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Abstract

It is known that for every dimension d ≥ 2 and every k < d there exists a constant cd,k > 0
such that for every n-point set X ⊂ Rd there exists a k-flat that intersects at least cd,kn

d+1−k−
o(nd+1−k) of the (d − k)-dimensional simplices spanned by X. However, the optimal values of
the constants cd,k are mostly unknown. The case k = 0 (stabbing by a point) has received a
great deal of attention.

In this paper we focus on the case k = 1 (stabbing by a line). Specifically, we try to determine
the upper bounds yielded by two point sets, known as the stretched grid and the stretched
diagonal. Even though the calculations are independent of n, they are still very complicated,
so we resort to analytical and numerical software methods. We provide strong evidence that,
surprisingly, for d = 4, 5, 6 the stretched grid yields better bounds than the stretched diagonal
(unlike for all cases k = 0 and for the case (d, k) = (3, 1), in which both point sets yield
the same bound). Our experiments indicate that the stretched grid yields c4,1 ≤ 0.00457936,
c5,1 ≤ 0.000405335, and c6,1 ≤ 0.0000291323.

1 Introduction

A k-dimensional simplex is the convex hull of k + 1 affinely independent points in Rd, d ≥ k. The
k + 1 points are said to span the simplex. The following result was proven for the planar case by
Boros and Füredi [9] and for arbitrary dimension by Bárány [5]: For every d ≥ 2 there exists a
constant cd > 0 such that for every n, if X is any n-point set in Rd in general position, then there
exists a point x in Rd contained in at least cdn

d+1 − o(nd+1) full-dimensional simplices spanned
by X, where cd > 0 is a constant depending only on d. Matoušek [22] called this result the First
Selection Lemma. It can be used to construct so-called weak ε-nets (see [22]).

The problem of determining largest possible values of the constants cd has sparked a lot of
interest. For the planar case, Boros and Füredi [9] showed that c2 ≥ 1/27. For arbitrary dimension,
Bárány [5] proved that cd ≥ 1/((d + 1)!(d + 1)d). Wagner [26] subsequently improved this lower
bound to cd ≥ (d2 + 1)/((d + 1)!(d + 1)d+1). In particular, c3 ≥ 0.001627. Basit et al. [7] then
improved the bound for c3 to c3 ≥ 0.00227.

Later, Gromov improved the general lower bound to cd ≥ 2d/((d+ 1)!2(d+ 1)) [14] (see simpler
expositions of this result by Karasev [16] and Jiang [15]). This is an improvement by roughly a
factor of ed over the previous bound. In particular, c3 ≥ 0.002604. Matoušek and Wagner [21] then
showed that c3 ≥ 0.00263. Later, Král et al. [19] slightly improved Gromov’s bound for general d,
yielding in particular c3 ≥ (3−

√
2)/512 ' 0.00309.

Regarding upper bounds, Kárteszi [17] (for d = 2) and Bárány [5] (for general d) proved that
if X is any point set in general position in Rd, then no point in Rd is contained in more than

∗inbar.sadon@gmail.com. Ariel University, Ariel, Israel.
†gabrieln@ariel.ac.il. Ariel University, Ariel, Israel.

1

ar
X

iv
:2

00
1.

00
78

2v
2 

 [
cs

.C
G

] 
 2

9 
Ju

n 
20

21



nd+1/(2d(d+ 1)!) +O(nd) simplices spanned by X. Hence, cd ≤ 1/(2d(d+ 1)!). This upper bound
is “trivial” in the sense that it does not rely any specific construction for X.

Bukh et al. obtained the first “non-trivial” upper bounds, by constructing, for every n and d, a
specific point set X ⊂ Rd that witnesses cd ≤ (d+ 1)−(d+1) [10]. These are the best upper bounds
currently known. The set X is the so-called stretched diagonal (presented below). Another point
set, called the stretched grid [11] (also presented below) gives the same upper bound.

Hence, c2 = 1/27 is tight, and c3 ≤ 0.0039. Thus, for d ≥ 3 the optimal value of cd is not
known, and there is a gap of a factor of roughly dd between the best lower and upper bounds.

(Some authors prefer to talk about the constant c′d such that there exists a point in at least
c′d
(

n
d+1

)
−O(nd) simplices. Then the relation between the two constants is that c′d = cd · (d+ 1)!.)

1.1 Generalization of the First Selection Lemma

The First Selection Lemma can be generalized as follows. If X ⊆ Rd is an n-point set in gen-
eral position, and k is an integer, 0 ≤ k < d, then there exists a k-flat that intersects at least
cd,kn

d−k+1 − O(nd−k) of the (d − k)-dimensional simplices spanned by X, for some positive con-
stants cd,k that depend only on d and k. A trivial projection argument yields cd,k ≥ cd−k. The
problem of determining the maximum values of the constants cd,k was raised by Bukh et al. [10].

1.2 Lower and upper bounds for cd,k

The case k = d− 1 is trivial: An optimal hyperplane is one that partitions the given point set into
two equal parts. Hence, cd,d−1 = 1/4.

By a simple projection argument, the above-mentioned result of Kártesi and Bárány yields the
“trivial” upper bound of cd,k ≤ 1/(2d−k(d− k + 1)!).

For the case k = d − 2, it was shown in [10] that there exists a (d − 2)-flat that stabs at least
cd,d−2n

3 −O(n2) of the triangles spanned by X, with

cd,d−2 ≥
1

24

(
1− 1

(2d− 1)2

)
.

In particular, for d = 3 there always exists a line that stabs at least n3/25−O(n2) triangles.
For the case (d, k) = (3, 1), Bukh claimed without providing details that in the stretched grid

every line stabs at most n3/25+o(n3) triangles, and therefore c3,1 = 1/25 is tight (this is mentioned
in [23]).

1.3 Related problems

Ashok, Rajgopal and Govindarajan [3] studied variants of the First Selection Lemma for other
classes of geometric objects, such as spheres and axis-parallel boxes in Rd, and quadrants and slabs
in the plane. They also considered a strong variant of the First Selection Lemma, where the piercing
point must come from the point set itself.

The Second Selection Lemma is a generalization of the First Selection Lemma. It states that
for every n, if X is an n-point set in Rd and F is a family of α

(
n

d+1

)
X-simplices, then there exists

a point contained in at least bdα
sd
(

n
d+1

)
simplices of F , for some constants bd > 0 and sd.

The Second Selection Lemma was conjectured, and proved in the planar case, by Bárány, Füredi
and Lovász [6] (see also Matoušek [22]). A proof for the planar case by a different technique, with
considerably better quantitative bounds, was given by Aronov et al. [2]. This bound was then
slightly improved by Eppstein, Nivasch, and Sharir [13, 24]. The full proof of the Second Selection
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Lemma for arbitrary dimension was put together by Bárány et al. [6], Alon et al. [1], and Živaljević
and Vrećica [27].

The Second Selection Lemma has been used to bound the number of k-sets in arbitrary dimen-
sion, where a k-set of a point set X is a subset of X of size k that can be separated from the rest
of X by a hyperplane.

Several variants of the Second Selection Lemma, involving geometric objects other than sim-
plices, were proved by Chazelle et al. [12], Sharir and Smorodinsky [25], and Ashok et al. [3].

A similar problem, of centerline depth, has been studied by Magazinov and Pór [20] and Blago-
jević, Karasev, and Magazinov [8].

1.4 Our results

In this work we try to determine the upper bounds for the constants cd,1 given by the stretched
grid and the stretched diagonal.

For d = 3, we find that both point sets yield c3,1 ≤ 1/25 according to analytical software methods
(as Bukh had already claimed for the stretched grid). Surprisingly, however, for 4 ≤ d ≤ 6 we find
very strong numerical evidence that the stretched grid yields a better bound than the stretched
diagonal: On the one hand, for the stretched diagonal there always exists a line that stabs at least
nd/(d+2)d−1−o(nd) simplices. On the other hand, the stretched grid likely yields c4,1 ≤ 0.00457936,
c5,1 ≤ 0.000405335, and c6,1 ≤ 0.0000291323, according to non-rigorous numerical optimization
methods.

Organization of this paper. Section 2 reviews the stretched grid and the stretched diagonal,
as well as stair-convexity, the framework used to analyze them. Section 3 presents our results
regarding the stretched grid. Section 4 presents our results regarding the stretched diagonal. We
conclude with some remarks in Section 5.

2 Stair-convexity

Following Bukh et al. [11] we define the stretched grid as an axis-parallel grid of points in Rd where,
in each axis direction i, 2 ≤ i ≤ d, the spacing between consecutive “layers” increases rapidly,
and furthermore, the rate of increase for direction i is much larger than that for direction i − 1.
To simplify calculations, we make the coordinates increase rapidly also in the first direction. We
denote the stretched grid by Gs. Hence, Gs(n

d) ⊆ Rd is of the form Gs(n
d) = X1× . . .×Xd where

each Xi ⊆ R is of the form Xi = {xi,1, . . . , xi,n}, where xi,1 < xi,2 < · · · < xi,n is the ith axis that
contains n points. We define the sets Xi by induction on i, together with relations �i on R, which
describe “at least how fast” the terms in Xi must grow (but we will also use �i for comparing
real numbers other than the members of Xi). We start by letting x �1 y mean K1x ≤ y, where
K1 = 2d. Then we choose X1 so that x1,1 = 1 and x1,1 �1 x1,2 �1 · · · �1 x1,n. Having defined
Xi−1 and �i−1 , we set Ki = 2dx(i−1),n, we define x�i y to mean Kix ≤ y, and we choose Xi so
that xi,1 = 1 and xi,1 �i xi,2 �i · · · �i xi,n.

The stretched diagonal is the following subset of the stretched grid:

Ds(n) = {(x1,j , . . . , xd,j) ∈ Rd : j = 1, 2, . . . , n}.

In other words, the jth point of the stretched diagonal is built from the jth element of each of
X1, . . . , Xd.
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a

b

π(a)

π(b)

π

Figure 1: The stretched grid and the mapping π.

Define the uniform grid in the unit cube [0, 1]d by

Gu = Gu(nd) =

{
0,

1

n− 1
,

2

n− 1
, . . . ,

n− 1

n− 1

}d

.

Let BB(Gs) = [1, x1,n]× [1, x2,n]× · · · × [1, xd,n] be the bounding box of Gs, and let π : BB(Gs)→
[0, 1]d be a bijection that maps Gs onto Gu and preserves ordering in each coordinate (that is, we
map points of Gs to the corresponding points of Gu and we squeeze the “elementary boxes” of
Gs onto the corresponding elementary boxes of Gu). See Figure 1. Let us consider the effect of π
on a straight-line segment u = ab connecting two grid points a, b ∈ Gs. Suppose without loss of
generality that bd ≥ ad. Since Gs is so much more stretched in the dth direction than in all the
previous directions, π(u) ascends in the dth direction from π(a), reaching almost the height of π(b),
before moving significantly in any other direction. From there on, we can continue tracing π(u) by
induction on d. This observation motivates the notion of stair-convexity.

2.1 Stair-convexity

Given a pair of points a, b ∈ Rd, define the stair-path σ(a, b) between them as a polygonal path
connecting a and b and consisting of at most d closed line segments, each parallel to one of the
coordinate axes. The definition goes by induction on d; for d = 1, the stair-path σ(a, b) is simply
the segment ab. For d ≥ 2, after possibly interchanging a and b, let us assume ad ≤ bd. We set
a′ = (a1, . . . , ad − 1, bd), and we let σ(a, b) be the union of the segment aa′ and the stair-path
σ(a′, b); for the latter we use induction, ignoring the common last coordinate of a′ and b.

We call a set S ⊆ Rd stair-convex if for every a, b ∈ S we have σ(a, b) ⊆ S. We define the
stair-convex hull of a set S ⊆ Rd as the intersection of all stair-convex sets containing S, and we
will denote it as stconv(S).

2.2 Intersection of stair-convex hulls of two sets

In stair-convexity we will call the last coordinate of a point its “height”. For a real number y, let
h(y) denote the horizontal hyperplane {x ∈ Rd : xd = y}. For a horizontal hyperplane h = h(y),
let h+ = {x ∈ Rd : xd ≥ y} be the upper closed half-space bounded by h, and similarly let h−

be the lower closed half-space. For a set S ⊆ Rd, let S(y) = S ∩ h(y) be the horizontal slice of
S at height y. For a point x = (x1, . . . , xd) ∈ Rd, let x = (x1, . . . , xd−1) be the projection of x
into Rd−1, and define S for S ⊂ Rd similarly. For a point x ∈ Rd−1 and a real number xd, let
x× xd = (x1, . . . , xd−1, xd).
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Lemma 1 ([11]). A set S ⊆ Rd is stair-convex if and only if the following two conditions hold:

1. Every horizontal slice S(y) is stair-convex.

2. For every y1 ≤ y2 ≤ y3 such that S(y3) 6= ∅ we have S(y1) ⊆ S(y2). (Meaning, the horizontal
slice can only grow with increasing height, except that it can end by disappearing abruptly).

Lemma 2 ([11]). The stair-convex hull of a set X ⊆ Rd can be (recursively) characterized as
follows. For every horizontal hyperplane h = h(y) that does not lie entirely above X, let X ′ stand
for the vertical projection of X ∩ h− into h. Then h ∩ stconv(X) = stconv(X ′) (where stconv(X ′)
is a stair-convex hull in dimension d− 1).

The following lemma specifies under which conditions the stair-convex hulls of two sets intersect.
Recall that in standard geometry, Kirchberger’s theorem [18] states that if Y and Z are point sets
in Rd such that conv(Y ) and conv(Z) intersect, then there exist subsets Y ′ ⊆ Y and Z ′ ⊆ Z of
total size |Y |+ |Z| ≤ d+ 2 such that conv(Y ) and conv(Z) intersect.

Lemma 3 ([11]). Let Y,Z ⊂ Rd be two finite point sets that do not share any coordinate, with
|Y | = s and |Z| = t. Then:

1. If s+ t < d+ 2, then stconv(Y ) and stconv(Z) do not intersect.

2. If s+ t = d+ 2 and stconv(Y ), stconv(Z) intersect, then they do so at a single point. Suppose
they do intersect. Then the two highest points of Y ∪ Z (in last coordinate) belong one to Y
and one to Z. Furthermore, let ytop, ztop be the highest points of Y,Z respectively, and say
ytop,d > ztop,d. Then the point of intersection between stconv(Y ), stconv(Z) is p = q × ztop,d,

where q ∈ Rd−1 is the point of intersection of stconv
(
Y \ {ytop}

)
and stconv(Z).

3. If s + t > d + 2 and stconv(Z), stconv(Y ) intersect, then there exist subsets Z ′ ⊆ Z, Y ′ ⊆ Y
of total size |Z ′|+ |Y ′| = d+ 2, such that stconv(Z ′), stconv(Y ′) intersect.

The special case |Z| = 1 of Lemma 3 is important enough to be stated separately. Let a, b ∈ Rd

be two points that do not share any coordinate. We say that b has type 0 with respect to a if bi < ai
for every i = 1, 2, . . . , d. For j ∈ {1, 2, ..., d} we say that b has type j with respect to a if bj > aj
but bi < ai for all i = j + 1, ..., d.

Lemma 4 ([11]). Let X ⊆ Rd be a point set, and let a ∈ Rd be a point. Then a ∈ stconv(X) if
and only if X contains a point of type j with respect to a for every j = 0, 1, . . . , d.

Transference Lemma. The almost-correspondence between convex hulls and stair-convex hulls
in the stretched grid is formalized in the following lemma. Let us say that two points a = (a1, . . . , ad)
and b = (b1, . . . , bd) in BB(Gs) are far apart if, for every i = 1, 2, ..., d, we have either ai �i bi or
bi �i ai. We also extend this notion to sets: Two sets Y, Z ⊆ Rd are far apart if each z ∈ Z is far
apart from each y ∈ Y .

Lemma 5 ([11]). Let Y,Z be sets in BB(Gs) that are far apart. Then stconv(Y ) ∩ stconv(Z) = ∅
if and only if conv(Y ) ∩ conv(Z) = ∅.

If a small set Y ⊂ BB(Gs) is given, not necessarily from the stretched grid, and we consider all
possible fixed-size sets Z ⊂ Gs, then almost all such sets Z will be far apart from Y , except for a
negligible fraction of them. What will interest us is whether conv(Z) and conv(Y ) intersect. So,
according to the lemma above, in the vast majority of cases it is enough to check whether stconv(Z)
and stconv(Y ) intersect.
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Figure 2: Partition of space into d+ 1 parts.

2.3 Warm-up: Upper bounds for the First Selection Lemma

As a warm-up, we recall the proof that both the stretched grid and the stretched diagonal yield
the upper bound cd ≤ (d+ 1)−(d+1) for the First Selection Lemma.

Let X be either the stretched grid or the stretched diagonal, and let a ∈ Rd be a point. For
each 0 ≤ j ≤ d, let Cj(a) be the set of all points b ∈ X that have type j with respect to a. By the
Transference Lemma and Lemma 4, the number of full-dimensional simplices spanned by X that
contain a is very close to the product

∏d
j=0 |Cj(a)|. By the arithmetic-geometric mean inequality,

this expression achieves its maximum when all terms have the same size, namely |Cj(a)| = |X|/(d+
1) for each j. The claim follows.

3 Results for the stretched grid

In this section we derive the upper bounds for cd,1 yielded by the stretched grid.

3.1 A recursive formula

Let q, p ∈ [0, 1]d be two given points with q = (q1, . . . , qd), p = (p1, . . . , pd). Informally, we want
to define the probability RecFSGd(q, p) that a randomly chosen (d − 1)-dimensional stair-simplex
from [0, 1]d intersects the stair-path σ(q, p). Formally, let D be the uniform distribution in ([0, 1]d)d.
Every element A ∈ ([0, 1]d)d represents a d-tuple z1, . . . , zd of points in [0, 1]d which span the stair-
simplex S(A) = stconv{z1, . . . , zd}. Then define RecFSGd(q, p) as the measure

RecFSGd(q, p) = µ[A ∈ D : S(A) ∩ σ(q, p) 6= ∅].

The connection between RecFSGd and the stretched grid is as follows. Given q, p as above, let
α = RecFSGd(q, p). Given n, let Gs(n) = X1 × · · · × Xd be the d-dimensional stretched grid of
dimensions m× · · · ×m with m = n1/d, where Xi = {xi,1, . . . , xi,m} for each i. If q′ = (q′1, . . . , q

′
d),

p′ = (p′1, . . . , p
′
d) are points satisfying xi,qim ≤ q′i ≤ xi,qim+1 and xi,pim ≤ p′i ≤ xi,pim+1, then

the stair-path σ(q′, p′) intersects an (α ± o(1))-fraction of the (d − 1)-dimensional stair-simplices
spanned by Gs(n). Let Y = {q, p}, and let Z be the set of vertices of a stair-simplex. The
fraction of stair-simplices for which Y, Z are not far apart is negligible as n −→ ∞. Hence, by
the Transference Lemma (Lemma 5), the segment qp also intersects an (α ± o(1))-fraction of the
(d− 1)-dimensional simplices spanned by Gs(n). Since the number of simplices spanned by Gs(n)
is
(
n
d

)
= nd/d!−O(nd−1), the constant that multiplies nd is RecFSGd(q, p)/d!.
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Types of stair-paths. We define the type T of a stair-path qp by T = {j : qj < pj} (we can
safely ignore cases where pj = qj for some j, since they have measure 0). In dimension d there are
2d possible types of stair-paths, but half of them are equivalent to the other half since p and q just
switch positions. This leaves us with 2d−1 possible types of stair-paths.

In addition, stair-convexity is symmetric with respect to the first coordinate, and so is the
stretched grid. Therefore, without loss of generality we can assume that 1 /∈ T . This leaves us with
2d−2 possible types of stair-paths.

Theorem 6. Let q, p ∈ [0, 1]d be two points, with q = (q1, . . . , qd), p = (p1, . . . , pd). If pd ≥ qd let
x = p, y = q; otherwise, let x = q, y = p. Then RecFSGd is given by:

RecFSG1(q, p) = x1 − y1,

RecFSGd(q, p) = d!(xdd − ydd)
d−1∏
i=1

yii(1− yi)

+ d(1− xd)xd−1d RecFSGd−1({q, p}), for d ≥ 2.

Proof. Let Y = {q, p}, and let Z = {z1, z2, . . . , zd} ⊂ [0, 1]d such that Y,Z do not share any
coordinate, where |Y ∪ Z| = d + 2. Hence, stconv(Y ) is a stair-path and stconv(Z) is a (d − 1)-
stair-simplex. By Lemma 3 part (2), stconv(Y ) and stconv(Z) will intersect in at most one point,
and if they do intersect, then after projecting the d+ 1 lower points to dimension d− 1, there will
also be an intersection point.

Base case: When d = 1, the path is of type T = ∅ which means q1 ≥ p1. The measure of
simplices in D whose single point lies between them is q1 − p1.

Recursive case: The recursive function is built out of a two-part addition: a non-recursive
part that we get when the highest point belongs to Y , and a recursive part that we get when the
highest point belongs to Z. The first part is derived as follows. Let p = ytop be the highest of all
points; see Figure 3(a). All the points of Z must be below pd but not all of them should be below
qd. The measure of simplices in D with this property is pdd− qdd. Now, when projecting to the lower
dimension, d−1, we “discard” the highest point p, and stay with Z and the point q. So, it remains
to calculate the measure of simplices stconv(Z) that intersect the point q. Since ztop ∈ Z should be
above qd−1 and the other d−1 points should be below it, this occurs with measure d(1− qd−1)qd−1d−1.
Let us again project to a lower dimension and “discard” the highest point. We are left with a

simplex in a lower dimension, stconv
(
Z \ {ztop}

)
, and the point q. We continue this way until we

reach d = 1. Hence, for the first part we get the term

(pdd − qdd)d!
d−1∏
i=1

qii(1− qi).

The second part is derived as follows: Let qd ≤ pd ≤ ztop,d. The point ztop ∈ Z must be above
pd, while the other d − 1 points of Z must be below it; see Figure 3(b, c). This happens with
measure d(1 − pd)pd−1d . When we “discard” the highest point, we are left with a stair-path and a
stair-simplex one dimension lower. Therefore, we can recursively invoke RecFSGd−1. Hence, for
the second part we get the term

d(1− pd)pd−1d RecFSGd−1(q, p).

If qd ≥ pd, all calculations are the same, except that we interchange q and p.
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Figure 3: A stair-path stabbing a stair-triangle (3-vertex stair-simplex) in dimension 3.

3.2 Extending the stair-path to the boundary of the cube

Without loss of generality, we can extend a given stair-path qp until the two endpoints touch the
boundary of the unit cube. This makes the calculations easier, since for each type T , there are two
variables that can be set to 0 or 1.

Without loss of generality assume d /∈ T , so pd ≤ qd. Then pd can be extended to 0. For q,
the first coordinate that is elevated from q to p, namely max{i : qi ≤ pi}, is the one that can be
extended to 0. If, on the other hand, pi ≤ qi for all i, then q1 can be extended to 1.

Hence, given the type T of the stair-path qp, we proceed as follows: Say d /∈ T (otherwise,
switch p and q and let T be {1, . . . , d} \ T ). Then we let pd = 0. In addition, if T 6= ∅ then we let
qmaxT = 0, while if T = ∅ then we let q1 = 1. (As noted before, for the case of the stretched grid
we can assume without loss of generality that 1 /∈ T .)

3.3 Maximum for the stretched grid

Using the recursive function of Theorem 6 for the stretched grid, we get 2d−2 polynomial expressions
in the coordinates q1, . . . , qd, p1, . . . , pd. We need to find the maximum for each expression.

3.3.1 Results for dimension 3

For d = 3 there are two fundamentally different types: T = ∅ and T = {2}.

Type T = ∅. For this case, we can let q1 = 1, p3 = 0, so in this case the function we want to
maximize is

F = RecFSG3(q, p)/3! =

(p1 − 1)q23 ·
(
p1
(
p22(1− 2q3) + q22(q3 − 1) + p32q3

)
+ q2(q2 − 1 + q3 − q2q3)

)
in the domain

U = {(p1, p2, q2, q3) ∈ R4 : 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ q2 ≤ 1, 0 ≤ q3 ≤ 1}.
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In order to find analytically the maximum of F in U , we have to examine the interior of U and
its faces. U is a 4-dimensional polytope, which according to the software “polymake” [4] has 62
faces of various dimensions.

Alternatively, we could try using the function Maximize of Mathematica 11, which finds the
absolute maximum of a given function in a given range. Unfortunately, when given F and U ,
Maximize does not terminate in a reasonable amount of time. Hence, we employ a hybrid approach,
dealing with the interior of U by hand, and using Maximize for the seven facets of U .

Maximum in the interior. If the maximum is attained by a point (p1, p2, q2, q3) in the interior
of U , then it must satisfy the following four equations:

dF

dq2
= (p1 − 1)

I︷ ︸︸ ︷(
1 + 2(p1 − 1)q2

)
(q3 − 1)q23 = 0,

dF

dq3
= (p1 − 1)q3

·

II︷ ︸︸ ︷(
− (q2 − 1)q2(3q3 − 2) + p1

(
p22(2− 6q3) + 3p32q3 + q22(3q3 − 2)

))
= 0,

dF

dp1
= q23

·

III︷ ︸︸ ︷(
q2
(
1 + 2(p1 − 1)q2

)
(q3 − 1) + (2p1 − 1)p32q3 + p22

(
− 1 + p1(2− 4q3) + 2q3

))
= 0,

dF

dp2
= (p1 − 1)p1p2q

2
3

IV︷ ︸︸ ︷(
2 + (3p2 − 4)q3

)
= 0.

The solutions that satisfy {q3 = 0}, or {p1 = 1}, or both {q3 = 1} and {p1 = 0}, or both {q3 = 1}
and {p2 = 0}, are irrelevant, since they give F = 0. Therefore, any local maximum should satisfy
the equations II = 0 and III = 0. One possibility is to satisfy q3 = 1 and IV = 0. The other three
possibilities are to satisfy the equation I = 0, as well as one of IV = 0, {p1 = 0}, {p2 = 0}. These
are the relevant solutions to the system:

{p1 = (2q2 − 1)/(2q2), p2 = 0, q3 = 2/3},
{p1 = 0, p2 = 0, q2 = 1/2, q3 = 2/3},
{p1 = 0, p2 = 1/2, q2 = 1/2, q3 = 2/3},
{p1 = 1/2, p2 = 1/2, q2 = 1, q3 = 4/5},
{p1 = 1/2, p2 = 2/3, q2 = 2/3, q3 = 1}.

After checking all these solutions, we get the maximum, 1/25 by the solution {p1 = 1/2, p2 =
1/2, q2 = 1, q3 = 4/5}.

Maximum on the facets. In order to find maximum on the facets of U , we used Maximize.
The results can be seen in Table 1.

Type T = {2}. Here one can proceed similarly. Here the maximum is also 1/25, this time given
by qp = {(2/3, 0, 4/5), (1/3, 3/4, 0)}. (Note that in this case, the maximum is in the interior of the
domain, whereas in the case T = ∅ the maximum was on one of its facets.) The calculations can
be found in the ancillary files of the arXiv version of this paper.
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in: F=(p1-1)q3^2*(p1(p2^2(1-2q3)+q2^2(q3-1)+p2^3q3)

+q2(q2-1+q3-q2 q3))

in: F1=F/.q2->1;

Maximize[{F1,0<q3<1,0<p1<1,0<p2<1},{q3,p1,p2}]

out: {1/25,{q3->4/5,p1->1/2,p2->1/2}}

in: F2=F/.q2->p2;

Maximize[{F2,0<q3<1,0<p1<1,0<p2<1},{q3,p1,p2}]

out: {1/27,{q3->64/81,p1->10/37,p2->37/64}}

in: F3=F/.p2->0;

Maximize[{F3,0<q3<1,0<p1<1,0<q2<1},{q3,p1,q2}]

out: {1/27,{q3->2/3,p1->1/3,q2->3/4}}

in: F4=F/.p1->1;

Maximize[{F4,0<q3<1,0<p2<q2<1},{q3,q2,p2}]

out: {0,{q3->1/2,q2->3/4,p2->1/4}}

in: F5=F/.p1->0;

Maximize[{F5,0<q3<1,0<p2<q2<1},{q3,q2,p2}]

out: {1/27,{q3->2/3,q2->1/2,p2->1/4}}

in: F6=F/.q3->1;

Maximize[{F6,0<p1<1,0<p2<q2<1},{p1,q2,p2}]

out: {1/27,{p1->1/2,q2->27/32,p2->2/3}}

in: F7=F/.q3->0;

Maximize[{F7,0<p1<1,0<p2<q2<1},{p1,q2,p2}]

out: {0,{p1->1/2,q2->3/4,p2->1/4}}

Table 1: Maximum on faces, T = ∅
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T qp maximum

∅ {(1, 0.99973, 0.841676, 0.824961), 0.00456416
(0.499854, 0.57138, 0.590885, 0)}

{2} {(0.70017, 0, 0.841749, 0.824908), 0.00456416
(0.400339, 0.714113, 0.590808, 0)}

{3} {(0.666089, 0.777112, 0, 0.827549), 0.00457936
(0.395765, 0.49188, 0.794824, 0)}

{2, 3} {(0.604237, 0.491879, 0, 0.830208), 0.00457936
(0.333913, 0.77711, 0.792279, 0)}

Table 2: Results for dimension 4, stretched grid.

3.3.2 Results for dimensions 4, 5, and 6

For dimensions d ≥ 4, the problem turns out to be too complex for the above approach. Therefore,
we used the function NMaximize of Mathematica, which searches for the absolute maximum nu-
merically. The function NMaximize provides four different numerical methods, called NelderMead,
DifferentialEvolution, SimulatedAnnealing, and RandomSearch. We tried all four of them. In
dimensions 4 and 5 they all gave the same results, though not in dimension 6.

In dimension 4 there are four fundamentally different types of stair-paths. Table 2 sums up the
numerical results. The maximum among all the types is 0.00457936n4.

In dimension 5 there are eight different types of stair-paths. The maximum among all of them
is 0.000405335n5. See Table 3.

In dimension 6 there are 16 different types of stair-paths. Here, not all maximization methods
gave the same result. The method DifferentialEvolution gave the best results in all types.
The maximum obtained is 0.0000291323n6, for types T = {2, 3, 5} and T = {4, 5}. For type
T = {2, 3, 5}, the coordinates that give this maximum are

qp = {(0.592993, 0.545248, 0.59284, 0.843717, 0, 0.869422),

(0.38511, 0.750149, 0.798446, 0.658605, 0.849763, 0)}.

4 Results for the stretched diagonal

In this section we prove the following:

Theorem 7. For every d ≥ 3 there exists a stair-path qp that stabs nd/(d + 2)d−1 − o(nd) stair-
simplices spanned by the stretched diagonal Ds(n).

Hence, for d = 4, 5, 6 the stretched diagonal yields worse bounds for cd,1 than the stretched grid.
In this section we also prove that for d = 3 the stretched diagonal yields c3,1 ≤ 1/25, just like the
stretched grid.

4.1 A recursive formula for a special case

Let D be the uniform distribution in [0, 1]d. Every element A = (a1, . . . , ad) ∈ [0, 1]d represents
a d-tuple of points ~a1, . . . ,~ad where ~ai = (ai, . . . , ai) ∈ [0, 1]d for each i. These points span the
stair-simplex S(A) = stconv{~a1, . . . ,~ad}.
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T qp Maximum

∅ {(1, 0.999998, 0.863413, 0.850444, 0.848693), 0.000402464
(0.499999, 0.604701, 0.650764, 0.657374, 0)}

{2} {(0.71664, 0, 0.863421, 0.850413, 0.848695), 0.000402464
(0.433377, 0.697668, 0.650744, 0.657406, 0)}

{3} {(0.675465, 0.796913, 0, 0.850715, 0.848819), 0.00040419
(0.428888, 0.554061, 0.78136, 0.657527, 0)}

{4} {(0.661946, 0.786912, 0.815446, 0, 0.850046), 0.000404818
(0.425712, 0.554894, 0.590175, 0.827888, 0)}

{2, 3, 4} {(0.574368, 0.554597, 0.589951, 0, 0.853691), 0.000404818
(0.337538, 0.786894, 0.815268, 0.824237, 0)}

{2, 3} {(0.630424, 0.478229, 0, 0.852643, 0.849618), 0.000404815
(0.387534, 0.738946, 0.779659, 0.658423, 0)}

{2, 4} {(0.622544, 0.495106, 0.817108, 0, 0.850792), 0.000405335
(0.388108, 0.740553, 0.590829, 0.826241, 0)}

{3, 4} {(0.612094, 0.740651, 0.590451, 0, 0.852007), 0.000405335
(0.377364, 0.494832, 0.816924, 0.824642, 0)}

Table 3: Results for dimension 5, stretched grid.

Given two points q, p ∈ [0, 1]d with q = (q1, . . . , qd), p = (p1, . . . , pd), let FSD(q, p) be the
measure of all the d-tuples A = (a1, . . . , ad) ∈ D that satisfy the following two conditions:

1. a1 < · · · < ad,

2. stconv{q, p} ∩ stconvS(A) 6= ∅.

The connection between FSD and the stretched diagonal is as follows: Let n be large enough,
and let Ds(n) be the n-point stretched diagonal, and let q′, p′ be defined from q, p as before. Then
the probability that a random stair-simplex spanned by Ds(n) intersects the stair-path q′p′ is very
close to d!FSD(q, p), and hence, by the Transference Lemma, the number of simplices spanned by
Ds(n) that intersect the segment q′p′ is FSD(q, p)nd plus lower-order terms.

We prove Theorem 7 by calculating FSD for a certain sub-type of stair-path that belongs to
the type T = ∅. Specifically, we will calculate FSD(q, p) for the special case where the points
p = (p1, . . . , pd) and q = (q1, . . . , qd) satisfy the following conditions:

p1 ≤ p2 ≤ · · · ≤ pd, q2 ≤ q3 ≤ · · · ≤ qd ≤ q1 = 1, pi ≤ qi for all i. (1)

Let p, q ∈ [0, 1]d satisfy conditions (1), and let Y = {q, p}. We define RecFSDd(q, p) as the
measure of (d− 1)-tuples a1, . . . , ad−1 ∈ [0, 1] satisfying the following two conditions:

1. a1 < a2 < · · · < ad−1 < qd,

2. stconv(Y ) ∩ stconv(Z) 6= ∅, where Z = {~a1, . . . ,~ad−1}.

(For p, q not satisfying conditions (1), RecFSDd(q, p) is undefined.) Note that if p, q satisfy (1),
then so do p, q.

12



Observation 8. Let p, q ∈ [0, 1]d satisfy conditions (1). Then,

FSDd(q, p) = RecFSDd+1(q × 1, p× 1).

Lemma 9. For p, q ∈ [0, 1]d satisfying conditions (1), RecFSDd(q, p) is given recursively as follows:

RecFSD2(q, p) = q2 − p1,

RecFSDd+1(q, p) = (qd − pd)p1

d−1∏
i=2

(pi − pi−1)

+ (qd+1 − qd)RecFSDd(q, p), for d ≥ 2.

For example, putting together Observation 8 and Lemma 9, we get that for p, q satisfying (1)
we have

FSD1(q, p) = 1− p1,
FSD2(q, p) = (q2 − p2)p1 + (1− q2)(q2 − p1),
FSD3(q, p) = (q3 − p3)p1(p2 − p1) + (1− q3)

(
(q2 − p2)p1 + (q3 − q2)(q2 − p1)

)
.

Proof of Lemma 9. By induction on d.
Base case: When d = 2, we need a1 < q2 and p1 ≤ a1 ≤ q1 = 1. Therefore, we need

p1 ≤ a1 ≤ q2. The measure of numbers a1 ∈ [0, 1] satisfying this condition is q2 − p1.
Recursive case: Suppose we are in dimension d + 1, and let Y = {q, p} with q, p ∈ [0, 1]d+1

and Z = {~a1, . . . ,~ad} where ~ai = (ai, . . . , ai) ∈ [0, 1]d+1. We need the numbers ai to satisfy the
following two separate conditions:

1. ad < qd+1.

2. stconv(Y ) ∩ stconv(Z) 6= ∅ with a1 < a2 < · · · < ad.

Let us calculate the measure of tuples satisfying the second condition. As in the recursive
formula for the stretched grid, here there are two possibilities, according to whether the highest
point in dimension d is q or ~ad. In the first case, we must have ad < qd (which automatically implies
ad < qd+1). In addition, by Lemma 3, we need to have pd < ad, and after “discarding” point q

and projecting down to dimension d − 1, we need to have p′ = p ∈ stconv
(
Z
)
. For this, we apply

Lemma 4. The set Z must contain a point of type j with respect to p′ for every j = 0, . . . , d − 1.
We also need the coordinates ai to be in increasing order. Therefore, for type d− 1, the (d− 1)-st
coordinate of ~ad should be higher than pd−1, that is pd−1 < ad but since we demand pd < ad this
condition is irrelevant. For type d − 2, the (d − 2)-nd coordinate of ~ad−1 should be higher than
pd−2, that is pd−2 < ad−1. In addition, ~ad−1 should be lower than p in the higher coordinates, and
therefore pd−2 < ad−1 < pd−1. And so on. In general, for every type j = 1, . . . , d− 2 we must have
pj < aj+1 < pj+1. For type 0, the lowest point ~a1 must satisfy a1 < p1. To sum up, the measure in
the first case is

(qd − pd)p1

d−1∏
i=2

(pi − pi−1).

In the second case we must have ad > qd. Together with the condition ad < qd+1, this implies
qd < ad < qd+1. In addition, by Lemma 3, we need to have ad−1 < qd, and after “discarding” point
~ad and projecting down to dimension d− 1, we need to have an intersection between stconv

{
p, q
}
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and stconv
{
~a1, . . . ,~ad−1

}
. But these are exactly conditions 1 and 2 above, one dimension lower.

Therefore, the measure in the second case is

(qd+1 − qd)RecFSDd−1(q, p).

Proof of Theorem 7. Let us take the following stair-path:

qp =

{(
1,

3

d+ 2
,

4

d+ 2
, . . . ,

d+ 1

d+ 2

)
,

(
1

d+ 2
,

2

d+ 2
, . . . ,

d− 1

d+ 2
,
d− 1

d+ 2

)}
.

The points q, p satisfy conditions (1). Hence,

FSDd(q, p) = RecFSDd+1(q × 1, p× 1) =
2

(d+ 2)d
+

1

d+ 2
· RecFSDd(q, p)

It follows by induction on d that, if q′, p′ ∈ Rd have the form q′ = (1, 3/c, 4/c, . . . , (d + 1)/c) and
p′ = (1/c, 2/c, . . . , (d−1)/c, k) for some c, k, then RecFSDd(q′, p′) = d/cd−1. Therefore, in our case,
RecFSDd(q, p) = 1/(d+ 2)d−1. The claim follows.

4.2 Dimension 3

In order to find the maximum for the stretched diagonal in d = 3, we examine all different possible
types of stair-paths, each one having its own expression F and domain U . See Table 4. The
expressions F can be derived from Lemma 3, as in previous sections, or they can be derived
more directly as follows: Let ~a = (a, a, a), ~b = (b, b, b), ~c = (c, c, c), with 0 < a < b < c < 1, and
consider the stair-simplex S = stconv(~a,~b,~c). S contains three axis-parallel rectangles with different
orientations: rectangle R1 with opposite corners (a, a, b), (a, b, c), rectangle R2 with opposite corners
(a, b, b), (b, b, c), and rectangle R3 with opposite corners (a, b, c), (b, c, c). Furthermore, the stair-
path qp is composed of three axis-parallel segments with three different orientations. In order for
the stair-path qp to intersect S, one of the former’s segments must intersect one of the latter’s
rectangles. Hence, the numbers a, b, c must satisfy some inequalities depending on the coordinates
q, p, which are not hard to work out.

We calculated the maximum in each case using Maximize. In contrast to the stretched grid,
where the degree of F was 8, here the degree of F is only 3, so Maximize had no problem finding
the maximum quickly. The maximum is (1/25)n3, see Table 5.

5 Discussion and future work

Since in dimension d = 3, the stretched grid and the stretched diagonal yield the same upper bound
of n3/25 (which is known to be tight), we were expecting the same to happen in higher dimensions.
We were surprised to find this not to be the case. Also surprising is the fact that the bounds
obtained for d ≥ 4 do not seem to be rational. Running NMaximize with higher precision, we find
the bound for d = 4 to be 0.004579364805943860006 . . ..

In order to gain more confidence in our numerical results, we re-ran the stretched-grid numerical
maximization experiments in a newer version of Mathematica (12.3) as well as in Python using
SciPy’s differential_evolution function. We got the same results. See the ancillary files of the
arXiv version.
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T = ∅, 0 < p1 < p2 < q2 < q3 < 1,
F1 = p1(q2 − p2)(1− q3) + p1(p2 − p1)(q3 − p2) + (q2 − p1)(1− q3)(q3 − q2)

T = ∅, 0 < p1 < p2 < q3 < q2 < 1,
F2 = p1(p2 − p1)(q3 − p2) + p1(1− q3)(q3 − p2)

T = ∅, 0 < p2 < p1 < q3 < q2 < 1,
F3 = p1(1− q3)(q3 − p1)

T = ∅, 0 < p2 < p1 < q2 < q3 < 1,
F4 = p1(q2 − p1)(1− q3) + (q2 − p1)(1− q3)(q3 − q2)

T = {1}, 0 < p1 < p2 < q2 < q3 < 1,
F5 = p1(q2 − p2)(1− q3) + p1(p2 − p1)(q3 − p2) + p1(1− q3)(q3 − q2)

T = {1}, 0 < p1 < p2 < q3 < q2 < 1,
F6 = p1(p2 − p1)(q3 − p2) + p1(1− q3)(q3 − p2)

T = {1}, 0 < p2 < p1 < q3 < q2 < 1,
F7 = p1(1− q3)(q3 − p1)

T = {1}, 0 < p2 < p1 < q2 < q3 < 1,
F8 = p1(q2 − p1)(1− q3) + p1(1− q3)(q3 − q2)

T = {1}, 0 < p2 < q2 < p1 < 1, 0 < q2 < q3 < 1,
F9 = q2(1− q3)(q3 − q2)

T = {2}, 0 < p1 < q1 < p2 < q3 < 1,
F10 = (p2 − q1)q1(1− q3) + p1(p2 − p1)(q3 − p2) + (q1 − p1)(1− q3)(q3 − p2)

T = {2}, 0 < p1 < p2 < q1 < 1, 0 < p2 < q3 < 1,
F11 = p1(p2 − p1)(q3 − p2) + (p2 − p1)(1− q3)(q3 − p2)

T = {2}, 0 < p1 < q1 < q3 < p2 < 1,
F12 = q1(1− q3)(q3 − q1)

T = {1, 2}, 0 < q1 < p1 < p2 < q3 < 1,
F13 = (p2 − q1)q1(1− q3) + p1(p2 − p1)(q3 − p2) + (p1 − q1)(1− q3)(q3 − p2)

T = {1, 2}, 0 < q1 < p2 < p1 < 1, 0 < p2 < q3 < 1,
F14 = (p2 − q1)q1(1− q3) + (p2 − q1)(1− q3)(q3 − p2)

T = {1, 2}, 0 < q1 < p1 < 1, 0 < q1 < q3 < p2 < 1,
F15 = q1(1− q3)(q3 − q1)

Table 4: Different functions for the stretched diagonal in dimension 3.
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F qp maximum

F1 (1, 3/5, 4/5), (1/5, 2/5, 0) 1/25
F2 (1, 59/64, 27/32), (1/3, 49/96, 0) 1/27
F3 (1, 27/32, 2/3), (1/3, 5/32, 0) 1/27
F4 (1, 1/2, 2/3), (1/6, 5/64, 0) 1/27
F5 (0, 11/16, 27/32), (1/3, 49/96, 0) 1/27
F6 (0, 59/64, 27/32), (1/3, 49/96, 0) 1/27
F7 (0, 27/32, 2/3), (1/3, 5/32, 0) 1/27
F8 (0, 1/2, 2/3), (1/3, 5/32, 0) 1/27
F9 (0, 1/3, 2/3), (11/16, 5/32, 0) 1/27
F10 (2/5, 0, 4/5), (1/5, 3/5, 0) 1/25
F11 (11/16, 0, 3/4), (1/12, 5/12, 0) 1/27
F12 (1/3, 0, 2/3), (5/32, 27/32, 0) 1/27
F13 (1/5, 0, 4/5), (2/5, 3/5, 0) 1/25
F14 (5/32, 0, 2/3), (3/4, 47/96, 0) 1/27
F15 (1/3, 0, 2/3), (11/16, 27/32, 0) 1/27

Table 5: Maximum of each function in Table 4.

The main open problem is to find the exact value of the constants cd,1. Since in dimension 4,
the stretched grid and the stretched diagonal do not give the same value, we are not sure that the
value given by the stretched grid is tight.

Another interesting problem is to study the corresponding variant of the Second Selection
Lemma, in which we look for a line that stabs many simplices from a given subset of X-simplices.
One could also study variants in which a line stabs geometric objects other than simplices.

Acknowledgements. Thanks to Elad Horev, Rom Pinchasi, and the anonymous referee for their
useful comments.
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[9] Endre Boros and Zoltán Füredi. The number of triangles covering the center of an n-set.
Geometriae Dedicata, 17(1):69–77, 1984.
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[21] Jǐŕı Matoušek and Uli Wagner. On Gromov’s method of selecting heavily covered points.
Discrete & Computational Geometry, 52(1):1–33, 2014.
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