ′

j ) ∩ V (Hi) ̸= ∅}

nd let Kj := [k]\Ij. Intuitively, Ij is the indices of non-matching colour components already visited by the collection F ′

j ,
hile Kj is the indices which have not been visited so far. Let Fj+1 be the maximal forest in C such that r(Fj+1) ⊆

⋃
i∈Ij

V (Hi),

(Fj+1) ⊆
⋃
i∈Kj

V (Hi) and Int(Fj+1) ∩ VH = ∅. Note that by connectedness of C , Fj+1 is non-empty for Ij ̸= [k]. Thus Ij ⊂ Ij+1

nless Ij = [k]. Let t be minimal such that It = [k]. Then Fm = {F1, . . . , Ft} is a cascading sequence of forests in C with

nt(Fm)∩ VH = ∅. To complete the proof, we need to show that
t∑

j=1
|l(Fi)| = k− 1. This follows from the fact that for each

∈ {2, . . . , k}, there exists minimum j such that i ∈ Ij. Then l(Fj)∩V (Hi) ̸= ∅. In other words, for each i ∈ {2, . . . , k}, there
xists a forest Fj which has a leaf in the component Hi. The claim follows. □

The above proof can be intuitively understood using Fig. 3, where the forest F1 consists of two dashed trees, and
he forest F2 consists of the two solid trees. The collection F = {F1, F2} is the cascading sequence for the arrangement
n Fig. 3.

. Repetition content

In the previous section we exhibited pairs of vertices having the same matching colour incident at them. Intuitively, a
ot of such pairs should imply certain amount of repetition of colours among matching edges. In this section we attempt
o quantitatively estimate the repetition for graphs with a perfect matching.

Call a set S ⊆ V (G) M-monochromatic if all the edges in M incident with vertices in S have the same colour. Let i(S;M)

denote the number of edges in M which are incident with a vertex in S. For an M-monochromatic set S, let repetition

7
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content of S, denoted by rep(S) be defined as rep(S) := i(S;M)−1. For |S| = k, we observe that (k−2)/2 ≤ rep(S) ≤ k−1.
he lower bound is attained when every vertex in S has its matching partner also in S. The upper bound is obtained for
ets where no edge in M has both vertices in S. Following is an easy consequence of the definition of repetition content.

emma 7. For j ∈ CM (the set of matching colours in C), let S1, S2, . . . S|CM | be a collection of M-monochromatic sets such
that matching edges incident with Sj are coloured j. Then |CM | ≤ |M| −

∑
j∈CM

rep(Sj).

5.1. Repetition by matching colours

We recall the notation from Section 2. Throughout the remainder of this section let F denote a cascading sequence
of forests satisfying Lemma 6. Let V (F) denote the vertex set

⋃
F∈F

V (F ). Then by Lemma 5, there exists set P of repetition

pairs of vertices V (F) with |P| =

h∑
i=1

(ki − 1), where ki is the number of non-matching colour components in component

Ci of G\M .
We consider a partition of the pairs P according to the incident matching colour. Let Pj := {(u, v) ∈ P : mcol(u) =

col(v) = j} for j ∈ CM . Let Cj ⊆ Pj, j ∈ CM be the repetition pairs consisting of matching pairs, i.e. Cj = {(u, v) ∈ Pj : uv ∈

M}. Let Uj := Π1(Pj) and Vj := Π2(Pj) denote the projections of the set Pj on first and second coordinate. Let Sj := Uj ∪ Vj.
We use rep(Sj) as the repetition associated with colour j ∈ CM . We call a colour j ∈ CM as high if rep(Sj) ≥ (|Pj| − |Cj|)/2.
therwise, we call the colour as low. Let H and L denote the high and low colours respectively.
Intuitively the pairs constituting the collection Pj consist of vertices with matching colour j incident at them. The

otal vertices spanned by the pairs are at least |Pj| + 1 (the lower bound happens when every upper vertex of a pair
lso becomes a lower vertex of another pair in Pj, except the top vertex which can only occur as upper vertex). This
ives a lower bound of (|Pj| − 1)/2 on the repetition caused by Pj. This is close to being sufficient, but not quite
nough. Assuming we could lower bound repetition due to Pj to be |Pj|/2, plugging into Eq. (1) would have given us
C | <= |CN | + |M| − (|CN | − h)/2 = |M| + |CN |/2 + h/2 <= 3/2(|M| + h) where we observe that |CN | <= |M|. This is
ndeed much better than even the bound attained in the paper. Thus intuitively we are happy with any colours j, where
j causes a repetition of |Pj|/2 or more. Can we still consider some colours good, if they have repetition less than |Pj|/2?
he answer is yes, if quite a few of these pairs see the same matching edge (constituting Cj). Looking forward, Cj’s allow
s to exhibit internal vertices which are not part of any non-matching colour. So they indirectly pay us by pushing the
ound on non-matching colours down from |M| to (n −

∑
j

|Cj|)/2. Hence, we relax the criterion for ‘‘high repetition’’ to

e (|Pj|− |Cj|)/2. For triangle-free graphs we can exhibit more internal vertices per Cj, which is more accurately described
n Lemma 9, and hence leads to better bound.

emma 8. Let the sets P,H,L and Pj, Cj,Uj, Vj, Sj, j ∈ CM be as defined in this section. Then we have,

(a) |Sj| ≥ |Pj| + 1 for all j ∈ CM .
(b) rep(Sj) ≥ (|Pj| − 1)/2 for all j ∈ CM .
(c) If Cj ̸= ∅ then j ∈ H.
d) For j ∈ L, all vertices in Sj have their matching partner in M also in Sj. Furthermore, Sj has a unique maximum element v∗

with respect to ordering ⪯F .
(e) |Sj| ≥ 4 for j ∈ L.

roof. From part (a) of Lemma 5, we have |Uj| = |Pj|. Let v∗ be a maximal element in Sj under ⪯F . Clearly, by part (b)
f Lemma 5, v∗

̸∈ Uj. Thus |Sj| ≥ |Uj| + 1 = |Pj| + 1. This proves claim (a). Since rep(S) ≥ (|S| − 2)/2 for all S ⊆ V (G),
t follows using claim (a) that rep(Sj) ≥ (|Pj| − 1)/2 for all j ∈ CM . The claim (b) is thus proved. Claim (c) also follows
rom claim (b) and definition of H. For claim (d), observe that for j ∈ L, we have by claim (c), |Cj| = 0, and hence
ep(Sj) < |Pj|/2 from the definition of low. Also by claim (b), we have rep(Sj) ≥ (|Pj|−1)/2. Since rep(Sj) is an integer, we
onclude rep(Sj) = (|Pj| − 1)/2, and hence |Sj| ≤ |Pj| + 1. Since no element Uj can be maximum, together with claim (a),
e conclude |Sj| = |Pj| + 1 and thus Sj = Uj ∪ {v∗

}. Clearly then v∗ is the unique maximal element in Sj. Also since Sj
atisfies rep(Sj) = (|Sj| − 2)/2, each element in Sj must have its matching partner in M in Sj. This proves claim (d). From
laim (d) we see that |Sj| ≥ 4 or |Sj| = 2 for j ∈ L. To prove claim (e), we rule out the possibility |Sj| = 2. Note that
Sj| = 2 implies Pj = {(u, v)} where uv ∈ M . But then Cj = {(u, v)}, which contradicts the assumption j ∈ L by claim (c).
his proves claim (e). □

emma 9. If G is triangle free and j ∈ L we have either (a) |Sj| ≥ 6, or (b) |Sj| = 4 and there exist vertices u, v in Sj with
u, v) ∈ Pj such that the path uFv has an interior vertex zuv .

roof. From parts (d) and (e) of Lemma 8 we see that if |Sj| < 6, we must have |Sj| = 4. Let v∗ be the maximum element
f S according to the order ⪯ . Clearly v∗

̸∈ U . Let u be the matching partner of v∗. Clearly (u, v∗) ̸∈ P as C = ∅.
j F j j j

8
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(

Let z be a vertex such that (u, z) ∈ Pj and let w be the matching partner of z. Recalling v∗ is the unique maximum
element of Sj, Sj = Uj ∪ {v∗

}. Thus Sj = {u, z, w, v∗
}. We also must have (z, v∗) ∈ Pj. Since (u, z) ∈ Pj and (z, v∗) ∈ Pj, by

part (e) of Lemma 5, w ̸∈ uFz and w ̸∈ zFv∗. Thus w ̸∈ uFv∗. Since G is triangle free, one of the paths uFz, zFv∗ must
have an internal vertex, thus satisfying condition (b) of the lemma. □

Lemma 10. Let (u, v) ∈ Pi and (z, w) ∈ Pj for some i ̸= j ∈ CM . Then the paths uFv and zFw do not share an internal
vertex.

Proof. If possible, let x be an internal vertex of both uFv and zFw. By part (e) of Lemma 5, mcol(x) ̸= i and mcol(x) ̸= j.
This is a contradiction, as i and j are the only two colours incident at x. Thus, the lemma is proved. □

Finally, we prove our main result:

Proof of Theorem 1. We have |C| = |CM | + |CN |. From Lemma 7, we have,

|C| ≤ |M| −

∑
j∈CM

rep(Sj) + |CN |. (1)

Moreover from Lemma 8(b) we have,∑
j∈CM

rep(Sj) =

∑
j∈H

rep(Sj) +

∑
j∈L

rep(Sj)

≥

∑
j∈H

|Pj| − |Cj|

2
+

∑
j∈L

|Pj| − 1
2

=

∑
j∈CM

|Pj|
2

−

∑
j∈H

|Cj|

2
−

|L|

2
(2)

Observing that
∑
j∈CM

|Pj| =

h∑
i=1

(ki − 1) = |CN | − h, from (1) and (2), we have,

|C| ≤ |CN | + |M| −
|CN | − h

2
+

∑
j∈H |Cj|

2
+

|L|

2
(3)

Let ∆ :=
∑
j∈H

|Cj|. Note that the path uFv contains at least one internal vertex for (u, v) ∈
⋃
j∈H

Cj. From Lemma 10 and part

f) of Lemma 5 it follows that all these internal vertices are distinct. Thus, the collection F has at least ∆ internal vertices.
Since F was chosen according to Lemma 6 and each non-matching colour component contains at least two vertices, we
have:

2|CN | + ∆ ≤ n. (4)

Substituting, |CN | ≤ (n − ∆)/2 in (3), we have:

|C| ≤
3|M|

2
+

∆ + 2|L|

4
+

h
2

(5)

Since each j ∈ L determines at least 2 matching edges of the same colour we have |CM | ≤ |M| − |L|. Combining with (4)
we have:

|C| ≤ 2|M| −
∆ + 2|L|

2
. (6)

Equating the upperbounds on |C| in (5) and (6), we obtain |C| ≤
5
3 (|M| + h). This completes the proof of part (a) of the

theorem.
Now, consider the case when G is additionally triangle free. In this case we write L = L1 ⊎ L2 where L1 = {j ∈ L :

|Sj| ≥ 6} and L2 = {j ∈ L : |Sj| = 4}. Since each j ∈ L1 determines at least 3 matching edges of the same colour, and each
j ∈ L2 determines at least 2 matching edges of the same colour, we conclude that |CM | ≤ |M| − 2|L1| − |L2|. Together
with trivial bound |CN | ≤ |M|, we have:

|C| ≤ 2|M| − 2|L1| − |L2|. (7)

Also, the equivalent of Eq. (3) for this case can be written as:

|C| ≤ |CN | + |M| −
|CN | − h

2
+

∑
j∈H |Cj|

2
+

|L1| + |L2|

2
(8)

Finally, we exploit the triangle free property of the graph to account for more internal vertices. Observing that each uFv
path now has at least two internal vertices for (u, v) ∈

⋃
Cj, and further by Lemma 9, for every j ∈ L2 there is a vertex
j∈H

9
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Fig. 4. The Algorithm 1 exhibits an approximation factor of 58/37 when run on the above graph that has a perfect matching. The matching edges
re shown in bold lines.

j which is an internal vertex of F . As before, these internal vertices are distinct. Thus we have at least 2∆+|L2| internal
ertices in F . Thus we have:

2|CN | + 2∆ + |L2| ≤ n. (9)

Substituting |CN | ≤ (n − 2∆ − |L2|)/2 in (8) we get (recall ∆ :=
∑
j∈H

|Cj|),

|C| ≤
3|M|

2
+

2|L1| + |L2|

4
+

h
2

(10)

rom Eqs. (7) and (10), by equating the upper bounds, we get |C| ≤
8
5 (|M|+h), which proves the part (b) of the theorem. □

. A lower bound for the matching based algorithm

In this section, we show a triangle free graph with perfect matching establishing a lower bound of 58/37 on the
pproximability of Algorithm 1 on such graphs. The factor 58/37 sits roughly midway between the known lower bound
f 3/2 on the approximability of max edge 2-colouring, and the approximation factor of 8/5 shown for Algorithm 1 in
his paper.

Let us consider the graph G on 72 vertices as shown in Fig. 4. Clearly, the graph has a perfect matching which is marked
ith the bold lines. If we delete the matching edges we get one connected component. So the Algorithm 1 outputs 37
olours. On the other hand if we colour the graph by below mentioned colouring scheme, we can use 58 colours to colour
he entire graph.
olouring Scheme: For every matched edge that is represented with a bold straight line in Fig. 4 and two adjacent edges
n its either sides in the drawing, use different colours to colour them. For the top six edges represented with vertical
traight lines in the drawing, colour them with different colours. Now delete all the coloured edges. The remaining graph
as seven connected components. Colour all edges in a connected component with same colours.
With the above colouring scheme we use total of 3 × 15 + 6 + 7 = 58 colours. It is easy to verify that it is a valid

olouring scheme.
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