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A note on the orientation covering number

Barnabás Janzer
∗

Abstract

Given a graph G, its orientation covering number σ(G) is the smallest non-negative integer
k with the property that we can choose k orientations of G such that whenever x, y, z are
vertices of G with xy, xz ∈ E(G) then there is a chosen orientation in which both xy and xz

are oriented away from x. Esperet, Gimbel and King showed that σ(G) ≤ σ
(

Kχ(G)

)

, where
χ(G) is the chromatic number of G, and asked whether we always have equality. In this note
we prove that it is indeed always the case that σ(G) = σ(Kχ(G)). We also determine the exact
value of σ(Kn) explicitly for ‘most’ values of n.

1 Introduction

Given a non-empty graph G and k orientations ~G1, . . . , ~Gk of G, we say that ~G1, . . . , ~Gk is
an orientation covering of G if whenever x, y, z ∈ V (G) with xy, xz ∈ E(G) then there is an
orientation in which both xy and xz are oriented away from x (i.e., there is some i such that
(x, y), (x, z) ∈ E( ~Gi)). The orientation covering number σ(G) of G is the smallest positive integer
k such that there is a list of k orientations forming an orientation covering of G. Orientation
coverings were introduced by Esperet, Gimbel and King [2], who used them to study the minimal
number of equivalence subgraphs needed to cover a given graph.

Esperet, Gimbel and King [2] showed that σ(G) ≤ σ
(

Kχ(G)

)

for any graph G, where χ denotes
the chromatic number. They asked whether we always have σ(G) = σ

(

Kχ(G)

)

. In this note we
answer this question in the positive.

Theorem 1. For any non-empty graph G, we have σ(G) = σ
(

Kχ(G)

)

.

The value of σ(Kn) has been investigated by Esperet, Gimbel and King [2], who determined
its order of magnitude and the exact values for small values of n. An observation of Gyárfás (see
[2]) shows that we have χ(DSn) ≤ σ(Kn) ≤ χ(DSn)+ 2, where DSn is the double-shift graph on
n vertices. Using the results of Füredi, Hajnal, Rödl and Trotter [3] on the chromatic number
of DSn, this gives σ(Kn) = log log n + 1

2 log log log n + O(1). (All logarithms in this paper are
base 2.) In this note we will also determine the value of σ(Kn) exactly in terms of a certain
sequence of positive integers sometimes called the Hoşten–Morris numbers. As a corollary, we
get the following improved estimate.

Theorem 2. We have σ(Kn) = ⌈log log n+ 1
2 log log log n+ 1

2(log π + 1) + o(1)⌉ as n → ∞.
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Given a positive integer k, let [k] denote {1, . . . , k}, as usual. Given a family A ⊆ P([k]) of
subsets of [k], we say that A is intersecting if whenever S, T ∈ A then S ∩ T 6= ∅. We say that
A is maximal intersecting if A is intersecting and whenever B ⊇ A and B is intersecting then
B = A. (Equivalently, if A is intersecting and |A| = 2k−1.) The following characterisation of
σ(G) is the key to our results.

Theorem 3. For any non-empty graph G, σ(G) is the smallest positive integer k such that there
are at least χ(G) maximal intersecting families over [k].

Clearly, Theorem 3 implies Theorem 1. Let λ(k) denote the number of maximal intersecting
families over [k]. The numbers λ(k) are sometimes called Hoşten–Morris numbers, after a paper
of Hoşten and Morris [4] in which they showed that the order dimension of Kn is the smallest
positive integer k with λ(k) ≥ n. An equivalent formulation of their result is that the minimal
number of linear orders on [n] with the property that the induced orientations of Kn form an
orientation covering is the smallest positive integer k with λ(k) ≥ n. Note that by Theorem 3
this number is the same as the orientation covering number of Kn.

Although no exact or asymptotic formula is known for λ(k), it was shown by Brouwer, Mills,
Mills and Verbeek [1] that

log λ(k) ∼ 2k√
2πk

. (1)

Furthermore, the exact values of λ(k) are known [1] for k up to 9, with λ(9) ≈ 4× 1020.
Theorem 2 follows from Theorem 3 and (1). Indeed, taking logarithms in (1) shows that

σ(Kn) is the smallest positive integer k with log log n ≤ k − 1
2(log π + 1) − 1

2 log k + o(1), which
gives σ(Kn) = ⌈log log n+ 1

2 log log log n+ 1
2(log π + 1) + o(1)⌉.

2 Proof of Theorem 3

The proof is based on the following observation.

Lemma 4. For any non-empty graph G, σ(G) is the smallest positive integer k with the property
that there is a collection (Av)v∈V (G) of subsets of P([k]) (i.e., Av ⊆ P([k]) for all v) such that
the following two conditions hold.

1. If uv ∈ E(G), then there exists S ∈ Au and T ∈ Av such that S ∩ T = ∅.

2. For all v ∈ V (G) and S, T ∈ Av, we have S ∩ T 6= ∅. (I.e., Av is intersecting.)

Proof. First assume that σ(G) = k and ~G1, . . . , ~Gk form an orientation cover of G. For each
directed edge (x, y) of G, let S(x,y) = {i ∈ [k] : (x, y) ∈ E( ~Gi)}. Let Av = {S(v,w) : vw ∈ E(G)}.
Clearly S(v,w) ∩ S(w,v) = ∅, so Condition 1 holds. Also, we have S(v,w) ∩ S(v,w′) 6= ∅ whenever

vw, vw′ ∈ E(G), since by assumption there is an i such that (v,w), (v,w′) ∈ E( ~Gi). So Condition
2 holds as well.

Conversely, suppose that we have such a collection (Av)v∈V (G) with Av ⊆ P([k]) for all v.
For each uv ∈ E(G), pick S(u,v) ∈ Au and S(v,u) ∈ Av such that S(u,v) ∩ S(v,u) = ∅. Define the

orientations ~G1, . . . , ~Gk of G by orienting the edge uv from u to v in ~Gi if i ∈ S(u,v), from v to u

if i ∈ S(v,u), and arbitrarily otherwise. This is clearly well-defined, and whenever uv, uw ∈ E(G),
then S(u,v) ∩ S(u,w) 6= ∅ (by Condition 2). This gives σ(G) ≤ k, as claimed.
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Proof of Theorem 3. We first show the lower bound for σ(G). Let G be any non-empty graph,
and let (Av)v∈V (G) be as in Lemma 4 for k = σ(G). For each v ∈ V (G), let Bv be a maximal
intersecting family with Bv ⊇ Av. Note that the families (Bv)v∈V (G) still satisfy both conditions
in Lemma 4. Furthermore, v 7→ Bv is a proper vertex-colouring (since each Bv is intersecting but
Bv ∪Bw is not whenever vw ∈ E(G)). It follows that the number of maximal intersecting families
over [k] is at least χ(G).

Conversely, assume that k is a positive integer such that there are at least χ(G) distinct
maximal intersecting families B1, . . . ,Bk over [k]. Let c : V (G) 7→ [χ(G)] be a proper vertex-
colouring of G, and set Av = Bc(v) for each v. Certainly each Av is intersecting. Furthermore,
by maximality, no Av ∪ Aw can be intersecting when c(v) 6= c(w), and hence Av ∪ Aw is not
intersecting when vw ∈ E(G). It follows that (Av)v∈V (G) satisfies both conditions in Lemma 4
and so σ(G) ≤ k.
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