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Abstract

An L(h1, h2, . . . , hl)-labelling of a graph G is a mapping φ : V (G) → {0, 1, 2, . . .}
such that for 1 ≤ i ≤ l and each pair of vertices u, v of G at distance i, we have
|φ(u) − φ(v)| ≥ hi. The span of φ is the difference between the largest and small-
est labels assigned to the vertices of G by φ, and λh1,h2,...,hl

(G) is defined as the

minimum span over all L(h1, h2, . . . , hl)-labellings of G.
In this paper we study λh,1,...,1 for Cartesian products of graphs, where (h, 1, . . . , 1)

is an l-tuple with l ≥ 3. We prove that, under certain natural conditions, the value
of this and three related invariants on a graph H which is the Cartesian product of
l graphs attain a common lower bound. In particular, the chromatic number of the
l-th power of H equals this lower bound plus one. We further obtain a sandwhich
theorem which extends the result to a family of subgraphs of H which contain a
certain subgraph of H. All these results apply in particular to the class of Hamming
graphs: if q1 ≥ · · · ≥ qd ≥ 2 and 3 ≤ l ≤ d then the Hamming graph H = Hq1,q2,...,qd

satisfies λql,1,...,1(H) = q1q2 . . . ql − 1 whenever q1q2 . . . ql−1 > 3(ql−1 + 1)ql . . . qd.
In particular, this settles a case of the open problem on the chromatic number of
powers of the hypercubes.

Key words: channel assignment; frequency assignment; distance-constrained
labelling; chromatic number; Cartesian product of graphs; Hamming graph; graph
power

AMS subject classification: 05C78

1 Introduction

Motivated by the frequency assignment problem [6, 11] for communication networks,

various optimal labelling problems for graphs involving distance conditions have been

studied extensively since the 1980s. Among them is the following well-known distance
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labelling problem: Given a graph G and nonnegative integers h1, h2, . . . , hl, determine

the smallest positive integer k with the property that each vertex of G can be assigned a

label from {0, 1, . . . , k} such that for 1 ≤ i ≤ l every pair of vertices at distance i receive

labels which differ by at least hi. The λh1,h2,...,hl
-number of G, denoted by λh1,h2,...,hl

(G), is

defined as the smallest positive integer k with this property. This parameter and several

variants of it, especially for small l, have received much attention in the past more than

three decades. In particular, a number of results on the λh1,h2
-number have been produced

by many researchers, especially in the case when (h1, h2) = (2, 1), as one can find in the

survey paper [1]. Much work in this case was motivated by a conjecture of Griggs and Yeh

[10] which asserts that λ2,1(G) ≤ ∆2 for any graph G with maximum degree ∆. As far

as we know, this conjecture is still open in its general form, though it has been confirmed

in many special cases (see, for example, [7, 10, 13, 14, 22]). In recent years, the λh1,h2,h3
-

number has also received considerable attention (see, for example, [2, 5, 17, 18, 28]), but

for l > 3 very little is known about the λh1,h2,...,hl
-number. In general, it is difficult to

determine the exact value of λh1,h2,...,hl
for a general graph. For example, for l = 1, we have

λh1
(G) = h1(χ(G)− 1), and so determining λh1

is equivalent to computing the chromatic

number χ. Answering a question posed in [17], it was proved in [5] that the problem of

determining the λh1,1,1-number is NP-complete even for trees.

In this paper we study the λh,1,...,1-number and three variants of it (see Subsection

1.2 for their definitions) for any graph H which is the Cartesian product of l non-trivial

graphs, where l ≥ 3 and (h, 1, . . . , 1) is an l-tuple with h ≥ 1. We prove that under a

certain condition these four invariants for H all attain a common lower bound, and in

particular the chromatic number of the l-th power ofH is equal to this lower bound plus 1.

We obtain further a sandwich theorem which says that under the same condition the same

result holds for every subgraph of H that contains a certain subgraph of H as a subgraph.

As corollaries we obtain that these results are true for Hamming graphs Hq1,q2,...,qd such

that q1q2 . . . ql−1 > 3(min{q1, . . . , ql−1}+1)ql . . . qd for some l with 3 ≤ l < d. We will give

the precise statements of our results in Theorems 1.1–1.2 and Corollaries 1.3–1.5 after

introducing relevant definitions and giving a brief review of related results in Subsections

1.2 and 1.3, respectively. Our results give infinite families of graphs for which the values

of λh,1,...,1 and three variants of it can be computed exactly.

1.1 Some basic terminology

All graphs considered in the paper are finite, undirected and simple. Let G be a graph

with vertex set V (G) and edge set E(G). As usual denote by χ(G) the chromatic number

of G and call |V (G)| the order of G. Denote by distG(u, v) the distance in G between

vertices u, v of G. For an integer l ≥ 1, the l-th power Gl of G is the graph with vertex

set V (G) in which u, v ∈ V (G) are adjacent if and only if 1 ≤ distG(u, v) ≤ l. We write

K ⊆ G to denote that K is a subgraph of G.

The Cartesian product of given graphs G1, G2, . . . , Gd, denoted by G1✷G2✷ · · ·✷Gd, is

the graph with vertex set V (G1)×V (G2)×· · ·×V (Gd) in which two vertices (u1, u2, . . . , ud),
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(v1, v2, . . . , vd) are adjacent if and only if there is exactly one i ∈ {1, 2, . . . , d} such that

uivi ∈ E(Gi) and uj = vj for all j ∈ {1, 2, . . . , d} \ {i}.

Given integers q1, q2, . . . , qd ≥ 2, the Hamming graph Hq1,q2,...,qd is the Cartesian prod-

uct Kq1✷Kq2✷ · · ·✷Kqd where, for an integer q ≥ 1, Kq denotes the complete graph with

order q. Since the Cartesian product is commutative, without loss of generality we may

assume that q1 ≥ q2 . . . ≥ qd. In the case when q1 = q2 = · · · = qd = q, we write H(d, q)

in place of Hq1,q2,...,qd. In particular, H(d, 2) is the d-dimensional hypercube Qd.

1.2 Distance-constrained labelling problems

Let h1, h2, . . . , hl be nonnegative integers. An L(h1, h2, . . . , hl)-labelling of G is a mapping

φ from V (G) to the set of nonnegative integers such that, for i = 1, 2, . . . , l and any pair

of vertices u, v ∈ V (G) with distG(u, v) = i,

|φ(u)− φ(v)| ≥ hi. (1)

The integer φ(u) is the label of u under φ and the span of φ, denoted by sp(G;φ), is

the difference between the largest and smallest labels assigned to the vertices of G by φ.

Without loss of generality we may always assume that the smallest label used is 0, so that

sp(G;φ) = max
v∈V (G)

φ(v).

The λh1,h2,...,hl
-number of G is defined [8, 10] as

λh1,h2,...,hl
(G) = min

φ
sp(G;φ),

where the minimum is taken over all L(h1, h2, . . . , hl)-labellings of G. Equivalently, as

stated in the beginning of this paper, λh1,h2,...,hl
(G) is the smallest positive integer k such

that an L(h1, h2, . . . , hl)-labelling of G with span k exists.

The above notion of distance labelling originated from the frequency assignment prob-

lem [11] for which the value λh1,h2,...,hl
(G) measures the minimum bandwidth required by

a radio communication network modelled by G under the constraints (1). It is readily

seen that

χ(Gl) = λ1,1,...,1(G) + 1,

where (1, 1, . . . , 1) is an l-tuple. Thus, from a pure graph-theoretical point of view, the

L(h1, h2, . . . , hl)-labelling problem can be considered as a generalization of the classical

vertex-colouring problem.

An L(h1, h2, . . . , hl)-labelling φ of G is said to be no-hole (see, for example, [3, 4, 21,

23, 24]) if {φ(v) : v ∈ V (G)} is a set of consecutive integers. Define λh1,h2,...,hl
(G) to be

the minimum span among all no-hole L(h1, h2, . . . , hl)-labellings of G, and ∞ if no such

a labelling exists. As an example, we see that λh1,h2,h3
(Kq) = ∞ for all h1 ≥ 2 and q ≥ 2.

The L(h1, h2, . . . , hl)-labelling problem and its no-hole version are a linear model in

the sense that the L1-metric is used to measure the span between two channels. The
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cyclic version of the L(h1, h2, . . . , hl)-labelling problem was studied in [12] with a focus on

small l. A mapping φ : V (G) → {0, 1, 2, · · · , k − 1} is called a C(h1, h2, . . . , hl)-labelling

of G with span k if, for i = 1, 2, . . . , l and any u, v ∈ V (G) with distG(u, v) = i,

|φ(u)− φ(v)|k ≥ hi,

where

|x− y|k = min{|x− y|, k − |x− y|}

is the k-cyclic distance between x and y. A C(h1, h2, . . . , hl)-labelling of G with span k

exists for sufficiently large k. The σh1,h2,...,hl
-number of G, denoted by σh1,h2,...,hl

(G), is

defined to be the minimum integer k − 1 such that G admits a C(h1, h2, . . . , hl)-labelling

with span k. Note that σh1,h2,...,hl
(G) thus defined agrees with σ(G; h1, h2, . . . , hl) defined

in [3] but is one less than σ(G; h1, h2, . . . , hl) used in [12] and ch1,h2,...,hl
(G) used in [19].

As observed in [6, 12], this cyclic version allows the assignment of a set of channels

φ(u), φ(u) + k, φ(u) + 2k, . . . to each transmitter u when G is viewed as a radio network

with one transmitter placed at each vertex.

A C(h1, h2, . . . , hl)-labelling φ of G with span k is no-hole if {φ(v) : v ∈ V (G)} is a set

of consecutive integers mod k. Define σh1,h2,...,hl
(G) to be the minimum k−1 such that G

admits a no-hole C(h1, h2, . . . , hl)-labelling of span k, and ∞ if no such a labelling exists.

It can be verified that if h1 ≥ h2 ≥ · · · ≥ hl then the four invariants above are all mono-

tonically increasing ; that is, η(H) ≤ η(G) for η = λh1,h2,...,hl
, λh1,h2,...,hl

, σh1,h2,...,hl
, σh1,h2,...,hl

whenever H is a subgraph of G.

1.3 Distance-constrained labellings of Hamming graphs

This paper was motivated by distance-constrained labellings of Hamming graphs and

hypercubes. As such let us mention several known results on this class of graphs. More

results can be found in the short survey [27].

In [25, Theorem 3.7] it was proved that, if 2n−1 ≤ d ≤ 2n− t for some t between 1 and

n+ 1, then

λ2,1(Qd) ≤ 2n + 2n−t+1 − 2. (2)

In [9, Theorem 3.1] it was shown that, if p is a prime and either d ≤ p and r ≥ 2, or d < p

and r = 1, then

λ2,1(H(d, pr)) = p2r − 1. (3)

The λj,k-number of Hq1,q2 was determined in [9] and results on Hq1,q2,q3 can be found in

[7, 20].

In [26] a group-theoretic approach to L(j, k)-labelling Cayley graphs of Abelian groups

was introduced. As an application it was proved [26] among other things that

λj,k(Hq1,q2,...,qd) = (q1q2 − 1)k

for any 2k ≥ j ≥ k ≥ 1 if q1 > d ≥ 2, q2 divides q1 and is no less than q3, . . . , qd, and

every prime factor of q1 is no less than d, generalizing (3) to a wide extent. In [26] it was
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also proved (as a corollary of a more general result) that λj,k(Qd) ≤ 2nmax{k, ⌈j/2⌉} +

2n−tmin{j − k, ⌊j/2⌋} − j, which yields

λj,k(Qd) ≤ 2nk + 2n−t(j − k)− j (4)

when 2k ≥ j, where n = 1+ ⌊log2 d⌋ and t = min{2n−d−1, n}. In the special case when

(j, k) = (2, 1), the upper bound (4) gives exactly (2) (see [26, p.990] for justification).

In [28] lower and upper bounds on λh1,h2,h3
(Qd) were obtained using a group-theoretic

approach, which recover the main result in [16] in the special case when (h1, h2, h3) =

(1, 1, 1). The problem of determining λ1,...,1(Qd), or equivalently the chromatic number of

powers of Qd, has a long history but is still wide open. See [15, 28] for some background

information and related results. One of the contributions of the present paper settles this

problem for a range of dimensions (see Corollary 1.5).

Note that λj,k(Hq1,q2,...,qd) ≥ (q1q2 − 1)k for j ≥ k as Hq1,q2,...,qd contains Hq1,q2 as a

subgraph and Hq1,q2 has order q1q2 and diameter two. The following question was asked

in [26, Question 6.1] (see also [4, Section 5]): Given integers j and k with 2k ≥ j ≥

k ≥ 1, for which integers q1 ≥ q2 ≥ · · · ≥ qd with j/k ≤ q1q2 −
∑d

i=1 qi + d do we have

λj,k(Hq1,q2,...,qd) = (q1q2− 1)k? A partial answer to this question was given in [4, Theorem

1.3], where it was proved that, for (j, k) = (2, 1), (1, 1), if q1 is sufficiently large, namely

q1 ≥ d + n − 1 +
∑d

i=2(i − 2)(qi − 1), where n is the largest subscript such that q2 = qn,

then

λj,k(Hq1,q2,...,qd) = λj,k(Hq1,q2,...,qd) = σj,k(Hq1,q2,...,qd) = σj,k(Hq1,q2,...,qd) = q1q2 − 1.

This result inspired us to explore when a similar phenomenon occurs for λh,1,...,1, λh,1,...,1,

σh,1,...,1 and σh,1,...,1 for Cartesian products of graphs. As will be seen in the next subsection,

our main results in the present paper provide sufficient conditions for this to happen.

1.4 Main results

The first main result in this paper is as follows.

Theorem 1.1. Let G1, . . . , Gl−1 and G be non-trivial graphs with orders q1, . . . , ql−1 and

q, respectively, and let H = G1✷ · · ·✷Gl−1✷G, where l ≥ 3. Let ql be an integer with

1 ≤ ql ≤ q. Suppose that

q1q2 . . . ql−1 > 3(min{q1, . . . , ql−1}+ 1)q

and H contains a subgraph K with order q1q2 . . . ql and diameter at most l. Then for any

integer h with 1 ≤ h ≤ ql we have

λh,1,...,1(H) = λh,1,...,1(H) = σh,1,...,1(H) = σh,1,...,1(H) = q1q2 . . . ql − 1, (5)

where (h, 1, . . . , 1) is an l-tuple. Moreover, there is a labelling of H that is optimal for

λh,1,...,1, λh,1,...,1, σh,1,...,1 and σh,1,...,1 simultaneously. In particular, we have

χ(H l) = q1q2 . . . ql

and the same labelling gives rise to an optimal colouring of H l.
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Since by our assumption H contains a subgraph with order q1q2 . . . ql and diameter at

most l, it is easy to see that q1q2 . . . ql−1 is a lower bound for each of the four invariants in

(5). Theorem 1.1 asserts that actually these four invariants for H all achieve this trivial

lower bound. In Section 4, we will give a general construction to show that there are

many graphs other than Hamming graphs which satisfy the conditions of Theorem 1.1.

Using Theorem 1.1, we obtain the following sandwich result, which is our second

main result in the paper. The claimed optimal labelling in this sandwich theorem is the

restriction of the above mentioned optimal labelling of H to V (X). Recall that we write

K ⊆ G when K is a subgraph of a graph G.

Theorem 1.2 (Sandwich Theorem). Under the conditions of Theorem 1.1, for every

graph X with K ⊆ X ⊆ H and any integer h with 1 ≤ h ≤ ql, we have

λh,1,...,1(X) = λh,1,...,1(X) = σh,1,...,1(X) = σh,1,...,1(X) = q1q2 . . . ql − 1, (6)

where (h, 1, . . . , 1) is an l-tuple. Moreover, there is a labelling of X that is optimal for

λh,1,...,1, λh,1,...,1, σh,1,...,1 and σh,1,...,1 simultaneously. In particular, we have

χ(X l) = q1q2 . . . ql

and the same labelling gives rise to an optimal colouring of X l.

Setting G1 = Kq1, . . . , Gl−1 = Kql−1
and G = Kql✷ . . .✷Kqd in Theorem 1.1, we

have H = G1✷ · · ·✷Gl−1✷G = Hq1,q2,...,qd. Since Hq1,q2,...,qd has subgraph Hq1,q2,...,ql with

order q1q2 . . . ql and diameter l, Theorem 1.1 implies immediately the following result for

Hamming graphs.

Corollary 1.3. Let q1 ≥ q2 ≥ · · · ≥ qd be integers no less than 2, and let l be an integer

with 3 ≤ l < d. Let H = Hq1,q2,...,qd. Suppose that

q1q2 . . . ql−1 > 3(ql−1 + 1)ql . . . qd.

Then for any integer h with 1 ≤ h ≤ ql we have

λh,1,...,1(H) = λh,1,...,1(H) = σh,1,...,1(H) = σh,1,...,1(H) = q1q2 . . . ql − 1, (7)

where (h, 1, . . . , 1) is an l-tuple. Moreover, there is a labelling of H that is optimal for

λh,1,...,1, λh,1,...,1, σh,1,...,1 and σh,1,...,1 simultaneously. In particular, we have

χ(H l) = q1q2 . . . ql

and the same labelling gives rise to an optimal colouring of H l.

Similarly, Theorem 1.2 implies the following result, in which the claimed optimal

labelling is the restriction of the above mentioned optimal labelling of Hq1,q2,...,qd to V (X).
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Corollary 1.4 (Sandwich Theorem for Hamming Graphs). Under the conditions of Corol-

lary 1.3, for every graph X such that Hq1,q2,...,ql ⊆ X ⊆ Hq1,q2,...,qd and any integer h with

1 ≤ h ≤ ql, we have

λh,1,...,1(X) = λh,1,...,1(X) = σh,1,...,1(X) = σh,1,...,1(X) = q1q2 . . . ql − 1,

where (h, 1, . . . , 1) is an l-tuple. Moreover, there is a labelling of X that is optimal for

λh,1,...,1, λh,1,...,1, σh,1,...,1 and σh,1,...,1 simultaneously. In particular, we have

χ(X l) = q1q2 . . . ql

and the same labelling gives rise to an optimal colouring of X l.

Corollary 1.3 implies the following result for Hamming graphs H(d, q) and the d-

dimensional hypercube Qd = H(d, 2).

Corollary 1.5. Let d, q and l be integers such that d ≥ 6, q ≥ 2 and

(d+ 4 +max{4− q, 0})/2 ≤ l < d. (8)

Then for any integer h with 1 ≤ h ≤ q we have

λh,1,...,1(H(d, q)) = ql − 1,

where (h, 1, . . . , 1) is an l-tuple. In particular, if (d+ 6)/2 ≤ l < d, then for h = 1, 2,

λh,1,...,1(Qd) = 2l − 1. (9)

Note that (9) requires d ≥ 8. This is so because for q = 2 the inequalities in (8) cannot

be true unless d ≥ 8. Similarly, for q = 3, (8) requires d ≥ 7. In the general case when

q ≥ 4, (8) says that l is between (d+ 4)/2 and d− 1.

Theorems 1.1 and 1.2 will be proved in Section 3 after a short preparation in the

next section. The paper concludes in Section 4 with a construction illustrating the wide

applicability of Theorems 1.1 and 1.2, some final remarks assessing the strength of the

sufficient conditions in Theorem 1.1 and two open problems.

2 Preliminaries

The following inequalities follow immediately from related definitions.

Lemma 2.1. Let G be a graph and let h1 ≥ h2 ≥ · · · ≥ hl be nonnegative integers. Then

λh1,h2,...,hl
(G) ≤ σh1,h2,...,hl

(G) ≤ λh1,h2,...,hl
(G) + h1 − 1 ([12]) (10)

λh1,h2,...,hl
(G) ≤ λh1,h2,...,hl

(G) ≤ σh1,h2,...,hl
(G) (11)

σh1,h2,...,hl
(G) ≤ σh1,h2,...,hl

(G). (12)

7



Corollary 2.2. Let G be a graph and let h1 ≥ h2 ≥ · · · ≥ hl be nonnegative integers. If

λh1,h2,...,hl
(G) = σh1,h2,...,hl

(G), then

λh1,h2,...,hl
(G) = λh1,h2,...,hl

(G) = σh1,h2,...,hl
(G) = σh1,h2,...,hl

(G)

and any optimal no-hole C(h1, h2, . . . , hl)-labelling of G is optimal for λh1,h2,...,hl
, λh1,h2,...,hl

,

σh1,h2,...,hl
and σh1,h2,...,hl

simultaneously.

Proof Since λh1,h2,...,hl
(G) = σh1,h2,...,hl

(G), by (11) we have λh1,h2,...,hl
(G) = λh1,h2,...,hl

(G) =

σh1,h2,...,hl
(G). Thus the first inequality in (10) becomes σh1,h2,...,hl

(G) ≤ σh1,h2,...,hl
(G).

This together with (12) implies σh1,h2,...,hl
(G) = σh1,h2,...,hl

(G). Obviously, the statement

about optimality holds. ✷

Lemma 2.3. Let G1, . . . , Gl−1 and G be non-trivial graphs with orders q1, . . . , ql−1 and q,

respectively, where l ≥ 2. Let H = G1✷ · · ·✷Gl−1✷G. Let h1 ≥ h2 ≥ · · · ≥ hl be positive

integers, and let ql be an integer with 1 ≤ ql ≤ q. If σh1,h2,...,hl
(H) ≤ q1q2 · · · ql − 1 and H

contains a subgraph with order q1q2 . . . ql and diameter at most l, then

λh1,h2,...,hl
(H) = λh1,h2,...,hl

(H) = σh1,h2,...,hl
(H) = σh1,h2,...,hl

(H) = q1q2 . . . ql − 1

and any optimal no-hole C(h1, h2, . . . , hl)-labelling of H is optimal for λh1,h2,...,hl
, λh1,h2,...,hl

,

σh1,h2,...,hl
and σh1,h2,...,hl

simultaneously.

Proof By our assumption, H contains a subgraphK with order q1q2 . . . ql and diameter at

most l. The vertices of K must receive distinct labels under any L(h1, h2, . . . , hl)-labelling

of H . Hence

λh1,h2,...,hl
(H) ≥ q1q2 . . . ql − 1.

Since σh1,h2,...,hl
(H) ≤ q1q2 . . . ql−1 by our assumption, by (11) we then have λh1,h2,...,hl

(H) =

σh1,h2,...,hl
(H) = q1q2 . . . ql − 1. The result now follows from Corollary 2.2 immediately. ✷

3 Proofs of Theorems 1.1 and 1.2

3.1 A lemma

Lemma 3.1. Let G1, . . . , Gl−1 and G be non-trivial graphs with orders q1, . . . , ql−1 and q,

respectively, and let H = G1✷ · · ·✷Gl−1✷G, where l ≥ 3. If

q1q2 . . . ql−1 > 3(min{q1, . . . , ql−1}+ 1)q, (13)

then for any integer ql with 1 ≤ ql ≤ q, we have

σql,1,...,1(H) ≤ q1q2 . . . ql − 1,

where (ql, 1, . . . , 1) is an l-tuple.
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Proof Since G1, . . . , Gl−1 and G are non-trivial graphs, their orders q1, . . . , ql−1 and q

are no less than 2. Since the Cartesian product is commutative, without loss of generality

we may assume that ql−1 = min{q1, . . . , ql−1}, so (13) becomes q1q2 . . . ql−1 > 3(ql−1+1)q.

Denote the vertices of Gi as

V (Gi) = {0, 1, . . . , qi − 1}, 1 ≤ i ≤ l − 1

and the vertices of G as

V (G) = {0, 1, . . . , q − 1}.

Then

V (H) = {(x1, . . . , xl−1, x) : 0 ≤ xi ≤ qi − 1 for 1 ≤ i ≤ l − 1, 0 ≤ x ≤ q − 1}.

Let ql be an integer with 1 ≤ ql ≤ q. Set

Ni =
l

∏

j=i

qj , 1 ≤ i ≤ l,

and

Nl+1 = 1.

Obviously, for any t with 1 ≤ t ≤ l, every integer in the interval [0, q1q2 . . . qt − 1] can be

uniquely expressed as

x1q2 . . . qt + x2q3 . . . qt + · · ·+ xt−1qt + xt, 0 ≤ xi ≤ qi − 1 for 1 ≤ i ≤ t. (14)

Conversely, any integer of this form is in [0, q1 . . . qt − 1]. This establishes a bijection

between the integers in [0, q1q2 . . . qt − 1] and the vectors (x1, . . . , xt) of integers with

0 ≤ xi ≤ qi − 1 for 1 ≤ i ≤ t. In particular, every integer in [0, N1 − 1] can be uniquely

written as
l

∑

i=1

xiNi+1, 0 ≤ xi ≤ qi − 1 for 1 ≤ i ≤ l (15)

and conversely any integer of this form is in [0, N1 − 1]. In this way we establish a

bijection between the integers in [0, N1 − 1] and the vectors (x1, . . . , xl) of integers with

0 ≤ xi ≤ qi − 1 for 1 ≤ i ≤ l.

For each x ∈ V (G), we define

r(x) ≡ x (mod ql)

to be the unique integer in {0, 1, . . . , ql − 1} congruent to x modulo ql. The uniqueness

of r(x) is due to the assumption that ql ≤ q. Since q < 3(ql−1 + 1)q < q1q2 . . . ql−1 ≤ N1,

every integer x ∈ V (G) can be expressed in the form of (15) and moreover r(x) = xl.

For each integer t between 0 and q − 1, consider a set

At = {(a1(x), . . . , al−1(x)) : 0 ≤ x ≤ t} (16)
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of vectors (a1(x), . . . , al−1(x)) of integers such that 0 ≤ ai(x) ≤ qi − 1 for 1 ≤ i ≤ l − 1

and 0 ≤ x ≤ t. For (x1, . . . , xl−1, x) ∈ V (H) with 0 ≤ x ≤ t, define

φAt
(x1, . . . , xl−1, x) =

l−1
∑

i=1

(

(ai(x) + xi) mod qi
)

Ni+1 + r(x).

The most important ingredient of this proof is the following statement.

Claim 1: For each integer t between 0 and q− 1, there exists a set At of vectors as in

(16) such that, for any pair of distinct vertices x = (x1, . . . , xl−1, x), y = (y1, . . . , yl−1, y)

of H with 0 ≤ x, y ≤ t, we have

|φAt
(x)− φAt

(y)|N1
≥ ql if distH(x,y) = 1 (17)

and

|φAt
(x)− φAt

(y)|N1
≥ 1 if 1 < distH(x,y) ≤ l. (18)

In fact, once this is proved, we then obtain that φAq−1
is a no-hole C(ql, 1, . . . , 1)-

labelling of H with span N1 and hence σql,1,...,1(H) ≤ N1 − 1 = q1q2 . . . ql − 1 as desired.

We prove Claim 1 by induction on t. In the case when t = 0, we set (a1(0), . . . , al−1(0))

= (0, . . . , 0) so that A0 = {(0, . . . , 0)}. In this case we have x = y = 0 and so r(x) =

r(y) = 0. Thus, for x 6= y, φA0
(x) =

∑l−1
i=1 xiNi+1 and φA0

(y) =
∑l−1

i=1 yiNi+1 are distinct

multiples of ql, which implies that |φA0
(x) − φA0

(y)|N1
≥ ql. Therefore, both (17) and

(18) are satisfied by distinct vertices x,y with x = y = 0.

Let 0 < t < q − 1. Assume that the statement in Claim 1 holds for nonnegative

integers smaller than t. So in particular the existence of At−1 is assumed. We will prove

that there exists a vector (a1(t), . . . , al−1(t)) of integers with 0 ≤ ai(t) ≤ qi − 1 for each i

such that if we set

At = At−1 ∪ {(a1(t), . . . , al−1(t))} (19)

then conditions (17) and (18) are satisfied by At and any pair of distinct vertices x =

(x1, . . . , xl−1, x), y = (y1, . . . , yl−1, y) of H with 0 ≤ x, y ≤ t. Without loss of generality

we may assume that y ≤ x. If x ≤ t − 1, then for any choice of (a1(t), . . . , al−1(t)) the

set At given in (19) satisfies φAt
(x) = φAt−1

(x) and φAt
(y) = φAt−1

(y). Thus, by our

hypothesis, any pair of distinct vertices x,y with 0 ≤ y ≤ x ≤ t − 1 satisfies (17) and

(18), regardless of the choice of (a1(t), . . . , al−1(t)). So in what follows we only consider

pairs of distinct vertices x,y of H with 0 ≤ y ≤ x = t.

Case 1. (x1, . . . , xl−1) = (y1, . . . , yl−1).

In this case we have 0 ≤ y < x = t and hence the vector (a1(y), . . . , al−1(y)) ∈ At−1

has been defined already by our hypothesis. Set

ψy(z1, . . . , zl−1) =

l−1
∑

i=1

(

(zi − ai(y)) mod qi
)

Ni+1,

10



where 0 ≤ zi ≤ qi − 1 for each i. Then ψy(z1, . . . , zl−1) is a multiple of ql. Just as (14)

defines a bijection, one can see that ψy/ql is a bijection from the set of vectors (z1, . . . , zl−1)

to the integer interval [0, (N1/ql)− 1]. If we set At = At−1 ∪ {(z1, . . . , zl−1)}, then

φAt
(x)− φAt

(y) = ψy(z1, . . . , zl−1) + r(x)− r(y).

Since |r(x)− r(y)|N1
< ql, if (z1, . . . , zl−1) is chosen in such a way that

|ψy(z1, . . . , zl−1)|N1
≥ 2ql, (20)

then conditions (17) and (18) are satisfied by At and all pairs of distinct vertices x,y ∈

V (H) with (x1, . . . , xl−1) = (y1, . . . , yl−1) and 0 ≤ y < x = t. There are N1/ql choices for

(z1, . . . , zl−1) which give rise to pairwise distinct integer values of ψy(z1, . . . zl−1)/ql ranging

from 0 to (N1/ql)− 1. So for each y there are three choices for (z1, . . . zl−1) which violate

(20), namely when ψy(z1, . . . zl−1)/ql takes values 0, 1 or (N1/ql)− 1. Since y ranges from

0 to t− 1, we see that in total there are at most 3t (< 3q) choices for (z1, . . . zl−1) which

violate (20) for some y. Therefore, there are at most 3q choices for (z1, . . . zl−1) such that

(17) or (18) is violated for some pair of distinct x,y with (x1, . . . , xl−1) = (y1, . . . , yl−1)

and 0 ≤ y < x = t.

Case 2. (x1, . . . , xl−1) 6= (y1, . . . , yl−1).

Consider At = At−1 ∪ {(z1, . . . , zl−1)}, where 0 ≤ zi ≤ qi − 1 for each i. If x = y, then

φAt
(x)− φAt

(y) =
l−1
∑

i=1

(

(xi − yi) mod qi
)

Ni+1.

By (14), φAt
(x)− φAt

(y) is a multiple of ql and is ql apart from 0 and N1. So conditions

(17) and (18) are satisfied by At and the pair x,y, regardless of the choice of (z1, . . . , zl−1).

Now suppose that y < x = t. (Recall that we assumed x = t at the end of the

paragraph containing (19).) Then d(x,y) ≥ 2 and condition (17) is not required for x

and y. We have

φAt
(x)− φAt

(y) =

{

l−1
∑

i=1

(

(zi + xi) mod qi − (ai(y) + yi) mod qi
)

qi+1 . . . ql−1

}

ql

+ r(x)− r(y). (21)

Note that |r(x) − r(y)| ≤ ql − 1. Thus, if ((z1 + x1) mod q1, . . . , (zl−1 + xl−1) mod ql−1)

disagrees with ((a1(y) + y1) mod q1, . . . , (al−1(y) + yl−1) mod ql−1) in at least two coor-

dinates or in the i-th coordinate only for some 1 ≤ i ≤ l − 2, then the absolute value

of the first term on the right hand side of (21) is no less than 2ql and so condition (17)

is satisfied by x and y. The same statement holds if these two vectors disagree in the

(l − 1)-th coordinate only but |(zl−1 + xl−1) mod ql−1 − (al−1(y) + yl−1) mod ql−1| ≥ 2.

On the other hand, for a fixed y, there are at most three choices for zl−1 such that

|(zl−1 + xl−1) mod ql−1 − (al−1(y) + yl−1) mod ql−1| ≤ 1. Therefore, for a fixed x and all
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y ≤ t, there are at most 3t (≤ 3q) choices for (z1, . . . , zl−1) such that (18) is violated.

Since xl−1 ranges from 0 to ql−1−1, there are at most 3ql−1q choices for (z1, . . . , zl−1) such

that (18) is violated by some pair x,y with (x1, . . . , xl−1) 6= (y1, . . . , yl−1) and y < x = t.

In summary, we have proved that there are at most 3q+3ql−1q choices for (z1, . . . , zl−1)

such that (17) or (18) is violated by some pair of distinct vertices x,y of H . Since

N1/ql = q1q2 . . . ql−1 > 3(ql−1 + 1)q by our assumption, among the N1/ql choices for

(z1, . . . , zl−1) there exists at least one which can be set as (a1(t), . . . , al−1(t)) such that (17)

and (18) are satisfied by At = At−1∪{(a1(t), . . . , al−1(t))} and all pairs of distinct vertices

x = (x1, . . . , xl−1, x), y = (y1, . . . , yl−1, y) of H with 0 ≤ x, y ≤ t. By mathematical

induction, we have proved Claim 1 and hence the lemma. ✷

3.2 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 In the special case when h = ql, the result follows from Lemmas

2.3 and 3.1 immediately. Thus all equalities in (5) hold when h = ql.

Consider any integer h with 1 ≤ h ≤ ql. By our assumption, H contains a sub-

graph with order q1q2 . . . ql and diameter at most l. All vertices of this subgraph should

be assigned pairwise distinct labels under any L(h, 1, . . . , 1)-labelling of H . So we have

λh,1,...,1(H) ≥ q1q2 . . . ql − 1. On the other hand, λh,1,...,1(H) ≤ λql,1,...,1(H) = q1q2 . . . ql −

1 as 1 ≤ h ≤ ql. Therefore, λh,1,...,1(H) = q1q2 . . . ql − 1. Since h ≤ ql, we have

σh,1,...,1(H) ≤ σql,1,...,1(H) = q1q2 . . . ql − 1. Combining this with (10) and (12), we obtain

q1q2 . . . ql − 1 = λh,1,...,1(H) ≤ σh,1,...,1(H) ≤ σh,1,...,1(H) ≤ σql,1,...,1(H) = q1q2 . . . ql − 1.

Hence λh,1,...,1(H) = σh,1,...,1(H) = q1q2 . . . ql − 1. It then follows from Corollary 2.2 that

all equalities in (5) hold for h and any optimal no-hole C(h, 1, . . . , 1)-labelling of H is

optimal for λh,1,...,1, λh,1,...,1, σh,1,...,1 and σh,1,...,1 simultaneously. ✷

Proof of Theorem 1.2 Since K ⊆ X ⊆ H , for η = λh,1,...,1 or σh,1,...,1, we have

η(K) ≤ η(X) ≤ η(H) as η is monotonically increasing. Moreover, η(H) = q1q2 . . . ql−1 by

Theorem 1.1. Since K has order q1q2 . . . ql and diameter at most l, we have λh,1,...,1(K) ≥

q1q2 . . . ql − 1. This together with (10) implies that η(K) ≥ q1q2 . . . ql − 1 for η = λh,1,...,1

or σh,1,...,1. Combining this with η(K) ≤ η(X) ≤ η(H) = q1q2 . . . ql − 1, we obtain that

η(X) = q1q2 . . . ql − 1 for η = λh,1,...,1 or σh,1,...,1.

By Theorem 1.1, any optimal no-hole L(h, 1, . . . , 1)- or C(h, 1, . . . , 1)-labelling φ of H

has span q1q2 . . . ql − 1. Since K is a subgraph of H with order q1q2 . . . ql and diameter

at most l, all labels used by φ must appear in K. Since K ⊆ X , it follows that the

restriction of φ to V (X) is a no-hole L(h, 1, . . . , 1)- or C(h, 1, . . . , 1)-labelling of X . Thus

η(X) ≤ η(H) = q1q2 . . . ql − 1 for η = λh,1,...,1 or σh,1,...,1. Similarly, we have η(K) ≤ η(X)

as K ⊆ X and η(X) ≤ q1q2 . . . ql − 1. On the other hand, since K has diameter at most

l, we have η(K) ≥ q1q2 . . . ql − 1. Therefore, η(X) = q1q2 . . . ql − 1 for η = λh,1,...,1 or

σh,1,...,1. Hence we have proved that all equalities in (6) hold. Moreover, one can see that

the restriction to V (X) of the optimal labelling in Theorem 1.1 is a labelling of X that is
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optimal for λh,1,...,1, λh,1,...,1, σh,1,...,1 and σh,1,...,1 simultaneously.

SinceK has order q1q2 . . . ql and diameter at most l, we haveKq1q2...ql
∼= K l ⊆ X l ⊆ H l.

Since χ(Kq1q2...ql) = q1q2 . . . ql, and χ(H l) = q1q2 . . . ql by Theorem 1.1, it follows that

χ(X l) = q1q2 . . . ql and the same labelling as above gives rise to an optimal colouring of

X l. ✷

4 Concluding remarks

It is not difficult to construct many graphs other than Hamming graphs which satisfy the

conditions of Theorem 1.1, and we give a simple construction here. Let q1, . . . , ql−1 be inte-

gers no less than 2 such that ql−1 = min{q1, . . . , ql−1} and 3ql−1(ql−1+1) < q1, where l ≥ 3.

Let ql be an integer between 1 and ql−1. Then q2 . . . ql−1ql < (q1q2 . . . ql−2ql)/(3(ql−1+1)).

Take an integer q such that q2 . . . ql−1ql ≤ q < (q1q2 . . . ql−2ql)/(3(ql−1 + 1)). Then

1 ≤ ql ≤ ql−1 < q and 3(ql−1 + 1)q < q1q2 . . . ql−2ql ≤ q1q2 . . . ql−2ql−1. Let G1 = Kq1,

and let G2, . . . , Gl−1 be graphs with orders q2, . . . , ql−1, respectively. Let G be a graph

with order q which contains a subgraph G∗ with order q2 . . . ql−1ql and diameter l − 1.

(There are many graphs G satisfying these conditions.) Let H = G1✷ · · ·✷Gl−1✷G

and K = G1✷G
∗. Then K is a subgraph of H with order q1q2 . . . ql−1ql and diameter

diam(K) = diam(Kq1) + diam(G∗) = 1 + (l− 1) = l. So all conditions in Theorem 1.1 are

satisfied but H is not necessarily a Hamming graph.

A question related to the main contributions in this paper is to assess the strength

of the sufficient condition on the sizes of the factors of Cartesian products of graphs in

Theorem 1.1 and its corollaries. In the case of the Hamming graph Hq1,q2,...,qd, there are

exactly
∑l0

i=1

(

∑

S⊆{1,...,d},|S|=i

∏

j∈S(qj − 1)
)

+1 vertices ofHq1,q2,...,qd at distance no more

than l0 = ⌊l/2⌋ from a fixed vertex, and these vertices require pairwise distinct labels in

any L(h, 1, . . . , 1)-labelling. Thus, for the conclusion of Corollary 1.3 to hold, a necessary

condition is

q1q2 . . . ql ≥

l0
∑

i=1





∑

S⊆{1,...,d},|S|=i

∏

j∈S

(qj − 1)



 .

Moreover, since in any L(h, 1, . . . , 1)-labelling the
∑d

i=1(qi−1) neighbours of the 0-labelled

vertex should receive pairwise distinct labels no less than h, for the conclusion of Corollary

1.3 to hold, another necessary condition is

q1q2 . . . ql ≥ h+

d
∑

i=1

(qi − 1).

Both conditions are met under the assumptions of Corollary 1.3. However, it is not clear

whether these two obvious necessary conditions are also sufficient for the conclusion of

Corollary 1.3.

13



In this dirction it would be interesting to study the following problems (see [26, Ques-

tion 6.1] and [4, Question 5.1] for two related questions for distance-2 labellings of Ham-

ming graphs):

Problem 4.1. Let q1 ≥ q2 ≥ · · · ≥ qd be integers no less than 2, and let l be an integer

with 3 ≤ l ≤ d. Let (h, 1, . . . , 1) be an l-tuple with h a positive integer.

(a) Give necessary and sufficient conditions for λh,1,...,1(Hq1,q2,...,qd) = λh,1,...,1(Hq1,q2,...,qd) =

σh,1,...,1(Hq1,q2,...,qd) = σh,1,...,1(Hq1,q2,...,qd) = q1q2 . . . ql − 1 to hold.

(b) Give necessary and sufficient conditions for λh,1,...,1(Hq1,q2,...,qd) = q1q2 . . . ql − 1 to

hold.
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and Oriol Serra acknowledge financial support from the Spanish Agencia Estatal de In-

vestigación under project MTM2017-82166-P. Zhou was supported by the Research Grant

Support Scheme of The University of Melbourne.

References

[1] T. Calamonleri, The L(h, k)-labelling problem: An updated survey and annotated bibliog-
raphy, The Computer Journal 54 (2011) 1344–1371.

[2] T. Calamonleri, E. G. Fusco, R. B. Tan and P. Vocca, L(h, 1, 1)-labelling of outplanar
graphs, Math. Methods Oper. Res. 69 (2009) 307–321.

[3] G. J. Chang, C. Lu and S. Zhou, No-hole 2-distant colorings for Cayley graphs on finitely
generated abelian groups, Discrete Math. 307 (2007) 1808–1817.

[4] G. J. Chang, C. Lu and S. Zhou, Distance-two labellings of Hamming graphs, Discrete

Applied Math. 157 (2009) 1896–1904.

[5] J. Fiala, P. A. Golovach, J. Kratochv́ıl, B. Lidický and D. Paulusma, Distance three label-
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