On the In-Out-Proper Orientations of Graphs

Ali Dehghan ${ }^{1}$
${ }^{1}$ Systems and Computer Engineering Department, Carleton University, Ottawa, Canada

June 28, 2021

Abstract

An orientation of a graph G is in-out-proper if any two adjacent vertices have different in-out-degrees, where the in-out-degree of each vertex is equal to the in-degree minus the out-degree of that vertex. The in-out-proper orientation number of a graph G, denoted by $\overleftrightarrow{\chi}(G)$, is $\min _{D \in \Gamma} \max _{v \in V(G)}\left|d_{D}^{ \pm}(v)\right|$, where Γ is the set of in-out-proper orientations of G and $d_{D}^{ \pm}(v)$ is the in-out-degree of the vertex v in the orientation D. Borowiecki et al. proved that the in-out-proper orientation number is well-defined for any graph G [Inform. Process. Lett., $112(1-2): 1-4,2012]$. So we have $\overleftrightarrow{\chi}(G) \leq \Delta(G)$, where $\Delta(G)$ is the maximum degree of vertices in G. We conjecture that there exists a constant number c such that for every planar graph G, we have $\overleftrightarrow{\chi}(G) \leq c$. Towards this speculation, we show that for every tree T we have $\overleftrightarrow{\chi}(T) \leq 3$ and this bound is sharp. Next, we study the in-out-proper orientation number of subcubic graphs. By using the properties of totally unimodular matrices we show that there is a polynomial time algorithm to determine whether $\overleftrightarrow{\chi}(G) \leq 2$, for a given graph G with maximum degree three. On the other hand, we show that it is NP-complete to decide whether $\overleftrightarrow{\chi}(G) \leq 1$ for a given bipartite graph G with maximum degree three. Finally, we study the in-out-proper orientation number of regular graphs.

Key words: Proper orientation; In-out-proper orientation; In-out-proper orientation number; In-out-degree; Subcubic graphs.

1 Introduction

Let G be a graph and D be an orientation of it. For every vertex v of G, we denote the in-degree (out-degree) of v in the orientation D by $d_{D}^{-}(v)\left(d_{D}^{+}(v)\right.$, respectively). An orientation of a graph G is called proper if any two adjacent vertices have different in-degrees 11. The proper orientation number of a graph G, denoted by $\vec{\chi}(G)$, is the minimum of the maximum in-degree taken over all proper orientations of the graph G. A proper orientation D of G can be used to form a proper vertex coloring of G by assigning every vertex v of G the color $d_{D}^{-}(v)$ 11. So, we have

$$
\begin{equation*}
\chi(G)-1 \leq \vec{\chi}(G) \leq \Delta(G) . \tag{1}
\end{equation*}
$$

The proper orientation number of graphs has been studied by several authors, for instance see [1, 2, 3, 3, 4. 5. 6, 8, 10, 11, 13]. In [4, Araujo et al. asked whether the proper orientation number of a planar graph is bounded. Toward this question, it was shown that if T is a tree, then $\vec{\chi}(T) \leq 4[4$. Also, it was shown that every cactus admits a proper orientation with maximum in-degree at most 7 [5]. Furthermore, it was proved that every bipartite planar graph with minimum degree at least 3 has proper orientation number at most 3 [13].

Let D be an orientation for a given graph G. The in-out-degree of the vertex v is defined as $d_{D}^{ \pm}(v)=$ $d_{D}^{-}(v)-d_{D}^{+}(v)$. Note that for a given graph G and orientation D, for each vertex v we have

$$
\begin{equation*}
-\Delta(G) \leq d_{D}^{ \pm}(v) \leq \Delta(G) \tag{2}
\end{equation*}
$$

Motivated by the proper orientations of graphs we investigate the in-out-proper orientations. An orientation of a graph G is in-out-proper if any two adjacent vertices have different in-out-degrees. The in-out-proper orientation number of a graph G, denoted by $\overleftrightarrow{\chi}(G)$, is $\min _{D \in \Gamma} \max _{v \in V(G)}\left|d_{D}^{ \pm}(v)\right|$, where Γ is the set of in-out-proper orientations of G and $d_{D}^{ \pm}(v)$ is the in-out-degree of the vertex v in the orientation D. For a given graph G, we say that an in-out-proper orientation D is optimal if the maximum of the absolute values of their in-out-degrees is equal to $\overleftrightarrow{\chi}(G)$.

It is interesting to mention that in-out-proper orientation relates to the flow. In more details, an in-outproper orientation of a graph G can be thought as a 'flow' of G that does not satisfy Kirchhoff's Current Law. Borowiecki et al. proved that in-out-proper orientation number is well-defined for any graph G [7].

Theorem 1. 77] The in-out-proper orientation number is well-defined for any graph G.
By Theorem 1 and noting that for a given graph G every in-out-proper orientation defines a proper vertex coloring for G, we have

$$
\begin{equation*}
\left\lceil\frac{\chi(G)-1}{2}\right\rceil \leq \overleftrightarrow{\chi}(G) \leq \Delta(G) \tag{3}
\end{equation*}
$$

Example 1. Let G be a cycle. The degree of each vertex is two, so in each in-out-proper orientation of G, the in-out-degree of each vertex is $-2,+2$, or 0 . The graph G has at least two adjacent vertices, so $\overleftrightarrow{\chi}(G) \geq 2$. On the other hand, by Theorem $1, \overleftrightarrow{\chi}(G) \leq 2$. Consequently, for every cycle C_{n} we have $\overleftrightarrow{\chi}(G)=2$

Araujo et al. asked whether the proper orientation number of a planar graph is bounded. We pose the following conjecture for the in-out-proper orientation number of planar graphs.
Conjecture 1. There is a constant number c such that for every planar graph G, we have $\overleftrightarrow{\chi}(G) \leq c$.
Towards Conjecture we study the in-out-proper orientation number of trees and show that for every tree T we have $\overleftrightarrow{\chi}(T) \leq 3$.

Theorem 2. For every tree T we have $\overleftrightarrow{\chi}(T) \leq 3$ and this bound is sharp.

A graph is called subcubic if it has maximum degree at most three. Let G be a subcubic graph. By Theorem 1 we have $\overleftrightarrow{\chi}(G) \leq 3$. By using the properties of totally unimodular matrices we show that there is a polynomial time algorithm to determine whether $\overleftrightarrow{\chi}(G) \leq 2$.
Theorem 3. There is a polynomial time algorithm to determine whether $\overleftrightarrow{\chi}(G) \leq 2$, for a given graph G with maximum degree three.

On the other hand, we show that it is NP-complete to decide whether $\overleftrightarrow{\chi}(G) \leq 1$ for a given bipartite graph G with maximum degree three.

Theorem 4. It is NP-complete to decide whether $\overleftrightarrow{\chi}(G) \leq 1$ for a given bipartite graph G with maximum degree three.

Next, we study the computational complexity of determining the the in-out-proper orientation number of 4-regular graphs. Note that for any 4-regular graph G we have $2 \leq \overleftrightarrow{\chi}(G) \leq 4$.

Theorem 5. It is NP-complete to decide whether $\overleftrightarrow{\chi}(G) \leq 2$ for a given 4-regular graph G.
Let G be a 4-regular graph with $\overleftrightarrow{\chi}(G) \leq 3$ and suppose that D is an optimal in-out-proper orientation. In G the degree of each vertex is four, so the in-out-degree of each vertex is in $\{0, \pm 2\}$. Thus, we have $\overleftrightarrow{\chi}(G) \leq 3$ if and only if $\overleftrightarrow{\chi}(G) \leq 2$. Thus, by Theorem 5, we have the following corollary
Corollary 1. It is NP-complete to decide whether $\overleftrightarrow{\chi}(G) \leq 3$ for a given 4-regular graph G.

The organization of the rest of the paper is as follows: In Section 2, we present some definitions and notations. This is followed in Section 3 by some bounds for the in-out-proper orientation number of graphs. Next, in Section 4, we prove that the in-out-proper orientation number of each tree is at most three. In Section [5] we focus on the in-out-proper orientation number of subcubic graphs. Section 6 is devoted to the computational complexity of regular graphs. The paper is concluded with some remarks in Section 7 .

2 Definitions

In this work, all graphs are finite and simple (i.e. without loops and multiple edges). We follow 14 for terminology and notation where they are not defined here. If G is a graph, then $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For every $v \in V(G), d_{G}(v)$ denotes the degree of v in the graph G. Also, $\Delta(G)$ denotes the maximum degree of G. The distance between two vertices v and u, denoted by distance (v, u), is the length of a shortest path between them.

An orientation D of a graph G is a digraph obtained from the graph G by replacing each edge by just one of the two possible arcs with the same endvertices. For every vertex v, the in-degree (the out-degree) of v in the orientation D, denoted by $d_{D}^{-}(v)\left(d_{D}^{+}(v)\right)$, is the number of arcs with head (tail) v in D. Also, the in-out-degree of v, denoted by $d_{D}^{ \pm}(v)$, is defined as $d_{D}^{-}(v)-d_{D}^{+}(v)$. An orientation of a graph G is in-outproper if any two adjacent vertices have different in-out-degrees. The in-out-proper orientation number of a graph G, denoted by $\overleftrightarrow{\chi}(G)$, is $\min _{D \in \Gamma} \max _{v \in V(G)}\left|d_{D}^{ \pm}(v)\right|$, where Γ is the set of in-out-proper orientations of G.

Let G be a graph. A proper vertex t-coloring of G is a function $f: V(G) \longrightarrow\{1, \ldots, t\}$ such that if $u, v \in V(G)$ are adjacent, then $f(u)$ and $f(v)$ are different. The smallest integer t such that G has a proper vertex t-coloring is called the chromatic number of G and denoted by $\chi(G)$. Also, a proper edge t-coloring of G is a function $f: E(G) \longrightarrow\{1, \ldots, t\}$ such that if $e, e^{\prime} \in E(G)$ have a same endvertex, then $f(e)$ and $f\left(e^{\prime}\right)$ are different. The smallest integer t such that G has a proper edge t-coloring is called the edge chromatic number (or chromatic index) of G and denoted by $\chi^{\prime}(G)$.

For a graph $G=(V, E)$, the line graph of G is a graph with the set of vertices $E(G)$ and two vertices are adjacent if and only if their corresponding edges share a common endpoint in G.

A matrix A is totally unimodular if every square submatrix of A has determinant 1,0 or -1 . The importance of totally unimodular matrices stems from the fact that when an integer linear program has all-integer coefficients and the matrix of coefficients is totally unimodular, then the optimal solution of its relaxation is integral. Therefore, it can be obtained in polynomial time [12].

3 General bounds

For every graph G we have $\overleftrightarrow{\chi}(G) \leq \Delta(G)$. It is good to mention that the inequality is tight for any complete graph. For any n, each vertex of K_{n} can have only in-out-degree $n-1, n-3, \ldots,-(n-3),-(n-1)$. The number of these values is exactly n. Thus, the in-out-proper orientation number of K_{n} is at least $n-1=\Delta\left(K_{n}\right)$.

Next, we present some observation for the in-out-proper orientation number of graphs.
Lemma 1. Let G be a graph with at least one edge and assume that D is an in-out-proper orientation of G. Then in the orientation D there is at least one vertex with positive in-out-degree and at least one vertex with negative in-out-degree.

Proof. Let G be a graph with at least one edge and assume that D is an in-out-proper orientation of G. First, we show that in D there is a vertex with positive in-out-degree. To the contrary assume that the in-out-degree of each vertex is negative or zero. So, we have

$$
\begin{equation*}
\sum_{v \in V(G)} d_{D}^{ \pm}(v) \leq 0 \tag{4}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\sum_{v \in V(G)} d_{D}^{-}(v)=\sum_{v \in V(G)} d_{D}^{+}(v) \tag{5}
\end{equation*}
$$

Thus, by (4) and (5), we conclude that for every vertex v we have $d_{D}^{ \pm}(v)=0$. The graph G has at least one edge, but in D the in-out-degrees of all vertices are zero (so, it is not a proper vertex coloring). Thus D is not an in-out-proper orientation for G. This is a contradiction. So, there is a vertex with positive in-out-degree. Similarly, we can show that there is a vertex with negative in-out-degree.

4 Trees

Next, we study the in-out-proper orientation number of trees and show that for every tree T we have $\overleftrightarrow{\chi}(T) \leq 3$. Also, we show that this bound is sharp.

Proof of Theorem 园, First we show that for each tree T we have $\overleftrightarrow{\chi}(T) \leq 3$. Let T be a tree with n vertices and v be a vertex of T. Sort the vertices of T according to their distance from v and let $v=v_{1}, v_{2}, \ldots, v_{n}$ be that sorted set. For each vertex u, the father of u, denoted by $f(u)$, is the unique vertex that is adjacent and closer to the root v. Perform the Algorithm 1 and call the resultant orientation D.

We have the following properties for the orientation D that we obtained from Algorithm 1
Proposition 1. Let u be a vertex with $d(u) \geq 3$. If u has an even distance from the root v_{1}, then $d_{D}^{ \pm}(u) \in$ $\{1,2,3\}$. Also, if u has an odd distance from the root v_{1}, then $d_{D}^{ \pm}(u) \in\{-1,-2,-3\}$.

Proof. Let u be a vertex with $d(u) \geq 3$. If u has an even distance from the root v_{1}, then at Lines $2-3,5-6$, and 8-9, we orient the edges incident with u such that the in-out-degree of u is in $\{1,2,3\}$. There is only one other part of the algorithm that we may change the in-out-degree of u. That part is Lines 35-36. In that case the in-out-degree of u is one and by reorienting one of the edges that is incident with u we increase the in-out-degree of u by two. Similarly, if u has an odd distance from the root v, then at Lines 23-24, 26-27, and 17-18, we orient the edges incident with u such that the in-out-degree of u is in $\{-1,-2,-3\}$.

Proposition 2. Let u be a vertex with $d(u)=2$. If u has an even distance from the root v_{1}, then $d_{D}^{ \pm}(u) \in$ $\{0,1,2\}$. Also, if u has an odd distance from the root v_{1}, then $d_{D}^{ \pm}(u) \in\{0,-1,-2\}$.

Proof. Let u be a vertex with $d(u)=2$. If u has an even distance from the root v_{1}, then at Lines 2-3, 5-6, and $10-14$, we orient the edges incident with u such that the in-out-degree of u is in $\{0,1,2\}$. There is only one other part of the algorithm that we may change the in-out-degree of u. That part is Lines 31-32. In that case the in-out-degree of u is zero and by reorienting one of the edges that is incident with u we increase the

```
Algorithm 1
    for \(i=1\) to \(n\) do
        if \(i=1\) then
            Orient the edges incident with \(v_{1}\) such that if \(d\left(v_{1}\right)\) is an even number then \(d_{D}^{ \pm}\left(v_{1}\right)=2\), and if \(d\left(v_{1}\right)\) is an
    odd number then \(d_{D}^{ \pm}\left(v_{1}\right)=1\).
        else if distance \(\left(v_{i}, v_{1}\right)\) is an even number then
            if the edge \(v_{i} f\left(v_{i}\right)\) was oriented from \(f\left(v_{i}\right)\) to \(v_{i}\) then
                Orient the set of edges \(\left\{v_{i} v_{j} \mid j>i\right\}\) such that if \(d\left(v_{i}\right)\) is an odd number then \(d_{D}^{ \pm}\left(v_{i}\right)=1\), and if \(d\left(v_{i}\right)\)
    is an even number then \(d_{D}^{ \pm}\left(v_{i}\right)=2\).
            else if the edge \(v_{i} f\left(v_{i}\right)\) was oriented from \(v_{i}\) to \(f\left(v_{i}\right)\) then
                    if \(d\left(v_{i}\right) \geq 3\) then
                    Orient the set of edges \(\left\{v_{i} v_{j} \mid j>i\right\}\) such that \(d_{D}^{ \pm}\left(v_{i}\right) \in\{1,2\}\)
                    else if \(d\left(v_{i}\right)=2\) then
                    if \(d_{D}^{ \pm}\left(f\left(v_{i}\right)\right) \neq 0\) then
                        Orient the edge \(\left\{v_{i} v_{j} \mid j>i\right\}\) such that \(d_{D}^{ \pm}\left(v_{i}\right)=0\)
                            else if \(d_{D}^{ \pm}\left(f\left(v_{i}\right)\right)=0\) then
                            Orient the set of edges incident with \(v_{i}\) such that \(d_{D}^{ \pm}\left(v_{i}\right)=2\) (note that we reorient the edge
    \(v_{i} f\left(v_{i}\right)\).
                    end if
                else if \(d\left(v_{i}\right)=1\) then
                    if \(d_{D}^{ \pm}\left(f\left(v_{i}\right)\right)=-1\) then
                            Reorient the edge \(v_{i} f\left(v_{i}\right)\) from \(f\left(v_{i}\right)\) to \(v_{i}\)
                    end if
                end if
            end if
        else if distance \(\left(v_{i}, v_{1}\right)\) is an odd number then
            if the edge \(v_{i} f\left(v_{i}\right)\) was oriented from \(v_{i}\) to \(f\left(v_{i}\right)\) then
                Orient the set of edges \(\left\{v_{i} v_{j} \mid j>i\right\}\) such that if \(d\left(v_{i}\right)\) is an odd number then \(d_{D}^{ \pm}\left(v_{i}\right)=-1\), and if \(d\left(v_{i}\right)\)
    is an even number then \(d_{D}^{ \pm}\left(v_{i}\right)=-2\).
            else if the edge \(v_{i} f\left(v_{i}\right)\) was oriented from \(f\left(v_{i}\right)\) to \(v_{i}\) then
                    if \(d\left(v_{i}\right) \geq 3\) then
                    Orient the set of edges \(\left\{v_{i} v_{j} \mid j>i\right\}\) such that \(d_{D}^{ \pm}\left(v_{i}\right) \in\{-1,-2\}\)
            else if \(d\left(v_{i}\right)=2\) then
                    if \(d_{D}^{ \pm}\left(f\left(v_{i}\right)\right) \neq 0\) then
                            Orient the edge \(\left\{v_{i} v_{j} \mid j>i\right\}\) such that \(d_{D}^{ \pm}\left(v_{i}\right)=0\)
                    else if \(d_{D}^{ \pm}\left(f\left(v_{i}\right)\right)=0\) then
                            Orient the set of edges incident with \(v_{i}\) such that \(d_{D}^{ \pm}\left(v_{i}\right)=-2\) (note that we reorient the edge
    \(v_{i} f\left(v_{i}\right)\).
                    end if
                else if \(d\left(v_{i}\right)=1\) then
                    if \(d_{D}^{ \pm}\left(f\left(v_{i}\right)\right)=1\) then
                    Reorient the edge \(v_{i} f\left(v_{i}\right)\) from \(v_{i}\) to \(f\left(v_{i}\right)\)
                    end if
                end if
            end if
        end if
    end for
```

in-out-degree of u by two. So, the final in-out-degree of u is in $\{0,1,2\}$. Similarly, if u has an odd distance from the root v_{1}, then at Lines 23-24, 28-32, and 13-14, we orient the edges incident with u such that the in-out-degree of u is in $\{0,-1,-2\}$.

Proposition 3. Let u and u^{\prime} be two adjacent vertices such that $d(u)=d\left(u^{\prime}\right)=2$. Then $d_{D}^{ \pm}(u) \neq d_{D}^{ \pm}\left(u^{\prime}\right)$.
Proof. By Lines 10-14 and Lines 28-32, the algorithm does not produce any two adjacent vertices u, u^{\prime} such that $d(u)=d\left(u^{\prime}\right)=2$ and $d_{D}^{ \pm}(u)=d_{D}^{ \pm}\left(u^{\prime}\right)=0$. Thus, by Proposition 2, for any two adjacent vertices u, u^{\prime} with $d(u)=d\left(u^{\prime}\right)=2$ we have $d_{D}^{ \pm}(u) \neq d_{D}^{ \pm}\left(u^{\prime}\right)$.

Proposition 4. Let u be a vertex with $d(u)=1$. Then $d_{D}^{ \pm}(u) \in\{-1,+1\}$ and $d_{D}^{ \pm}(u) \neq d_{D}^{ \pm}(f(u))$.
Proof. Let u be a vertex with $d(u)=1$. If u has an even distance from the root v_{1}, then at Lines $2-3$, 5-6 and 16-19, we orient the edge incident with u such that the in-out-degree of u is in $\{-1,+1\}$ and also if it is -1 then $d_{D}^{ \pm}(u) \neq d_{D}^{ \pm}(f(u))$. By Propositions 1, 2, we also conclude that if the in-out-degree of u is 1 , then $d_{D}^{ \pm}(u) \neq d_{D}^{ \pm}(f(u))$. Similarly, if u has an odd distance from the root v_{1}, then at Lines 23-24, and 34-37, we orient the edge incident with u such that the in-out-degree of u is in $\{-1,+1\}$ and if it is 1, then $d_{D}^{ \pm}(u) \neq d_{D}^{ \pm}(f(u))$. By Propositions 11 2 we conclude that if the in-out-degree of u is -1 , then $d_{D}^{ \pm}(u) \neq d_{D}^{ \pm}(f(u))$. This completes the proof.

By Propositions 1, 2, 3 and 4, for every vertex u, we have $d_{D}^{ \pm}(u) \in\{ \pm 3, \pm 2, \pm 1,0\}$ and for every two adjacent vertices u, u^{\prime}, we have $d_{D}^{ \pm}(u) \neq d_{D}^{ \pm}\left(u^{\prime}\right)$. Thus D is an in-out-proper orientation such that the maximum of absolute values of their in-out-degrees is at most three.

Finally, we show that there is a tree T such that $\overleftrightarrow{\chi}(T)=3$. Consider the tree T with the set of vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and set of edges $v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}$. We have $d\left(v_{2}\right)=d\left(v_{3}\right)=d\left(v_{4}\right)=1$, so in any orientation of T, their in-out-degrees are in $\{ \pm 1\}$. On the other hand, the degree of v_{1} is three, so its in-out-degree is in $\{ \pm 1, \pm 3\}$. To the contrary assume that $\overleftrightarrow{\chi}(T)<3$, and let D be an in-out-proper orientation of T such that $d_{D}^{ \pm}\left(v_{1}\right) \in\{ \pm 1\}$. The in-out-degree of at least one of the vertices v_{2}, v_{3}, v_{4} is 1 (otherwise $d_{D}^{ \pm}\left(v_{1}\right) \notin\{ \pm 1\}$) and also the in-out-degree of at least one of the vertices v_{2}, v_{3}, v_{4} is -1 . So, D has two adjacent vertices with the same in-out-degree Thus, it is not an in-out-proper orientation. This is a contradiction. So, we conclude that $\overleftrightarrow{\chi}(T)=3$.

5 Subcubic graphs

In this section we focus on subcubic graphs. Let G be a subcubic graph. By Theorem 1 , we have $\overleftrightarrow{\chi}(G) \leq 3$. Next, we show that there is a polynomial time algorithm to determine whether $\overleftrightarrow{\chi}(G) \leq 2$. On the other hand, it is NP-complete to decide whether $\overleftrightarrow{\chi}(G) \leq 1$ for a given bipartite graph G with maximum degree three.

Proof of Theorem [3. Let G be a cubic graph. If D is an optimal in-out-proper orientation, then for any vertex v of degree two we have $d_{D}^{ \pm}(v) \in\{0, \pm 2\}$ and also for any vertex v of degree one or three we have $d_{D}^{ \pm}(v) \in\{ \pm 1\}$. First, we investigate the subcubic graphs without degree two vertices. Then, we present a polynomial time algorithm for subcubic graphs. Let G be a graph such that the degree of each vertex is one or three and without loss of generality assume that G is connected. Also, suppose that $\overleftrightarrow{\chi}(G) \leq 2$ and D is an optimal in-out-proper orientation of G. Since $d_{D}^{ \pm}(v) \in\{ \pm 1\}$ for each vertex v and the in-out-degrees form a proper vertex coloring of G, G should be bipartite.

Proposition 5. Let G be a graph such that the degree of each vertex is one or three. If $\overleftrightarrow{\chi}(G) \leq 2$, then G is bipartite.

Figure 1: The graph G and its corresponding graph H.

Consequently, at step one we should check that whether G is bipartite. Next, at step two we want to determine whether it is possible to orient the edges of G such that in-out-degrees of vertices of one partite set of G are 1 and in-out-degrees of vertices of the other partite set of G are -1 .

Proposition 6. Let $G=(X \cup Y, E)$ be a bipartite graph such that the degree of each vertex is one or three. If $\overleftrightarrow{\chi}(G) \leq 2$, then there is an orientation for the edges of G such that the in-out-degree of each vertex is 1 or -1 , and the in-out-degrees of all vertices in X are the same, and so are those in Y.

It is well-known that there is a polynomial time algorithm to decide whether a given graph is bipartite [14]. Next, we present a polynomial time algorithm for step two. Let $G=(X \cup Y, E(G))$ be a bipartite graph such that the degree of each vertex is one or three. Without loss of generality assume that $X=$ $x_{1}, x_{2}, \ldots, x_{n}$ and $Y=y_{1}, y_{2}, \ldots, y_{n^{\prime}}$. From the graph G we construct a bipartite graph H with vertex set $V(H)=\left(U_{X} \cup U_{Y}\right) \cup U_{0}$ and edge set $E(H)=W$. Put $U_{X}=X$, and $U_{Y}=Y$. Also, for every edge $x_{i} y_{j} \in E(G)$, put $x_{i, j}$ in U_{0} and the edges $w_{i, j}=x_{i} x_{i, j}, w_{i, j}^{\prime}=x_{i, j} y_{j}$ in W. See Fig. 1 .

Consider the following integer linear program for the graph H.

$$
\begin{array}{lll}
\text { Maximize } & 1 & \\
\text { subject to } & \sum_{x_{i} y_{j} \in E(G)} w_{i, j}=1 & \forall x_{i} \in U_{X} \text { s.t. } d_{G}\left(x_{i}\right)=1 \\
& \sum_{x_{i} y_{j} \in E(G)} w_{i, j}=2 & \forall x_{i} \in U_{X} \text { s.t. } d_{G}\left(x_{i}\right)=3 \\
& \sum_{x_{i} y_{j} \in E(G)} w_{i, j}^{\prime}=0 & \forall y_{j} \in U_{Y} \text { s.t. } d_{G}\left(y_{j}\right)=1 \\
& \sum_{x_{i} y_{j} \in E(G)} w_{i, j}^{\prime}=1 & \forall y_{j} \in U_{Y} \text { s.t. } d_{G}\left(y_{j}\right)=3 \\
& w_{i, j}+w_{i, j}^{\prime}=1 & \forall x_{i, j} \in U_{0} \\
& w_{i, j}, w_{i, j}^{\prime} \in\{0,1\} & \forall x_{i} y_{j} \in E(G) \tag{11}
\end{array}
$$

Note that we can write the above integer linear program in the following canonical form:

$$
\begin{array}{ll}
\text { Maximize } & 1 \\
\text { subject to } & A \mathbf{x}=\mathbf{b} \\
& . \mathbf{x} \in\{0,1\}^{|E(H)|} \tag{13}
\end{array}
$$

where A is the incidence matrix of $H, \mathbf{x}^{T}=\left(w_{i_{1}, j_{1}}, \ldots, w_{i_{k}, j_{k}}^{\prime}\right)$, and $\mathbf{b} \in\{0,1,2\}^{|V(H)|}$. For instance, for the graph H that was shown in Fig. [1 we have $\mathbf{x}^{T}=\left(w_{1,1}, w_{1,1}^{\prime}, w_{1,2}, w_{1,2}^{\prime}, w_{1,3}, w_{1,3}^{\prime}\right), \mathbf{b}=(2,0,0,0,1,1,1)$ and A is
$\left.\begin{array}{c}x_{1} \\ x_{1} \\ y_{1} \\ y_{2} \\ y_{3} \\ x_{1,1} \\ x_{1,2} \\ x_{1,3}\end{array} \begin{array}{cccccc}w_{1,1} & w_{1,1}^{\prime} & w_{1,2} & w_{1,2}^{\prime} & w_{1,3} & w_{1,3}^{\prime} \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}\right)$

For each edge $x_{i} y_{j} \in E(G)$ in (11), we consider two variables $w_{i, j}, w_{i, j}^{\prime}$ such that $w_{i, j}, w_{i, j}^{\prime} \in\{0,1\}$. On the other hand, in (10), we have $w_{i, j}+w_{i, j}^{\prime}=1$, so the value of exactly one of these variables is one and the value of the other variable is zero. We consider the values of $w_{i, j}, w_{i, j}^{\prime}$ as an orientation for the edge $x_{i} y_{j}$ in G such that it is oriented from y_{j} to x_{i} if and only if $w_{i, j}=1$. So, the values of the variables correspond to an orientation for the graph G. Call that orientation D. By (6) and (7), we ensure that in D the in-out-degree of each vertex in X is 1 . Also, by (8) and (9), the in-out-degree of each vertex in Y is -1 . Consequently, the above integer linear program is feasible if and only if the graph G has an in-out-proper orientation such that the in-out-degree of each vertex in X is 1 and the in-out-degree of each vertex in Y is -1 .

When an integer linear program has all-integer coefficients and the matrix of coefficients is totally unimodular, then the optimal solution of its relaxation is integral. Therefore, it can be obtained in polynomial time 12]. On the other hand, it is shown in [12], Corollary 2.9 in Page 544] that every incidence matrix of a bipartite graph is totally unimodular. So, in our integer linear program the matrix of coefficients is totally unimodular. Consequently, there is a polynomial time algorithm to determine whether the above-mentioned integer linear program is feasible.

Note that there is an orientation of the edges of G such that the in-out-degree of each vertex in X is -1 and the in-out-degree of each vertex in Y is 1 if and only if there is an orientation of the edges of G such that the in-out-degree of each vertex in X is 1 and the in-out-degree of each vertex in Y is -1 (by considering the reverse of the given orientation). Consequently, there is a polynomial time algorithm to determine whether the in-out-proper orientation number of given graph G with degree set $\{1,3\}$ is at most two.

Next, we consider the set of subcubic graphs. Let G be a subcubic graph. If D is an optimal in-out-proper orientation, then for any vertex v of degree two we have $d_{D}^{ \pm}(v) \in\{0, \pm 2\}$ and also for any vertex v of degree one or three we have $d_{D}^{ \pm}(v) \in\{ \pm 1\}$.

Remove all vertices of degree two from the graph G and call the resultant graph G^{\prime}. For each vertex v in G^{\prime} if $d_{G}(v) \neq d_{G^{\prime}}(v)$, then put $d_{G}(v)-d_{G^{\prime}}(v)$ isolated vertices and join them to v (we call these new vertices dummy vertices). Call the resultant graph $G^{\prime \prime}$. Note that in $G^{\prime \prime}$ the degree of each vertex is one or three. See Fig. 2,

Assume that $\overleftrightarrow{\chi}(G) \leq 2$. next, we present some necessary conditions for $G^{\prime \prime}$.
Proposition 7. Let $C_{1}, C_{2}, \ldots, C_{k}$ be all the connected components of $G^{\prime \prime}$. For any $i \in\{1,2, \ldots, k\}$, (C_{i} is bipartite and) there exists an orientation D_{i} of C_{i} satisfying
(a) every vertex of C_{i} has the in-out-degree 1 or -1 , and
(b) for any uv $\in E(G) \cap E\left(G^{\prime \prime}\right), d_{D_{i}}^{ \pm}(u) \neq d_{D_{i}}^{ \pm}(v)$.

Proof. By Proposition 5 and Proposition 6 the proof is clear.

In order to complete the proof we do the following steps:

Figure 2: The graph G and its corresponding graph $G^{\prime \prime}$. In the graph $G^{\prime \prime}$ the degree of each vertex is 1 or 3 and the set of blue vertices are dummy vertices.

Step 1. Proving that the condition in Proposition 7 is a necessary and sufficient one for $\overleftrightarrow{\chi}(G) \leq 2$.
Step 2. Showing that the condition in Proposition 7 can be checked in polynomial time.
Step 3. Concluding that Theorem 3 is true by Step 1 and Step 2.
(Proof of Step 1:) We show that the necessary conditions that are presented in Proposition 7 are also sufficient. In other words, we prove that if each connected component of $G^{\prime \prime}$ is bipartite and also if the graph $G^{\prime \prime}$ has an orientation such that in each connected component, the in-out-degrees of vertices in different parts (of that bipartite component), except dummy vertices, are different, then we can extend that partial orientation to an in-out-proper orientation of G such that the maximum of absolute values of their in-outdegrees is at most two. To prove that it is enough, we show the following proposition.

Proposition 8. Each path $P_{n}=v_{1}, v_{2}, \ldots, v_{n}$ of length at least two (i.e. $n \geq 3$) has the following four kinds of in-out-proper orientations:
(1) The in-out-proper orientation D_{1} such that $d_{D}^{ \pm}\left(v_{1}\right)=d_{D}^{ \pm}\left(v_{n}\right)=1$.
(2) The in-out-proper orientation D_{2} such that $d_{D}^{ \pm}\left(v_{1}\right)=d_{D}^{ \pm}\left(v_{n}\right)=-1$.
(3) The in-out-proper orientation D_{3} such that $d_{D}^{ \pm}\left(v_{1}\right)=1$ and $d_{D}^{ \pm}\left(v_{n}\right)=-1$.
(4) The in-out-proper orientation D_{4} such that $d_{D}^{ \pm}\left(v_{1}\right)=-1$ and $d_{D}^{ \pm}\left(v_{n}\right)=1$.

Proof. Let $P_{n}=v_{1}, v_{2}, \ldots, v_{n}$ be a path of length at least two and $D \in\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$. Orient the edges $v_{1} v_{2}$ and $v_{n-1} v_{n}$ such that the in-out-degree of v_{1} is $d_{D}^{ \pm}\left(v_{1}\right)$ and the in-out-degree of v_{n} is $d_{D}^{ \pm}\left(v_{n}\right)$. Do Algorithm 2 to orient the remaining edges.

```
Algorithm 2
    for \(i=2\) to \(n-2\) do
        if \(d_{D}^{ \pm}\left(v_{i-1}\right)=0\) and \(v_{i-1} v_{i}\) was oriented from \(v_{i-1}\) to \(v_{i}\) then
            Orient \(v_{i} v_{i+1}\) from \(v_{i+1}\) to \(v_{i}\)
        else
            Orient \(v_{i} v_{i+1}\) from \(v_{i}\) to \(v_{i+1}\)
        end if
    end for
```

By Algorithm 2 there is no two consecutive vertices with the in-out-degree 0 . On the other hand, it not possible to have two consecutive vertices with the in-out-degree 2 or -2 . Moreover, the in-out-degree of v_{n} is in $\{ \pm 1\}$ and the in-out-degree of v_{n-1} is in $\{0, \pm 2\}$. So D is an in-out-proper orientation.
(Proof of Step 2:) To check whether $G^{\prime \prime}$ has such an orientation we can use the previous mentioned integer linear program with some modifications. In fact, for each dummy vertex v we just remove the corresponding condition in (6) or (8), and then we solve the integer linear program.
(Proof of Step 3:) Having Propositions 6, and 8, and noting that there is a polynomial time algorithm to check Proposition 6, we conclude that there is a polynomial time algorithm to decide whether in-out-proper orientation number of a given subcubic graph is at most two. This completes the proof.

Figure 3: The gadget I_{x}.

Next, we prove that it is NP-complete to decide whether $\overleftrightarrow{\chi}(G) \leq 1$ for a given bipartite graph G with maximum degree three.

Proof of Theorem 4 It was shown in 9 that the following variant of Not-All-Equal satisfying assignment problem is NP-complete.

Problem: Cubic Monotone Not-All-Equal (2,3)-Sat.
Input: Set X of variables, collection C of clauses over X such that every clause $c \in C$ has $|c| \in\{2,3\}$, each variable appears in exactly three clauses and there is no negation in the formula.
Question: Is there a truth assignment for X such that every clause in C has at least one true literal and at least one false literal?

Our proof is a polynomial time reduction from Cubic Monotone Not-All-Equal (2,3)-Sat. Let Φ be an instance with the set of variables X and the set of clauses C. We transform it to a bipartite graph G_{Φ} with maximum degree three in polynomial time such that $\overleftrightarrow{\chi}\left(G_{\Phi}\right) \leq 1$ if and only if Φ has a Not-All-Equal truth assignment. We use the auxiliary gadget I_{x} which is shown in Fig. 3. Our construction consists of three steps.
Step 1. For each variable $x \in X$ put a copy of the gadget I_{x} which is shown in Fig. 3,
Step 2. For each clause $c \in C$ put a vertex c and then for each variable x that appears in the clause c join the vertex c to one of the vertices x_{1}, x_{2}, x_{3} of I_{x} such that in the resultant graph for each variable $x \in X$ in the gadget I_{x} the degrees of the variables x_{1}, x_{2}, x_{3} are two. Call the resultant graph H_{Φ}.
Step 3. For each clause $c=\left(x \vee x^{\prime}\right) \in C$, without loss of generality assume that $c x_{1}, c x_{1}^{\prime} \in E\left(H_{\Phi}\right)$. Merge the three vertices c, x_{1}, x_{1}^{\prime} into a new vertex c^{\prime}.

Call the resultant graph G_{Φ}. The degree of every vertex in the graph G_{Φ} is 1,2 or 3 and the resultant graph is bipartite. Let us now prove that $\overleftrightarrow{\chi}\left(G_{\Phi}\right) \leq 1$ if and only if Φ has a Not-All-Equal truth assignment.

First, assume that $\overleftrightarrow{\chi}\left(G_{\Phi}\right) \leq 1$. We have the following properties.
Proposition 9. Consider the gadget I_{x} which is shown in Fig. 3. Let D be an orientation of I_{x} such that the in-out-degree of each vertex is in $\{0, \pm 1\}$ and the endvertices of any edge in I_{x}, except three edges incident with the vertices x_{1}, x_{2}, x_{3}, have different in-out-degrees, then $d_{D}^{ \pm}\left(x_{1}\right)=d_{D}^{ \pm}\left(x_{2}\right)=d_{D}^{ \pm}\left(x_{3}\right)=1$ or $d_{D}^{ \pm}\left(x_{1}\right)=d_{D}^{ \pm}\left(x_{2}\right)=d_{D}^{ \pm}\left(x_{3}\right)=-1$.

Proof. Note that in the proof of this proposition the notation and colors that we refer are depicted in Fig. 3. In the orientation D the in-out-degree of each vertex is in $\{0, \pm 1\}$. On the other hand, the degree of each vertex is one or three, so the in-out-degree of each vertex is in $\{ \pm 1\}$. In orientation D the endvertices of any edge, except three edges incident with the vertices x_{1}, x_{2}, x_{3}, have different in-out-degrees. Thus, the red vertices have the same in-out-degree and also the blue vertices have the same in-out-degree. Now, two cases can be considered.
Case 1. The blue vertices have the in-out-degree 1. Then the red vertices have the in-out-degree -1 . We

Type 1

Type 2
Figure 4: The two possible orientations of I_{x}.
have $d_{D}^{ \pm}\left(v_{1}\right)=d_{D}^{ \pm}\left(v_{2}\right)=1$, so the edges $v_{1} u_{1}, v_{2} u_{1}$ were oriented form u_{1} to v_{1} and v_{2}, respectively. The in-out-degree of u_{1} is -1 . Thus, the edge $z_{1} u_{1}$ was oriented from z_{1} to u_{1}. The in-out-degree of z_{1} is 1 and thus the edge $w z_{1}$ was oriented from w to z_{1}. We have the same situation for z_{2}. Its in-out-degree is 1 and the edge $w z_{2}$ was oriented from w to z_{2}. The vertex w is a red vertex and its in-out-degree is -1 . On the other hand, the edges $w z_{1}, w z_{2}$ were oriented from w to z_{1} and z_{2}. Thus, the edge $w x_{2}$ was oriented from w to x_{2} and consequently $d_{D}^{ \pm}\left(x_{2}\right)=1$. We have the same conclusion for x_{1} and x_{3}. Thus, $d_{D}^{ \pm}\left(x_{1}\right)=d_{D}^{ \pm}\left(x_{2}\right)=d_{D}^{ \pm}\left(x_{3}\right)=1$.
Case 2. The blue vertices have the in-out-degree -1. Then the red vertices have the in-out-degree 1. Similar to Case 1 , we can show that $d_{D}^{ \pm}\left(x_{1}\right)=d_{D}^{ \pm}\left(x_{2}\right)=d_{D}^{ \pm}\left(x_{3}\right)=-1$. This completes the proof.

Let D be an optimal in-out-proper orientation of G_{Φ}. Now, we present a Not-All-Equal truth assignment for the formula Φ. Let $\Gamma: X \rightarrow\{$ true, false $\}$ be the assignment defined by $\Gamma\left(x_{i}\right)=$ true if the blue vertices in I_{x} have the in-out-degree 1 , and $\Gamma\left(x_{i}\right)=$ false if the blue vertices in I_{x} have the in-out-degree -1 .

Next, we prove that Γ is a Not-All-Equal truth assignment for Φ. Let $c=(x \vee y \vee r)$ and without loss of generality assume that $c x_{1}, c y_{1}, c r_{1} \in E\left(G_{\Phi}\right)$. The degree of the vertex c is three, so $d_{D}^{ \pm}(c) \in\{ \pm 1\}$. Thus, at least one of the edges incident with c was oriented from c to the other endpoint. Note that the other endpoint is one of the vertices x_{1}, y_{1}, r_{1}. Also, at least one of the edges incident with c was oriented toward c. On the other hand, the degree of vertices x_{1}, y_{1}, r_{1} are two, so $d_{D}^{ \pm}\left(x_{1}\right)=d_{D}^{ \pm}\left(y_{1}\right)=d_{D}^{ \pm}\left(r_{1}\right)=0$. Thus, true, false $\in\{\Gamma(x), \Gamma(y), \Gamma(r)\}$. Next, assume that $c=(x \vee y)$. The degree of the vertex c^{\prime} (that corresponds to the clause c in C) is two. So, $d_{D}^{ \pm}\left(c^{\prime}\right)=0$. Thus, true, false $\in\{\Gamma(x), \Gamma(y)\}$.

Now, assume that there is a Not-All-Equal assignment $\Gamma: X \rightarrow\{$ true, false $\}$ for Φ. For each variable $x \in X$ if $\Gamma(x)=$ true then orient I_{x} like Type 2 in Fig. 4 and if $\Gamma(x)=$ false then orient I_{x} like Type 1 in Fig. 4. Also, for each clause $c=(x \vee y \vee r)$ orient the edges incident with c such that the in-out-degree of each neighbor of c is 0 . Call the resultant orientation D. The function Γ is a Not-All-Equal assignment, so D is an in-out-proper orientation such that the maximum of absolute values of their in-out-degrees is one.

This completes the proof.

6 Regular graphs

Next, we study the computational complexity of determining the in-out-proper orientation number of 4regular graphs.

Proof of Theorem 5. It was shown that it is NP-complete to determine whether the edge chromatic number of a given 3-regular graph is three (see [14]). We reduce this problem to our problem in polynomial time. For a given 3-regular graph G we construct a 4-regular graph H such that the edge chromatic number of G is three if and only if $\overleftrightarrow{\chi}(H) \leq 2$.

For a given graph G with the set of edges $e_{1}, e_{2}, \ldots, e_{n}$, let H be the line graph of G with the set of vertices $v_{e_{1}}, v_{e_{2}}, \ldots, v_{e_{n}}$, such that $v_{e_{i}} v_{e_{j}} \in E(H)$ if and only if e_{i} and e_{j} have a common endvertex. First, assume that the in-out-proper orientation number of H is two and let D be an optimal in-out-proper orientation. The orientation D defines a proper vertex 3-coloring for the vertices of H using three colors $0, \pm 2$. Thus, G has a proper edge 3 -coloring.

Next, assume that the edge chromatic number of G is three and let $f: E(G) \rightarrow\{1,2,3\}$ be a proper edge 3-coloring of G. Define the function $h: V(H) \rightarrow\{1,2,3\}$ such that $h\left(e_{v_{i}}\right)=k$ if and only if $f\left(e_{i}\right)=k$, for each $k=1,2,3$. Let K be the subset of edges of H such that for each edge $v_{e_{i}} v_{e_{j}} \in K$ we have $\left\{h\left(v_{e_{i}}\right), h\left(v_{e_{j}}\right)\right\}=\{1,3\}$. In the subgraph $H \backslash K$ the degree of each vertex is even. In fact the degree of each vertex $v_{e_{i}}$ with $h\left(v_{e_{i}}\right)=2$ is four and also the degree of each vertex $v_{e_{i}}$ with $h\left(v_{e_{i}}\right) \in\{1,3\}$ is two. So we can orient the edges in $H \backslash K$ such that the in-degree of each vertex is equal to its out-degree. Next, for each edge $v_{e_{i}} v_{e_{j}} \in K$ orient it from $v_{e_{i}}$ to $v_{e_{j}}$ if $h\left(v_{e_{i}}\right)=1$ and $h\left(v_{e_{j}}\right)=3$, otherwise orient it from $v_{e_{j}}$ to $v_{e_{i}}$. Consider the union of orientations for $H \backslash K$ and K and call the resultant orientation D. In D the in-out-degree of each vertex $v_{e_{i}}$ with $h\left(v_{e_{i}}\right)=1\left(h\left(v_{e_{i}}\right)=2, h\left(v_{e_{i}}\right)=3\right.$, respectively) is $-2(0,2$, respectively). Thus, D is an in-out-proper orientation such that the maximum of absolute values of their in-out-degree is two. This completes the proof.

7 Conclusions and future research

In this work we studied the in-out-proper orientation number of graphs. We proved that for any graph G, $\overleftrightarrow{\chi}(G) \leq \Delta(G)$. We conjectured that there exists a constant number c such that for every planar graph G we have $\overleftrightarrow{\chi}(G) \leq c$. Regarding this conjecture, we showed that for every tree T we have $\overleftrightarrow{\chi}(T) \leq 3$ and this bound is sharp. It is interesting to prove constant bounds for other families of planar graphs.

We also studied the in-out-proper orientation number of subcubic graphs. By using the properties of totally unimodular matrices we proved that there is a polynomial time algorithm to determine whether $\overleftrightarrow{\chi}(G) \leq 2$, for a given graph G with maximum degree three. It is interesting to present a polynomial time algorithm for other families of graphs.

It is also interesting to characterize all graphs G which satisfy $\vec{\chi}(G)=\overleftrightarrow{\chi}(G)$. It would be interesting to attack this problem for the family of regular graphs.

8 Acknowledgments

The author would like to thank the anonymous referees for their useful comments which helped to improve the presentation of this paper.

References

[1] A. Ahadi and A. Dehghan. The complexity of the proper orientation number. Inform. Process. Lett., 113(19-21):799-803, 2013.
[2] A. Ahadi, A. Dehghan, and M. Saghafian. Is there any polynomial upper bound for the universal labeling of graphs? J. Comb. Optim., 34(3):760-770, 2017.
[3] J. Ai, S. Gerke, G. Gutin, Y. Shi, and Z. Taoqiu. Proper orientation number of triangle-free bridgeless outerplanar graphs. J. Graph Theory, 95(2):256-266, 2020.
[4] J. Araujo, N. Cohen, S. F. de Rezende, F. Havet, and P. F. S. Moura. On the proper orientation number of bipartite graphs. Theoret. Comput. Sci., 566:59-75, 2015.
[5] J. Araujo, F. Havet, C. Linhares Sales, and A. Silva. Proper orientation of cacti. Theoret. Comput. Sci., 639:14-25, 2016.
[6] J. Araújo, C. L. Sales, I. Sau, and A. Silva. Weighted proper orientations of trees and graphs of bounded treewidth. Theoret. Comput. Sci., 771:39-48, 2019.
[7] M. Borowiecki, J. Grytczuk, and M. Pilśniak. Coloring chip configurations on graphs and digraphs. Inform. Process. Lett., 112(1-2):1-4, 2012.
[8] A. Dehghan and F. Havet. On the semi-proper orientations of graphs. Discrete Appl. Math., In press, 2020.
[9] A. Dehghan, M.-R. Sadeghi, and A. Ahadi. On the complexity of deciding whether the regular number is at most two. Graphs Combin., 31(5):1359-1365, 2015.
[10] R. Gu, H. Lei, Y Ma, and Z. Taoqiu. Note on (semi-)proper orientation of some triangulated planar graphs. Applied Mathematics and Computation, 392 (2021) 125723.
[11] F. Knox, N. Matsumoto, S. G. Hermosillo de la Maza, B. Mohar, and C. Linhares Sales. Proper orientations of planar bipartite graphs. Graphs Combin., 33(5):1189-1194, 2017.
[12] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., New York, 1988. A Wiley-Interscience Publication.
[13] K. Noguchi. Proper 3-orientations of bipartite planar graphs with minimum degree at least 3. Discrete Appl. Math., 279:195-197, 2020.
[14] D. B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, 1996.

