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Abstract

Let G = (V,E) be a graph on n vertices, where dv denotes the degree of vertex v, and tv
is a threshold associated with v. We consider a process in which initially a set S of vertices

becomes active, and thereafter, in discrete time steps, every vertex v that has at least tv
active neighbors becomes active as well. The set S is contagious if eventually all V becomes

active. The target set selection problem TSS asks for the smallest contagious set. TSS is

NP-hard and moreover, notoriously difficult to approximate.

In the conservative special case of TSS, tv > 1

2
dv for every v ∈ V . In this special

case, TSS can be approximated within a ratio of O(∆), where ∆ = maxv∈V [dv]. In this

work we introduce a more general class of TSS instances that we refer to as conservative on

average (CoA), that satisfy the condition
∑

v∈V
tv > 1

2

∑

v∈V
dv. We design approximation

algorithms for some subclasses of CoA. For example, if tv ≥ 1

2
dv for every v ∈ V , we can

find in polynomial time a contagious set of size Õ
(

∆ ·OPT 2
)

, where OPT is the size of a

smallest contagious set in G. We also provide several hardness of approximation results. For

example, assuming the unique games conjecture, we prove that TSS on CoA instances with

∆ ≤ 3 cannot be approximated within any constant factor.

We also present results concerning the fixed parameter tractability of CoA TSS instances,

and approximation algorithms for a related problem, that of TSS with partial incentives.

1 Introduction

Let G = (V,E) be a graph with n vertices and a threshold function t : V (G) → N. We consider

the following iterative process on G. Initially, all vertices are inactive. Then, a subset S of
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vertices is selected and all vertices in S become active. After that, in every iteration, for every

inactive vertex v, if at least t(v) of its neighbors were active in the previous iteration, then v

becomes active. The process runs until either all vertices are active or no additional vertices can

update states from inactive to active. A subset S is called a contagious if activating it results in

all the vertices in G becoming active in the end of the process. Given a graph G and a threshold

function t, the problem of finding a contagious set S of smallest possible size is referred to as

Target Set Selection (TSS). A k-approximate solution to the TSS problem returns a contagious

set (or target set, we shall use these two terms interchangeably) of size at most k ·OPT , where

OPT is the size of the optimal solution to TSS.

One motivation for the TSS problem is as follows. The graph G may represent a social

network, where the vertices may represent individual agents, and edges may represent being

friends. Becoming active may correspond to adopting some novelty (a new technology, a new

political agenda, a new fashion style, and so on). An agent becomes active only if sufficiently

many of its friends are active (for example, the novelty involves interaction with other agents,

and its attractiveness to an agent increases as more of its friends adopt it). TSS models the

question of how to introduce a novelty in a cost effective way: is there some small number of

“influential agents” such that if they are convinced to adopt the novelty, the novelty will spread

to the rest of the network.

The TSS problem is notoriously hard to approximate. It is known (folklore) that the TSS

problem can be approximated within a factor of O(n/ log n), and this is currently the best

approximation ratio for the problem, even for graphs of bounded degree. Clearly, such a poor

approximation ratio can hold only in graphs (and associated threshold functions t) for which the

optimal target set (whose size we done by OPT ) is very small, because getting an approximation

ratio of n/OPT is trivial (initially activate the whole graph). One may ask whether there are

natural classes of TSS instances for which there are much better approximation algorithms. We

now describe one such class.

We may say that an agent is conservative if it becomes active only if a strict majority of its

neighbors are active. Intuitively, if all agents are conservative, then target sets need to be large,

and TSS can be approximated within improved factors. Indeed, for bounded degree graphs, this

is the case. Let d(v) denote the degree of vertex v in graph G, and let ∆ denote the maximum

degree in G. A threshold function is referred to as a strict majority threshold function if for

every vertex v it holds that t(v) > d(v)
2 .

Theorem 1.1. For instances with strict majority threshold functions, there are approximation

algorithms with approximation ratio O(∆). Moreover, in the absence of a dependency on n,
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having a dependency on ∆ in the approximation ratio is unavoidable.

The proof of Theorem 1.1 is fairly easy and is omitted here. We just remark that the

algorithmic result of Theorem 1.1 follows from the results of [ABW10], whereas the hardness

result can be proved as in the proof of Theorem 1.6.

We believe that the assumption that agents are conservative is natural in many situations.

However, the assumption that all agents are conservative might be too strong. Hence in this

work, we consider instances in which agents are conservative on average. There is more than

one way in which the term “conservative on average” can be defined, and we choose to use the

following definition.

Definition 1.1. Consider an instance of TSS with n vertices (also referred to as agents), in

which for every vertex i, di denotes its degree and ti denotes its threshold. We say that agents

are conservative on average (CoA) if
∑n

i=1 ti ≥ 1
2

∑n
i=1 di.

Observe that in our definition we introduced the condition
∑n

i=1 ti ≥ 1
2

∑n
i=1 di (with weak

inequality) rather than
∑n

i=1 ti >
1
2

∑n
i=1 di (with strict inequality, as was done in the notion of

“conservative” for individual agents). This is done for convenience. Its effect on the results is

negligible, because given any instance of TSS that satisfies the weaker definition, we can raise by

one the threshold of one of the vertices, and get an instance that satisfies the strong definition.

This change can change the size of the minimum target set by at most 1, which is negligible

compared to other approximation ratios that appear in our results.

An alternative definition that we considered for being conservative on average is that of
∑n

i=1
ti
di

≥ n
2 . (The alternative definition says that the average value of ti

di
is at least 1

2 . In con-

trast, Definition 1.1 is equivalent to requiring that the weighted average is at least 1
2 , where the

weight of a vertex is its degree.) However, TSS instances that satisfy this alternative definition

are not easier to approximate than general TSS instances. This is because given any instance of

TSS, we can add to it n vertices of degree 1 and threshold 1, all connected to one of the vertices

of the original instance. The size of the minimum target set does not change (none of the new

vertices are in the minimum target set), but the new instance does satisfy
∑2n

i=1
ti
di

≥ 2n
2 (here

2n is the new number of vertices, replacing the original n).

Returning to Definition 1.1, it is not hard to see that instances of TSS that are CoA may

have very small target sets, even if they have bounded degree. A simple example is a cycle in

which all thresholds are 1, as there any single vertex activates the whole graph. This makes the

design of approximation algorithms for such instances considerably more difficult compared to

the case in which all agents are conservative. Indeed, in the current work we are not able to
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determine whether CoA TSS instances can be approximated within approximation ratios that

are significantly better than those for general TSS instances. This remains as an interesting

open question. What we are able to do is to design approximation algorithms for some natural

subclasses of CoA, and also to provide some new hardness of approximation results that apply

in CoA settings.

We also consider a related problem, that of TSS with partial incentives [CGRV15], that we

denote by TSSP . An instance of TSSP is similar to an instance of TSS, and one seeks the

minimum value for
∑n

i=1 pi (where pi ≥ 0 for all i) such that in the instance with thresholds

ti − pi, if all agents with threshold 0 are activated, the whole graph becomes active.

Before proceeding to describe our new results and previous results in more detail, we intro-

duce some notation that is hopefully intuitive. Here are some representative examples for the

use of our notation:

• TSS(d = c, t = q) denotes the class of instances of TSS in which the G is c-regular and all

thresholds have value q.

• TSS(d ≤ c, t ∈ {1, 2}): instances in which G is of maximum degree c and every threshold

is either 1 or 2.

• TSS(tv ≥ 1
2dv): instances where for each vertex the threshold is at least half of its degree.

Throughout this paper, n represents the number of vertices in the input graph G(V,E), ∆

represents its maximum degree, d̄ represents its average degree, and OPT represents the value

of the optimal solution (which is the size of the smallest contagious set).

1.1 Main results

A natural class of instances within CoA is one in which for every agent i the threshold ti satisfies

the weak majority condition ti ≥ di
2 (instead of the strong majority condition, which makes the

agent conservative).

Theorem 1.2. Let (G, t) be an instance of TSS(tv ≥ 1
2dv). Then a contagious set of size

O
(

∆ · OPT 2 ·
√

log(∆ · OPT )
)

can be found in polynomial time.

Observe that unlike the case of Theorem 1.1, in Theorem 1.2 the approximation ratio depends

not only on ∆, but also on OPT . We do not know whether this dependency on OPT is

necessary. However, we do know that even with this dependency on OPT , the approximation

ratio of Theorem 1.2 is better than the one that can be achieved (under reasonable complexity

assumptions) for general instances of TSS. This follows from the following theorem.
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Theorem 1.3. The TSS(d = 3,t ∈ {1, 2}) problem cannot be approximated within the ratio

f(OPT ) for any computable function f , unless FTP = W [P ].

We now turn to a more demanding subclass of CoA instances. For a graph G = (V,E), a

thershold function t : V (G) → N is balanced if every edge (u, v) ∈ E satisfies tu
du

+ tv
dv

≥ 1. We

denote the associated target set selection problem by TSS( tudu + tv
dv

≥ 1). Clearly, every weak

majority threshold function is balanced. Also, every balanced threshold function is conservative

on average due to the following chain of inequalities:

1

2

∑

v

dv = |E| ≤
∑

(u,v)∈E

(

tu
du

+
tv
dv

)

=
∑

v∈V

dv
tv
dv

=
∑

v∈V

tv

Theorem 1.4. Let (G, t) be an instance of TSS( tu
du

+ tv
dv

≥ 1). Then a target set of size

O
(

(∆ ·OPT )2 ·
√

log(∆ ·OPT )
)

can be found in polynomial time.

Another subclass of CoA, incomparable to the one with balanced threshold functions, is

the following. Let G = (V,E) be a graph on n vertices, and let t be a threshold function

t : V (G) → N. We say that t is degenerate if in every induced subgraph G′ of graph G, there

is a vertex v in G′ such that t(v) ≥ dG′(v), where dG′(v) is the degree of v in G′ and t(v) is

the threshold of v in graph G (which is always identical to the threshold of v in graph G′). We

denote the associated target set selection problem by TSS(degenerate).

Theorem 1.5. Let (G, t) be an instance of TSS(degenerate), where tmax is the maximum thresh-

old of function t. Then a target set of size tmax · OPT can be found in polynomial time.

Theorem 1.5 implies that TSS(degenerate) in graphs of bounded degree can be approximated

within a constant factor. In general graphs, this is no longer true, as shown by the following

theorem.

Theorem 1.6. The TSS(degenerate) problem cannot be approximated within the ratio O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0, unless P = NP .

We are not able to present in this work improved approximation ratios that apply to all CoA

instances. However, we are able to provide a hardness result that shows that the algorithmic

result of Theorem 1.1 does not extent to CoA instances. Assuming the unique games conjecture

(UGC, see [Kho02]), we show that even in bounded degree graphs, CoA instances cannot be

approximated within any constant factor. In the following theorem and elsewhere, d̄ denotes

the average degree of a graph.
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Theorem 1.7. The TSS(d̄ = 4,d ≤ 5,t = 2) problem is NP -hard to approximate within any

constant factor, assuming the unique games conjecture.

In contrast to Theorem 1.7, for every fixed ǫ > 0, the TSS(d̄ ≤ 4− ǫ,t = 2) problem can be

approximated within a constant factor (which depends on ǫ) in polynomial time (this follows in

a straightforward manner from [ABW10]).

1.2 Additional results

In our work we prove additional hardness results, some of which we describe now. In [Che09]

it is proven that there is a constant c such that the TSS(d ≤ c,t ∈ {1, 2}) problem cannot

be approximated within the ratio O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0, unless NP ⊆
DTIME(npolylog(n)). We prove the following strengthening of this result.

Theorem 1.8. The TSS(d = 3,t ∈ {1, 2}) problem cannot be approximated within the ratio

O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0, unless P = NP .

We note that both TSS(d ≤ 3,t = 1) and TSS(d ≤ 3,t = 2) can be solved in polynomial time.

The first of these results is trivial, whereas, for the second result see either [TU15] or [KLV17].

It is proven in [KLV17] that the TSS(d ≤ 4,t = 2) is NP -hard. We prove the following

strengthening.

Theorem 1.9. The TSS(d = 4,t = 2) problem is APX-hard.

It is well known that the feedback vertex set problem is equivalent to the problem TSS(tv =

dv − 1). In [Riz09] it is proven that the feedback vertex set problem is APX-hard for graphs of

maximum degree 4. We prove the following strengthening of the theorem above which might be

of independent interest.

Theorem 1.10. The TSS(d = 4,t = 3) problem is APX-hard (that is feedback vertex set is

APX-hard on 4-regular graphs).

Another aspect that we address in our work is the fixed parameter tractability of subclasses

of CoA TSS instances. In [BCNS14] it is proven that TSS(tv ≥ 1
2dv) is W [P ]-hard with respect

to the parameter OPT . Adding also ∆ as a parameter, we obtain positive results.

Theorem 1.11. Let (G, t) be an instance of TSS(tv ≥ 1
2dv). Then one can solve TSS(tv ≥ 1

2dv)

in time 2O(∆·OPT log2(∆·OPT )) · nO(1).
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Theorem 1.12. Let (G, t) be an instance of TSS( tu
du

+ tv
dv

≥ 1). Then one can solve TSS( tu
du

+
tv
dv

≥ 1) in time 2O(∆2·OPT log2(∆·OPT )) · nO(1).

We also consider a related problem, that of TSS with partial incentives [CGRV15], that we

denote by TSSP . An instance of TSSP is similar to an instance of TSS, and one seeks the

minimum value for
∑n

i=1 pi (where pi ≥ 0 for all i) such that in the instance with thresholds

ti− pi, if all agents with threshold 0 are activated, the whole graph becomes active. See Section

4 for a more detailed definition.

We remark that for every given instance, the optimal value of the corresponding TSS and

TSSP problems differ by a factor of at most ∆. Hence in bounded degree graphs the approx-

imation ratios of these two problems differ by at most a constant factor. But still, there are

significant differences in the approximability of these two problems.

TSS(tv = dv) is NP-hard (equivalent to vertex cover). In contrast, it is shown in [CGL+18]

that TSSP (tv = dv) can be solved in polynomial time. We provide several stronger results.

Theorem 1.13. The TSSP (degenrate) problem can be solved in polynomial time. The same

applies to the TSSP (tv ∈ {dv − 1, dv}) problem and the TSSP (tv ∈ {1, dv}) problem.

The value of the optimal solution of TSSP instances is between 1 and O(n2). Hence obtaining

an O(n2) approximation ratio is trivial. It turns out that obtaining an approximation ratio of

O(n) is not difficult. See Theorem 4.1. We show that for a subclass of CoA (that of weak

majority thresholds), better approximation ratios are achievable.

Theorem 1.14. Given an instance of (G, t) of the TSSP (tv ≥ 1
2dv) problem, an Õ(

√
n)-

approximate solution can be found in polynomial time. Furthermore the problem is APX-hard.

We stress that the approximation ratio of Theorem 1.14 for TSSP (tv ≥ 1
2dv) holds regardless

of the value of ∆, whereas similar approximation ratios are not known for TSS(tv ≥ 1
2dv) when

∆ is unbounded.

For strong majority thresholds, we show that even better approximation ratios can be

achieved.

Theorem 1.15. Given an instance of (G,t) of the TSSP (tv > 1
2dv) problem, an Õ(n

1

3 )-

approximate solution can be found in polynomial time.

1.3 Related work

It is known (folklore) that the TSS problem can be approximated within a factor of O(n/ log n)

and this is currently the best approximation ratio for the problem, even for graphs of bounded
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degree.

The TSS(t = 1) problem can be solved in polynomial time by activating one vertex in each

connected component. The TSS(tv = dv) problem is equivalent to the vertex cover problem as

shown in [Che09], and hence can be approximated within a ratio of 2. The TSS(tv = dv − 1)

problem is equivalent to the feedback vertex set problem (follows from [JR09]), and hence it

too can be approximated within a ratio of 2. Moreover, TSS(d ≤ 3,t = 2) can be solved in

polynomial time (see [TU15] and [KLV17]). More generally the TSS(tv = dv − k) problem is

equivalent to the problem of deleting the minimum number of vertices in a graph such that the

resulting graph is k-degenerate.

It follows from the results in [ABW10] that the TSS(tv >
1
2dv) problem (the strict majority

target set selection problem) can be approximated within a factor O(∆) where ∆ is the maximum

degree of the graph.

In [ER19] it is shown that the TSS problem can be approximated efficiently in graphs of

bounded treewidth in polynomial time. Namely, they prove the following theorem.

Theorem 1.16. Let (G, t) be an instance of TSS. Given a tree-decomposition of graph G of

width w, a target set of size (w + 1)OPT can be found in polynomial time, where OPT is the

size of an optimal target set of the TSS instance.

Furthermore in [BHLN11] it is proven that the TSS problem can be solved efficiently in

graphs of bounded treewidth (but the running time here depends on the treewidth). Combining

this with algorithms for finding a tree decomposition [BDD+13] gives the following.

Theorem 1.17. Let (G, t) be an instance of TSS. Then one can solve the instance in time

∆O(w logw) · nO(1) , where w is the treewidth of graph G and ∆ the maximum degree of graph G.

In [Che09] it is proven that there is a constant c such that the TSS(d ≤ c,t ∈ {1, 2})
problem cannot be approximated within the ratio O

(

2log
1−ǫ n

)

for any fixed constant ǫ > 0,

unless NP ⊆ DTIME(npolylog(n)). In [CNW16] it is shown that assuming a conjecture on the

hardness of Planted Dense Subgraph it is impossible to approximate TSS within a factor of

O(n
1

2
−ǫ).

The following theorem is proven in [BCNS14] .

Theorem 1.18. The TSS(t ∈ {1, 2}) and TSS(tv ≥ 1
2dv) problems cannot be approximated

within the ratio f(OPT ) for any computable function f , unless FTP = W [P ].
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1.4 Proof techniques

A recurrent idea in our algorithms for the CoA TSS problems (theorems 1.2 and 1.4), is to

prove that having a combination of low OPT value and low maximum degree ∆ implies that

the graph of the instance has small treewidth (in fact, even small cutwidth). Thereafter we use

Theorem 1.16 as a blackbox in order to approximate the optimal target set efficiently. This

approach has some similarity with an approach referred to as bidimensionality (see for example

[DH08]) which works for problems in which low OPT implies having no large grid minor, and

consequently small treewidth. We cannot use the existing bidimensionality theory directly in

this paper, as contraction of edges in a TSS instance does not preserve existing target sets in a

meaningful way.

In algorithmic results for the partial incentive model of TSS we show that low OPT implies

small cutwidth of the graph, and hence also small treewidth. However, in the partial incentives

model there is no known theorem similar to Theorem 1.16 that we can use as a blackbox, and

in fact it is not clear whether small treewidth implies a good approximation ratio. Instead, we

design approximation algorithms that make direct use of the small cutwidth.

The above algorithmic framework fails for some CoA instances. For example, consider a

graph composed of a path P1 of length n/2, a path P2 of length n/2, and a random perfect

matching between the vertices of P1 and P2. Such a graph has linear treewidth (with high

probability). Setting ti = 1 for every vertex i ∈ P1 and tj = 2 for every vertex j ∈ P2, one gets

an instance of TSS(degenerate) for which OPT = 2, ∆ = 3, and yet the treewidth is linear.

Hence to prove theorems 1.5 and 1.13 we need a different approach. Our proof is based on

considering the vertices of the graph in a natural order that is derived from the degeneracy

condition. Using this order we obtain both an upper bound on OPT and a lower bound. In the

case of Theorem 1.5, the bounds differ by a multiplicative factor of at most the maximum over

all ti. In the case of Theorem 1.13, perhaps surprisingly, the bounds match.

Our hardness of approximation results are based on reductions that involve the construction

of various gadgets. Like some of the previous hardness results, we first prove hardness results for

a variant of TSS on directed graphs, and then reduce from the directed case to the undirected

case. In our hardness results we want the graphs to have very low degrees, and one of the

aspects that makes the construction of the appropriate gadgets easier is to start from instances

of TSS in directed graphs in which vertices have extremal thresholds (either 1, or equal to the

in-degree).
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1.5 Discussion

A major open question in this field is whether the TSS problem can be approximated within

some factor of nδ for a constant δ < 1. Currently no such approximation algorithm is known

even for the TSS(d = 5, t = 2) problem (see Theorem 3.6). Likewise, no such algorithm is known

even for conservative instances TSS(dv > 1
2tv), if there is no bound on the maximum degree ∆.

An open question more directly related to our work is whether bounded degree conservative

in average (CoA) instances of TSS can be approximated within a ratio of nδ for some constant

δ < 1. By our results, this is indeed true for some subclasses of CoA. For example, Theorem 1.2

implies that the TSS(d = 4, t = 2) problem can be approximated within a ratio of

min
(

Õ(OPT ),
n

OPT

)

= Õ
(√

n
)

Furthermore we have shown that the TSS(d = 4, t = 2) problem is APX-hard (Theorem 1.9).

Narrowing the gap between these upper and lower bounds remains open, for TSS(d = 4, t = 2)

in particular, and for the weak majority threshold TSS problem in general.

2 Proofs of algorithmic results

2.1 Weak majority threshold functions

Let G = (V,E) be a graph on n vertices and let t : V (G) → N be a (weak) majority threshold

function satisfying t(v) ≥ dG(v)/2. We denote the associated target set selection problem by

TSS(tv ≥ 1
2dv). We build some machinery towards the proof of Theorem 1.2.

Definition 2.1. The cutwidth of graph G, denoted by CW (G), is the minimum possible width

of a linear ordering of the vertices of G, where the width of an ordering σ is the maximum,

among all the prefixes of σ, of the number of edges that have exactly one vertex in a prefix.

Lemma 2.1. Given a graph G = (V,E) on n vertices and a majority threshold function t. If G

contains a target set of size r then CW (G) ≤ ∆r where ∆ is the maximum degree of graph G.

Proof: Let T be a target set of size r in G. Target set T eventually activates all the vertices of

G. Suppose that the activation order is v1, v2, . . . , vn where v1, v2, . . . , vr are the vertices of the

target set T . As usual we denote by di the degree of vertex vi in G and by ti the threshold of

vertex vi. For any 1 ≤ k ≤ n, let Ak be the set of vertices {v1, v2, . . . , vk} and Bk be the set of

vertices {vk+1, vk+2, . . . , vn}. Denote by C(k) the number of edges in G between the vertices of

Ak and the vertices of Bk. We claim that for each 1 ≤ k ≤ n we have C(k) ≤ ∆r. We will prove
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this by induction on k. This of course holds trivially if k ≤ r as the number of edges incident

to vertices of Ak is at most k∆. Now assume that the claim holds for k and we will prove that

the claim holds for k+1. By the induction hypothesis the number of edges between Ak and Bk

is at most ∆r. As vertex vk+1 is getting activated in step k + 1 we know that vertex vk+1 has

at least tk+1 neighbors in Ak and thus vertex vk+1 has at most dk+1 − tk+1 neighbors in Bk+1.

We conclude that

C(k + 1) ≤ C(k) + (dk+1 − tk+1)− tk+1

= C(k) + dk+1 − 2tk+1

≤ C(k) As tk+1 ≥
1

2
dk+1

The last inequality follows from the fact that t is a majority threshold function.

In [Bod86] it is proven that the treewidth of graph G (denoted by TW (G)) satisfies

TW (G) ≤ CW (G)

For a definition of treewidth (and tree decomposition) see also [Bod86]. We will use the following

result from [FHL08].

Theorem 2.2. In any graph of treewidth w, a tree decomposition of width at most O(w
√
logw)

can be found in polynomial time in the size of the graph.

Recalling Theorem 1.16, we now prove Theorem 1.2.

Proof: By Lemma 2.1 we have CW (G) ≤ ∆ ·OPT and hence TW (G) ≤ CW (G) ≤ ∆ ·OPT .

Thus by Theorem 2.2 we can find in polynomial time a tree decomposition for G of width at

most O(∆ ·OPT ·
√

log(∆ · OPT ))). Hence by Theorem 1.16 we can find in polynomial time a

target set in G of size at most O(∆ · OPT 2 ·
√

log(∆ · OPT ))).

The proof of Theorem 1.2, but with the use of Theorem 1.16 replaced by Theorem 1.17, also

proves Theorem 1.11.

2.2 Balanced threshold functions

Recall that a threshold function is balanced if every edge (u, v) ∈ E satisfies t(u)
d(u) +

t(v)
d(v) ≥ 1.

Recall also Definition 2.1 for the cutwidth of a graph G, denoted by CW (G).

Let M(G) = max
v∈G

d(v)
t(v) . Notice that M(G) ≤ ∆(G).
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Lemma 2.3. Given a graph G = (V,E) on n vertices and a balanced threshold function t, such

that M(G) ≥ 2. If G contains a target set of size r then CW (G) ≤ (M(G) − 1)∆r where ∆ is

the maximum degree of graph G.

Proof: The case M = 2 is Lemma 2.1, hence we may assume that M > 2. Let T be a target set

of size r in G. Target set T eventually activates all the vertices of G. Set M = M(G). Suppose

that the activation order is v1, v2, . . . , vn where v1, v2, . . . , vr are the vertices of the target set

T . As usual we denote by di the degree of vertex vi in G and by ti the threshold of vertex vi.

For any 1 ≤ k ≤ n, let Ak be the set of vertices {v1, v2, . . . , vk} and Bk be the set of vertices

{vk+1, vk+2, . . . , vn}. Denote by C(k) the number of edges in G between the vertices of Ak and

the vertices of Bk. We claim that for each 1 ≤ k ≤ n we have C(k) ≤ (M − 1)∆r. This of

course holds trivially if k ≤ r as the number of edges incident to vertices of Ak for k ≤ r is at

most ∆k ≤ (M − 1)∆r (as M > 2). Furthermore by the same argument as in Lemma 2.1 we

have for all k > r that

C(k) ≤ C(k − 1) + dk − 2tk

And thus for k > r we have

C(k) ≤ C(r) +

k
∑

i=r+1

(di − 2ti)

≤ ∆r +
k
∑

i=r+1

(di − 2ti) as C(r) ≤ ∆r (2.1)

Fix some k > r, by (2.1) all that is left is to prove the following statement.

k
∑

i=r+1

(di − 2ti) ≤ (M − 2)∆r (2.2)

Let A ⊆ {r + 1, r + 2, . . . , k} be a set such that for each i ∈ A we have ti
di

≥ 1
2 . Let B =

{r+1, r+2, . . . , k} \A, notice that for each i ∈ B we have ti
di

< 1
2 . As t is a balanced threshold

function, the vertices corresponding to set B induce an independent set in graph G.

By (2.2) it is sufficient for us to prove the following.
∑

j∈B

(dj − 2tj)−
∑

i∈A

(2ti − di) ≤ (M − 2)∆r

That is we need to prove that
∑

j∈B

(dj − 2tj) ≤
∑

i∈A

(2ti − di) + (M − 2)∆r (2.3)

12



As function t is a balanced threshold function we have for all i ∈ A and j ∈ B such that (vi, vj)

is an edge in G that ti
di

+
tj
dj

≥ 1 and by rearranging this inequality we conclude that for all

i ∈ A and j ∈ B such that (vi, vj) is an edge in G we have

2ti − di
di − ti

≥ dj − 2tj
tj

(2.4)

Now assign a potential of M − 2 for every edge touching a vertex in the target set (that is,

for each vi such that i ∈ {1, . . . , r}) and notice that the total potential assigned is at most

(M − 2)∆r. Furthermore for each vertex vi with i ∈ A assign a potential of 2ti−di
di−ti

for each of

the (at most) di− ti edges touching vi which participate in the activation of vertices with indices

in B (notice that there are at most di − ti such edges as ti edges participated in the activation

of vi itself). The total potential assigned to edges touching vertices corresponding to indices

in A is at most
∑

i∈A(2ti − di). Thus the total potential assigned to edges touching vertices

corresponding to indices in A and edges touching vertices in the target set is

∑

i∈A

(2ti − di) + (M − 2)∆r

which is the right hand side of (2.3). Now every vertex vj such that j ∈ B has tj edges which

participate in its activation and by the argument above each such edge (vi, vj) gets a potential

of at least

min

{

2ti − di
di − ti

,M − 2

}

Now notice that M − 2 ≥ dj−2tj
tj

by the definition of M and furthermore 2ti−di
di−ti

≥ dj−2tj
tj

by

Inequality (2.4). and we conclude that

min

{

2ti − di
di − ti

,M − 2

}

≥ dj − 2tj
tj

Hence the total potential of edges touching vertex vj is at least dj − 2tj. This concludes the

proof of Inequality (2.3) and we are done.

Using Lemma 2.3 instead of Lemma 2.1, the proof of Theorem 1.4 is the same as that of

Theorem 1.2, and the proof of Theorem 1.12 is the same as that of Theorem 1.11.

2.3 Degenerate threshold functions

Recall that a threshold function t : V (G) → N is called degenerate if in every induced subgraph

G′ of graph G there is a vertex v in G′ such that t(v) ≥ dG′(v), where dG′(v) is the degree
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of v in G′, and t(v) is the threshold of v in graph G. Such a function is called a degenerate

threshold function. In this section we prove Theorem 1.5 concerning the approximability of

TSS(degenerate).

For any graph G on n vertices with a degenerate threshold function t there is a degeneracy

ordering of its vertices (v1, v2, . . . , vn) such that for each 1 ≤ i ≤ n we have t(vi) ≥ dp(vi) where

t(vi) is the threshold of vertex vi and dp(vi) is the number of neighbors of vertex vi in the vertex

set {v1, v2, . . . , vi−1} (we define dp(v1) = 0). Now we present our approximation algorithm for

the TSS(degenerate) problem.

Algorithm I

Input: A graph G = (V,E) on n vertices and a degenerate threshold function t.

Output: A target set T of size at most tmax ·OPT

(where tmax is the maximal threshold of function t and OPT is the size of an optimal

target set).

1. Set T to be an empty set.

2. Let (v1, v2, . . . , vn) be a degeneracy ordering of graph G.

3. For each 1 ≤ i ≤ n, if t(vi) > dp(vi) then set T = T ∪ {vi}.

4. Return T .

First of all notice that the set T returned by the algorithm above is indeed a target set which

activates the whole graph G. This follows from the fact that for 1 ≤ i ≤ n, if vertex vi was not

selected by the algorithm then by the property of the degeneracy ordering we had t(vi) = dp(vi).

Hence after the selection of set T as a target set, the remaining vertices of the graph will be

activated in the exact same order as the degeneracy ordering

Now we assume that |T | = r and we will prove that r ≤ OPT · tmax.
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By Step 3 of the algorithm We have that

n
∑

i=1

t(vi) ≥
∑

v∈T

(dp(v) + 1) +
∑

v∈V (G)\T

dp(v)

≥ r +

n
∑

i=1

dp(vi)

= |E(G)| + r (as
n
∑

i=1

dp(vi) = |E(G)| )

That is
∑

v∈V (G)

t(v) ≥ |E(G)| + r (2.5)

Furthermore if S is an optimal target set of size OPT we have that

∑

v∈V (G)\S

t(v) ≤ |E(G)| (2.6)

We note that Inequality (2.6) was first observed in [ABW10]. By Inequality (2.5) we have

∑

v∈V (G)\S

t(v) +
∑

v∈S

t(v) ≥ |E(G)| + r (2.7)

And we conclude from Inequalities (2.7) and (2.6) that

∑

v∈S

t(v) ≥ r

Hence r ≤ |S| · tmax = OPT · tmax and thus Theorem 1.5 is proved.

3 Hardness of approximation

3.1 Hardness of approximation in terms of the maximum degree

We start by defining the directed target set selection problem, as it is easier to show hardness

of approximation for directed variants of the target set selection and then to reduce from those

models to the undirected target set selection problem. The directed target set selection problem

is the following: let G = (V,E) be a directed graph with a threshold function t : V (G) → N.

Denote by d−(v) the indegree of vertex v in graph G and by d+(v) the outdegree of vertex v.
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We consider the following repetitive process on G: Initially, the states of all vertices are inactive.

We pick a subset S of vertices and activate the vertices of S. After that, in each discrete time

step, the states of vertices are updated according to following rule: An inactive vertex v becomes

active if at least t(v) (out of its d−(v)) in-neighbors become active. The process runs until either

all vertices are active or no additional vertices can update states from inactive to active. We

call subset S a target set if all the vertices in G have been activated in the end of the process.

We denote this problem as TSSD .

Let G = (V,E) be a directed graph with a threshold function t : V (G) → N. The threshold

function t is called an extremal threshold function if for each vertex v ∈ V (G) we have t(v) =

d−(v) or t(v) = 1.

We start by showing a hardness of approximation result for the directed target set selection

problem with an extremal threshold function which we denote by TSSD(tv ∈ {1, dv}). In

Theorem 3.1 of [BCNS14] the following is proven (it is not stated explicitly there that the

threshold function is extermal but it follows from their reduction).

Lemma 3.1. The TSSD(tv ∈ {1, dv}) problem cannot be approximated within the ratio f(OPT )

for any computable function f , unless FTP = W [P ].

The reduction in the Theorem 3.1 of [BCNS14] is from the Monotone Circuit Satisfiability

problem and it preserves the exact value of the solution. In [DS04] it is shown that the Monotone

Circuit Satisfiability problem is NP -hard to approximate within the ratio O
(

2log
1−ǫ n

)

for any

fixed constant ǫ > 0. Hence we have the following.

Lemma 3.2. The TSSD(tv ∈ {1, dv}) problem is NP -hard to approximate within the ratio

O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0.

Given a directed graph we denote by dt(v) the total degree of vertex v, that is dt(v) =

d−(v) + d+(v).

Lemma 3.3. The TSSD(d
t ≤ 3,t ∈ {1, 2}) problem cannot be approximated within the ratio

O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0, unless P = NP .

Proof: We will reduce from the TSSD(tv ∈ {1, dv}) problem. Let (G, t) be an instance of

the TSSD(tv ∈ {1, dv}) problem. We will assume without loss of generality that for any vertex

v ∈ V (G) we have d+(v) ≥ 1 and d−(v) ≥ 1 .

If graph G contains a vertex v such that dt(v) > 3 we will replace vertex v with the following

gadget:
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Let u1, u2, . . . , uk be the in-neighbors of vertex v in G (where k = d−(v)). Let w1, w2, . . . , wl be

the out-neighbors of vertex v in G (where l = d+(v)).

Now we remove vertex v from graph G and add vertices u′1, u
′
2, . . . , u

′
k and w′

1, w
′
2, . . . , w

′
l to

graph G. Now we add directed edges to graph G in the following manner.

• For all 1 ≤ i ≤ k−1 we add a directed edge (u′i, u
′
i+1) (that is u

′
i is an in-neighbor of u′i+1).

• For all 1 ≤ i ≤ l − 1 we add a directed edge (w′
i, w

′
i+1).

• We add a directed edge (u′k, w
′
1).

• For all 1 ≤ i ≤ k we add a directed edge (ui, u
′
i).

• For all 1 ≤ i ≤ l we add a directed edge (w′
i, wi).

Notice that the induced subgraph of G consisting of vertices u′1, u
′
2, . . . , u

′
k and w′

1, w
′
2, . . . , w

′
l

is a directed path. Now we add thresholds for the vertices u′1, u
′
2, . . . , u

′
k and w′

1, w
′
2, . . . , w

′
l. If

t(v) = 1 then we set the thresholds in the following manner.

• For all 1 ≤ i ≤ k set t(u′i) = 1.

• For all 1 ≤ i ≤ l set t(w′
i) = 1.

If t(v) = d−(v) then we set the thresholds in the following manner.

• Set t(u′1) = 1.

• For all 2 ≤ i ≤ k set t(u′i) = 2.

• For all 1 ≤ i ≤ l set t(w′
i) = 1.

Denote the resulting graph by G′ and we will denote by G the original graph before the replace-

ment operation. If G has a target set T such that v 6∈ T then T is also a target set of G′. On

the other hand if G has a target set T such that v ∈ T then we remove vertex v from set T .

Now notice that T
⋃{w′

1} is a target set of G′. We conclude that if G has a target set of size q

then G′ has a corresponding target set of size q.

Now assume that G′ has a target set T ′. If for all 1 ≤ i ≤ k we have u′i 6∈ T ′ and for all 1 ≤ i ≤ l

we have w′
i 6∈ T ′ then T ′ is also a target set of G. Otherwise we do the following

• For each 1 ≤ i ≤ k if u′i ∈ T ′ then let T ′ = T ′ \ {u′i}.

• For each 1 ≤ i ≤ l if w′
i ∈ T ′ then let T ′ = T ′ \ {w′

i}.
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Now notice that the set T ′
⋃{v} is a target set of G. Thus if G′ has a target set of size q then

G has a corresponding target set of size at most q. We conclude that G has a target set of size

at most q if and only if G′ has a target set of size at most q.

Now if graph G′ contains a vertex v′ such that dt(v′) > 3 we will replace vertex v′ with the

same gadget as described above. We do this replacement operation iteratively until we finally

get a graph H such that each vertex v ∈ H satisfies dt(v) ≤ 3. The theorem follows from the

following observations.

1. Each threshold of a vertex in graph H is at most 2 (as the in-degree and out-degree of

each vertex in H is at most 2).

2. Graph G has a target set of size at most q if and only if graph H has a target set of size

at most q.

3. Given a target set of size q in graph H one can convert it (in polynomial time) to a target

set of size at most q in graph G.

And thus we are done.

Lemma 3.4. The TSS(d ≤ 3,t ∈ {1, 2}) problem cannot be approximated within the ratio

O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0, unless P = NP .

Proof: We will reduce from the TSSD(d
t ≤ 3,t ∈ {1, 2}) problem (the problem addressed in

Lemma 3.3). Let (G, t) be an instance of the TSSD(d
t ≤ 3,t ∈ {1, 2}) problem. We replace

each directed edge e of graph G by a gadget H consisting of 4 vertices and 7 undirected edges.

Assume that e = (v1, v2). Remove edge e from graph G and add vertices u1, u2, u3, u4 with the

undirected edges:

(u1, v1), (u1, u2), (u1, u3), (u2, u3), (u4, u2), (u4, u3), (u4, v2)

Now set the following thresholds

t(u1) = 1, t(u2) = 1, t(u3) = 2, t(u4) = 2

We stress that for each edge e of graph G we add four different vertices (hence if graph G

contains |E| directed edges we add 4|E| vertices).
After replacing edge e = (v1, v2) by the gadget H above we notice that if v1 gets activated

than the gadget H will activate vertex v2. On the other hand if vertex v2 is activated and none

of the vertices in gadget H are active then vertex v1 will not get activated by the gadget H.

18



v1 u1

1

u2

1

u3

2

u4

2
v2

Figure 1: Gadget H

Furthermore if a vertex in gadget H belong to a target set we can replace it with vertex v1. We

note that an almost identical gadget appears in the paper [BCNS14].

Theorem 3.5. (Restatement of Theorem 1.8) The TSS(d = 3,t ∈ {1, 2}). problem cannot be

approximated within the ratio O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0, unless P = NP .

Proof: We will reduce from the TSS(d ≤ 3,t ∈ {1, 2}) problem (the problem addressed in

Lemma 3.4). Let (G, t) be an instance of the TSS(d ≤ 3,t ∈ {1, 2}) problem, where G is an

undirected graph on n vertices v1, v2, . . . , vn. Assume without loss of generality that G has no

vertices of degree 1. We shall take two disjoint copies H1,H2 of graph G,. The vertices of H1

are u1, u2, . . . , un and the vertices of H2 are w1, w2, . . . , wn where for each 1 ≤ i ≤ n vertex ui

corresponds to vertex vi and vertex wi corresponds to vertex vi. Graph G has an edge (vi, vj) if

and only if H1 has an edge (ui, uj) and H2 has an edge (wi, wj). Let G′ = H1
⋃

H2, that is G
′

is the disjoint union of graphs H1 and H2. For all 1 ≤ i ≤ n if we have d(vi) = 2 in graph G

then we add an edge (ui, wi) to graph G′. Graph G′ is cubic after this operation. Now notice

that the following holds.

1. If S ⊆ [1, n] is a set of indices such that {vi|i ∈ S} is a target set of G then {ui|i ∈
S}⋃{wi|i ∈ S} is a target set of G′.

2. If S1 ⊆ [1, n] and S2 ⊆ [1, n] are sets of indices such that {ui|i ∈ S1}
⋃{wi|i ∈ S2} is a

target set of G′ then {vi|i ∈ S1
⋃

S2} is a target set of G.

We have shown that every target set of size k in G corresponds to a target set of size 2k in G′

and that every target set of size k in G′ corresponds to a target set of size at most k in G.
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We note that by the same chain of reductions we can prove Theorem 1.3.

Theorem 3.6. The TSS(d = 5,t = 2) problem cannot be approximated within the ratio O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0, unless P = NP .

Proof: (Sketch) We reduce from the TSS(d = 3,t ∈ {1, 2}) problem (the problem addressed

in Theorem 3.5). Let G be an undirected cubic graph with thresholds at most 2 in which we

want to find a target set. We add to graph G a ”super” vertex gadget as shown in [Che09] (see

Figure 9 in [Che09]), and we connect each vertex of threshold 1 in the original graph G to this

gadget. The resulting graph is of degree at most 5 and thresholds exactly 2. Now we can apply

techniques similar to the ones in Theorem 3.5 to create a corresponding 5-regular graph.

Corollary 3.7. (Restatement of Theorem 1.6) The TSS(degenerate) problem cannot be approx-

imated within the ratio O
(

2log
1−ǫ n

)

for any fixed constant ǫ > 0, unless P = NP .

Proof: We reduce from the TSS(d = 5,t = 2) problem. Let (G, t) be an instance of the

TSS(d = 5,t = 2) problem, where G is a graph on n vertices v1, v2, . . . , vn. We create a graph

G′ by adding to graph G three vertices w1, w2, w3 and connecting each such vertex to all the

vertices of the original graph G. Furthermore we create a threshold funcion t′ which satisfies

the following conditions.

1. t′(w1) = t′(w2) = t′(w3) = n

2. t′(v1) = t′(v2) = . . . = t′(vn) = 5

And we are done as (G′, t′) is an instance of the TSS(degenerate) problem.

Theorem 3.8. (Restatement of Theorem 1.9) The TSS(d = 4,t = 2) problem is APX-hard.

Proof: (Sketch) The TSS(d = 3,t = 3) problem is equivalent to the cubic vertex cover problem

which is APX-hard ([AK97]). The TSS(d = 3,t = 3) is equivalent to the TSSD(d
− = 3,d+ =

3,t = 3) problem (this follows by replacing each edge in the undirected graph by two anti-parallel

directed edges). Now we can reduce from this problem to the TSS(d = 3,t ∈ {1, 2}) problem in

which the size of the target set is linear in the size of the graph (this can be done by reductions

similar to those in Lemma 3.3 and Lemma 3.4).

Let (G, t) be the instance of the TSS(d = 3,t ∈ {1, 2}) problem in which the size of the target set

is linear in the size of the graph. Assume that G contains n vertices v1, v2, . . . , vn. We shall take

two disjoint copies H1,H2 of graph G,. The vertices of H1 are u1, u2, . . . , un and the vertices of

H2 are w1, w2, . . . , wn where for each 1 ≤ i ≤ n vertex ui corresponds to vertex vi and vertex wi
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Figure 2: Gadget L

corresponds to vertex vi. Graph G has an edge (vi, vj) if and only if H1 has an edge (ui, uj) and

H2 has an edge (wi, wj). Let G′ = H1
⋃

H2, that is G′ is the disjoint union of graphs H1 and

H2. For all 1 ≤ i ≤ n if we have t(vi) = 2 in graph G then we add an edge (ui, wi) to graph G′.

We assume without loss of generality that graph G is connected. Now notice that the following

holds.

1. If S ⊆ [1, n] is a set of indices such that {vi|i ∈ S} is a target set of G then {ui|i ∈ S}⋃{w1}
is a target set of G′.

2. If S1 ⊆ [1, n] and S2 ⊆ [1, n] are sets of indices such that {ui|i ∈ S1}
⋃{wi|i ∈ S2} is a

target set of G′ then {vi|i ∈ S1
⋃

S2} is a target set of G.

We have shown that every target set of size k in G corresponds to a target set of size k + 1 in

G′ and that every target set of size k in G′ corresponds to a target set of size at most k in G.

Notice that each vertex of threshold 2 in G′ is of degree 4 and each vertex of threshold 1 in G′

is of degree 3. Let S3 ⊆ [1, n] be the set of indices such that t(vi) = 1 for all i ∈ S3. For each

i ∈ S3 we take vertices ui, wi in graph G′ and connect them to the following ladder gadget which

we denote as gadget L (we stress that for each i ∈ S3 we use a different ladder gadget)

Gadget L consist of vertices t0, t1, t2, t3 and s0, s1, s2, s3 and edges

(ti, t(i+1) mod 4), (si, s(i+1) mod 4), (si, t(i+1) mod 4), (ti, s(i+1) mod 4)

for all 0 ≤ i ≤ 3. Now we remove edge (s1, s2) and connect s1 to a vertex ui and s2 to vertex

wi. Finally we set the threshold of vertices s0, s1, s2, s3, t0, t1, t2, t3, ui, wi in G′ to be 2. Now

notice that it is sufficient to activate two vertices in gadget L in order to activate all its vertices,
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and that it is necessary to activate at least two vertices in gadget L even if vertices ui and wi

are activated in order to activate all its vertices. The resulting graph G′ is 4-regular with all

vertices of threshold 2 and thus we are done.

Theorem 3.9. (Restatement of Theorem 1.10) The TSS(d = 4,t = 3) problem is APX-hard

(that is feedback vertex set is APX-hard on 4-regular graphs).

Proof: In [Riz09] it is shown that the TSS(tv = dv − 1,d ≤ 4) problem (that is feedback vertex

set in graphs of maximum degree 4) is APX-hard even if the size of the target set is linear in

the size of the graph. Let graph (G, t) be an instance of the TSS(tv = dv − 1,d ≤ 4) problem

(in which the size of the target set is linear in the size of the graph), where G is a graph on

n vertices v1, v2, . . . , vn. We create a graph G′ by taking two disjoint copies H1,H2 of graph

G. The vertices of H1 are u1, u2, . . . , un and the vertices of H2 are w1, w2, . . . , wn. Now as long

as there is an index i such that d(ui) = d(wi) < 4 in graph G′, we do the following: we add

a gadget L as described in the proof of Theorem 3.8 to graph G′ and connect this gadget to

vertices ui and wi. Furthermore we set the threshold of all the vertices in the gadget L to be 3

and we set t(ui) = t(ui) + 1 and t(wi) = t(wi) + 1. Now notice that it is sufficient to activate 3

vertices in gadget L in order to activate all its vertices, and that it is necessary to activate at

least 3 vertices in gadget L even if vertices ui and wi are activated in order to activate all its

vertices. The resulting graph G′ is 4-regular and all its thresholds are 3 and thus we are done.

3.2 Hardness of approximation in terms of the average degree

Once again we start from a variant of the directed target set selection problem, as it is easier

to show hardness of approximation for directed variants of the target set selection and then

to reduce from those models to the undirected target set selection problem. We will need the

following definitions. The directed feedback vertex set (DFVS) problem is the following problem:

given a directed graph G = (V,E) we wish to delete the minimum number of vertices in G so

that the resulting graph is acyclic (that is without directed cycles). We shall denote a set of

vertices whose removal makes directed graph G acyclic a feedback vertex set. Let G = (V,E)

be a directed graph with a threshold function t : V (G) → N. The threshold function t is called

a unanimous threshold function if for each vertex v ∈ V (G) we have t(v) = d−(v).

Theorem 3.10. Let (G, t) be an instance of the TSSD(tv = d−v ) problem. Then a vertex set

S ⊆ V (G) is a feedback vertex set of the directed graph G if and only if the set S is a target set

of the instance (G, t).
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Proof: Assume that directed graph G = (V,E) has n vertices. Let (G, t) be an instance of the

TSSD(tv = d−v ) problem. If a vertex set S ⊆ V is a target set for the instance (G, t) then the

induced subgraph G′ of G on vertices V \ S is acyclic for if we assume by contradiction that G′

contains a cycle C then it follows from the fact that t is a unanimous threshold function that the

vertices of cycle C will not be activated by the target set S. We conclude that S is a feedback

vertex set of directed graph G.

Now assume that the vertex set T ⊆ V is a feedback vertex of size k of directed graph G.

We can topologically sort the vertices of the induced subgraph G′ of G on vertices V \ S, thus
getting an ordering v1, v2, . . . , vn of the vertices of G where the following holds.

1. the vertices v1, . . . , vk are the vertices of T .

2. For all k < i ≤ n the following holds: if vj is an in-neighbor of vi then j < i (that is all

the in-neighbors of vi appear before it in the ordering).

We denote this ordering by O. Now we notice that if in the instance (G, t) of the TSSD(tv = d−v )

problem vertices v1, . . . , vk in ordering O are activated then vertices vk+1, vk+2, . . . , vn can be

activated in this order and thus T is a target set of the instance (G, t).

In [Sey95] it is shown that the DFVS problem can be approximated within a ratio of

Õ(log |V |). The hardness of approximation result in [GHM+11] implies that it is NP -hard

to approximate the DFVS problem within any constant factor assuming the UGC (this result

is also proven in [Sve13] and [GL16]). We call a directed graph G restricted if for each vertex

v ∈ V (G) one of the following two conditions holds.

1. d−(v) = 1 and d+(v) = 2.

2. d+(v) = 1 and d−(v) = 2.

and furthermore the number of vertices of indegree 1 in G equals the number of vertices of

outdegree 1 in G. We shall require the following theorem which we prove in appendix A.

Theorem 3.11. It is NP -hard to approximate the DFVS problem on restricted directed graphs

within any constant factor assuming the UGC.

Corollary 3.12. The target set selection problem on undirected cubic graphs in which half the

vertices have threshold 1 and the other half threshold 2 is NP -hard to approximate within any

constant factor assuming the UGC.

23



Proof: We reduce from the DFVS problem on restricted directed graphs. Given a graph G

which is an instance of the DFVS problem on restricted graphs we have by Theorem 3.10 an

instance (G, t) of directed target set selection on restricted graphs with unanimous thresholds.

We replace each directed edge of G by the gadget introduced in Lemma 3.4.

Theorem 3.13. (Restatement of Theorem 1.7) The TSS(d̄ = 4,d ≤ 5,t = 2) problem is NP -

hard to approximate within any constant factor assuming the UGC.

Proof: (Sketch) We reduce from the target set selection problem on undirected cubic graphs in

which half the vertices have threshold 1 and the other half threshold 2. Let (G, t) be an instance

of the target set selection problem on undirected cubic graphs in which half the vertices have

threshold 1 and the other half threshold 2. We apply the same gadget on G as in Theorem 3.6.

4 Target Set Selection with Partial Incentives

Let G = (V,E) be a graph on n vertices v1, v2, . . . , vn and let t be a threshold function

t : V (G) → N0. We assume that for all i we have t(vi) ≤ d(vi), where d(vi) is the degree

of the vertex.

The following optimization problem is called Target Set Selection with Partial Incentives ([CGRV15]):

Given a graph G and a threshold function t, find a partial incentive function q : V (G) → N0 such

that the graph G with the threshold function p = t− q is activated by the target set consisting

of vertices of threshold 0 in p, and we want to find such function q that minimizes
∑n

i=1 q(vi),

which we denote as the weight of function q. Henceforth we denote this problem by TSSP . A

k-approximate solution to an instance of the TSSP problem returns a partial incentive function

of weight at most k ·OPT where OPT is the weight of an optimal solution for this instance..

Theorem 4.1. Given an instance of (G, t) of TSSP , where G is a graph on n vertices, a partial

incentive function q of weight at most n
√
2OPT can be found in polynomial time, where OPT

is the weight of an optimal solution for this instance.

Proof: In Corollary 1 of [CGL+18] it is proven that if tmin is the minimum threshold of

function t then OPT ≥ 1
2 tmin(tmin + 1). Hence we have tmin ≤

√
2OPT . We activate a vertex

with threshold tmin thus paying at most
√
2OPT units and call the resulting graph G′ and the

resulting threshold function t′. Let t′min be the minimum threshold of function t′ and notice that

as before t′min ≤
√
2OPT as the optimum can only decrease in the instance (G′,t′) resulting by
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an activation of a vertex in graph G. Continuing iteratively we activate the whole graph G by

paying at most
√
2OPT units for each vertex and thus we are done.

Let t be a threshold function t : V (G) → N such that t(v) ≥ ⌈dG(v)/2⌉ where dG(v) is the

degree of v in G, recall that such function is called a majority threshold function.

We denote by TSSP (tv ≥ 1
2dv) the Target Set Selection with Partial Incentives under majority

thresholds. We start by presenting a polynomial time algorithm which returns an Õ(OPT )-

approximate solution to the TSSP (tv ≥ 1
2dv) problem. That is we find in polynomial time a

partial incentive function of weight Õ(OPT 2).

Recall definition 2.1 regarding the cutwidth of graph G, denoted by CW (G).

Lemma 4.2. Given a graph G = (V,E) on n vertices, if the instance (G,t) of the TSSP (tv ≥
1
2dv) problem has a solution of weight r then CW (G) ≤ 2r.

Proof: Let q be an optimal partial incentive function for the instance (G, t) of the TSSP (tv ≥ 1
2dv)

problem. Suppose that the activation order of the vertices under threshold function p = t− q is

v1, v2, . . . , vn. As usual we denote by di the degree of vertex vi in G, ti = t(vi) and qi = q(vi)

and pi = t(vi)− q(vi). For any 1 ≤ k ≤ n, let Ak be the set of vertices {v1, v2, . . . , vk} and Bk

be the set of vertices {vk+1, vk+2, . . . , vn}. Denote by C(k) the number of edges in G between

the vertices of Ak and the vertices of Bk. We claim that for each 1 ≤ k ≤ n we have C(k) ≤ 2r.

Notice that by the same argument as in Lemma 2.1 we have for all 1 ≤ k ≤ n that

C(k) ≤ C(k − 1) + dk − 2pk

And thus for 1 ≤ k ≤ n we have

C(k) ≤
k
∑

i=1

(di − 2pi)

=
k
∑

i=1

(di − 2ti + 2qi) as pi = ti − qi

≤ 2
k
∑

i=1

qi as ti ≥
di
2

since t is a majority threshold function

≤ 2r as r =

n
∑

i=1

qi

(4.1)

This concludes the proof.
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Given a graph G on n vertices, a cutwidth arrangement that approximates the optimal

cutwidth arrangement within a factor of O(log3/2 n) can be found in polynomial time (see for ex-

ample [CDF+19]). That is we can find in polynomial time a cutwidth arrangement (v1, v2, . . . , vn)

of the vertices of G such that for all 1 ≤ k ≤ n the number of edges between the set vertices

{v1, v2, . . . , vk} and the set of vertices {vk+1, v2, . . . , vn} is at most O(log3/2 n · CW (G)), where

CW (G) is the cutwidth of G. Now we present our first polynomial time approximation algo-

rithm for the TSSP (tv ≥ 1
2dv) problem. As usual we denote qi = q(vi) for notational clarity.

Algorithm II

Input: A graph G = (V,E) on n vertices and a majority threshold function t.

Output: A partial incentive function q of weight at most O(log3/2 n · OPT 2)

(where OPT is the weight of an optimal solution).

1. Let (v1, v2, . . . , vn) be a cutwidth arrangement of graph G of width at most W =

O(log3/2 n · CW (G)).

2. Set i = 0.

3. Set i = i+ 1.

4. If activating the vertex set {vi+1, vi+2, . . . , vn} as a target set activates the whole

graph then goto step 3 (when we say that we activate a vertex we mean it as in

the standard model of the target set selection problem).

5. For each 1 ≤ j < i do the following: set qj = min{tj , nj} where nj is the number

of neighbors vertex vj has in the vertex set {vi, vi+1, . . . , vn} and tj = t(vj).

6. Set qi = ti.

7. Let (G′, t′) be an instance of the TSSP problem where graph G′ is the induced

subgraph of G on vertices vi+1, vi+2, . . . , vn and threshold function t′ for the ver-

tices of G′ is the threshold function resulting from activating vertices v1, v2, . . . , vi

of the instance (G, t).

8. Renumber the vertices of G′ to be v1, v2, . . . , vn−i. Set G = G′,t = t′, n = n − i

and goto step 1 if n > 0.
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Theorem 4.3. Algorithm II returns a valid partial incentive function q.

Proof: We will prove that the target set S consisting of vertices of threshold 0 of the function

p = t − q activates all the vertices of graph G (with threshold function p). This follow from

the fact that each time after we execute steps 5, 6 of the algorithm, we have that the induced

subgraph H on vertices v1, v2, . . . , vi of G is activated by the threshold function p = t− q, that

is the target set consisting vertices of threshold 0 under threshold function p in H activates all

the vertices of H. This statement holds due to the observation that when we get to step 5 we

know that vertices v1, v2, . . . , vi−1 are activated by the target set {vi, vi+1, . . . , vn}, and in step

5 we update threshold function q accordingly to simulate this activation process, finally in step

6 we set qi = ti thus activating vertex vi.

Theorem 4.4. The approximation ratio of Algorithm II is O(log3/2 n ·OPT ).

Proof: The approximation ratio of the algorithm follows from the fact that when we reach

step 5 we know that in any valid solution q to the instance (G,t) there is an index 1 ≤ j ≤ i

such that necessarily qj ≥ 1. Hence during the run of the algorithm step 5 can be reached at

most OPT times. On the other hand after finishing step 5 we have
∑i−1

j=1 qj ≤ W . Furthermore

qi ≤ di ≤ 2W as vertex vi has at least di
2 neighbors in the set {v1, v2, . . . , vi−1} or at least di

2

neighbors in the set {vi+1, vi+2, . . . , vn}. We conclude that

i
∑

j=1

qj ≤ 3W = O(log3/2 n · CW (G)) = O(log3/2 n · OPT )

Where the last equality follows from Lemma 4.2. Thus the total weight of the partial incentive

function returned by the algorithm is O(log3/2 n · OPT 2).

Finally we present a slightly different algorithm for the TSSP (tv ≥ 1
2dv) problem, with a

better approximation ratio for OPT ≫ √
n. In the algorithm below we assume that we know

the weight OPT as we can simply go over all the O(n2) possible weights.
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Algorithm III

Input: A graph G = (V,E) on n vertices and a majority threshold function t.

Output: A partial incentive function q of weight at most Õ((n ·OPT )
2

3 )

(where OPT is the weight of an optimal solution).

1. Set k =

⌈

(

n2

OPT

)
1

3

⌉

and set r =
⌈

n
k

⌉

.

2. Let (v1, v2, . . . , vn) be a cutwidth arrangement of graph G of width at most W =

O(log3/2 n · CW (G)).

3. For each 1 ≤ j ≤ r do the following: set qj = min{tj, nj} where nj is the number

of neighbors vertex vj has in the vertex set {vr+1, vr+2, . . . , vn} and tj = t(vj).

4. Let Gnew be the induced subgraph of G on vertices v1, v2, . . . , vr with the auxiliary

threshold function tnew(vi) = ti − qi.

5. Apply the algorithm presented in Theorem 4.1 on the instance (Gnew,tnew) of the

TSSP problem, and let qnew be the partial incentive function returned.

6. For each 1 ≤ j ≤ q do the following: set qj = qj + qnewj .

7. Let (G′,t′) be an instance of the TSSP problem where graph G′ is the induced

subgraph of G on vertices vr+1, vr+2, . . . , vn and threshold function t′ for the ver-

tices of G′ is the threshold function resulting from activating vertices v1, v2, . . . , vr

of the instance (G,t).

8. Renumber the vertices ofG′ to be v1, v2, . . . , vn−r. SetG = G′,t = t′ and n = n−r.

9. If r > n then set r = n.

10. If n > 0 then goto step 2.

Theorem 4.5. The approximation ratio of Algorithm III is Õ

(

(

n2

OPT

)
1

3

)

Proof: We assume without loss of generality that k divides n. Step 3 of the algorithm is

executed at most k times and the total contribution of weight to the partial incentive function
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q from these executions of step 3 is at most

Õ(k · CW (G)) = Õ(k ·OPT ) (4.2)

Where the equality follows from Lemma 4.2. Step 6 of the algorithm is also executed at most

k times and the total contribution of weight to the partial incentive function q from these

executions of step 6 is at most

r
k
∑

i=1

√

2OPTi (4.3)

Where
∑k

i=1OPTi ≤ OPT and bound (4.3) follows from Theorem 4.1. Notice that OPTi is the

weight of the optimal partial incentive function of the instance (Gnew,tnew) in the i-th execution

of step 5. Furthermore we have that

r

k
∑

i=1

√

2OPTi ≤ r
√
k · 2OPT by Jensen’s Inequality

=
n√
k
·
√
2OPT as r =

n

k

= O
(

(n ·OPT )
2

3

)

as k =

⌈

(

n2

OPT

)

1

3

⌉

(4.4)

And

Õ(k ·OPT ) = Õ
(

(n ·OPT )
2

3

)

as k =

⌈

(

n2

OPT

)

1

3

⌉

(4.5)

Hence we have by (4.5) and (4.4) that the total weight of the partial incentive function q is

Õ(k ·OPT ) + r

k
∑

i=1

√

2OPTi = Õ
(

(n ·OPT )
2

3

)

and thus we are done.

Theorem 4.6. (Restatement of Theorem 1.14) Given an instance of (G, t) of the TSSP (tv ≥
1
2dv) problem, where G is a graph on n vertices, an Õ(

√
n)-approximate solution can be found

in polynomial time.

Proof: Apply algorithms II and III on the instance(G,t) and take the solution of least weight.

This gives the required bound as by Theorem 4.4 and Theorem 4.5 we get an approximation

ratio of Õ

(

min

(

OPT,
(

n2

OPT

)
1

3

))

= Õ(
√
n).
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Theorem 4.7. (Restatement of Theorem 1.15) Given an instance of (G,t) of the TSSP (tv >
1
2dv) problem, where G is a graph on n vertices, an Õ(n

1

3 )-approximate solution can be found in

polynomial time.

Proof: By Lemma 1 of [CGL+18] we have

OPT ≥
n
∑

i=1

ti − |E| (4.6)

Where |E| is the number of edges in G and ti = t(vi). Now as t is a strict majority function we

conclude from (4.6) that

OPT ≥ n

2
(4.7)

Hence applying Algorithm III on the instance (G, t) of the TSSP (tv > 1
2dv) problem will result

in a solution with approximation ratio

Õ

(

(

n2

OPT

)

1

3

)

= Õ
(

n
1

3

)

Where the last equality is by applying (4.7).

We mention that using standard reductions one can showAPX-hardness for the TSSP (tv ≥ 1
2dv)

and TSSP (tv > 1
2dv) problems. We sketch below such a proof for the TSSP (tv ≥ 1

2dv) problem.

Theorem 4.8. The TSSP (tv ≥ 1
2dv) problem in graphs of maximum degree 6 is APX-hard.

Proof: (Sketch) We reduce from the cubic vertex cover problem which is APX-hard ([AK97]).

Let H be the cubic graph on n vertices v1, v2, . . . , vn, in which we want to find a minimum vertex

cover. Add to graph H a threshold function t such that for all 1 ≤ i ≤ n we have t(vi) = 3.

Hence in the TSS instance (H, t) each vertex has a degree equal to its threshold. Thus graph H

has a vertex cover of size k if and only if the TSS instance (H, t) has a target set of size k (this

was first observed in [Che09]).

Let H ′ be the graph constructed from graph H by doing the following for all 1 ≤ i ≤ n: add

vertices u1i , u
2
i , u

3
i , u

4
i such that u1i is adjacent to u2i , u

3
i , u

4
i , and vi is adjacent to u2i , u

3
i , u

4
i . Now

set t(u1i ) = t(u2i ) = t(u3i ) = t(u4i ) = 1. In Theorem 1 of [CGL+18] it is proven that the instance

(H ′, t) of TSSP has a partial incentive function of weight k if and only if the TSS instance (H, t)

has a target set of size k and thus we conclude that the instance (H ′, t) of TSSP has a partial

incentive function of weight k if and only if graph H has a vertex cover of size k.
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Finally we create graph H ′′ in the following manner. Let H ′′ be the graph constructed

from graph H ′ by doing the following for all 1 ≤ i ≤ n: add vertices q1i , q
2
i , q

3
i , q

4
i such that q1i

is adjacent to q2i , q
3
i , and q4i is adjacent to q2i , q

3
i , u

1
i . Set threshold function t′ = t. Now set

t′(u1i ) = 2 (thus increasing it by one unit). Set t′(q1i ) = t′(q2i ) = t′(q3i ) = 1 and set t′(q4i ) = 2. It

is clear that the instance (H ′′, t′) of TSSP (tv ≥ 1
2dv) has a partial incentive function of weight

n+ k if and only if the instance (H ′, t) of TSSP has a partial incentive function of weight k and

we are done as k = Ω(n) since H is cubic and hence the size of its vertex cover is Ω(n).

In Section 2.3 we defined the TSS(degenrate) problem. We note that this problem in the

partial incentives model denoted by TSSP (degenrate) can be solved in polynomial time. Now

we shall prove Theorem 1.13 in two stages. First we prove the following claim.

Theorem 4.9. The TSSP (degenrate) problem can be solved in polynomial time.

Proof: (Sketch) Let (G, t) be an instance of the TSSP (degenrate) problem. Where the vertices

of graph G are v1, . . . , vn and the thresholds are t1, t2, . . . , tn. By Lemma 1 of [CGL+18] we have

OPT ≥
n
∑

i=1

ti − |E| (4.8)

Furthermore using the same ideas as in Section 2.3 we can always find in polynomial time a

partial incentive function for the instance of weight exactly
∑n

i=1 ti − |E| which is optimal by

(4.8).

Corollary 4.10. The TSSP (tv ∈ {dv − 1, dv})) problem and the TSSP (tv ∈ {1, dv})) problem

can be solved in polynomial time.

Proof: (Sketch) This can be proven by converting an instance of such a problem to an instance

of the TSSP (degenrate) problem. See Appendix B.

We note that the TSS(tv ∈ {dv − 1, dv})) problem and the TSS(tv ∈ {1, dv})) problem are

NP -hard.
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A Hardness of the directed feedback vertex set problem on re-

stricted graphs

We call a directed graph G restricted if for each vertex v ∈ V (G) one of the following two

conditions holds.

1. d−(v) = 1 and d+(v) = 2.

2. d+(v) = 1 and d−(v) = 2.

and furthermore the number of vertices of indegree 1 in G equals the number of vertices of

outdegree 1 in G. In this section we shall prove Theorem 3.11 which states that it is NP -hard

to approximate the DFVS problem on restricted directed graphs within any constant factor

assuming the UGC. We start with the following Lemma.

Lemma A.1. It is NP -hard to approximate the DFVS problem on directed graphs where each

vertex has indegree at least 2 and outdegree at least 2, within any constant factor assuming the

UGC.

Proof: (Sketch) This follows by a reduction from the DFVS problem in general graphs. The

reduction is by the contraction operations stated in Proposition 5.1 of [LL88].

Now we shall sketch a proof of Theorem 3.11 by a reduction from the DFVS problem on

directed graphs where each vertex has indegree at least 2 and outdegree at least 2. Let G be

an instance of the DFVS problem on directed graphs where each vertex has indegree at least 2

and outdegree at least 2. Assume that graph G has n vertices. For each vertex v ∈ V (G) we

will replace vertex v with the following gadget: Let u1, u2, . . . , uk be the in-neighbors of vertex

v in G (where k = d−(v) ≥ 2). Let w1, w2, . . . , wl be the out-neighbors of vertex v in G (where

l = d+(v) ≥ 2).

34



Now we remove vertex v from graph G and add vertices u′1, u
′
2, . . . , u

′
k−1 and w′

1, w
′
2, . . . , w

′
l−1 to

graph G. Now we add directed edges to graph G in the following manner.

• For all 1 ≤ i ≤ k−2 we add a directed edge (u′i, u
′
i+1) (that is u

′
i is an in-neighbor of u′i+1).

• For all 1 ≤ i ≤ l − 2 we add a directed edge (w′
i, w

′
i+1).

• We add a directed edge (u′k−1, w
′
1).

• For all 1 ≤ i ≤ k − 1 we add a directed edge (ui+1, u
′
i).

• We add a directed edge (u1, u
′
1).

• For all 1 ≤ i ≤ l − 1 we add a directed edge (w′
i, wi).

• We add a directed edge (w′
l−1, wl).

Notice that the induced subgraph of G consisting of vertices u′1, u
′
2, . . . , u

′
k−1 and w′

1, w
′
2, . . . , w

′
l−1

is a directed path. Denote the resulting graph by G′ and denote by G the original graph (before

the replacement operations). Observe that we have the following.

• The number of vertices of indegree 1 in G′ equals to the sum of outdegrees of graph G

minus n.

• The number of vertices of outdegree 1 in G′ equals to the sum of indegrees of graph G

minus n.

Now as in any directed graph the sum of indegrees equals the sum of outdegrees we conclude

that the number of vertices of indegree 1 in G′ equals the number of vertices of outdegree 1 in

G′. Notice that graph G has a feedback vertex set of size at most k if and only if graph G′ has

a feedback vertex set of size at most k.

B Polynomial subcases of TSSP

Lemma B.1. Let G = (V,E) be a connected graph on n vertices and let t be a threshold function

t : V (G) → N such that t(v) ≥ d(v) − 1 for all v ∈ V (G), furthermore assume that there is a

vertex v ∈ V (G) for which t(v) ≥ d(v). Then function t is a degenerate threshold function.
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Proof: The proof is by induction on the number of vertices of graph G. It holds trivially for

graphs on one or two vertices. Now as graph G has a vertex v ∈ V (G) for which t(v) ≥ d(v) we

can remove this vertex and in the resulting graph each connected component G′ will contain a

vertex v′ such that t(v′) ≥ dG(v
′) − 1 = dG′(v′) (where v′ is a neighbor of v in G) and we are

done by the induction hypothesis.

Recall that in Theorem 4.9 we have shown that the TSSP (degenrate) problem can be solved

in polynomial time. We will use this theorem to prove the following.

Theorem B.2. The TSSP (tv ∈ {dv − 1, dv})) problem can be solved in polynomial time.

Proof: Let G be a connected graph on n vertices v1, v2, . . . , vn , degrees d1, d2, . . . , dn and

thresholds t1, t2, . . . , tn , where for all 1 ≤ i ≤ n we have ti ≥ di − 1. If there is an i for which

ti ≥ di then threshold function t is a degenerate threshold function by Lemma B.1 and we are

done by Theorem 4.9. Otherwise we have for all 1 ≤ i ≤ n that ti = di − 1. This means that

there is an edge of G that does not participate in the activation process (in particular an edge

which touches the last vertex to be activated in the activation process as its threshold is smaller

than its degree). We guess which edge it is and remove it from G and call the resulting graph

G′. By Lemma B.1 threshold function t is a degenerate threshold function for each connected

component of graph G′ and thus we are done by Theorem 4.9.

Theorem B.3. The TSSP (tv ∈ {1, dv})) problem can be solved in polynomial time.

Proof: (Sketch) Let G be graph such that for each vertex v ∈ G we have t(v) = 1 or t(v) = d(v).

We partition the vertices of G into two sets A and B such that a vertex v ∈ B if and only if

t(v) = 1 and A = V (G) \B. Construct from graph G a multigraph G′ in the following manner:

For each connected component Q of graph G[B] we contract the vertices of Q into a single

vertex q with threshold 1 (another way to look at it is that we remove the vertices of Q from

the graph and add a vertex q of threshold 1 and we connect each vertex v ∈ A to vertex q by

k parallel edges if vertex v had k neighbors in Q). Let Q′ be the set of all vertices created in

the contraction step above. Notice that Q′ is an independent set in graph G′. Now we convert

multigraph G′ into a simple graph H by replacing each edge (u, v) of G′ by a new vertex d of

threshold 1 and edges (u, d) and (v, d), we denote the set of vertices added in this process by D.

Hence the vertices of graph H can be partitioned into the following three sets.

1. The set A as defined above in which for all v ∈ A we have t(v) = d(v).

2. The set D as defined above in which all vertices are of degree 2 and threshold 1 and each

vertex in D has a neighbor in A.
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3. The set Q′ as defined above in which all vertices are of threshold 1 and the vertices of Q′

induce an independent set in graph H.

Now notice that the threshold function t for the graph H is a degenerate threshold function (the

degeneracy order would be first all the vertices in Q′, then all the vertices in D and finally all

the vertices in A). Thus we are done by Theorem 4.9.
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