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Abstract. Finite metric spaces are an essential tool in discrete mathematics and have
applications in several areas including computational biology, image analysis, speech recog-
nition, and information retrieval. Given any such metric D on a finite set X, an important
problem is to find appropriate ways to realize D by weighting the edges in some graph G
containing X in its vertex set such that D(x, y) equals the length of a shortest path from x
to y in G for all x, y ∈ X. Here we focus on realizations with minimum total edge weight,
called optimal realizations. By considering the 2-connected components and bridges in
any optimal realization G of D we obtain an additive decomposition of D into simpler
metrics. We show that this decomposition, called the block decomposition, is canonical in
that it only depends on D and not on G, and that the decomposition can be computed
in O(|X|3) time. As well as providing a fundamental new way to decompose any finite
metric space, we expect that the block decomposition will provide a useful preprocessing
tool for deriving metric realizations.

Keywords finite metric space; optimal realization; block decomposition; block realization;
cut points

1. Introduction

Let X denote a finite non-empty set, and D a metric on X, i.e., a symmetric map
D : X ×X → R≥0 with D(x, x) = 0 and D(x, z) ≤ D(x, y) + D(y, z), for all x, y, z ∈ X.
Note that in this paper we allow D(x, y) = 0 even when x 6= y. In case there is no such
pair in X, a realization of D is a graph G = (V,E) with non-negative edge weights such
that X ⊆ V and D(x, y) equals the length of a shortest path from x to y in G, for all
x, y ∈ X (see Fig. 1 for an example). A realization of D is optimal if it has minimum total
edge weight among all realizations of D. It is known that every metric has at least one
optimal realization [22, Theorem 2.2], but computing optimal realizations is an NP-hard
problem [1, 24].

Applications of optimal realizations include internet traffic-flow analysis [4], electrical
circuit design [15], the minimum Manhattan network problem (see e.g. [5] and the references
therein), and phylogenetics. The latter application is motivated by the fact that in case a
metric D on X can be realized by a tree (i.e. a connected graph with no cycles) with leaf
set X, then this realization is necessarily optimal [15, Theorem 6]. Since metrics are now
routinely generated from molecular data (essentially by computing the Hamming distance
between aligned DNA sequences), optimal realizations and related graphs can be used to
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D a b c d e f g
a 0 2 3 5 7 7 5
b 2 0 3 5 7 7 5
c 3 3 0 2 4 4 2
d 5 5 2 0 2 4 4
e 7 7 4 2 0 2 4
f 7 7 4 4 2 0 2
g 5 5 2 4 4 2 0
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Figure 1. A metric D on X = {a, b, c, d, e, f, g}. G is a realization of D
with total edge weight |G| = 18 and G′ is an optimal realization of D. We
have Cut(G′) = {c, v} and Pv = {{a}, {b}, {c, d, e, f, g}} is the partition of
X associated to the cut vertex v of G′. B = {a, v} is one of the four blocks
of G′ and yields the metric DB with DB(a, x) = 1 for all x ∈ X − {a} and
DB(x, y) = 0 for all other x, y ∈ X.

elucidate the evolutionary relationships between species in the form of trees or more general
graphs called phylogenetic networks (see e.g. [21]). Such networks are commonly used to
analyze the evolution of species that evolve in a non tree-like fashion (e.g. viruses which can
recombine to form hybrid forms). Early work in [6] on understanding optimal realizations
and their relationship with a structure called the tight-span (defined in Section 2.2 below)
led to the concept of so-called split-networks [3], a type of phylogenetic network which is
now routinely used in evolutionary analysis. For example, in Fig. 2 we present a split-
network derived from DNA sequences of five coronaviruses, among them the one which
causes the coronavirus disease 2019 (SARS-CoV-2) [25]. Developing approaches to generate
phylogenetic networks remains an active area of research in the field of phylogenetics [14].

1.1. Our main result and a sketch of its proof. We shall focus on two features of
optimal realizations G of a metric D on X: The set Cut(G) of cut vertices of G and the
collection D(G) consisting of the metrics DB associated with each block B (i.e. 2-connected
component or bridge) of G by putting DB(x, y), for any x, y ∈ X, to be the length of that
part of any shortest path from x to y that is contained in B (see Fig. 1 again for an
example). Clearly D(G) is an additive decomposition of D, that is, D =

∑
D′∈D(G)D

′.

In the main result of this paper we show that Cut(G) is completely determined by D
and hence the decomposition D(G), or block decomposition of D is also determined by D.
In particular, this provides a fundamental new way to decompose any finite metric into
simpler metrics.

A key ingredient to proving our main results is the theory of the tight span T (D) of
a metric D [6] which, since X is finite, forms a connected polytopal complex which is a
subset of RX . To see how the tight span arises, note that we can associate a map fv ∈ RX

to any vertex v in an optimal realization G of a metric D on X which is necessarily in
T (D): Set fv(x) to be the length of a shortest path from v to x in G, for all x ∈ X. In
particular, there exists a cut point f ∈ T (D), that is, some f so that the set T (D)−{f} is
disconnected, if and only if either every optimal realization G of D contains a cut vertex v
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D a b c d e
a 0.000 0.514 0.514 0.519 0.970
b 0.514 0.000 0.341 0.373 0.920
c 0.514 0.341 0.000 0.139 0.766
d 0.519 0.373 0.139 0.000 0.742
e 0.970 0.920 0.766 0.742 0.000

Figure 2. A split-network for estimated distances D between five DNA
sequences related to the SARS-CoV-2 S protein given in [25, Tab. 2]. The
lengths of the edges are proportional to their weights, and the dark part
of the network is in fact an optimal realization of D. The network was
produced with the help of the program SplitsTree [21] and it is a graphical
representation of the so-called split decomposition of D (see also Section 5).

with f = fv or every optimal realization G of D contains a bridge into which we can insert
a new vertex v of degree two with f = fv. It follows that the set V irt(D) of cut points
of T (D) – or “virtual cut points” of D [10] – corresponds, in the sense described above,
precisely to the set of cut vertices or new degree 2 vertices within bridges that must occur
in every optimal realization of D.

In the light of these facts, a full knowledge of the set V irt(D) gives access to the cut points
and bridges that appear in every optimal realization G of D and hence to the decomposition
D(G). The problem of computing an optimal realization of D can therefore be reduced
to the problem of computing optimal realizations for the metrics in D(G). To complete
our proof of the uniqueness of the block decomposition, we show that it is a compatible
decomposition [9]. This allows us to exploit a correspondence given in [8] between certain
finite subsets of V irt(D) and block realizations of D (essentially, these are realizations in
which every 2-connected component is a clique). In particular, block realizations give us
a tool for controlling the way in which we reassemble an optimal realization for D from
optimal realizations for the metrics in D(G).

1.2. Related work and the structure of the rest of this paper. In [22] it is shown
that cut vertices v in optimal realizations of a metric D on X correspond to certain maps
fv ∈ RX . These maps were introduced as a useful technical tool for handling optimal
realizations but without further investigating the space of all maps that arise from a given
metric in this way. A rather technical outline how to possibly capture this space of maps was
presented in [11, Section 4], but without giving any details or proof. In this paper, we first
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provide in Section 2 formal definitions of the concepts informally introduced above. Then,
in Section 3, we give a proof that the space of maps fv mentioned above can be concisely
characterized by a certain finite subset V irt∗(D) ⊆ V irt(D) (Theorem 5). After that, in
Section 4, we prove that every metric has a unique block decomposition (Theorem 8). A
first short outline of how such a decomposition might be obtained for any given metric can
be found in [13, Section 6].

Computing the block decomposition is closely related to computing optimal realizations.
In [18, 19] algorithms are presented to check whether a metric can be decomposed by
a cut vertex or a bridge in polynomial time. Iterative application of these algorithms
results in a decomposition D of the input metric D that cannot be further refined, and,
assuming that optimal realizations of the metrics in D are provided, an optimal realization
of D is then assembled in polynomial time. However, it is not shown in [18, 19] that the
decomposition D obtained by this approach, which must be the block decomposition of D,
is uniquely determined by D. Applying the algorithms from [18, 19] to a metric D on X,
the block decomposition of D can be computed in O(|X|6) time. In Section 4 we show
that the block decomposition of D can be computed in O(|X|3) time (Theorem 10). A key
ingredient for achieving this run time is an algorithm presented in [12] for computing the
set V irt∗(D) in O(|X|3) time. As a corollary, we also give a bound on the time required
to compute an optimal realization of a metric in terms of the components in its block
decomposition (Theorem 11).

In Section 5 we first prove that the block decomposition of a metric always corresponds
to a block realization with minimum total edge weight (Theorem 13). As a consequence,
every metric has a unique block realization with minimum total edge weight, a fact that
was stated without proof in [9, p.1619]. We then conclude by describing a relationship
between the well-known split decomposition of a metric D [2] and the block decomposition
of D (Theorem 14), as well as some related open problems.

2. Preliminaries

2.1. Realizations. A realization G = ((V,E), ω, ϕ) of a metric D on X consists of a graph
(V,E), an edge-weighting ω : E → R>0 and a labeling map ϕ : X → V such that D(x, y) =
DG(ϕ(x), ϕ(y)) for all x, y ∈ X, where DG : V × V → R≥0 is the shortest-path metric on
V induced by (V,E) and the edge weighting ω. In addition, letting |G| =

∑
e∈E ω(e)

denote the total length of a realization G = ((V,E), ω, ϕ) of a metric D, a realization
G∗ = ((V ∗, E∗), ω∗, ϕ∗) of a metric D is optimal if |G∗| ≤ |G′| holds for all realizations G′

of D and all vertices in V ∗ − ϕ∗(X) have degree at least 3.
Now, let G = ((V,E), ω, ϕ) be a realization of a metric D on X. For any vertex v ∈ V we

denote by G−v the graph (V −{v}, E∩
(
V−{v}

2

)
), where

(
M
2

)
denotes the set of all 2-element

subsets of a finite set M . Similarly, for any edge e ∈ E we denote by G − e the graph
(V,E−{e}). A vertex v ∈ V is called a cut vertex of G if the graph G− v has at least two
connected components. We denote by Cut(G) the set of all cut vertices of G. Similarly,
an edge e ∈ E is called a bridge of G if the graph G − e has two connected components.
In addition, let B(G) denote the collection of those subsets of V that are vertex sets of
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D a b c d
a 0 3 4 3
b 3 0 3 4
c 4 3 0 3
d 3 4 3 0

fa = (0, 3, 4, 3)

(1, 2, 3, 2)

(2, 3, 2, 1)

fd = (3, 4, 3, 0)

(3, 0, 3, 4) = fb

(2, 1, 2, 3)

(3, 2, 1, 2)

(4, 3, 0, 3) = fc

Figure 3. A metric D on the set X = {a, b, c, d} and a projection of its tight
span T (D) into the plane with the gray square representing a 2-dimensional
face. For every 0-dimensional face {f} of T (D) the 4-dimensional vector
(f(a), f(b), f(c), f(d)) is given. The 1-dimensional face containing (1, 2, 3, 2)
and (2, 1, 2, 3) corresponds to those g ∈ P (D) that satisfy the equations
g(a) + g(b) = D(a, b), g(a) + g(c) = D(a, c) and g(b) + g(d) = D(b, d).
Each face of T (D) corresponds to such a set of equations. The structure
of D determines which of the inequalities in the definition of P (D) can
simultaneously become equalities and, thus, yield faces of T (D).

maximal 2-connected subgraphs or bridges of (V,E). We refer to the elements of B(G) as
the blocks of G. Then, associating with each B ∈ B(G) the metric DB on X defined by
putting, for all x, y ∈ X, DB(x, y) = DG(u, u′), where u is the first vertex in B and u′ is
the last vertex in B along a shortest path from ϕ(x) to ϕ(y) in G, if such vertices exist,
and DB(x, y) = 0 otherwise, we have D =

∑
B∈B(G)DB.

In the following, we call a collection P of non-empty subsets of X a partition of X if⋃
A∈PA = X and A ∩ B = ∅ for all A,B ∈ P with A 6= B. A split of X is a partition P

of X with |P| = 2. To every cut vertex v of a realization G = ((V,E), ω, ϕ) of a metric D
on X we associate the collection Pv = {ϕ−1(C) : C ∈ Cv} of subsets of X − ϕ−1(v) where
Cv is the collection of the vertex sets of the connected components of G − v. Similarly,
to every bridge e = {u, v} of G we associate the collection Se = {ϕ−1(Cu), ϕ−1(Cv)} of
subsets of X where Cu and Cv are the vertex sets of the two connected components of
G − e containing u and v, respectively. For all realizations considered in this paper we
assume that the collections Pv and Se are partitions of X − ϕ−1(v) and X, respectively
(which in particular is necessarily the case for optimal realizations and also for weak block
realizations which we define in Section 4).

2.2. Tight spans. We now recall some concepts and basic facts concerning tight spans
[6]. The tight span of a metric D on X is the set

T (D) = {f ∈ RX : f(x) = max(D(x, y)− f(y) : y ∈ X) for all x ∈ X}.
Note that T (D) can be viewed as the polytopal complex obtained by taking the set of
bounded faces of the polyhedron

P (D) = {f ∈ RX : f(x) + f(y) ≥ D(x, y) for all x, y ∈ X}.
In Fig. 3 we give an example. For every k ∈ N we denote by Fk(D) the collection of
k-dimensional faces of the polytopal complex T (D). Later we will make use of the fact
that f ∈ P (D) is an element of T (D) if and only if for all x ∈ X there exists some y ∈ X
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Figure 4. A projection of the tight span T (D) of the metric D in Fig. 1 into
the plane. This tight span has only faces of dimension at most two and the
gray parallelograms indicate the 2-dimensional faces. The graph Γh for the
map h that forms a 0-dimensional face of T (D) is connected and, thus, h 6∈
V irt(D), which is in agreement with the fact that T (D)−{h} is connected.
V irt(D) corresponds to the set of points on the three 1-dimensional faces
with one endpoint in t (except the points fa and fb) and V irt∗(D) = {t, fc}.
All edges in the realization F≤1(D) of D obtained from T (D) have weight 1
(these weights are omitted in the figure), except for one edge that has
weight 2.

with f(x) + f(y) = D(x, y). In particular, for all x ∈ X, the map fx : X → R≥0 with
fx(y) = D(x, y) for all y ∈ X is contained in T (D) and, more precisely, forms an element
of F0(D). Note that f ∈ T (D) with f(x) = 0 for some x ∈ X implies f = fx.

A map f ∈ T (D) is a virtual cut point of D if there exists a split of the support
supp(f) = {x ∈ X : f(x) > 0} of f into two subsetsA andB such thatD(a, b) = f(a)+f(b)
holds for all a ∈ A and b ∈ B. In addition, for every map f ∈ T (D), let Γf = (supp(f), Ef )
denote the graph with vertex set supp(f) and edge set

Ef = {{x, y} ∈
(

supp(f)

2

)
: f(x) + f(y) > D(x, y)},

and let Pf denote the partition of supp(f) formed by the vertex sets of the connected
components of Γf . We let V irt(D) ⊆ T (D) denote the set of virtual cut points of D and
we let V irt∗(D) denote the subset of those f ∈ V irt(D) with f = fx for some x ∈ X or
with Γf not a disjoint union of two cliques.

As mentioned in the introduction, T (D) is a connected subset of RX . It is shown
in [10] that the set V irt(D) consists of precisely those f ∈ T (D) for which T (D)− {f} is
disconnected and it follows from the characterization of F0(D) given in [7] that V irt∗(D) =
V irt(D)∩F0(D). Moreover, we put F≤1(D) = ((V,E), ω, ϕ) with V = F0(D), E consisting

of those {f, g} ∈
(
F0(D)

2

)
for which there exists some C ∈ F1(D) with {f, g} ⊆ C, ω

the map that assigns to every {f, g} ∈ E the value max(|f(x) − g(x)| : x ∈ X) and ϕ
mapping every x ∈ X to fx. It is shown in [6] that F≤1(D) is a realization of D and that
Cut(F≤1(D)) = V irt∗(D). In Fig. 4 some of the concepts introduced above are illustrated.
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3. Virtual cut points and optimal realizations

In this section, we describe in more detail how the maps in V irt(D) are related to the
cut vertices and bridges that occur in optimal realizations of a metric D. In particular,
we will make precise in Theorem 5 below how the subset V irt∗(D) of V irt(D) defined
in the previous section can be thought of as a representation of the set of cut vertices
that are present in every optimal realization of D. To establish this, we shall need several
observations beginning with the following (cf. [22, Theorem 5.1] and reference [23] therein):

Theorem 1. Suppose that D is a metric on X for which there exists a partition of X into
two nonempty subsets K,L and a map f : X → R≥0 with D(x, y) ≤ f(x) + f(y) for all
x, y ∈ X, with equality holding whenever x ∈ K and y ∈ L and with f(x) > 0 for at least
one x ∈ K and at least one x ∈ L. Then precisely one of the following statements holds:

(i) For all optimal realizations G = ((V,E), ω, ϕ) of D there exists a cut vertex u ∈ V
with DG(ϕ(x), u) = f(x) for all x ∈ X.

(ii) For all optimal realizations G = ((V,E), ω, ϕ) of D there exists a bridge e = {u, v} ∈
E and a pair of strictly positive real numbers α and β with α+ β = ω(e) such that
DG(ϕ(x), u) + α = f(x) holds for all x ∈ X with DG(ϕ(x), u) < DG(ϕ(x), v), and
DG(ϕ(x), v) + β = f(x) holds for all x ∈ X with DG(ϕ(x), v) < DG(ϕ(x), u).

Using Theorem 1 we now relate the elements of V irt(D) to cut vertices and bridges in
optimal realizations of D.

Lemma 2. Let D be a metric on X and f ∈ V irt(D). Then precisely one of the following
holds:

(i) For all optimal realizations G = ((V,E), ω, ϕ) of D there exists a unique u ∈ Cut(G)
with Pu = Pf and DG(ϕ(x), u) = f(x) for all x ∈ X.

(ii) For all optimal realizations G = ((V,E), ω, ϕ) of D there exists a unique bridge
e = {u, v} of G and a pair of strictly positive real numbers α and β with α +
β = ω(e) such that Se = Pf , DG(ϕ(x), u) + α = f(x) holds for all x ∈ X with
DG(ϕ(x), u) < DG(ϕ(x), v) and DG(ϕ(x), v) + β = f(x) holds for all x ∈ X with
DG(ϕ(x), v) < DG(ϕ(x), u).

Proof : Let f ∈ V irt(D). Then, by definition, there exists a split of supp(f) into subsets A
and B such that D(a, b) = f(a) +f(b) for all a ∈ A, b ∈ B. Define K = A and L = X−A.
Then {K,L} is a split of X. Moreover, since f ∈ T (D), D(x, y) ≤ f(x) + f(y) for all
x, y ∈ X and, since {A,B} is a split of supp(f), f(x) > 0 for at least one x ∈ K and for at
least one x ∈ L. Also note that if there exist any z ∈ L− B we have f(z) = 0 and, thus,
f = fz (cf. Section 2.2) implying that f(z) + f(x) = D(z, x) for all x ∈ K. Therefore, in
view of D(a, b) = f(a) + f(b) for all a ∈ A, b ∈ B, we have f(x) + f(y) = D(x, y) for all
x ∈ K, y ∈ L. Hence, either statement (i) or (ii) in Theorem 1 must hold for all optimal
realizations of D.

Case 1 : Statement (i) in Theorem 1 holds for all optimal realizations of D. Let
G = ((V,E), ω, ϕ) be an optimal realization of D and let u ∈ V be a cut vertex with
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DG(ϕ(x), u) = f(x) for all x ∈ X. First we show that u is unique. Assume for a contra-
diction that there exists a cut vertex u′ ∈ V with u′ 6= u and DG(ϕ(x), u′) = f(x) for all
x ∈ X. In view of u 6= u′ there must exist a connected component C of G − u that does
not contain u′ and, similarly, a connected component C ′ of G − u′ that does not contain
u. Moreover, since G is optimal, there must exist some x ∈ X with ϕ(x) ∈ C and some
x′ ∈ X with ϕ(x′) ∈ C ′. Then, in view of DG(u, u′) > 0, we have

f(x′) = DG(u, ϕ(x′)) = DG(u, u′) +DG(u′, ϕ(x′)) = DG(u, u′) + f(x′) > f(x′),

a contradiction.
It remains to show that Pu = Pf . Note that both Pu and Pf are partitions of X −

ϕ−1(u) = supp(f). We first establish that for all A ∈ Pf there exists some B ∈ Pu with
A ⊆ B. This follows immediately if |A| = 1. If |A| ≥ 2, let x and y be arbitrary distinct
elements of A. Since x and y belong to the same connected component of Γf there exists
a sequence x = z1, z2, . . . , zl = y of elements of X with the property that f(zi) + f(zi+1) >
D(zi, zi+1) for all i ∈ {1, . . . , l − 1}. Therefore, since we have f(x′) + f(y′) = D(x′, y′) for
any x′, y′ ∈ X − ϕ−1(u) that are contained in different sets in Pu, zi and zi+1 must be
contained in the same set of Pu for all i ∈ {1, . . . , l − 1}. Hence, x and y belong to the
same set in Pu.

Now, in order to show Pu = Pf , assume for a contradiction that there exist A ∈ Pf

and B ∈ Pu with A ( B. Put X ′ = B ∪ {u}, K = A, L = X ′ − A and consider
the metric D′ on X ′ defined by putting D′(x, y) = D(x, y) and D′(u, x) = DG(u, ϕ(x))
for all x, y ∈ B. Let C ′ be the vertex set of the connected component of G − u that
contains ϕ(B) and put V ′ = C ′ ∪ {u}. Note that since G is an optimal realization of D

it follows that G′ = ((V ′, E ′), ω′, ϕ′) with E ′ = E ∩
(
V ′

2

)
, ω′ the restriction of ω to E ′ and

ϕ′ : X ′ → V ′ defined by ϕ′(x) = ϕ(x) for all x ∈ B and ϕ′(u) = u is an optimal realization
of D′. Moreover, for the map f ′ : X ′ → R≥0 with f ′(x) = f(x) for all x ∈ B and f ′(u) = 0,
we have D(x′, y′) ≤ f ′(x′) + f ′(y′) for all x′, y′ ∈ X ′, D(x′, y′) = f ′(x′) + f ′(y′) for all
x′ ∈ K and all y′ ∈ L, f ′(x′) > 0 for some x′ ∈ K and f ′(y′) > 0 for some y′ ∈ L. Thus,
in view of Theorem 1 and the fact that we have f ′(x′) = DG′(u, ϕ′(x′)) for all x′ ∈ X ′, it
follows that u is a cut vertex in G′. But then the vertices in ϕ(B) cannot be contained in
a single connected component of G− u, a contradiction.

Case 2 : Statement (ii) in Theorem 1 holds for all optimal realizations of D. Let G =
((V,E), ω, ϕ) be an arbitrary optimal realization of D and let e = {u, v} ∈ E be a bridge
in G such that, for a suitable pair of positive real numbers α and β with α+ β = ω(e), we
have that DG(ϕ(x), u) + α = f(x) holds for all x ∈ X with DG(ϕ(x), u) < DG(ϕ(x), v),
and that DG(ϕ(x), v) + β = f(x) holds for all x ∈ X with DG(ϕ(x), v) < DG(ϕ(x), u).
Using a similar argument as in Case 1 it follows that the bridge e is unique. In order to
show that Se = Pf , let Cu and Cv denote the vertex sets of the connected components of
G − e that contain u and v, respectively. Define K = ϕ−1(Cu) and L = ϕ−1(Cv). Then
Se = {K,L} and, for all x, y ∈ K with x 6= y, we have

f(x) + f(y) = DG(ϕ(x), u) +DG(ϕ(y), u) + 2α > DG(ϕ(x), ϕ(y)) = D(x, y).
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Similarly, it follows that f(x) + f(y) > D(x, y) for all x, y ∈ L with x 6= y. Since, in
addition, we have

f(x) + f(y) = DG(ϕ(x), u) + α +DG(ϕ(y), v) + β = DG(ϕ(x), ϕ(y)) = D(x, y)

for all x ∈ K and y ∈ L, it follows that Pf = {K,L} = Se, as required. �

Remark 3. The last step in the argument given in Case 1 is related to a result in [22,
Corollary 5.2], which is given there without proof.

Next we observe that the converse of Lemma 2 also holds. To state this result, we
define, for every vertex v in a realization G = ((V,E), ω, ϕ) of a metric on X, the map
fv : X → R≥0 with fv(x) = DG(v, ϕ(x)) for all x ∈ X.

Lemma 4. Let G = ((V,E), ω, ϕ) be an optimal realization of a metric D on X.

(i) For every u ∈ Cut(G) we have fu ∈ V irt(D) and Pu = Pfu.
(ii) For every bridge e = {u, v} in G and every pair of strictly positive real numbers

α and β with α + β = w(e) we have f(e,α,β) ∈ V irt(D) for the map f(e,α,β) :
X → R≥0 defined by putting f(e,α,β)(x) = DG(ϕ(x), u) + α for all x ∈ X with
DG(ϕ(x), u) < DG(ϕ(x), v), and f(e,α,β)(x) = DG(ϕ(x), v) + β for all x ∈ X with
DG(ϕ(x), v) < DG(ϕ(x), u) and Se = Pf(e,α,β).

Proof : To show (i), consider u ∈ Cut(G). It suffices to show that fu ∈ V irt(D). From
this it follows by Lemma 2 that Pu = Pfu . First note that, by definition of the map fu,
we have

fu(x) + fu(y) = DG(u, ϕ(x)) +DG(u, ϕ(y)) ≥ DG(ϕ(x), ϕ(y)) = D(x, y)

for all x, y ∈ X, implying fu ∈ P (D). To show that fu ∈ T (D), consider the vertex set C of
an arbitrary connected component of G− u and define K = ϕ−1(C) and L = ϕ−1(V −C).
Then we have

fu(x) + fu(y) = DG(u, ϕ(x)) +DG(u, ϕ(y)) = DG(ϕ(x), ϕ(y)) = D(x, y)

for all x ∈ K and all y ∈ L, implying that, for all x ∈ X, there exists some y ∈ X with
f(x) + f(y) = D(x, y). Hence, fu ∈ T (D). Moreover, {A,B} with A = K ∩ supp(fu) and
B = L ∩ supp(fu) is a split of supp(fu) into subsets A and B with f(a) + f(b) = D(a, b)
for all a ∈ A, b ∈ B. Thus, fu ∈ V irt(D), as required.

Next, to show (ii), consider a bridge e = {u, v} in G together with a pair of strictly
positive real numbers α and β such that α + β = ω(e). Again, it suffices to show that
f(e,α,β) ∈ V irt(D) which then, in view of Lemma 2, implies Se = Pf(e,α,β) . Let Cu and
Cv denote the vertex sets of the connected components of G − e that contain u and v,
respectively. Then we have

f(e,α,β)(x) + f(e,α,β)(y) ≥ DG(ϕ(x), ϕ(y)) = D(x, y)

for all x, y ∈ X. Furthermore, {A,B} with A = ϕ−1(Cu) and B = ϕ−1(Cv) is a split of
X = supp(f(e,α,β)) such that

f(e,α,β)(a) + f(e,α,β)(b) = DG(ϕ(a), ϕ(b)) = D(a, b)
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for all a ∈ A and all b ∈ B. Thus, f(e,α,β) ∈ V irt(D), as required. �
Using Lemmas 2 and 4, we next prove the main result of this section.

Theorem 5. For every optimal realization G = ((V,E), ω, ϕ) of a metric D on X, the
map

τ : Cut(G)→ V irt(D) with τ(u) = fu

is an injection with τ(Cut(G)) = V irt∗(D). In particular, if G and G′ are optimal realiza-
tions of the same metric D then |Cut(G)| = |Cut(G′)| = |V irt∗(D)|.
Proof : As an immediate consequence of Lemmas 2 and 4 we obtain that τ is an injective
map. It remains to show that τ(Cut(G)) = V irt∗(D). Consider u ∈ Cut(G). First note
that if u = ϕ(x) for some x ∈ X we immediately have fu = fx ∈ V irt∗(D). Also note
that if |Pu| ≥ 3 then |Pfu | = |Pu| ≥ 3 and, thus, fu ∈ V irt∗(D) since Γfu is not a disjoint
union of two cliques.

Therefore, the only case left to consider is u ∈ V − ϕ(X) and |Pu| = 2. Then, by the
definition of an optimal realization, u has degree at least 3 in G. So, there must exist a
connected component C of G− u such that we have |EC | ≥ 2 for the set EC ⊆ E of edges
connecting u with a vertex in C. Note that it suffices to show that there exist x, y ∈ ϕ−1(C)
such that there is a shortest path from ϕ(x) to ϕ(y) that contains u, since then

fu(x) + fu(y) = DG(u, ϕ(x)) +DG(u, ϕ(y)) = DG(ϕ(x), ϕ(y)) = D(x, y),

implying that Γfu is not a disjoint union of two cliques and, thus, fu ∈ V irt∗(D). So,
assume for a contradiction that there is no shortest path between two vertices in ϕ−1(C)
that contains u and, therefore, no such shortest path contains an edge in EC . Put ε1 =
1
2
·min(ω(e) : e ∈ EC) and ε2 = 1

2
·min(DG(u, ϕ(x))+DG(u, ϕ(y))−D(x, y) : x, y ∈ ϕ−1(C)).

Note that in view of our assumption we have ε = min(ε1, ε2) > 0. Let u′ be a new vertex
not contained in V . We construct a new realization G′ = ((V ′, E ′), ω′, ϕ′) of D by putting
V ′ = V ∪ {u′},

E ′ = (E − EC) ∪ ({{u, u′}} ∪ {{u′, v} : {u, v} ∈ EC}),
ω′ : E ′ → R>0 with ω′(e) = ω(e) for all e ∈ E ∩ E ′, ω′({u, u′}) = ε and ω′({u′, v}) =
ω({u, v})− ε for all {u, v} ∈ EC , and ϕ′ : X → V ′ with ϕ′(x) = ϕ(x) for all x ∈ X. Then,
by construction and in view of |EC | ≥ 2, we have

|G′| = |G|+ ε− |EC | · ε < |G|,
contradicting the assumption that G is an optimal realization of D. �

4. The block decomposition

In this section, we use the relationship between Cut(G) and V irt∗(D) for an optimal
realization G of a metric D given in Theorem 8 to prove our main result, namely that
every metric has a unique block decomposition (see Theorem 8 below).

We begin by introducing the necessary definitions. A pair of partitions P,Q of X is
called strongly compatible if there exist A ∈ P andB ∈ Q such that A∪B = X. In addition,
for any metric D on X, we let PD denote the partition of X associated to the equivalence
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Figure 5. G is a weak block realization of the metric D in Fig. 1. All
unlabeled edges in this figure have weight 4. For the blocks B1 = {a, b, u}
and B2 = {c, d, e, f, g} of G and its associated metrics D1 = DB1 and D2 =
DB2 we obtain the partitions PD1 = {{a}, {b}, {c, d, e, f, g}} and PD2 =
{{a, b, c}, {d}, {e}, {f}, {g}}, which are strongly compatible. G′ is a block
realization of D. In view of Cut(G′) = {u, c} and V irt∗(D) = {fu, fc}, it
follows that {DB′ : B′ ∈ B(G′)} is the block decomposition of D.

relation on X defined by setting x and y in X to be equivalent if and only if D(x, y) = 0.
Then a compatible decomposition of a metric D on X is a set D of metrics on X such that
D =

∑
D′∈DD

′ and, for all D1, D2 ∈ D with D1 6= D2, the partitions PD1 ,PD2 are strongly
compatible and D1 and D2, considered as vectors in RX×X , are linearly independent. A
metric D on X is called a block metric if {D} is the only compatible decomposition of D
and a compatible decomposition D of a metric D is called a block decomposition of D if
all metrics in D are block metrics. Note that PD = {X} for a metric D on X if and only
if D(x, y) = 0 for all x, y ∈ X. Moreover, the metric D on X with D(x, y) = 0 for all
x, y ∈ X has {D} as its unique compatible decomposition and, for all metrics D′ 6= D
on X, no compatible decomposition of D′ contains D.

As mentioned in the introduction, to prove the main result in this section, we use some
facts concerning another type of realization. A realization G = ((V,E), ω, ϕ) of a metric
D is a weak block realization of D if (V,E) is a block graph (i.e., a graph in which every
maximal 2-connected subgraph is a clique), every vertex v ∈ V −ϕ(X) is a cut vertex of G
and, for all x, y ∈ X, the unique path in (V,E) from ϕ(x) to ϕ(y) with the smallest number
of edges is a shortest path in G of length DG(ϕ(x), ϕ(y)) = D(x, y). A block realization is
a weak block realization G = ((V,E), ω, ϕ) in which every vertex v ∈ V −ϕ(X) has degree
at least 3. See Fig. 5 for an example.

It is shown in [8, Theorem 1] that, for every metric D on X, there is a bijective corre-
spondence between (isomorphism classes) of weak block realizations of D and finite subsets
of V irt(D). This correspondence works by mapping each cut vertex v in a weak block
realization to fv and, for every x ∈ X, the vertex ϕ(x) to fx. Therefore, in [8] the corre-
spondence is described using the larger set V irt(D) ∪ {fx : x ∈ X}, but it is the subset of
V irt(D) that actually determines the isomorphism class of the corresponding weak block
realization. Also note that it is shown in [9, Theorem 1] that, for every metric D on X,
there is a bijective correspondence between (isomorphism classes) of block realizations of
D and compatible decompositions of D. This correspondence is based on associating to
each block B ∈ B(G) in a block realization G = ((V,E), ω, ϕ) of D the metric DB on X
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(cf. Section 2.1). The following two lemmas summarize some consequences of these two
correspondences.

Lemma 6. Let D be a metric on X with |PD| ≥ 3. Then V irt∗(D) = ∅ if and only if
V irt(D) = ∅.
Proof : In view of V irt∗(D) ⊆ V irt(D) it suffices to show that V irt∗(D) = ∅ implies
V irt(D) = ∅. Assume for a contradiction that there exists a metric D on X with |PD| ≥ 3
and V irt∗(D) = ∅ but there exists some f ∈ V irt(D). We consider the finite subset {f}
of V irt(D). By [8, Theorem 1], {f} corresponds to an, up to isomorphism, unique weak
block realization G′ = ((V ′, E ′), ω′, ϕ′) of D. Note that G′ has precisely one cut vertex
v and this cut vertex satisfies fv = f . For all other vertices u of G′ there exists at least
one x ∈ X with ϕ′(x) = u and, therefore, fu = fx. Since f 6∈ V irt∗(D) the graph Γf is
a disjoint union of two cliques and fv 6= fx for all x ∈ X, implying that G′ consists of
precisely two blocks with vertex sets A and B such that A ∩B = {v}.

Now, in view of |PD| ≥ 3 we may assume without loss of generality that there exist
a1, a2 ∈ ϕ′−1(A) with D(a1, a2) > 0. Put ε = 1

2
·min(f(x)+f(y)−D(x, y) : x, y ∈ ϕ′−1(A))

and consider the map g : X → R≥0 defined by putting g(x) = f(x)− ε for all x ∈ ϕ′−1(A)
and g(x) = f(x) + ε for all x ∈ ϕ′−1(B). To finish the proof, we show that g ∈ V irt∗(D),
which yields a contradiction to our assumption above that V irt∗(D) = ∅. First note that
ε ≥ 0 and consider any x, y ∈ X. Then, if x, y ∈ ϕ′−1(A), we have

g(x) + g(y) = f(x) + f(y)− 2ε ≥ D(x, y).

Similarly, if x, y ∈ ϕ′−1(B), we have

g(x) + g(y) = f(x) + f(y) + 2ε ≥ D(x, y)

and, if x ∈ ϕ′−1(A) and y ∈ ϕ′−1(B), we have

g(x) + g(y) = f(x)− ε+ f(y) + ε = D(x, y).

Since X = ϕ′−1(A) ∪ ϕ′−1(B), this establishes that g ∈ T (D). Moreover, in view of
supp(f) = X and the assumption above that there exist a1, a2 ∈ ϕ′−1(A) with D(a1, a2) > 0
we have supp(g) ∩ ϕ′−1(A) 6= ∅ and supp(g) ∩ ϕ′−1(B) 6= ∅. Hence, Γg is disconnected.
Moreover, in view of the choice of ε, we must have g = fx for some x ∈ ϕ′−1(A) or Γg is
not a disjoint union of two cliques. But this implies g ∈ V irt∗(D). �

Lemma 7. Let D be a metric on X. The following are equivalent:

(i) D is a block metric.
(ii) Every block realization of D consists of a single block.

(iii) V irt∗(D) = ∅.
(iv) For every optimal realization G of D we have Cut(G) = ∅.

Proof : First note that (i) ⇔ (ii) is a direct consequence of [9, Theorem 1].
Next, to establish (ii) ⇔ (iii), note that the equivalence clearly holds if |PD| ∈ {1, 2}.

So suppose |PD| ≥ 3. Then, to establish (iii) ⇒ (ii), it suffices to note that, by Lemma 6,
V irt∗(D) = ∅ implies V irt(D) = ∅ and, therefore, by [8, Theorem 1], every weak block
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realization, and thus every block realization, consists of a single block. Conversely, suppose
(ii) holds and assume for a contradiction that there exists some f ∈ V irt∗(D). Then, by
[8, Theorem 1], there exists an, up to isomorphism, unique weak block realization G′ =
((V ′, E ′), ω′, ϕ′) of D corresponding to the subset {f} ⊆ V irt(D), that is, Cut(G′) = {v}
consists of a single cut vertex v with fv = f . In view of (ii) G′ cannot be a block realization
of D and, thus, v has degree 2, implying that Γf is a disjoint union of two cliques and
fv 6= fx for all x ∈ X. But this contradicts f ∈ V irt∗(D).

(iii) ⇔ (iv) This is an immediate consequence of Theorem 5. �
We now prove the main result of this section.

Theorem 8. Let D be a metric on X. Then D has a unique block decomposition D. In
particular, D = {DB : B ∈ B(G)} for the (up to isomorphism) unique block realization G
of D whose cut vertices are in one-to-one correspondence with V irt∗(D).

Proof : We first show that D has a block decomposition. To see this, note that, by [22,
Theorem 2.2], D has an optimal realization G = ((V,E), ω, ϕ). From this we construct a
block realization G′ = ((V ′, E ′), ω′, ϕ′) of D by putting V ′ = ϕ(X)∪Cut(G), E ′ consisting

of all {u, u′} ∈
(
V ′

2

)
with u and u′ contained in the same maximal 2-connected subgraph

of (V,E) or {u, u′} ∈ E, ω′({u, u′}) = DG(u, u′) for all {u, u′} ∈ E ′ and ϕ′(x) = ϕ(x) for
all x ∈ X. Then, by construction, Cut(G′) = Cut(G) and, thus, by Theorem 5, Cut(G′)
is in bijective correspondence with V irt∗(D). Since, by [9, Theorem 1], {DB : B ∈ B(G′)}
is a compatible decomposition of D, it suffices to show that DB is a block metric for
every B ∈ B(G′).

So, consider a block B ∈ B(G′) and assume for a contradiction that the metric DB is not
a block metric. Note that this implies that B consists of at least three vertices and, thus, B
arises from some maximal 2-connected subgraph H of (V,E). Moreover, by Lemma 7(iv),
DB has an optimal realization GB = ((VB, EB), ωB, ϕB) with Cut(GB) 6= ∅. We associate
to every vertex v of B the set Xv comprising those x ∈ X with DG′(ϕ(x), v) < DG′(ϕ(x), u)
for all vertices u 6= v of B. Note that it follows from the definition of a block realization
that Xv 6= ∅ for all v ∈ B. Moreover, for every vertex v of B, there must exist a unique
av ∈ VB with ϕ−1B (av) = Xv. Thus, we obtain an optimal realization G′′ of D by replacing
the subgraph H in G with (VB, EB) in such a way that, for every vertex v of B, av takes
the place of v. By Theorem 5, we have |Cut(G)| = |Cut(G′′)| = |V irt∗(D)|, implying that
there exists a vertex v of B with v ∈ Cut(G) and av ∈ Cut(GB). Note that the maps fv
obtained from G and fav obtained from G′′ coincide. By Lemma 2, it follows that we must
have Pv = Pfv = Pfav = Pav , where the first and the last of these partitions of X are
derived from G and G′′, respectively. But, since av is a cut vertex of (VB, EB) while v is
not a cut vertex of H, we have Pv 6= Pav , a contradiction. Thus, DB is a block metric.

It remains to show that the block decomposition of D is unique. So, let D1 and D2 be two
block decompositions of D. By [9, Theorem 1] there exists a (up to isomorphism) unique
block realization Gi = ((Vi, Ei), ωi, ϕi) of D, i ∈ {1, 2}, such that Di = {DB : B ∈ Bi}
where Bi is the set of blocks of Gi. By [22, Theorem 2.2], for every B ∈ Bi, the metric
DB has an optimal realization GB. Similarly to the construction of G′′ above, we replace
every block B in Gi by GB to obtain a realization G′′i of D. Since our construction of G′′i
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respects the cut vertices already present in the realization Gi of D, it follows from [22,
Theorem 5.9] that G′′i is an optimal realization of D. Moreover, since DB is a block metric
for every B ∈ Bi, we have Cut(GB) = ∅ in view of Lemma 7(iv). But this implies that
the sets Cut(Gi) and Cut(G′′i ) are in bijective correspondence. Since, by Theorem 5, the
sets Cut(G′′1) and Cut(G′′2) are in bijective correspondence with V irt∗(D), we obtain that
both Cut(G1) and Cut(G2) are in bijective correspondence with V irt∗(D). Therefore, by
[8, Theorem 1], G1 and G2 are isomorphic weak block realizations of D, implying that
D1 = {DB : B ∈ B1} = {DB : B ∈ B2} = D2. �

We conclude this section by pointing out some additional facts related to the block
decomposition of a metric. First note that the optimal realization G used in the proof of
Theorem 8 was chosen arbitrarily and, thus, we obtain:

Corollary 9. Let D be a metric and D its block decomposition. Then, for every optimal
realization G of D, we have D = {DB : B ∈ B(G)}.

Next we briefly describe how the block decomposition of a metric D can be computed
efficiently. As noted in the introduction, the key is to efficiently compute the set V irt∗(D).

Theorem 10. Let D be a metric on a set X with |X| = n. Then the block decomposition
of D can be computed in O(n3) time.

Proof : By [12, Theorem 4.1] the set M = V irt∗(D) ∪ {fx : x ∈ X} can be computed in
O(n3) time and, by [12, Lemma 3.1], |M | ∈ O(n). Moreover, in view of Theorem 8, M is in
one-to-one correspondence with the vertex set of a block realization G of D with Cut(G)
corresponding to V irt∗(D). To compute the blocks of G, consider the metric D∗ on M
defined by putting D∗(f, f ′) = max(|f(x) − f ′(x)| : x ∈ X) for all f, f ′ ∈ M . Note that
D∗(f, f ′) coincides with DG(u, u′) for the vertices u and u′ in G with f = fu and f ′ = fu′ .
Clearly, D∗ can be computed in O(n3) time. Next, we compute for all g ∈ M the graph
Hg = (Vg, Eg) with Vg = M − {g} and

Eg = {{f, f ′} ∈
(
Vg
2

)
: D∗(f, f ′) < D∗(f, g) +D∗(f ′, g)}.

Note that h, h′ ∈ M correspond to vertices contained in the same block of G if and only
if h and h′ are contained in the same connected component of Hg for all g ∈M − {h, h′}.
Thus, first computing the collection of connected components of Hg for all g ∈ M , each
collection in O(n2) time, the set B of blocks of G can be computed in O(n3) time. By
Theorem 8, D = {DB : B ∈ B} is the block decomposition of D. It remains to compute
the block metrics DB, which can be done in O(n2) time for each B ∈ B. Hence, noting
that, in view of |M | ∈ O(n), we must have |B| ∈ O(n), it follows that D can be computed
in O(n3) time. �

Now, by Corollary 9, for any metric D with block decomposition D = {D1, D2, . . . , Dk},
the total length |G| of any optimal realization G of D equals

∑k
i=1 |Gi|, where Gi is an

optimal realization of Di. Thus, in view of Lemma 10, we obtain:



OPTIMAL REALIZATIONS AND THE BLOCK DECOMPOSITION OF A FINITE METRIC SPACE 15

Corollary 11. If the block decomposition D = {D1, D2, . . . , Dk} of a metric D on X with
|X| = n is such that an optimal realization of Di can be computed in O(t(n)) time for every
i ∈ {1, 2, . . . , k}, then an optimal realization of D can be computed in O(n3 +k · t(n)) time.

5. Some properties of the block decomposition

In this section, we present some further properties of the block decomposition of a metric.
We first characterize the block decomposition of a metric in terms of its associated block
realization. The proof of this characterization will make use of the following fact.

Lemma 12. Suppose that G = ((V,E), ω, ϕ) is a block realization of a metric D on X
with |Cut(G)| ≥ 1. Then |G| <∑{u,u′}∈(ϕ(X)

2 )DG(u, u′).

Proof : In view of the definition of a block realization, for all {u, u′} ∈
(
ϕ(X)
2

)
, the path

π{u,u′} with the smallest number of edges from u to u′ has length DG(u, u′). Let E{u,u′} be
the set of edges contained in π{u,u′}. It follows immediately from the definition of a weak
block realization that every edge e ∈ E is contained in at least one path π{u,u′} for some

{u, u′} ∈
(
ϕ(X)
2

)
, that is,

⋃
{u,u′}∈(ϕ(X)

2 )E{u,u′} = E. Moreover, in view of |Cut(G)| ≥ 1

and the fact that in a block realization every vertex v ∈ V − ϕ(X) has degree at least 3,
the union cannot be a disjoint union, and, therefore, |G| < ∑

{u,u′}∈(ϕ(X)
2 )DG(u, u′), as

required. �
We now prove the aforementioned characterization.

Theorem 13. Let D be a metric on X. Then the block decomposition of D coincides with
{DB : B ∈ B(G)} for the (up to isomorphism) unique block realization G = ((V,E), ω, ϕ)
of D with |G| minimum.

Proof : Let G = ((V,E), ω, ϕ) be a block realization of D such that |G| minimum. It
suffices to show that D = {DB : B ∈ B(G)} is the block decomposition of D. Assume
for a contradiction that D is not the block decomposition of D. Then there exists some
B ∈ B(G) such that DB is not a block metric and, by Lemma 7, DB has a block realization
GB with |Cut(GB)| ≥ 1. Therefore, by Lemma 12, we have

|GB| <
∑

{u,u′}∈(ϕ(X)
2 )

DGB(u, u′) =
∑

{v,v′}∈(B2)

ω({v, v′}).

Thus, replacing the block B in G by the block realization GB of DB and suppressing any
resulting vertices of degree 2 not labeled by an element in X, we obtain a block realization
G′ of D with |G′| < |G|, a contradiction. �

In view of Corollary 11, it is of interest to better understand the structure of the metrics
that appear in the block decomposition of a metric D, ultimately with the aim of exploit-
ing this structure to compute an optimal realization of D efficiently. We now present a
description of the metrics occurring in the block decomposition of a so-called totally split
decomposable metric D.

We first provide formal definitions of the concepts involved. For every split S = {A,B}
of X, we denote by DS the metric on X with DS(x, y) = 0 if {x, y} ⊆ A or {x, y} ⊆ B and
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S ∈ S α(S)
S1 = {{a}, {b, c, d, e, f, g}} 1
S2 = {{b}, {a, c, d, e, f, g}} 1
S3 = {{a, b}, {c, d, e, f, g}} 2
S4 = {{a, b, c, d}, {e, f, g}} 1
S5 = {{a, b, c, f, g}, {d, e}} 1
S6 = {{a, b, c, d, g}, {e, f}} 1
S7 = {{a, b, c, d, e}, {f, g}} 1
S8 = {{a, b, c, g}, {d, e, f}} 1

I(S)

S2

S1

S3

S4

S5

S6

S7

S8

Figure 6. The collection S = {S1, S2, . . . , S8} of splits of X =
{a, b, c, . . . , g} is weakly compatible. Using the weighting α, D(S,α) yields
the metric D on X given in Fig. 1, which is, therefore, totally split decom-
posable. The graph I(S) has four connected components, each corresponding
to a metric in the block decomposition of D.

DS(x, y) = 1 otherwise. For a collection S of splits of X and a weighting map α : S → R>0

we define the metric
D(S,α) =

∑
S∈S

α(S) ·DS.

Moreover, two splits S = {A,B} and S ′ = {A′, B′} of X are called compatible if at least
one of the intersections

A ∩ A′, A ∩B′, B ∩ A′, B ∩B′

is empty, otherwise S and S ′ are called incompatible. Similarly, three splits {A1, B1},
{A2, B2}, {A3, B3} of X are called weakly compatible if at least one of the intersections

A1 ∩ A2 ∩ A3, A1 ∩B2 ∩B3, B1 ∩ A2 ∩B3, B1 ∩B2 ∩ A3

is empty. We will also call a collection S of splits of X compatible if any two splits in
S are compatible and, similarly, we call S weakly compatible if any three splits in S are
weakly compatible. A metric D on X is totally split decomposable (cf. [2]) if there exists a
weakly compatible collection S of splits of X together with a weighting map α such that
D = D(S,α). Note that if such an ordered pair (S, α) exists for D it is unique and referred
to as the split decomposition of D. For example, the split decomposition of the metric D
in Fig. 2 can be read off from the split-network in that figure by taking the set of splits of
the label set induced by the classes of parallel edges, with the weight of the split equal to
the length of the edges in the class.

Denoting, for any collection S of splits of X, by I(S) = (V (S), E(S)) the graph with
V (S) = S and

E(S) = {{S, S ′} ∈
(S

2

)
: S and S ′ are incompatible}

and by C(S) the collection of those subsets of S that are vertex sets of connected compo-
nents of I(S) (see e.g. Fig. 6), we now present a description of the block decomposition of
a totally split decomposable metric.
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Theorem 14. Let D be a totally split decomposable metric on X and let S be the associated
weakly compatible split system together with the weighting map α : S → R>0 such that
D = D(S,α). Then the block decomposition of D is

D = {
∑
S∈S′

α(S) ·DS : S ′ ∈ C(S)}.

Proof : It is shown in [20] that the collection C(S) is in bijective correspondence with the
collection B(F≤1(D)) of vertex sets of maximal 2-connected components and bridges of
the realization F≤1(D) of D obtained from T (D). In particular, it is shown that, for all
B ∈ B(F≤1(D)), there exists a unique S ′ ∈ C(S) with DB =

∑
S∈S′ α(S) · DS, which,

by Theorem 8 and in view of the fact that Cut(F≤1(D)) = V irt∗(D), must be a block
metric. �

It would be interesting to explore how Theorem 14 can be used to efficiently compute
optimal realizations of totally split decomposable metrics. More generally, one could ask
whether there are other special types of metrics D that allow for a useful description of
the block metrics arising in the block decomposition of D.

In another direction, it could be of interest to understand more deeply how the structure
of the tight span of a metric is related to the structure of optimal realizations of the metric.
For example, it is shown in [16] that optimal realizations of a totally split decomposable
metric D whose tight span is 2-dimensional can always be found in F≤1(D), a fact which
is used in [17] to help compute optimal realizations of such metrics D. In general, clar-
ifying the precise relationship between optimal realizations of D and F≤1(D) remains an
important open problem.
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