
ar
X

iv
:2

10
6.

13
35

7v
1

 [
m

at
h.

C
O

]
 2

4
Ju

n
20

21

On the In-Out-Proper Orientations of Graphs

Ali Dehghan1

1Systems and Computer Engineering Department, Carleton University, Ottawa, Canada

June 28, 2021

Abstract

An orientation of a graph G is in-out-proper if any two adjacent vertices have different in-out-degrees,
where the in-out-degree of each vertex is equal to the in-degree minus the out-degree of that vertex.
The in-out-proper orientation number of a graph G, denoted by ←→χ (G), is minD∈Γ maxv∈V (G) |d

±

D(v)|,
where Γ is the set of in-out-proper orientations of G and d±D(v) is the in-out-degree of the vertex v in
the orientation D. Borowiecki et al. proved that the in-out-proper orientation number is well-defined
for any graph G [Inform. Process. Lett., 112(1-2):1–4, 2012]. So we have ←→χ (G) ≤ ∆(G), where ∆(G)
is the maximum degree of vertices in G. We conjecture that there exists a constant number c such that
for every planar graph G, we have ←→χ (G) ≤ c. Towards this speculation, we show that for every tree
T we have ←→χ (T) ≤ 3 and this bound is sharp. Next, we study the in-out-proper orientation number
of subcubic graphs. By using the properties of totally unimodular matrices we show that there is a
polynomial time algorithm to determine whether ←→χ (G) ≤ 2, for a given graph G with maximum degree
three. On the other hand, we show that it is NP-complete to decide whether ←→χ (G) ≤ 1 for a given
bipartite graph G with maximum degree three. Finally, we study the in-out-proper orientation number
of regular graphs.

Key words: Proper orientation; In-out-proper orientation; In-out-proper orientation number;
In-out-degree; Subcubic graphs.

1 Introduction

Let G be a graph and D be an orientation of it. For every vertex v of G, we denote the in-degree (out-degree)
of v in the orientation D by d−D(v) (d+D(v), respectively). An orientation of a graph G is called proper if any
two adjacent vertices have different in-degrees [1]. The proper orientation number of a graph G, denoted
by −→χ (G), is the minimum of the maximum in-degree taken over all proper orientations of the graph G. A
proper orientation D of G can be used to form a proper vertex coloring of G by assigning every vertex v of
G the color d−D(v) [1]. So, we have

χ(G)− 1 ≤ −→χ (G) ≤ ∆(G). (1)

The proper orientation number of graphs has been studied by several authors, for instance see [1, 2, 3,
4, 5, 6, 8, 10, 11, 13]. In [4], Araujo et al. asked whether the proper orientation number of a planar graph
is bounded. Toward this question, it was shown that if T is a tree, then −→χ (T) ≤ 4 [4]. Also, it was shown
that every cactus admits a proper orientation with maximum in-degree at most 7 [5]. Furthermore, it was
proved that every bipartite planar graph with minimum degree at least 3 has proper orientation number at
most 3 [13].

1

http://arxiv.org/abs/2106.13357v1

Let D be an orientation for a given graph G. The in-out-degree of the vertex v is defined as d±D(v) =
d−D(v)− d+D(v). Note that for a given graph G and orientation D, for each vertex v we have

−∆(G) ≤ d±D(v) ≤ ∆(G). (2)

Motivated by the proper orientations of graphs we investigate the in-out-proper orientations. An orienta-
tion of a graph G is in-out-proper if any two adjacent vertices have different in-out-degrees. The in-out-proper
orientation number of a graph G, denoted by ←→χ (G), is minD∈Γmaxv∈V (G) |d

±
D(v)|, where Γ is the set of

in-out-proper orientations of G and d±D(v) is the in-out-degree of the vertex v in the orientation D. For a
given graph G, we say that an in-out-proper orientation D is optimal if the maximum of the absolute values
of their in-out-degrees is equal to ←→χ (G).

It is interesting to mention that in-out-proper orientation relates to the flow. In more details, an in-out-
proper orientation of a graph G can be thought as a ‘flow’ of G that does not satisfy Kirchhoff’s Current
Law. Borowiecki et al. proved that in-out-proper orientation number is well-defined for any graph G [7].

Theorem 1. [7] The in-out-proper orientation number is well-defined for any graph G.

By Theorem 1 and noting that for a given graph G every in-out-proper orientation defines a proper vertex
coloring for G, we have

⌈
χ(G)− 1

2
⌉ ≤ ←→χ (G) ≤ ∆(G). (3)

Example 1.Let G be a cycle. The degree of each vertex is two, so in each in-out-proper orientation of G, the
in-out-degree of each vertex is −2,+2, or 0. The graph G has at least two adjacent vertices, so ←→χ (G) ≥ 2.
On the other hand, by Theorem 1, ←→χ (G) ≤ 2. Consequently, for every cycle Cn we have ←→χ (G) = 2.

Araujo et al. asked whether the proper orientation number of a planar graph is bounded. We pose the
following conjecture for the in-out-proper orientation number of planar graphs.

Conjecture 1. There is a constant number c such that for every planar graph G, we have ←→χ (G) ≤ c.

Towards Conjecture 1, we study the in-out-proper orientation number of trees and show that for every
tree T we have ←→χ (T) ≤ 3.

Theorem 2. For every tree T we have ←→χ (T) ≤ 3 and this bound is sharp.

A graph is called subcubic if it has maximum degree at most three. Let G be a subcubic graph. By
Theorem 1, we have ←→χ (G) ≤ 3. By using the properties of totally unimodular matrices we show that there
is a polynomial time algorithm to determine whether ←→χ (G) ≤ 2.

Theorem 3. There is a polynomial time algorithm to determine whether ←→χ (G) ≤ 2, for a given graph G
with maximum degree three.

On the other hand, we show that it is NP-complete to decide whether ←→χ (G) ≤ 1 for a given bipartite
graph G with maximum degree three.

Theorem 4. It is NP-complete to decide whether ←→χ (G) ≤ 1 for a given bipartite graph G with maximum
degree three.

Next, we study the computational complexity of determining the the in-out-proper orientation number
of 4-regular graphs. Note that for any 4-regular graph G we have 2 ≤ ←→χ (G) ≤ 4.

2

Theorem 5. It is NP-complete to decide whether ←→χ (G) ≤ 2 for a given 4-regular graph G.

Let G be a 4-regular graph with ←→χ (G) ≤ 3 and suppose that D is an optimal in-out-proper orientation.
In G the degree of each vertex is four, so the in-out-degree of each vertex is in {0,±2}. Thus, we have
←→χ (G) ≤ 3 if and only if ←→χ (G) ≤ 2. Thus, by Theorem 5, we have the following corollary.

Corollary 1. It is NP-complete to decide whether ←→χ (G) ≤ 3 for a given 4-regular graph G.

The organization of the rest of the paper is as follows: In Section 2, we present some definitions and
notations. This is followed in Section 3 by some bounds for the in-out-proper orientation number of graphs.
Next, in Section 4, we prove that the in-out-proper orientation number of each tree is at most three. In
Section 5, we focus on the in-out-proper orientation number of subcubic graphs. Section 6 is devoted to the
computational complexity of regular graphs. The paper is concluded with some remarks in Section 7.

2 Definitions

In this work, all graphs are finite and simple (i.e. without loops and multiple edges). We follow [14] for
terminology and notation where they are not defined here. If G is a graph, then V (G) and E(G) denote
the vertex set and the edge set of G, respectively. For every v ∈ V (G), dG(v) denotes the degree of v in
the graph G. Also, ∆(G) denotes the maximum degree of G. The distance between two vertices v and u,
denoted by distance(v, u), is the length of a shortest path between them.

An orientation D of a graph G is a digraph obtained from the graph G by replacing each edge by just
one of the two possible arcs with the same endvertices. For every vertex v, the in-degree (the out-degree) of
v in the orientation D, denoted by d−D(v) (d+D(v)), is the number of arcs with head (tail) v in D. Also, the
in-out-degree of v, denoted by d±D(v), is defined as d−D(v) − d+D(v). An orientation of a graph G is in-out-
proper if any two adjacent vertices have different in-out-degrees. The in-out-proper orientation number of a
graph G, denoted by ←→χ (G), is minD∈Γ maxv∈V (G) |d

±
D(v)|, where Γ is the set of in-out-proper orientations

of G.

Let G be a graph. A proper vertex t-coloring of G is a function f : V (G) −→ {1, . . . , t} such that if
u, v ∈ V (G) are adjacent, then f(u) and f(v) are different. The smallest integer t such that G has a proper
vertex t-coloring is called the chromatic number of G and denoted by χ(G). Also, a proper edge t-coloring of
G is a function f : E(G) −→ {1, . . . , t} such that if e, e′ ∈ E(G) have a same endvertex, then f(e) and f(e′)
are different. The smallest integer t such that G has a proper edge t-coloring is called the edge chromatic
number (or chromatic index) of G and denoted by χ′(G).

For a graph G = (V,E), the line graph of G is a graph with the set of vertices E(G) and two vertices are
adjacent if and only if their corresponding edges share a common endpoint in G.

A matrix A is totally unimodular if every square submatrix of A has determinant 1, 0 or −1. The
importance of totally unimodular matrices stems from the fact that when an integer linear program has
all-integer coefficients and the matrix of coefficients is totally unimodular, then the optimal solution of its
relaxation is integral. Therefore, it can be obtained in polynomial time [12].

3 General bounds

For every graph G we have←→χ (G) ≤ ∆(G). It is good to mention that the inequality is tight for any complete
graph. For any n, each vertex of Kn can have only in-out-degree n − 1, n − 3, . . . ,−(n − 3),−(n − 1).
The number of these values is exactly n. Thus, the in-out-proper orientation number of Kn is at least
n− 1 = ∆(Kn).

3

Next, we present some observation for the in-out-proper orientation number of graphs.

Lemma 1. Let G be a graph with at least one edge and assume that D is an in-out-proper orientation of
G. Then in the orientation D there is at least one vertex with positive in-out-degree and at least one vertex
with negative in-out-degree.

Proof. Let G be a graph with at least one edge and assume that D is an in-out-proper orientation of G.
First, we show that in D there is a vertex with positive in-out-degree. To the contrary assume that the
in-out-degree of each vertex is negative or zero. So, we have

∑

v∈V (G)

d±D(v) ≤ 0. (4)

On the other hand, we have
∑

v∈V (G)

d−D(v) =
∑

v∈V (G)

d+D(v). (5)

Thus, by (4) and (5), we conclude that for every vertex v we have d±D(v) = 0. The graph G has at least
one edge, but in D the in-out-degrees of all vertices are zero (so, it is not a proper vertex coloring). Thus
D is not an in-out-proper orientation for G. This is a contradiction. So, there is a vertex with positive
in-out-degree. Similarly, we can show that there is a vertex with negative in-out-degree.

4 Trees

Next, we study the in-out-proper orientation number of trees and show that for every tree T we have
←→χ (T) ≤ 3. Also, we show that this bound is sharp.

Proof of Theorem 2. First we show that for each tree T we have ←→χ (T) ≤ 3. Let T be a tree with n vertices
and v be a vertex of T . Sort the vertices of T according to their distance from v and let v = v1, v2, . . . , vn
be that sorted set. For each vertex u, the father of u, denoted by f(u), is the unique vertex that is adjacent
and closer to the root v. Perform the Algorithm 1 and call the resultant orientation D.

We have the following properties for the orientation D that we obtained from Algorithm 1.

Proposition 1. Let u be a vertex with d(u) ≥ 3. If u has an even distance from the root v1, then d±D(u) ∈
{1, 2, 3}. Also, if u has an odd distance from the root v1, then d±D(u) ∈ {−1,−2,−3}.

Proof. Let u be a vertex with d(u) ≥ 3. If u has an even distance from the root v1, then at Lines 2-3, 5-6,
and 8-9, we orient the edges incident with u such that the in-out-degree of u is in {1, 2, 3}. There is only one
other part of the algorithm that we may change the in-out-degree of u. That part is Lines 35-36. In that
case the in-out-degree of u is one and by reorienting one of the edges that is incident with u we increase the
in-out-degree of u by two. Similarly, if u has an odd distance from the root v, then at Lines 23-24, 26-27,
and 17-18, we orient the edges incident with u such that the in-out-degree of u is in {−1,−2,−3}. �

Proposition 2. Let u be a vertex with d(u) = 2. If u has an even distance from the root v1, then d±D(u) ∈
{0, 1, 2}. Also, if u has an odd distance from the root v1, then d±D(u) ∈ {0,−1,−2}.

Proof. Let u be a vertex with d(u) = 2. If u has an even distance from the root v1, then at Lines 2-3, 5-6,
and 10-14, we orient the edges incident with u such that the in-out-degree of u is in {0, 1, 2}. There is only
one other part of the algorithm that we may change the in-out-degree of u. That part is Lines 31-32. In that
case the in-out-degree of u is zero and by reorienting one of the edges that is incident with u we increase the

4

Algorithm 1

1: for i = 1 to n do

2: if i = 1 then

3: Orient the edges incident with v1 such that if d(v1) is an even number then d±D(v1) = 2, and if d(v1) is an
odd number then d±D(v1) = 1.

4: else if distance(vi, v1) is an even number then
5: if the edge vif(vi) was oriented from f(vi) to vi then

6: Orient the set of edges {vivj |j > i} such that if d(vi) is an odd number then d±D(vi) = 1, and if d(vi)
is an even number then d±D(vi) = 2.

7: else if the edge vif(vi) was oriented from vi to f(vi) then
8: if d(vi) ≥ 3 then

9: Orient the set of edges {vivj |j > i} such that d±D(vi) ∈ {1, 2}
10: else if d(vi) = 2 then

11: if d±D(f(vi)) 6= 0 then

12: Orient the edge {vivj |j > i} such that d±D(vi) = 0
13: else if d±D(f(vi)) = 0 then

14: Orient the set of edges incident with vi such that d±D(vi) = 2 (note that we reorient the edge
vif(vi).

15: end if

16: else if d(vi) = 1 then

17: if d±D(f(vi)) = −1 then

18: Reorient the edge vif(vi) from f(vi) to vi
19: end if

20: end if

21: end if

22: else if distance(vi, v1) is an odd number then
23: if the edge vif(vi) was oriented from vi to f(vi) then
24: Orient the set of edges {vivj |j > i} such that if d(vi) is an odd number then d±D(vi) = −1, and if d(vi)

is an even number then d±D(vi) = −2.
25: else if the edge vif(vi) was oriented from f(vi) to vi then

26: if d(vi) ≥ 3 then

27: Orient the set of edges {vivj |j > i} such that d±D(vi) ∈ {−1,−2}
28: else if d(vi) = 2 then

29: if d±D(f(vi)) 6= 0 then

30: Orient the edge {vivj |j > i} such that d±D(vi) = 0
31: else if d±D(f(vi)) = 0 then

32: Orient the set of edges incident with vi such that d±D(vi) = −2 (note that we reorient the edge
vif(vi).

33: end if

34: else if d(vi) = 1 then

35: if d±D(f(vi)) = 1 then

36: Reorient the edge vif(vi) from vi to f(vi)
37: end if

38: end if

39: end if

40: end if

41: end for

5

in-out-degree of u by two. So, the final in-out-degree of u is in {0, 1, 2}. Similarly, if u has an odd distance
from the root v1, then at Lines 23-24, 28-32, and 13-14, we orient the edges incident with u such that the
in-out-degree of u is in {0,−1,−2}. �

Proposition 3. Let u and u′ be two adjacent vertices such that d(u) = d(u′) = 2. Then d±D(u) 6= d±D(u′).

Proof. By Lines 10-14 and Lines 28-32, the algorithm does not produce any two adjacent vertices u, u′ such
that d(u) = d(u′) = 2 and d±D(u) = d±D(u′) = 0. Thus, by Proposition 2, for any two adjacent vertices u, u′

with d(u) = d(u′) = 2 we have d±D(u) 6= d±D(u′). �

Proposition 4. Let u be a vertex with d(u) = 1. Then d±D(u) ∈ {−1,+1} and d±D(u) 6= d±D(f(u)).

Proof. Let u be a vertex with d(u) = 1. If u has an even distance from the root v1, then at Lines 2-3,
5-6 and 16-19, we orient the edge incident with u such that the in-out-degree of u is in {−1,+1} and also
if it is −1 then d±D(u) 6= d±D(f(u)). By Propositions 1, 2, we also conclude that if the in-out-degree of u
is 1, then d±D(u) 6= d±D(f(u)). Similarly, if u has an odd distance from the root v1, then at Lines 23-24,
and 34-37, we orient the edge incident with u such that the in-out-degree of u is in {−1,+1} and if it is
1, then d±D(u) 6= d±D(f(u)). By Propositions 1, 2, we conclude that if the in-out-degree of u is −1, then
d±D(u) 6= d±D(f(u)). This completes the proof. �

By Propositions 1, 2, 3 and 4, for every vertex u, we have d±D(u) ∈ {±3,±2,±1, 0} and for every two
adjacent vertices u, u′, we have d±D(u) 6= d±D(u′). Thus D is an in-out-proper orientation such that the
maximum of absolute values of their in-out-degrees is at most three.

Finally, we show that there is a tree T such that ←→χ (T) = 3. Consider the tree T with the set of vertices
v1, v2, v3, v4 and set of edges v1v2, v1v3, v1v4. We have d(v2) = d(v3) = d(v4) = 1, so in any orientation of
T , their in-out-degrees are in {±1}. On the other hand, the degree of v1 is three, so its in-out-degree is in
{±1,±3}. To the contrary assume that←→χ (T) < 3, and let D be an in-out-proper orientation of T such that
d±D(v1) ∈ {±1}. The in-out-degree of at least one of the vertices v2, v3, v4 is 1 (otherwise d±D(v1) /∈ {±1})
and also the in-out-degree of at least one of the vertices v2, v3, v4 is −1. So, D has two adjacent vertices with
the same in-out-degree Thus, it is not an in-out-proper orientation. This is a contradiction. So, we conclude
that ←→χ (T) = 3.

5 Subcubic graphs

In this section we focus on subcubic graphs. Let G be a subcubic graph. By Theorem 1, we have←→χ (G) ≤ 3.
Next, we show that there is a polynomial time algorithm to determine whether ←→χ (G) ≤ 2. On the other
hand, it is NP-complete to decide whether ←→χ (G) ≤ 1 for a given bipartite graph G with maximum degree
three.

Proof of Theorem 3. Let G be a cubic graph. If D is an optimal in-out-proper orientation, then for any
vertex v of degree two we have d±D(v) ∈ {0,±2} and also for any vertex v of degree one or three we have
d±D(v) ∈ {±1}. First, we investigate the subcubic graphs without degree two vertices. Then, we present a
polynomial time algorithm for subcubic graphs. Let G be a graph such that the degree of each vertex is one
or three and without loss of generality assume that G is connected. Also, suppose that ←→χ (G) ≤ 2 and D
is an optimal in-out-proper orientation of G. Since d±D(v) ∈ {±1} for each vertex v and the in-out-degrees
form a proper vertex coloring of G, G should be bipartite.

Proposition 5. Let G be a graph such that the degree of each vertex is one or three. If ←→χ (G) ≤ 2, then G
is bipartite.

6

x1 x1

y1 y2 y3

G

y1 y2 y3

x1;1
x1;2

x1;3

w1;1

w0

1;1

H

Figure 1: The graph G and its corresponding graph H .

Consequently, at step one we should check that whether G is bipartite. Next, at step two we want to
determine whether it is possible to orient the edges of G such that in-out-degrees of vertices of one partite
set of G are 1 and in-out-degrees of vertices of the other partite set of G are −1.

Proposition 6. Let G = (X ∪ Y,E) be a bipartite graph such that the degree of each vertex is one or three.
If ←→χ (G) ≤ 2, then there is an orientation for the edges of G such that the in-out-degree of each vertex is 1
or −1, and the in-out-degrees of all vertices in X are the same, and so are those in Y .

It is well-known that there is a polynomial time algorithm to decide whether a given graph is bipartite
[14]. Next, we present a polynomial time algorithm for step two. Let G = (X ∪ Y,E(G)) be a bipartite
graph such that the degree of each vertex is one or three. Without loss of generality assume that X =
x1, x2, . . . , xn and Y = y1, y2, . . . , yn′ . From the graph G we construct a bipartite graph H with vertex set
V (H) = (UX ∪ UY) ∪ U0 and edge set E(H) = W . Put UX = X , and UY = Y . Also, for every edge
xiyj ∈ E(G), put xi,j in U0 and the edges wi,j = xixi,j , w

′
i,j = xi,jyj in W . See Fig. 1.

Consider the following integer linear program for the graph H .

Maximize 1

subject to
∑

xiyj∈E(G)

wi,j = 1 ∀xi ∈ UX s.t. dG(xi) = 1 (6)

∑

xiyj∈E(G)

wi,j = 2 ∀xi ∈ UX s.t. dG(xi) = 3 (7)

∑

xiyj∈E(G)

w′
i,j = 0 ∀yj ∈ UY s.t. dG(yj) = 1 (8)

∑

xiyj∈E(G)

w′
i,j = 1 ∀yj ∈ UY s.t. dG(yj) = 3 (9)

wi,j + w′
i,j = 1 ∀xi,j ∈ U0 (10)

wi,j , w
′
i,j ∈ {0, 1} ∀xiyj ∈ E(G) (11)

Note that we can write the above integer linear program in the following canonical form:

Maximize 1

subject to Ax = b (12)

.x ∈ {0, 1}|E(H)|, (13)

7

where A is the incidence matrix of H , xT = (wi1,j1 , . . . , w
′
ik,jk

), and b ∈ {0, 1, 2}|V (H)|. For instance, for the

graph H that was shown in Fig. 1, we have xT = (w1,1, w
′
1,1, w1,2, w

′
1,2, w1,3, w

′
1,3), b = (2, 0, 0, 0, 1, 1, 1) and

A is
w1,1 w′

1,1 w1,2 w′
1,2 w1,3 w′

1,3




































x1 1 0 1 0 1 0
y1 0 1 0 0 0 0
y2 0 0 0 1 0 0
y3 0 0 0 0 0 1
x1,1 1 1 0 0 0 0
x1,2 0 0 1 1 0 0
x1,3 0 0 0 0 1 1

For each edge xiyj ∈ E(G) in (11), we consider two variables wi,j , w
′
i,j such that wi,j , w

′
i,j ∈ {0, 1}. On

the other hand, in (10), we have wi,j +w′
i,j = 1, so the value of exactly one of these variables is one and the

value of the other variable is zero. We consider the values of wi,j , w
′
i,j as an orientation for the edge xiyj in G

such that it is oriented from yj to xi if and only if wi,j = 1. So, the values of the variables correspond to an
orientation for the graph G. Call that orientation D. By (6) and (7), we ensure that in D the in-out-degree
of each vertex in X is 1. Also, by (8) and (9), the in-out-degree of each vertex in Y is −1. Consequently,
the above integer linear program is feasible if and only if the graph G has an in-out-proper orientation such
that the in-out-degree of each vertex in X is 1 and the in-out-degree of each vertex in Y is −1.

When an integer linear program has all-integer coefficients and the matrix of coefficients is totally uni-
modular, then the optimal solution of its relaxation is integral. Therefore, it can be obtained in polynomial
time [12]. On the other hand, it is shown in [[12], Corollary 2.9 in Page 544] that every incidence matrix of
a bipartite graph is totally unimodular. So, in our integer linear program the matrix of coefficients is totally
unimodular. Consequently, there is a polynomial time algorithm to determine whether the above-mentioned
integer linear program is feasible.

Note that there is an orientation of the edges of G such that the in-out-degree of each vertex in X is −1
and the in-out-degree of each vertex in Y is 1 if and only if there is an orientation of the edges of G such that
the in-out-degree of each vertex in X is 1 and the in-out-degree of each vertex in Y is −1 (by considering the
reverse of the given orientation). Consequently, there is a polynomial time algorithm to determine whether
the in-out-proper orientation number of given graph G with degree set {1, 3} is at most two.

Next, we consider the set of subcubic graphs. Let G be a subcubic graph. If D is an optimal in-out-proper
orientation, then for any vertex v of degree two we have d±D(v) ∈ {0,±2} and also for any vertex v of degree
one or three we have d±D(v) ∈ {±1}.

Remove all vertices of degree two from the graph G and call the resultant graph G′. For each vertex v in
G′ if dG(v) 6= dG′(v), then put dG(v)−dG′ (v) isolated vertices and join them to v (we call these new vertices
dummy vertices). Call the resultant graph G′′. Note that in G′′ the degree of each vertex is one or three.
See Fig. 2.

Assume that ←→χ (G) ≤ 2. next, we present some necessary conditions for G′′.

Proposition 7. Let C1, C2, . . . , Ck be all the connected components of G′′. For any i ∈ {1, 2, . . . , k}, (Ci is
bipartite and) there exists an orientation Di of Ci satisfying
(a) every vertex of Ci has the in-out-degree 1 or −1, and
(b) for any uv ∈ E(G) ∩ E(G′′), d±Di

(u) 6= d±Di
(v).

Proof. By Proposition 5 and Proposition 6 the proof is clear. �

In order to complete the proof we do the following steps:

8

G G
00

Figure 2: The graph G and its corresponding graph G′′. In the graph G′′ the degree of each vertex is 1 or 3
and the set of blue vertices are dummy vertices.

Step 1. Proving that the condition in Proposition 7 is a necessary and sufficient one for ←→χ (G) ≤ 2.
Step 2. Showing that the condition in Proposition 7 can be checked in polynomial time.
Step 3. Concluding that Theorem 3 is true by Step 1 and Step 2.

(Proof of Step 1:) We show that the necessary conditions that are presented in Proposition 7 are also
sufficient. In other words, we prove that if each connected component of G′′ is bipartite and also if the graph
G′′ has an orientation such that in each connected component, the in-out-degrees of vertices in different
parts (of that bipartite component), except dummy vertices, are different, then we can extend that partial
orientation to an in-out-proper orientation of G such that the maximum of absolute values of their in-out-
degrees is at most two. To prove that it is enough, we show the following proposition.

Proposition 8. Each path Pn = v1, v2, . . . , vn of length at least two (i.e. n ≥ 3) has the following four kinds
of in-out-proper orientations:
(1) The in-out-proper orientation D1 such that d±D(v1) = d±D(vn) = 1.
(2) The in-out-proper orientation D2 such that d±D(v1) = d±D(vn) = −1.
(3) The in-out-proper orientation D3 such that d±D(v1) = 1 and d±D(vn) = −1.
(4) The in-out-proper orientation D4 such that d±D(v1) = −1 and d±D(vn) = 1.

Proof. Let Pn = v1, v2, . . . , vn be a path of length at least two and D ∈ {D1, D2, D3, D4}. Orient the
edges v1v2 and vn−1vn such that the in-out-degree of v1 is d±D(v1) and the in-out-degree of vn is d±D(vn). Do
Algorithm 2 to orient the remaining edges.

Algorithm 2

1: for i = 2 to n− 2 do

2: if d±D(vi−1) = 0 and vi−1vi was oriented from vi−1 to vi then

3: Orient vivi+1 from vi+1 to vi
4: else

5: Orient vivi+1 from vi to vi+1

6: end if

7: end for

By Algorithm 2, there is no two consecutive vertices with the in-out-degree 0. On the other hand, it not
possible to have two consecutive vertices with the in-out-degree 2 or −2. Moreover, the in-out-degree of vn
is in {±1} and the in-out-degree of vn−1 is in {0,±2}. So D is an in-out-proper orientation. �

(Proof of Step 2:) To check whether G′′ has such an orientation we can use the previous mentioned integer
linear program with some modifications. In fact, for each dummy vertex v we just remove the corresponding
condition in (6) or (8), and then we solve the integer linear program.

(Proof of Step 3:) Having Propositions 6, and 8, and noting that there is a polynomial time algorithm to
check Proposition 6, we conclude that there is a polynomial time algorithm to decide whether in-out-proper
orientation number of a given subcubic graph is at most two. This completes the proof.

9

x1 x2 x3

v1 v2u1 u2

z1 z2

w

Figure 3: The gadget Ix.

Next, we prove that it is NP-complete to decide whether ←→χ (G) ≤ 1 for a given bipartite graph G with
maximum degree three.

Proof of Theorem 4. It was shown in [9] that the following variant of Not-All-Equal satisfying assignment
problem is NP-complete.

Problem: Cubic Monotone Not-All-Equal (2,3)-Sat.
Input: Set X of variables, collection C of clauses over X such that every clause c ∈ C has |c| ∈ {2, 3}, each
variable appears in exactly three clauses and there is no negation in the formula.
Question: Is there a truth assignment for X such that every clause in C has at least one true literal and
at least one false literal?

Our proof is a polynomial time reduction from Cubic Monotone Not-All-Equal (2,3)-Sat. Let Φ
be an instance with the set of variables X and the set of clauses C. We transform it to a bipartite graph GΦ

with maximum degree three in polynomial time such that ←→χ (GΦ) ≤ 1 if and only if Φ has a Not-All-Equal
truth assignment. We use the auxiliary gadget Ix which is shown in Fig. 3. Our construction consists of
three steps.
Step 1. For each variable x ∈ X put a copy of the gadget Ix which is shown in Fig. 3.
Step 2. For each clause c ∈ C put a vertex c and then for each variable x that appears in the clause c join
the vertex c to one of the vertices x1, x2, x3 of Ix such that in the resultant graph for each variable x ∈ X
in the gadget Ix the degrees of the variables x1, x2, x3 are two. Call the resultant graph HΦ.
Step 3. For each clause c = (x ∨ x′) ∈ C, without loss of generality assume that cx1, cx

′
1 ∈ E(HΦ). Merge

the three vertices c, x1, x
′
1 into a new vertex c′.

Call the resultant graph GΦ. The degree of every vertex in the graph GΦ is 1, 2 or 3 and the resultant
graph is bipartite. Let us now prove that←→χ (GΦ) ≤ 1 if and only if Φ has a Not-All-Equal truth assignment.

First, assume that ←→χ (GΦ) ≤ 1. We have the following properties.

Proposition 9. Consider the gadget Ix which is shown in Fig. 3. Let D be an orientation of Ix such
that the in-out-degree of each vertex is in {0,±1} and the endvertices of any edge in Ix, except three edges
incident with the vertices x1, x2, x3, have different in-out-degrees, then d±D(x1) = d±D(x2) = d±D(x3) = 1 or
d±D(x1) = d±D(x2) = d±D(x3) = −1.

Proof. Note that in the proof of this proposition the notation and colors that we refer are depicted in Fig.
3. In the orientation D the in-out-degree of each vertex is in {0,±1}. On the other hand, the degree of each
vertex is one or three, so the in-out-degree of each vertex is in {±1}. In orientation D the endvertices of
any edge, except three edges incident with the vertices x1, x2, x3, have different in-out-degrees. Thus, the
red vertices have the same in-out-degree and also the blue vertices have the same in-out-degree. Now, two
cases can be considered.
Case 1. The blue vertices have the in-out-degree 1. Then the red vertices have the in-out-degree −1. We

10

Type 1

Type 2

Figure 4: The two possible orientations of Ix.

have d±D(v1) = d±D(v2) = 1, so the edges v1u1, v2u1 were oriented form u1 to v1 and v2, respectively. The
in-out-degree of u1 is −1. Thus, the edge z1u1 was oriented from z1 to u1. The in-out-degree of z1 is 1
and thus the edge wz1was oriented from w to z1. We have the same situation for z2. Its in-out-degree
is 1 and the edge wz2 was oriented from w to z2. The vertex w is a red vertex and its in-out-degree is
−1. On the other hand, the edges wz1, wz2 were oriented from w to z1 and z2. Thus, the edge wx2 was
oriented from w to x2 and consequently d±D(x2) = 1. We have the same conclusion for x1 and x3. Thus,
d±D(x1) = d±D(x2) = d±D(x3) = 1.
Case 2. The blue vertices have the in-out-degree −1. Then the red vertices have the in-out-degree 1. Similar
to Case 1, we can show that d±D(x1) = d±D(x2) = d±D(x3) = −1. This completes the proof. �

Let D be an optimal in-out-proper orientation of GΦ. Now, we present a Not-All-Equal truth assignment
for the formula Φ. Let Γ : X → {true, false} be the assignment defined by Γ(xi) = true if the blue vertices in
Ix have the in-out-degree 1, and Γ(xi) = false if the blue vertices in Ix have the in-out-degree −1.

Next, we prove that Γ is a Not-All-Equal truth assignment for Φ. Let c = (x∨ y ∨ r) and without loss of
generality assume that cx1, cy1, cr1 ∈ E(GΦ). The degree of the vertex c is three, so d±D(c) ∈ {±1}. Thus,
at least one of the edges incident with c was oriented from c to the other endpoint. Note that the other
endpoint is one of the vertices x1, y1, r1. Also, at least one of the edges incident with c was oriented toward
c. On the other hand, the degree of vertices x1, y1, r1 are two, so d±D(x1) = d±D(y1) = d±D(r1) = 0. Thus,
true, false ∈ {Γ(x),Γ(y),Γ(r)}. Next, assume that c = (x∨ y). The degree of the vertex c′ (that corresponds
to the clause c in C) is two. So, d±D(c′) = 0. Thus, true, false ∈ {Γ(x),Γ(y)}.

Now, assume that there is a Not-All-Equal assignment Γ : X → {true, false} for Φ. For each variable
x ∈ X if Γ(x) = true then orient Ix like Type 2 in Fig. 4 and if Γ(x) = false then orient Ix like Type 1 in
Fig. 4. Also, for each clause c = (x ∨ y ∨ r) orient the edges incident with c such that the in-out-degree of
each neighbor of c is 0. Call the resultant orientation D. The function Γ is a Not-All-Equal assignment, so
D is an in-out-proper orientation such that the maximum of absolute values of their in-out-degrees is one.

11

This completes the proof.

6 Regular graphs

Next, we study the computational complexity of determining the in-out-proper orientation number of 4-
regular graphs.

Proof of Theorem 5. It was shown that it is NP-complete to determine whether the edge chromatic number
of a given 3-regular graph is three (see [14]). We reduce this problem to our problem in polynomial time.
For a given 3-regular graph G we construct a 4-regular graph H such that the edge chromatic number of G
is three if and only if ←→χ (H) ≤ 2.

For a given graphG with the set of edges e1, e2, . . . , en, let H be the line graph of G with the set of vertices
ve1 , ve2 , . . . , ven , such that veivej ∈ E(H) if and only if ei and ej have a common endvertex. First, assume
that the in-out-proper orientation number of H is two and let D be an optimal in-out-proper orientation.
The orientation D defines a proper vertex 3-coloring for the vertices of H using three colors 0,±2. Thus, G
has a proper edge 3-coloring.

Next, assume that the edge chromatic number of G is three and let f : E(G) → {1, 2, 3} be a proper
edge 3-coloring of G. Define the function h : V (H)→ {1, 2, 3} such that h(evi) = k if and only if f(ei) = k,
for each k = 1, 2, 3. Let K be the subset of edges of H such that for each edge veivej ∈ K we have
{h(vei), h(vej)} = {1, 3}. In the subgraph H \K the degree of each vertex is even. In fact the degree of each
vertex vei with h(vei) = 2 is four and also the degree of each vertex vei with h(vei) ∈ {1, 3} is two. So we can
orient the edges in H \K such that the in-degree of each vertex is equal to its out-degree. Next, for each edge
veivej ∈ K orient it from vei to vej if h(vei) = 1 and h(vej) = 3, otherwise orient it from vej to vei . Consider
the union of orientations for H \K and K and call the resultant orientation D. In D the in-out-degree of
each vertex vei with h(vei) = 1 (h(vei) = 2, h(vei) = 3, respectively) is −2 (0, 2, respectively). Thus, D is
an in-out-proper orientation such that the maximum of absolute values of their in-out-degree is two. This
completes the proof.

7 Conclusions and future research

In this work we studied the in-out-proper orientation number of graphs. We proved that for any graph G,
←→χ (G) ≤ ∆(G). We conjectured that there exists a constant number c such that for every planar graph G,
we have←→χ (G) ≤ c. Regarding this conjecture, we showed that for every tree T we have←→χ (T) ≤ 3 and this
bound is sharp. It is interesting to prove constant bounds for other families of planar graphs.

We also studied the in-out-proper orientation number of subcubic graphs. By using the properties of
totally unimodular matrices we proved that there is a polynomial time algorithm to determine whether
←→χ (G) ≤ 2, for a given graph G with maximum degree three. It is interesting to present a polynomial time
algorithm for other families of graphs.

It is also interesting to characterize all graphs G which satisfy −→χ (G) = ←→χ (G). It would be interesting
to attack this problem for the family of regular graphs.

12

8 Acknowledgments

The author would like to thank the anonymous referees for their useful comments which helped to improve
the presentation of this paper.

References

[1] A. Ahadi and A. Dehghan. The complexity of the proper orientation number. Inform. Process. Lett., 113(19-
21):799–803, 2013.

[2] A. Ahadi, A. Dehghan, and M. Saghafian. Is there any polynomial upper bound for the universal labeling of
graphs? J. Comb. Optim., 34(3):760–770, 2017.

[3] J. Ai, S. Gerke, G. Gutin, Y. Shi, and Z. Taoqiu. Proper orientation number of triangle-free bridgeless outerplanar
graphs. J. Graph Theory, 95(2):256–266, 2020.

[4] J. Araujo, N. Cohen, S. F. de Rezende, F. Havet, and P. F. S. Moura. On the proper orientation number of
bipartite graphs. Theoret. Comput. Sci., 566:59–75, 2015.

[5] J. Araujo, F. Havet, C. Linhares Sales, and A. Silva. Proper orientation of cacti. Theoret. Comput. Sci.,
639:14–25, 2016.

[6] J. Araújo, C. L. Sales, I. Sau, and A. Silva. Weighted proper orientations of trees and graphs of bounded
treewidth. Theoret. Comput. Sci., 771:39–48, 2019.

[7] M. Borowiecki, J. Grytczuk, and M. Piĺsniak. Coloring chip configurations on graphs and digraphs. Inform.

Process. Lett., 112(1-2):1–4, 2012.

[8] A. Dehghan and F. Havet. On the semi-proper orientations of graphs. Discrete Appl. Math., In press, 2020.

[9] A. Dehghan, M.-R. Sadeghi, and A. Ahadi. On the complexity of deciding whether the regular number is at
most two. Graphs Combin., 31(5):1359–1365, 2015.

[10] R. Gu, H. Lei, Y Ma, and Z. Taoqiu. Note on (semi-)proper orientation of some triangulated planar graphs.
Applied Mathematics and Computation, 392 (2021) 125723.

[11] F. Knox, N. Matsumoto, S. G. Hermosillo de la Maza, B. Mohar, and C. Linhares Sales. Proper orientations of
planar bipartite graphs. Graphs Combin., 33(5):1189–1194, 2017.

[12] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication.

[13] K. Noguchi. Proper 3-orientations of bipartite planar graphs with minimum degree at least 3. Discrete Appl.

Math., 279:195–197, 2020.

[14] D. B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, 1996.

13

	1 Introduction
	2 Definitions
	3 General bounds
	4 Trees
	5 Subcubic graphs
	6 Regular graphs
	7 Conclusions and future research
	8 Acknowledgments

