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Abstract: For any field F and polynomials fs, f3 € Fla,y], let Tr(f2, f3) denote
the bipartite graph with vertex partition P U L, where P and L are two copies of
F3, and (p1, p2, p3) € P is adjacent to [l1,l2,13] € L if and only if pa +1s = fa(p1,11)
and p3 + I3 = f3(p1,l1). The graph I'3(F) = T'p(xy, xy?) is known to be of girth
eight. When IF = [F, is a finite field of odd size ¢ or F = F, is an algebraically
closed field of characteristic zero, the graph I'3(IF) is conjectured to be the unique
one with girth at least eight among those T'r(f2, f3) up to isomorphism. This
conjecture has been confirmed for the case that both f3, f3 are monomials over
Fy, and for the case that at least one of f2, f3 is a monomial over F. If one of
fa, f3 € Fylz,y] is a monomial, it has also been proved the existence of a positive
integer M such that G = I'r ,, (f2, f3) is isomorphic to I's(F ar) provided G has
girth at least eight. In this paper, these results are shown to be valid when the
restriction on the polynomials fo, f3 is relaxed further to that one of them is the
product of two univariate polynomials. Furthermore, all of such polynomials f2, f3
are characterized completely.
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1 Introduction

All graphs considered in this paper are undirected, without loops and multi-
ple edges. Let G = (V, E) be a graph with vertex set V' = V(G) and edge set
E = E(G), where each edge in E is a two-element subset of V. Two vertices
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v,v' € V are said adjacent to each other, and written v ~ ¢/, if {v,v'} € F
is an edge. The order of G is the number of vertices in V. The degree of
a vertex v € V is the number of vertices adjacent to v. If every v € V has
degree t, then G is called a t-regular graph. A sequence (v, v, ...,v;) € VF

of vertices is called a k-xcycle of G if k& > 3, v1 ~ vg ~ -+ ~ v ~ vg
and v; # vi4o, ¢ = 1,2,...,k, where vpi1 = v1, Vg1 = v9. A k-xcycle
(v1,v2,...,v;) of G is called a k-cycle of G if the vertices vy, v, ..., vy differ

from each other. It is clear that any k-xcycle is a k-cycle if 3 < k < 5. The
graph G is called bipartite if its vertex set can be divided into two parts
as V. = P U L such that each edge in E consists of a vertex in P and a
vertex in L. It is not difficult to show that, in a bipartite graph, there is
no (2k + 1)-xcycle, any 6-xcycle is a 6-cycle and any 8-xcycle is either an
8-cycle or the concatenation of two 4-cycles. In particular, in a bipartite
graph with no 4-cycle, any 8-xcycle is an 8-cycle. If G has some cycles, its
girth is defined as the largest integer k such that G contains no i-cycles for
any k with 3 < ¢ < k. Other standard graph theory definitions can be found
in [I].

For k > 2, let gx(n) be the greatest number of edges in a graph of order
n with girth at least 2k + 1. It is well known that for sufficiently large n,
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c%n1+3k73+e < gk(n) < ckn1+k7

where ¢} and ¢, are positive constants depending only on k, and € = 0 if
k is odd and € = 1 if k is even (see [2]). The upper bound comes from
[3] and the lower bound from an explicit construction of [4]. The upper
bound is known to be sharp in magnitude nitx only for £ = 2,3,5. In
this paper, we concentrate on the case of K = 3. A known example which
provides such extremal magnitude is the bipartite graph I'3(F,) with vertex
partition P U L, where [, is the finite field of ¢ elements, P and L are two
copies of Fg, and (p1,p2,p3) € P is adjacent to [l1,l2,l3] € L if and only if
p2 + 1o = p1ly and p3 + I3 = p?l;. It is can be shown easily that T'3(F,) is
a g-regular bipartite graph of order 2¢> and girth eight. When ¢ is an odd
prime power, the graph I'3(F,) is isomorphic to an induced subgraph of the
point-line incidence graph of the classical generalized quadrangle W (q) of
order ¢ (see [5, [6l [7, [8, @]).

From now on, we focus on a generalization of the graph I's(F,;). Let F
be an arbitrary field, for polynomials fs, f3 € F[x,y|, the graph T'r(fa, f3) is
a bipartite graph with vertex partition PU L, where P and L are two copies
of F3, and (py, p2,p3) € P is adjacent to [I1,ls,13] € L if and only if

p2 +lo = fa(pr,01) and p3 + I3 = f3(p1, ).



When F = F, we simplify the notation I'r,(f2, f3) to I'y(f2, f3) further. For
odd prime power g, it is of interest to find a graph I';(f2, f3) of girth eight
that is not isomorphic to I's(F,), since a new generalized quadrangle could
be constructed by “attaching” some tree to such graph. However, many
attempts towards this aim failed (see [3] [0 [7, [8, [9]). On the contrary, the
following uniqueness conjecture was proposed in [} [9]:

Conjecture 1. If F = F, is a finite field of odd size or F = Fu is an
algebraically closed field of characteristic zero, then every graph T'r(f2, f3)
of girth at least eight is isomorphic to 's(F) = T'p(zy, 22%y).

When F = F, is a finite field of odd size and fo, f3 are monomials,
Conjecture [[]was investigated in [5, 6], [7] and confirmed in [2]. When F = F,
is an algebraically closed field of characteristic zero and at least one of fo, f3
is monomial, Conjecture [Il was confirmed in [8, [9]. When F =T, is a finite
field of odd size and one of f>, f3 is monomial, the following result was also
shown in [9]: If ¢ is a power of some odd prime p and f € Fy[z,y] has degree
at most p — 2 with respect to each of x and y, then, for any integers k, m
coprime to p, there exists a positive integer M = M (k,m, q) such that, for
all positive integers r, every graph I'jar (zFy™, f) of girth at least eight is
isomorphic to I'3(F u+). In this paper, we will show that the main results of
[9] are still true if one of fo, f3 is of form f(z)g(y) for univariate polynomials
f.g € Flz].

For any field FF, let F* = F\{0}. For positive integer k, let [1, k]| denote
the set {1,2,--- ,k}, F[z]x the set of polynomials in F[z] of degree at most k
and F[z, y]x the set of polynomials in F[xz, y] of degree at most k with respect
to each of z and y, respectively. Through this paper, we assume that g is a
power of some prime p and m,n are positive integers such that

g > max{2mn + 3,mn+3n + 1,n(n+ 1) + 2}. (1)

Let M = M (mn) be the least common multiple of the integers 2,3, -, mn.
Clearly, any polynomials T'(z) € Fy[z],, can be decomposed completely in
F . For any a € Fy, let py(x) = 2(x — a) € Fylz]. Let K, = {p/ | j > 0}.
For u,v € K, let ®,(u,v) = {(i,j) € K} : iv = ju}. Let f,g € Fy[z]m be
monic polynomials with f(0) = ¢g(0) = 0 and

h(z,y) = Z hi jz'y’ € Fylz, yln (2)

1<i,j<n

be a nonzero polynomial. For a € Fy, u,v € K, and the polynomial / given
in @), let pguwv(h), vou(h) and m,,(h) denote the polynomials in Fy [z, y]



defined respectively by

Ma,u,v(h)(x7y) = h($7y) - Z h22,jpfz(x)yj7
(4,9)€®p (u,v)
Vauw(h)(2,y) = Mz, y) — Z hi2i' 0} (1),
(4,3)€Pp(v,u)
Tuo(W) (@) =hlz,y) = > higat @)y

(1,7)€Pp (u,v)

The main result of this paper is as follows.

Theorem 1. The graph G =T (f(x)g(y), h(z,y)) is isomorphic to I'3(F ar)
if it has girth at least eight. Furthermore, G has girth at least eight if and

only if there are some a € Fy, ¢ € Fy, u,v € K, N[1,m] and s € K, N[1,n]

such that one of the following is valid.

(i) f(z)=pi(x),9(y) =" and pauv(h)(z,y) = (z™/ Y.
(ii) f(x) =2",9(y) = pi(y) and vauo(h)(,y) = Cay™/*.
(iii) f(z)=a",g(y) =y and myu(h)(z,y) = x>y or Caty/v.
(i) p=2, a#0 and either
(a) f(x) = pi(x), 9(y) = y*** and pau2eu(h)(2,y) = C2Y®, or
(b) f(z)=a", g(y) = pi(y) and vousu(h)(z,y) = Cz°y.

The following theorem is an analog of Theorem [ for the case that F =
F is an algebraically closed field of characteristic zero.

Theorem 2. Suppose that f,g € Foolx] are monic polynomials with f(0) =
9(0) = 0 and h(z,y) = Zm}l hijz'y’ € Foola,y] is a nonzero polynomial.
The graph G = Ty (f(z)g9(y), h(x,y)) is isomorphic to T's(Fs) if G has
girth at least eight. Furthermore, G has girth at least eight if and only if
there are some a € Foo, ¢ € F% such that one of the following is valid.

(i) f(z) = pa(z),9(y) =y and h(z,y) = (xy + h21pa(T)y.
(i) f(z)=2,9(y) = pa(y) and h(z,y) = (zy + h1,27p4(y)-
(iii) f(z) =2,9(y) =y and h(x,y) = (pa(®)y or (xpa(y).-



This paper is organized as follows. In Section 2 we show some preliminar-
ies, including a necessary and sufficient condition of 2k-*cycles in I'p( f2, f3),
some isomorphisms of I'r( f2, f3), some simple conclusions on a few monomial
graphs, and a simple but useful lemma on the characterization of polynomi-
als according to their roots in some extension field. In Sections 3 to 5, we
characterize the monic polynomials f,g € Fy[z], and nonzero polynomial
h € Fylz,y], under the conditions f(0) = ¢g(0) = h(0,y) = h(z,0) = 0
and that G = T m (f(2)g(y), h(x,y)) has girth at least eight. In Section 6,
we complete the proof of Theorem [II and make some concluding remarks,
including a simple illustration for the proof of Theorem2

2 Preliminaries
For k > 2, let A;, be the function defined by

Ak : F[‘Tay] — ]F[‘le” s Ly Y1y - - - 7yk]7
k

f(xyy) =y (f(@iy:) — f(Tiv1,v:),

(2

[y

where 41 = 1. Suppose k > 2, S = (ay,...,ax;7r1,...,7) € F?* and
fa, f3 € Flx, y], it is clear that the graph G = I'r(f2, f3) contains a 2k-xcycle
of form

((ala bl,Cl), [Tla slatl]a ) (akv bkv Ck)7 [rky Sk7tk]) (3)
if and only if

(4)

a; # Qip1, T # i1, 1 € [1, k],

{Ak(f2)(5) = Ag(f3)(5) =0,

where ag11 = a1 and 111 = 71 (see [6]). If G contains some 2k-xcycles
of form (@), we also call S = (aq,...,ax;71,...,7%) a 2k-xcycle of G for
simplicity.

Some useful isomorphisms of the graphs I'r(f2, f3) are integrated in the
following lemma.

Lemma 1. Assume fa, f3 € Flz,y|. Then
(i) Tr(f2, f3) = Tr(f3, fa)-
(ii) T (fa, f3) = Tr(fo, f3), where f(z,y) = f(y, ).



(i1i) For any « € F* T'r(fa, f3) 2 Tr(fa, aufs3).
(iv) For any B € F, T'r(f2, f3) = Tr(f2, f3 + Bf2)-
(v) For any t € F[z], Tr(f2, f3) = Tr(f2(z,y), f3(z,y) +t(z)).

Furthermore, if F =y, then, for any u € K,
(UZ) Fq(fZa f3) = Pq(fZ(xu7 y)7 f3(‘ru7 y))

(vii) Fq(f2,f3) = Pq(fgaf?»)-

Proof. We refer the reader to [8] for the proofs of (i) ~ (v).

For (vi), let v be the least positive integer such that vu is a power of ¢
and m; the map from V(I'y(f2, f3)) to V(Iq(f2(z",y), f3(z*,y))) defined by
w1t (p1,p2,p3) = (PY,p2,p3) and 7 : [l1, 12, l3] = [l1,12,13]. Then, 7 is a
graph isomorphism.

For (vii), let mo be the map from V(I'y(f2, f3)) to V(Iq(f3', f3)) defined
by ma @ (p1,p2,p3) — (p1,p0Y,ps) and m : [l1,l2, 3] — [l1,14,13]. Then, 7o is
also a graph isomorphism. O

If fo, f3 are monomials, the graph I'r(f2, f3) is referred to as a monomial
graph. Now we show some simple results for a few monomial graphs.

Lemma 2. (i) The girth of T'3(F) = T'p(zy, 2%y) is 8.
(ii) The girth of Tr(z3y, x%y) is 6 if F ¢ {Fo,F3,F5}.
(iii) The girth of T'r(xy,xy3) is 6 if F # F3 and the characterstic of F is
not equal to 2.
(iv) Ts(z’y, 2*y) = T3(Fs).
(v) T3(2’y, 2%y) = 3(xy, 2%y®) = T3(F3).
Proof. Let (a,b) and (¢,d) be two pairs of distinct elements in F. From
Ao (zy)(a,b;c,d) = (a — b)(c — d) # 0, we see that I'3(F) and I'p(zy, 2%y>)
contain no 4-cycle and thus have girth at least 6.

(1) Let So = (a,b,e;¢,d, f), where e € F\{a,b} and f € F\{c,d}. If
Asz(zy)(So) = (a —b)(c —d) — (a — e)(f — d) is equal to 0, then we have

As(2y)(So) =(a® = b?)(c — d) — (> = €*)(f — d)
=(a —b)(c—d)(e—b) #0.

Hence, I's(F) contains no 6-cycle. Furthermore, I's(F) has girth 8 since it
contains the 8-cycle (1,0,1,0;1,0,—1,0).



(i1) If Ag(2%y)(a,b;¢,d) = (a? — b?)(c — d) is equal to 0, then we have
a®? = b # 0 and thus

Ao(z3y)(a, b e,d) = (a® — b3)(c — d) = a®(a — b)(c — d) # 0.

Hence, T'r(23y, 2%y) has no 4-cycle and has girth at least 6. Furthermore, if
there is some ¢ € '\ {0,1, —1} such that 0 & {¢t —2,2¢ — 1}, then

(t,1 —t,t(t — 1);82(t — 1)%, 4%, (t — 1)?)

is a 6-cycle of I'r(x3y, 2%y). Hence, the girth of I'r(23y, 2%y) is equal to 6 if
F & {F9,F3,F5}.
(13i) If F # F3 and the characterstic of F is not equal to 2, for any
t e F\{0,1,—1},
(—t,t 4 2t2,t +2;1,0,1)

is a 6-cycle of I'r(xy, z2y3) and thus I'p(xy, 22y3) has girth 6.

(iv) Since z3 is a permutation in Fs, from (23)? = z?(mod z° — z) we
have

Us(z’y, 2%y) = T5(2’y, (¢°)y) = Ts(xy, 2%y) = T3(Fs).

(v) The desired proof follows simply from 3 = z(mod 2% — ). O

To deal with the graph I'p(f2, f3) in general, according to Lemma [l one
can assume, without loss of generality, that fo and f3 consist of only mixed
terms, i.e. f;i(x,0) and f;(0,y) are zero polynomials for i = 2,3. Hereafter,
we assume that the bipartite graph G = T' \m (f(7)g(y), h(x,y)) has girth at
least 8, where f,g € F[z],, are monic polynomials with f(0) = g(0) =0
and h(2,y) =3 1<, j<n h; jz'y’ € Fylx,yl, is a nonzero polynomial.

In the end of this section we show a lemma which is useful for the char-
acterization of the polynomials f, g, h.

Lemma 3. Suppose that 1 < D < mn, 1 < N < q/2 and W C Fg s a
nonempty set such that, for any (a,b) € W,

min{|{c € F : (a,c) € W}|,[{d € Fy: (d,b) € W}|} > 2N.  (5)

Let {e;}1<i<p be a family of polynomials in Fylz,y|n such that, for any
(a,b) € W, the t-polynomial ), ;p ei(a, b)t' € Fyt]p has no root in Fov-
Then, there is an integer s € [1, D] such that es(a,b) # 0 for each (a,b) € W
and e; is the zero polynomial for any i # s.



Proof. Let s € [1, D] be an integer such that fs is not the zero polynomial.
Let es(z,y) = ZOSi,jSN w; jxtyd. If es is always equal to 0 over W, then, for
any (a,b) € W, from |{c € F, : (a,c) € W}| > 2N wesee Y g ;«y wija’ =0,
0 < j < N and thus from |{d € F, : (d,b) € W}| > 2N we see w;; = 0,
0 < 14,5 < N, contradicts to the assumption. Hence, there is some pair
(a,b) € W such that es(a,b) # 0. For such a pair (a,b), let

A={deF,:(db) € Wes(d,b) #0},
B={celF,:(a,c) € W,es(a,c) # 0}.

From (5) and that the polynomials es(a,y) € Fyly|y and eg(x,b) € Fylz]n
have degree at most N, we see

min{|A|,|B|} > N. 6)

Since for any d € A the t-polynomial } ;. pei(d, b)t' € Fylt]p can be
decomposed completely in F v and has no nonzero root, we have ei(d,b) =0
for any ¢ # s. Hence, from ([6)) the z-polynomial e;(x,b) € F,[z]y is the zero
polynomial for any 7 # s. Similarly, one can conclude that the y-polynomial
ei(a,y) € Fyly]n is the zero polynomial for any i # s. Therefore, from (@)
we see that the polynomial e;(x,y) € F,[z, y] is the zero polynomial for any
i # s. Clearly, we have e4(a,b) # 0 for any (a,b) € W. O

3 Characterization of f,g

In this section, we consider to characterize the univariate polynomials f,g.

Lemma 4. (i) If a,b € Fu are distinct with f(a) = f(b), then the y-
polynomial

Oap(y) = h(a,y) = h(b,y) € Fouy]
is injective in Fou.
(it) If c,d € Fou are distinct with g(c) = g(d), then the x-polynomial
ch d( ) ($ C) h($7d) € IFqM [l‘]
is injective in Fou.
Proof. Since (ii) is symmetrical to (i), we only give proof for (7).
Suppose a,b € F u are distinct with f(a) = f(b). Let S1 = (a,b;c,d).
Since G has no 4- cycle from Aq(f(z)g(y))(S1) = 0 we see
Az(h(z,y))(51) = Oap(c) = Oap(d) # 0

for any ¢,d € F » with ¢ # d, and thus 6, (y) must be injective in F a. O



Lemma 5. At least one of the polynomials f,g is injective in IF .

Proof. Suppose that neither f nor g is injective in F . Let a,b,¢,d be
elements in F a with a # b, ¢ # d such that f(a) = f(b), g(c) = g(d).
According to Lemma [l the polynomials 0,4, ¢4 € F (7] are injective in
Fur. For Sy = (a,b,t';t,¢,d), we have Az(f(x)g(y))(S2) = 0 and

As(h(z,y))(S2) = h(b, c) = h(a, d) + Oa,p(t) = dealt').

Since 0, is injective in F ar, for any ¢ € Foar\{c,d} we have

h(bv C) - h(av d) + Ha,b(t) ¢ {¢c,d(a)7 qbc,d(b)}‘

Therefore, from that ¢4 is injective in F ur, for t € F u\{c,d} there exists
some t' € F ar\{a, b} such that Az(h(x,y))(S2) = 0 and thus G has a 6-cycle
of form S, contradicts to the assumption. O

Lemma 6. There are no distinct xo, 1,2 € Fou satisfying f(xo) = f(z1) =
f(x2) or g(zo) = g(x1) = g(x2).

Proof. Assume in contrast that distinct xo,z1,72 € Fou satisfy f(zo) =
f(x1) = f(z2). For Sz = (0,71, 22; Y0, Y1, y2), we have Az(f(2)g(y))(S3) =
0 and

As(h(2,9))(S3) = Ozg,21 (Y0) + Oy 5 (Y1) + Oy 6 (y2),

where the polynomials 0y, 41, 0z, 2y, 0z, 2, are injective in F v according to
Lemma Ml Therefore, from 6,2, + 02, 2, + 0202, = 0 there are distinct
Y0, y1,y2 € Fyu satisfying Az(h(z,y))(S3) = 0, and thus G contains a 6-
cycle of form S3, contradicts to the assumption.

Similarly, one can show that there are no distinct xo, z1, zo € Fyar satis-

fying g(zo) = g(z1) = g(x2). O
Lemma 7. Let D € [1,mn] and T(x) € Fy[z]p be a monic polynomial with
T(0) = 0.

(i) If T(x) is injective in F u, then there is some u € K, such that

T(z) = 2" (7)

(ii) If T'(x) is not injective in F x and there are no distinct xg, x1, 72 € Fu
with T'(zg) = T(z1) = T(x2), then there are some v € K, and a € F, such
that

T(x) = pa(). (8)
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Proof. From D € [1,mn] we see any polynomial in Fy[z]p can be completely
decomposed in IE‘:;M.

Assume first that the polynomial T'(z) € Fy[z]p has no root in B
Clearly, we have T'(z) = x¢, where d is the degree of T(x). Let u be the
largest integer in K, with u | d. Then the integer k = d/u € [1, D] is coprime
to p. We note that 2* — 1 has no repeated roots in IF:; u since its derivative
Ex*~! has no root in IF'ZM. Therefore, the polynomial z* — 1 € Fy[z]n has
k distinct roots in IF'ZM. If T'() is injective in F u, we have k = 1 and thus
(@) follows, where we note that x! is an injective in Fya if and only if 7 is
coprime to ¢ — 1. If T(z) is not injective in F v and there are no distinct
w0, 71,72 € Fyu with T'(zo) = T'(x1) = T'(z2), then we must have k = 2 and
thus (8)) is valid for a = 0.

Assume now that T'(x) € F,[z]p has roots in F?y and there are no
distinct xo, 21,72 € Four with T(zg) = T(z1) = T'(x2). Clearly, T(z) has
just one root in F7,,. Hence, we have T(z) = 2" (x—a)® for some a € ¥y and
positive integers 7, s. Let v be the largest integer in K, dividing both r and
s. Then, the positive integers k = r/v and | = s/v satisfy 2 < k+1 < D and
that at least one of k+1[ and k is not divided by p. Hence, the z-polynomial
(k +1)x — ka € F m[z] is not the zero polynomial.

Furthermore, we assume k + 1 > 2 and write R(z) = 2¥(z — a)!. From
v € K, and R"(xz) = T'(z), we see that R(x) is also a polynomial in Fy[z]p
and there are no distinct zq, 1,72 € Fou with R(zo) = R(z1) = R(x2).
Therefore, for any b € F,\{0,a} we have R(b) € F, and there are some
a(b) € F,u\{0,a,b} and integers u(b) > 1,v(b) > 0 such that

R(z) - R(b) = (z — b)*D (& — a(t)®), 9)
For any b € F,\{0,a} with (k+ )b — ka # 0, since the derivative of R(x) is

R(z) = z" Yz — o) Y(k + D)z — ka),
we see R'(b) # 0 and thus from (@) we have u(b) = 1,v(b) = k+1—1 > 2 and
(k+0)a(b)—ka = 0. Hence, k+1 is not divided by p and o = a(b) = ka/(k+1)
is independent of b. Then, for any b € F,\{0,a, a}, from (@) we have

2z —a) —Fb—a) = (z —b)(z — )L =0. (10)

From (Il) we have

IF,\{0,a,a}| >2q¢—3>mn>D>k+1, (11)
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and thus from (0] we see that the y-polynomial

l _ a)k—l—l—l

@ —a) -y y—a) — (z -y

is the zero polynomial, which is impossible since its leading term is y**'.
Hence, we must have k =1 =1,a € F} and thus [®) follows. ]

From Lemmas [5, [6] and [7, we can determine the forms of f(z) and g(y)
as showing in the following corollary.

Corollary 1. The polynomials f,g can be classified into two cases:

Case 1. Just one of f,g is injective in Fom and thus there are u € Kj N
[1,m/2], ve KpN[l,m] and a € Fy such that f(x) = pi(x),9(y) = y*
or f(z) =" g(y) = pa(y)-

Case 2. Both f,g are injective in Fn and thus there are u,v € K, N[1,m]
such that f(x) = z", g(y) = z".

4 Characterization of h for Case 1

In this section, we consider to characterize the polynomial h(z,y) for the
first case shown in Corollary 1.

For any a € Fy, let Q4(a) denote the set of pairs (c,d) € Fg such that
pa(c), pa(d) are distinct elements in Fy, i.e.

Qq(a) = {(c;d) € (F\0,a})* i c £ d,c +d # a}. (12)
For j € [1,n], let h; € Fy[z],, denote the polynomial defined by
hj(z) = Z hijx. (13)
1<i<n

Then, the polynomial h(x,y) can be expressed as Elgjgn hj(x)y’. The
following lemma gives some conditions on the polynomials h; for the case

f(2)g(y) = pi(x)y’, a € Fy, u,v € K,,.

Lemma 8. Suppose f(z) = pi(x), g(y) = y* for some a € Fy and u,v €
K, N [1,m] with 2u < m. Let b be the element in F, with b’ = a. Then,
there exists an s € K, N [1,n] such that

hs(d”)pp"(c) = hs(c”)pp"(d) # 0, for any (c,d) € Qe (b),  (14)
hs(c) — hs(a —c) # 0, for any c € Fu with 2¢ # a, (15)

hz,y) = hs(x)y® + > hai Pl @)y’ (16)
(ivj)eép(uvv)vj¢5
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Proof. For (c,d) € Q,u(b) and t € Far, let
Sa=(0,c",d";tpy(d),0,tpg(c)).
Then, from v € K, and b = a we see

A3(f(x)g(y))(Sa) = F(d")g(tpy (c)) = F(c")g(tpy (d))
= t*(cd)"™ ((d" — a)"(c — b)" — (¢" — a)"(d — b)")

is equal to 0 and thus the t-polynomial

Az(h(z,y))(Sa) =h(d", tpy(c)) — h(c", tpy (d))
= D (hi(d)p}"(e) = hy(e) " (@)¥

1<i<n
= Y Hj(d, o) (17)
1<i<n
has no root in IF:; u, Where
Hy(x,y) = hy(z")p)" (y) — hy(y*) o} (). (18)

Clearly, for any j € [1,n], the polynomial H;(z,y) belongs to Fy[z, y]mn. By
applying Lemma 3 for W = Q,(b) C Q,m (b), e; = Hj, D =n and N = mn,
according to (II) we see that there is an integer s € [1,n| such that

Hj(z,y) =0, for j # s. (19)

For any (c,d) € Qi (b), from (7)) and ([I9) we have Az(h(z,y))(Ss) =
H(d, c)t® and thus (I4) follows.
If j # s and hj(z) is not the zero polynomial, from (I8)) and (I9]) we see
h,(cv) ju
hj(2") = =5 —p,
Py (c)

and then v divides ju and, moreover, from v € K, and b” = a we have

(),

(@) = hogujug ol (@), (20)

Hence, we have

h(x7y) = hs(x)ys + Z h2ju/v,jpéU/U(‘T)yj' (21)
J#s,vlju
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For any c € F u with 2¢ # a, from f(c) = pg(c) = py(a —¢) = f(a—c¢),
Lemma [ and (2]]) we see that the y-polynomial

h(e,y) —ha—c,y) = Y (hi(e) = hij(a =)y = (hs(c) — hs(a—c))y®
1<g<n

is injective in F ar. Therefore, we have (I3]) and according to Lemma [7 we
see s € K, N[1,n].

~ Assume now ¢ € F¢\{0,b}. Since for any j € [1,n]\ K}, the y-polynomial
p1(c) — pl(y) + (pu(y) — pu(c))? has at most 2j roots in Fy, from (I)) we see
q—4> 3 9cjcn 2) = n(n+1)—2 and thus there is some d € F¢\{0,b, ¢, b—c}
such that, for any j € [1,n]\K,,

7€) = P(d) + (po(d) = pu(e)) 0. (22)

Clearly, (c,d) € Qq4(b). For t € F;M, let

55 = (O,Cv,dv;Oytpg(d),t(pg(d) - pg(C)))

Then, from s € K, we have

Asz(hs(2)y”)(Ss5)
=(hs(c") = hs(d”)) (tpy (d))* + hs(d”) (t(py (d) = py(€)))°
=(hs(c)pg"(d) — hs(d”) pg" (c))”. (23)

For any j € [1,n]| with v | ju, from v € K, and b” = a we see

Py () = (a(a — b)) = (2" (" — a)!"/" = ph/"(a")

and thus from u € K, we have
As(p" () (S5)
= (P7(e") = P (@) (b ()Y + () (o} (d) — pi (€)Y
=t1}"(d) (p)(c) — p}(d) + (pn(d) — pu(e))") " (24)

If there is some j € [1,n]\K), with v | ju such that hoj,, /., ; # 0, from (I4)
and (2I) to ([24) we see that the t-polynomial Ag(h(x,y))(Ss) € Fy[t], has
at least two nonzero coefficients, and thus there is some t € IFZM such that
Asz(h(z,y))(Ss) = 0. Since Az(f(x)g(y))(S5) = 0 can also be obtained from
([24) by replacing j with v, the graph G has a 6-cycle of form S5, contradicts
to the assumption.

Hence, we have hyjy,/, j = 0 for any j € [1,n]\K), with v | ju, and thus

(I6]) follows from (21I). O
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The polynomial hs in this lemma can be characterized further by the
following lemma.

Lemma 9. Let z(z) = Y. za' € Fylz], and
1<i<n

R(z,y) = 2(«")py' (y) — 2(y")p (), (25)
where b € Fg,w € K, N[1,mn/2] and v € K, N[1,m]. Suppose
z(c) — z(b" —¢) # 0, for any c € Fy with 2¢ # b, (26)
R(d,c) # 0, for any (c,d) € Qg (b). (27)
Then one of the following three cases is valid.
1 b#0, w2, 2y + 200/,0" # 0 and

w/v

22) = (Zujo + 2200”2 + 200 upt! " (). (28)

2.b =0, 2w > v and there are some w; € K, and o € {1,—1} with
Zow jvrow, 7 0 such that

z(x) = zgw/v+gwlx2w/v+m”1 + z2w/vx2“’/v. (29)

3. z(x) =21, 21 #0 and
(a) b=0, p=3 and v = 3w, or
(b) b=0, p=2 and v = 4w, or
(c) b#0, p=2 and v =2w.

Proof. Let [1,n], = {v,2v,...,nv} and R(x,y) = >, ri(y)z’, where ri(y) €
Fy[y]. From (25]) we have

Zi(y? = by +b¥2(yY),  if i =w = ju € [1,n],,
b z(y"), if i =w ¢ [1,n],,

2v v, V\] v op - .
227 (y<¥ — by")? — z(yY), if i = 2w = 2jv € [1,ny,
—Z(y )7 if i = 2w ¢ [Ln]m
2ijoPy (Y), if ¢ € [1,n],\{w, 2w},
0, else.
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Let k denote the largest integer with r(y) # 0 and [ the least integer with
ri(y) # 0. Clearly, we have 1 <1<k <mn and R(z,y) = ) 1<, ri(y)at.
For any c € F,\{0, b} with 2¢” # b", from (28] we have

R(b,c) =2(b")py (c) — 2(c")py (b) = 2(b")py (¢) # 0, if b # O,
R(b—c,c) =z((b—¢)")py () — 2(c")py ( c)
=(2(b" = ¢") = 2(e")py (¢) #

and thus, from 27) and R(z,c) € Fy[z]n, we see there are a(c) € Fy and
positive integers [(c), k(c) with 1 < (c) < k(c) < mn such that

R(z,¢) = a(c)z!® (z — o)H~He), (31)
Let
0= {C € Fq\{(), b} :2c¢” 7é bU,T’k(C) 75 O,Tl(C) 7& 0}

For any ¢ € O, according to the definitions of k£ and I, we have I(c) = [ and
k(c) = k, and thus we see 1 <[ < k < mn and

R(z,c) = a(c)zt(x — ¢)*7!, for any ¢ € ©. (32)
For any ¢,d € O, from ([B2) we see
ale)d(d—c)* ' = R(d,¢) = —R(¢,d) = —a(d)d (¢ — d)F,

and then, we have 2 { (k — 1) if p # 2, and there is some o € F}; such that
a(c) = acl holds for any ¢ € ©. Therefore, we have

R(z,¢) = adzl(z — ¢)F, for any ¢ € ©. (33)

Since for any j with 1 < 2j < n the polynomial zq;(t2—b"t)I —z(t) € F [ ]
has degree at most n and for any j' € [1,n] the polynomial z;/ (t* — bt ) +
b z(t) € Fy[t] has degree at most 2n, from (II), (30) and that the polynomial
y” € Fy[y] is a permutation on F,, we see easily

O] >q¢—1—3n>mn >k, (34)

where 7;(0) = 0 for any ¢ has been taken into account in the first inequality.
From (33) and (34) we see the polynomial R(z,y) € Fy[z,y] is of form

R(z,y) = aa'y!(z — y)F . (35)
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Assume b # 0 first. From (25]) and (35]) we have
az'bl(z — b)* ' = R(x,b) = —2(b°)p} (z) = —2(b")z" (z — b)¥
and thus we see z(b*) = —abl,l = k — | = w and, for ¢ € F,\{0, b},
2(x”) = p, " () (2(c")pyy (2) + ac®z"(x = ¢)")
= pp () (2(c") + ac®)z®™ — py () (2(c")BY + ac™ )z (36)
If w > v, then from (B6]) we see ([28) and
Zuw v + 22w /b = apy ' (c)c’ (b — ) = —a # 0.

If w < v, then from (B6) we see p = 2, v = 2w, z(x) = zz and
z1 = —ab™" #0.
Assume b = 0 now. For any c € Fy, from (25) and (35) we have

2(2%) = ¢ 2 (2(c”)2™ + acdal(z — ). (37)

Since the left side of ([B7) is independent of ¢, we see that the expansion of
(z — )k~ has at most two terms and thus we have k—1 € K,,. Furthermore,
from ([B7) we have 2w € {k,l} and

Z( v) _ C—Qw(z(cv) + acl)lﬂw — Oé$l, ifl<2w= k‘,
e (2(e?) — adk)a? +axk,  if 1= 2w <k,

namely, there are integers wy € K, and o € {1, —1} such that

z(zV) = c‘zw(z(c”) — 0ac2“’+"“’°)x2“’ + ocarivtowo (38)
From (B8) and oo # 0 we see
v | (2w + owy), (39)

Z(2utowe) /v = o0 and

(40)

z if 2w > v
C—Zw(z(cv) o O_ac2w+ow0) _ 2w/v> / )
0, otherwise.

If 2w > v, from (B9) we have v < wp and thus from (B8) and ([0) we see
that (29) is true for wy = wo/v € K} and 22y jytow, = o # 0.
If 2w < v, from (B9) we have o =1,

p=3,v=3w, wy=w, or p=2,v=4w, wy = 2w,

and thus from (38) and [@0) we see z(x) = z1z and 21 = o # 0.
The proof is completed. O
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It has been shown in Corollary 1 that the polynomials f, g can be clas-
sified into two cases, the following theorem characterizes the polynomial
h(z,y) further for the first case by using Lemmas [§ and [0

Theorem 3. Let a € Fy,u,v € K, with u < m/2 and v < m.
(@) If f(x) = py(z) and g(y) = y", then there are s € K, N[1,n] and ¢ € F}
such that either

v < su and figu(h)(z,y) = Cx¥y*, or (41)
p=2,a#0,v=2su and pigu2su(h)(z,y) = (xy®, or (42)
p=2,a=0,v<4su and pou(h)(z,y) = Catsu/vys, (43)

(ii) If f(x) = x¥ and g(y) = py(y), then there are s € KyN[1,n] and ¢ € F
such that either

v < su and Vg up(h)(z,y) = Cxty™Y, or (44)
p=2,a#0,v=2su and v,y 2su(h)(z,y) = (2°y, or (45)
p=2,a=0,v<4dsu and v ,(h)(z,y) = Caytsulv., (46)

Proof. Since (i7) is symmetrical to (i), we only give proof for (7).

Assume f(z) = p¥(z) and g(y) = y”. According to Lemmas [§ and [ we
see that there are s € K}, N [1,n] and ¢ € F; such that either (I), or (@2,
or

a=0,v < 2su and pig.y.,(h)(z,y) = Ca?W/vHowLys (47)

for some wy € K, N[1,n] and o € {1,—-1}, or

a=0,p=3,v=3suand pgy3su(h)(z,y) = (xy®, or (48)
a=0,p=2,v=4su and pg 4 45u(h)(z,y) = Czy’. (49)

Assume that [{7) is valid for some w; € K, N [1,n] and o € {1,—1}.
From Lemma, [Tl we see that G is isomorphic to

Gy =T u

($25u/v+aw1 s 2u v)
q 5

y,ry

and thus G has girth at least 8. If 0 = —1, from Lemmas [6] and [7] we have
wy = su/v and that (@) is valid for a = 0. If o = 1, from Lemmas [6] and [7]
we have either p = 2, w; = 2su/v or p = 3,w; = su/v. Clearly, the former
case implies ([@3]), and the later case is impossible since G is isomorphic to

L (23y, 2%y) whose girth is 6 according to (ii) of Lemma [
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Assume that ({@8)) is valid. Then, from Lemma [[l and p = 3 we see that
G is isomorphic to

L (22y, 2y®) 2 T u (2%y°, 2y)

whose girth is 6 according to (i7) of Lemma 2] contradicts to that G has
girth at least 8.
Clearly, (49) implies [{3]) for v = 4su. O

5 Characterization of h for Case 2

The following theorem characterizes the polynomial h(z,y) for the second
case of Corollary 1.

Theorem 4. Assume f(x) = z" and g(y) = y* for some u,v € K, N[1,m].
Then, either there is some s € K, N [1,n] with v < su and hagy/y s 7 0 such
that

Wu,v(h)h(xv y) = h2su/v,sx2su/vysa (50)

or there is some v € K, N [1,n] with u < rv and hy. 9,/ 7 0 such that
Wu,v(h) ($7 y) = hr,2rv/u$ry2m)/u- (51)
Proof. For a,b € F\ .t € F,\{0,1}, let
Se = (0,at”,a;0,b,b(1 —t)*). (52)

Then, from Asz(f(z)g(y))(Se) = As(z"y")(Se) = 0 we see that, for any
a€lF, andte F,\{0, 1}, the b-polynomial

As(h(z,y))(S6s) = D Eja, ) (53)

1<i<n
has no root in IF'Z , Where
Ej(w,y) = hj(zy") — hy(z) + hj(x)(1 - y)*. (54)
Since Ej is a polynomial in Fy[x, y]mn, by applying Lemma [3] for W =
Fy x (F\{0,1}), D =n, N = mn and e; = Ej, according to (Il) we see that

there is an s € [1,n] such that

Ej(z,y) =0, for any j # s. (55)
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Therefore, we have As(h(z,y))(Ss) = Es(a,t)b® and thus
Es(a,t) # 0, for any a € Fya and ¢ € Foa\{0,1}. (56)
For j ¢ K, U {s}, from (54) and (B3] we see
hj(zy”) = hj(2)(1 = (1 =y)") = hj(2)(1 — (1 —y)’)"
and thus, for any positive integer k,
By()(1 — (1 — PV = hy(ag™) = hy(@)(1L — (1 — ).

Hence, we have
hj(xz) =0, if j ¢ K, U {s}. (57)

For j € K,\{s}, from (54) and (55) we see h;(zy") = h;j(z)y’* and thus
we have v < ju and

= { G g
By following the proof of Lemma [l from (56]) and
= 3 sy =1+ (1= )
1<i<n
one can show that there is an r € [1,n] such that h, s # 0 and
— 14+ (1 —t)*™ #0, for any t € Foar\{0,1}, (59)
his(y™ — 1+ (1 —y)*) =0, for any i # 7. (60)

From (B9), we see su # rv if s € K. Therefore, from (60) we see

hysx” + hsu/v,sxs“/v, if s € K, and v < su,
hy ", otherwise,

o) = {
and thus from (B7)) and (58]) we have

Tuw(h)(z,y) = hy 2" y°. (61)

According to (6I) and Lemma [I, we see that Go = I'ja(z"y*, 2"y") is iso-
morphic to G and thus has girth at least 8.

Assume 7, s € K, first. From su # rv we see there is a wy € K,\{1}
such that either su = rvwsy or rv = suws. If the polynomial t*2~1 —1 € F,[¢]



20

has some root tg in F ar \ {1}, then Go contains the 6-cycle (0, 1,%; 5,0, 1),
contradicts to that Gg has girth at least 8. Hence, t*2~1 — 1 € F[t] has no
root in Far \ {1} and thus wo = 2 = p, and either (B0) or (51]) is valid.
Assume r ¢ K, now. According to Lemmas [0l and [7, we have s € K,
2|r,r/2 € K, and p # 2. Then, from (59) we see t"¥ — t*" % 0 for any
t € F,r\{0,1}, and thus
lrv — su| € Kp. (62)

If rv < su, then from (62]) we have p = 3, 3rv = 2su and thus from Lemmal[ll
we see that G is isomorphic to

FqM ($3vry3vs, xuyv) ~ FqM (x2suy3vs’ $uyv) ~ FqM ($2y3’ xy)
whose girth is of 6, contradicts to that Gy has girth at least 8. Hence, we

have rv > su and thus from (62) we see rv = 2su and (B0).
Similarly, one can show that (5I)) is valid if s & K. O

6 Proof of the main result and concluding remarks

In this section, we complete the proof of the main result of this paper and
give some concluding remarks.

Proof of Theorem [l One hand, we assume that the bipartite graph G =
L (f(x)g(y), h(z,y)) has girth of at least eight. According to Corollary 1,
Theorems Bl and @], we see that the polynomials f, g, h must be of the desired
forms, namely, there are some a € Fy, ¢ € Fy, u,v € K, N [1,m] and
s € KpN[1,n] such that one of (¢) to (iv) is valid, where it should be noticed
that (@3] and (@G are included in (i7¢) indeed.

On the other hand, we assume that there are some a € Fy, ¢ € Fy,
u,v € K, N[1,m] and s € K, N[1,n] such that one of (i) to (iv) is valid.
According to the isomorphisms given in Lemma [II, one can show easily that
the graph G must be isomorphic to I'3(IF ). For example, if (a) of (iv) is
valid, then from u,s € K, p=2 and a € F; we see G is isomorphic to

u 2su

T (0 (@)y**" 2y®) = Tt (pa(2)y>, 2y®) 2 T gar (pa(2)y?, 2y)

=M (pa(z)y?, 22y?) = Loum (zy?, x?y?) = Lo (zy?, vy) = L3(F ).

The proof is completed. O

Clearly, according to Theorem [Il and Lemma [I, one can characterize
easily all of the polynomials f,g € Fylz],, and h € F,lz,yl, for which
the graphs ', (f(7)g(y), h(z,y)) have girth at least eight, where M =
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lem{2,3,...,mn}. In particular, for any assemble of such polynomials f, g, h
and any positive integer k, the graph '« (f(x)g(y), h(z,y)) is isomorphic to
L3(Fr).

The integer M is chosen in such a way so as to ensure any polynomial in
Fg[#]mn is decomposable in F . However, only the decomposability in F
of the polynomials in F[z],, is demanded excepting the proof of Lemma
needs such property for the polynomials of form R(x,c) = z(z")p¥(c) —
2()p¥(z) € Fylx]mn, where z € Flz],, a € Fy, v € K, N [1,m] and
w € K, N[l,mn/2]. Hence, M may be replaced with a smaller integer if
alternative proofs of Lemma [9 are available.

Even if the condition () is not valid, the conclusions of Theorem [I] are
still true provided the integer M is replaced by rM for any positive integer
r with

q¢" > max{2mn + 3,mn + 3n + 1,n(n + 1) + 2},

namely, it is sufficient to replace the basic field F, with F,- in the proof.

At the end of this paper, in stead of giving a detailed proof for Theorem 2]
we just point out that it can be proved by simply following the clues of the
proof of Theorem [ In fact, a proof of Theorem 2] can be obtained directly
from that of Theorem [ if we replace the prime powers ¢, ¢™ by oo, the
finite fields Fy, F,u by Fo, the set K, by {1} (the set ®,(u,v) is then
equal to {(1,1)}), respectively, and the main arguments are still true while
some of them can be simplified by skipping the redundant discussions. For
example, in the proof of Theorem [II almost the restrictions on the degree
of polynomials over IF, are designed to ensure their decomposability in the
extension field F a, and thus these restrictions can be simply dropped since
F is an algebraically closed field.
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