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ANTI-RAMSEY THRESHOLD OF CYCLES

GABRIEL FERREIRA BARROS, BRUNO PASQUALOTTO CAVALAR,

GUILHERME OLIVEIRA MOTA, AND OLAF PARCZYK

Abstract. For graphs G and H , let G
rb

ÝÑH denote the property that for every proper

edge colouring of G there is a rainbow copy of H in G. Extending a result of Nenadov,

Person, Škorić and Steger (2017), we determine the threshold for Gpn, pq
rb

ÝÑCℓ for cycles

Cℓ of any given length ℓ ě 4.

§1. Introduction

In this paper we investigate an anti-Ramsey property of random graphs. Given graphs G

and H , we denote by G
rb

ÝÑH the following anti-Ramsey property: for every proper edge

colouring of G there is a rainbow copy of H in G, i.e. a subgraph of G isomorphic to H

in which all edges have distinct colours.

In 1992, Rödl and Tuza [12] proved the following result, which answered affirmatively

a question raised by Spencer (see [4, p. 29]) asking whether there are graphs of arbitrarily

large girth containing a rainbow cycle in every proper edge colouring.

Theorem 1 ([12]). For every positive integer t and every positive δ with δ ă 1{p2t ` 1q

there exists n0 such that for every n ě n0 there exists an n-vertex graph G with girth at

least t ` 2 having the property G
rb

ÝÑCℓ, for 2t ` 1 ď ℓ ď nδ, where Cℓ is an ℓ-vertex cycle.

In their proof, Rödl and Tuza showed that Gpn, pq
rb

ÝÑCℓ holds a.a.s.1 for a small p.

Note that since G
rb

ÝÑH is an increasing property, there exists a threshold2 prb

H “ prb

H pnq

for any fixed graph H (see [2]). In [6], Kohayakawa, Konstadinidis and Mota obtained

an upper bound for the threshold prb

H for any fixed graph H in terms of the maximum

2-density m2pHq “ max tpepJq ´ 1q{pvpJq ´ 2q : J Ď H, vpJq ě 3u.

Date: 2020/06/04, 12:41am.
G. F. Barros was partially supported by CAPES. B. P. Cavalar was partially supported by FAPESP

(Proc. 2018/05557-7). G. O. Mota was partially supported by CNPq (304733/2017-2, 428385/2018-4) and

FAPESP (2018/04876-1, 2019/13364-7). O. Parczyk was partially supported by Technische Universität

Ilmenau, the Carl Zeiss Foundation, and the DFG (Grant PA 3513/1-1). The collaboration of the authors

was supported by CAPES/DAAD PROBRAL (Proc. 430/15). This study was financed in part by the

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.
1A property in Gpn, pq holds asymptotically almost surely (a.a.s.) if the probability tends to one as n

tends to infinity.
2The threshold for a property is a function p̂ “ p̂pnq such that Gpn, pq a.a.s. has this property if p " p̂

and a.a.s. does not have it if p ! p̂.

1

http://arxiv.org/abs/2006.02079v1


Theorem 2 ([6]). Let H be a fixed graph. Then there exists a constant C ą 0 such

that a.a.s. Gpn, pq
rb

ÝÑH whenever p “ ppnq ě Cn´1{m2pHq. In particular, prb

H ď n´1{m2pHq.

A classical result in Ramsey Theory obtained by Rödl and Ruciński [11] implies that

n´1{m2pHq is the threshold for the following Ramsey property, as long as H contains a cycle:

every colouring of EpGpn, pqq with r colours contains a monochromatic copy of H . In view

of this result, it is plausible to conjecture that n´1{m2pHq is also the threshold for the anti-

Ramsey property, for any fixed graph H . However, as proved in [7], there are infinitely

many graphs H for which the threshold prb

H is asymptotically smaller than n´1{m2pHq.

Recently, this result was extended to a larger family of graphs (see [1]). On the other

hand, Nenadov, Person, Škorić and Steger [10] proved that at least for sufficiently large

cycles and complete graphs H the lower bound for prb

H matches the upper bound n´1{m2pHq

of Theorem 2.

Theorem 3 ([10]). If H is a cycle on at least 7 vertices or a complete graph on at least 19

vertices, then prb

H “ n´1{m2pHq.

In [8], Kohayakawa, Mota, Parczyk and Schnitzer extended Theorem 3, by showing

that for all complete graphs Kℓ with ℓ ě 5 the threshold prb

Kℓ
is in fact n´1{m2pKℓq, and for

K4 we have prb

K4
“ n´7{15 ! n´1{m2pK4q. Our result determines the threshold prb

Cℓ
for every

cycle Cℓ on ℓ ě 4 vertices.

Theorem 4. Let ℓ ě 5 be an integer. Then prb

Cℓ
“ n´1{m2pHq. Furthermore, prb

C4
“ n´3{4.

In Section 2 we prove Theorem 4 for cycles with at least 5 vertices. Similarly to what

happens with complete graphs, the situation for C4 is different: For p “ n´3{4 ! n´1{m2pC4q

the random graph Gpn, pq a.a.s. contains a small graph F such that F
rb

ÝÑC4. In Section 3

we prove that prb

C4
“ n´3{4 gives the treshold for C4

3 and we finish with some concluding

remarks in Section 4. We use standard notation and terminology (see e.g. [3] and [5]).

In particular, given a subgraph H of a graph G, we write G ´ H for the graph obtained

from G by removing all vertices that belong to H and all edges incident with these

vertices.

§2. Cycles on at least five vertices

In [10], Nenadov, Person, Škorić, and Steger provide a general framework that reduces

some Ramsey problems into deterministic problems for graphs with bounded maximum

density, where the maximum density of a graph G is denoted by

mpGq “ max

"

epJq

vpJq
: J Ď G, vpJq ě 1

*

.

The proof of Theorem 3 for cycles relies on the following lemma (see [10, Lemma 24]).

3We remark that a sketch of the proof for C4 was given in a short abstract of the fourth author [9].
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Lemma 5 ([10]). Let ℓ ě 7 be an integer and G be a graph such that mpGq ă m2pCℓq.

Then G
rb
XÝÑCℓ.

In fact they prove a slightly stronger statement for which they need a non-strict in-

equality relating the densities [10, Corollary 13]. The condition ℓ ě 7 in Theorem 3

is simply a consequence of the restriction on the cycle length imposed in Lemma 5, as

observed by the authors [10]. We extend Lemma 5, proving the following result, where

we note that m2pCℓq “ pℓ ´ 1q{pℓ ´ 2q.

Lemma 6. Let ℓ ě 5 be an integer and G be a graph such that mpGq ă pℓ ´ 1q{pℓ ´ 2q.

Then, G
rb
XÝÑCℓ

Theorem 4 thus follows immediately by replacing Lemma 5 with our Lemma 6 in the

proof of Theorem 3 in [10]. We remark that the proof of Lemma 6 considers all the cycle

lengths in the range ℓ ě 5, i.e. it is not a proof only for the cases ℓ “ 5 and ℓ “ 6.

Throughout this section let ℓ ě 5 be an integer and G be a graph with mpGq ă

pℓ ´ 1q{pℓ ´ 2q. We use the term k-path to refer to a path with k vertices. For the proof

of Lemma 6, we will define a partial proper edge colouring of G such that every ℓ-cycle

has two non-adjacent edges with the same colour. Clearly, having defined such a partial

edge colouring, we can extend it to a proper edge colouring (for instance, the uncoloured

edges may be assigned distinct colours).

2.1. Cycle components. Let CℓpGq be the set of all ℓ-cycles of G. We start by defining

key concepts that we use throughout our proof. The edge intersection graph of CℓpGq is

the graph whose vertex set is CℓpGq and whose edges correspond to pairs tC, C 1u such

that C ‰ C 1 and EpCq X EpC 1q ‰ ∅. A subgraph H Ď G is a Cℓ-component of G if it

is the union of all ℓ-cycles corresponding to the vertices of some component of the edge

intersection graph of CℓpGq.

Let H1 be an ℓ-cycle in G. A Cℓ-component H of G containing H1 can be constructed

from H1 as follows. Suppose we have defined H1 Ď ¨ ¨ ¨ Ď Hi for i ě 1. If there is an ℓ-

cycle C in G such that C Ę Hi and EpCq X EpHiq ‰ ∅, then we put Hi`1 “ Hi Y C;

otherwise we terminate the construction and set H “ Hi. Let t be such that H “ Ht. We

call pH1, . . . , Htq a construction sequence of H . For brevity, sometimes we will identify

a Cℓ-component with a construction sequence of it; for example, we will write “a Cℓ-

component pH1, . . . , Htq”.

Note that there can be multiple new ℓ-cycles appearing in Hi`1 that were not present in

Hi before; this will be the main problem to deal with when constructing the partial colour-

ing. Also note that the process just described allows us to reconstruct a Cℓ-component

starting from any ℓ-cycle of it. Also note that two ℓ-cycles belonging to distinct Cℓ-

components may share vertices (obviously they do not share edges).

We start the colouring procedure in some Cℓ-component H of G. Once we have coloured

the edges of H avoiding a rainbow Cℓ, we proceed to assign colours different from those

3
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Figure 1. Possible configurations of a Cℓ added to Hi to form Hi`1.

used in H to edges of a Cℓ-component of G ´ EpHq, using the same procedure. We

continue colouring edges in this manner (taking an uncoloured Cℓ-component, colouring

it and removing its edges) until we have considered all the ℓ-cycles of G. Thus, our aim

is to describe the colouring procedure of an arbitrary Cℓ-component H of G.

Let pH1, . . . , Htq be a Cℓ-component of G. Since producing a colouring which avoids

rainbow Cℓ is a trivial task if the Cℓ-component has only one cycle, we may assume t ě 2.

The following proposition is crucial in our proof and, given a Cℓ-component pH1, . . . , Htq,

describes for any 1 ď i ď t´1 the possible structure of an ℓ-cycle C which is added to Hi

to form Hi`1, i.e. C Ď Hi`1, but C Ę Hi and EpCq X EpHiq ‰ ∅. (see Figure 1).

Proposition 7. Let ℓ ě 5 be an integer, G be a graph with mpGq ă pℓ ´ 1q{pℓ ´ 2q and

pH1, . . . , Htq be a Cℓ-component of G. Then, the following holds for every 1 ď i ď t ´ 1.

If C is an ℓ-cycle added to Hi to form Hi`1, then there exists a labelling C “ u1u2 ¨ ¨ ¨ uℓu1

such that exactly one of the following occurs, where 2 ď k ď ℓ and 3 ď j ď ℓ ´ 1:

pAkq u1u2 ¨ ¨ ¨ uk is a k-path in Hi and uk`1, . . . , uℓ R V pHiq;

pBjq u1u2 P EpHiq, u2u3 R EpHiq, tu3, . . . , uℓu r tuju Ď V pHi`1q r V pHiq, uj P

V pHiq.

We refer to each of pAkq and pBjq as a configuration of Hi`1. Before proving Proposi-

tion 7, let us discuss some ideas used for this purpose. To show that some of the config-

urations are not possible or do not happen often during the construction of pH1, . . . , Htq,

we heavily use the fact that mpGq ă pℓ ´ 1q{pℓ ´ 2q.

For any 1 ď j ď i, define parameters ej, vj and cj as follows: ej is the number of edges

in EpHj`1qrEpHjq, while vj stands for the number of vertices in V pHj`1qrV pHjq. Lastly,

let cj be the number of components of Hj`1 ´ Hj. Note that if vj “ 0, then ej ě 1, and

if vj ě 1, then the components of Hj`1 ´ Hj are paths and we get ej ě vj ` cj ě vj ` 1.

Therefore, we conclude that, for 1 ď j ď i we have ej ě vj ` 1 Also, since any ℓ-cycle

added to Hj to form Hj`1 contains at least one edge of Hj , for 1 ď j ď i, we have

vj ď ℓ ´ 2. Note that we have

ℓ ´ 1
ℓ ´ 2

ą mpGq ě
epHi`1q

vpHi`1q
“

ℓ `
ři

j“1
ej

ℓ `
ři

j“1
vj

. (1)
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Using the bounds ej ě vj ` 1 and vj ď ℓ ´ 2, we obtain

ℓ ´ 1
ℓ ´ 2

ą
ℓ ` ei `

ři´1

j“1
pvj ` 1q

ℓ ` vi `
ři´1

j“1
vj

ě
ℓ ` ei ` pi ´ 1qpℓ ´ 1q

ℓ ` vi ` pi ´ 1qpℓ ´ 2q
, (2)

which implies

ei ă
pℓ ´ 1qvi ` ℓ

ℓ ´ 2
. (3)

We are ready to prove Proposition 7.

Proof of Proposition 7. We will prove the result for all possible values of vi (i.e., 0 ď vi ď

ℓ ´ 2). If vi “ ℓ ´ 2, then we have configuration pA2q.

Now let vi “ ℓ ´ 3, which means that there are exactly three vertices of C in Hi.

If these vertices form a path, then we have configuration pA3q. On the other hand, let

u1, u2 and w be the vertices of C in Hi and let u1u2 be an edge of Hi. If there is an

edge of C between w and tu1, u2u, then let w.l.o.g. u2w be this edge. Then, we have

configuration pB3q, where u3 “ w. It there is no edge of C between w and tu1, u2u, then

w.l.o.g. C contains a path P1 “ u2, u3, . . . , uj´1, w (with at least two edges) between u2

and w with all edges outside Hi, and a path P2 “ w, uj`1, . . . , uℓ, u1 between w and u1

with all edges outside Hi, such that w is the only common vertex of P1 and P2. Then,

we have configuration pBjq, where uj “ w and 4 ď j ď ℓ ´ 1 (as u3 and uℓ are vertices

outside Hi).

Finally, let 0 ď vi ď ℓ ´ 4. From (3) we have ei ď vi ` 1. Then, Hi`1 ´ Hi has only

one component, which implies that the vertices of C in Hi form a path of length ℓ ´ vi,

where we have 4 ď ℓ ´ vi ď ℓ. Therefore, we have configuration pAkq with 4 ď k ď ℓ. �

2.2. Proof of Lemma 6. Given a Cℓ-component H described by a construction sequence

pH1, . . . , Htq, we will colour the edges of H1, H2 and so on iteratively, avoiding rainbow

ℓ-cycles. For configurations pAkq with 2 ď k ď ℓ ´ 2 we are always able to assign a

new colour i to two non-adjacent new edges. All other configurations may appear at

most twice in pH1, . . . , Htq, and in these cases we will colour all previous configurations

carefully so that we are able to proceed.

Arguments involving calculations similar to those we did on (1) and (2) will be referred

to as density arguments. For example, when Hi has configuration pAℓq, we have vi “ 0

and ei “ 1, which following the calculations in (1) and (2) implies that there cannot be

another occurrence of pAℓq, as this would imply

ℓ ´ 1
ℓ ´ 2

ą mpGq ě
epHi`1q

vpHi`1q
“

ℓ `
ři

j“1
ej

ℓ `
ři

j“1
vj

ě
ℓ ` 2 ` pi ´ 3qpℓ ´ 1q

ℓ ` pi ´ 3qpℓ ´ 2q
,

which gives the following contradiction, as ℓ ě 5:

ℓpℓ ´ 1q ą pℓ ´ 2qpℓ ` 2q.

5
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c

paq

Hi

pbq

Figure 2. Examples of cases to consider when colouring EpHi`1q r EpHiq.

Similarly, one can show that configuration pAℓ´1q, where vi “ 1 and ei “ 2, appears at

most twice and any pBjq, where vi “ ℓ ´ 3 and ei “ ℓ ´ 1, at most once. Furthermore,

when one of these configurations appears, the occurrence of pAkq with 3 ď k ď ℓ ´ 2 is

restricted, while only pA2q can appear arbitrarily often. We will refer to these estimates

as the density argument.

Proof of Lemma 6. Let ℓ ě 5 be an integer and G be a graph such that mpGq ă pℓ ´

1q{pℓ ´ 2q. Choose an arbitrary ℓ-cycle H1 in G and assign a colour c1 to a pair of non-

adjacent edges of H1. Let H “ Ht, with t ě 2, be the Cℓ-component of G obtained from

a construction sequence pH1, . . . , Htq.

Now we consider a few cases according to which configurations given by Proposition 7

occur in pH1, . . . , Htq. For each 1 ď i ď t ´ 1, note that there can be many cycles in Hi`1

that are not in Hi. We will assign colours to the edges of EpHi`1q r EpHiq such that in

Hi`1 any ℓ-cycle has two edges coloured with the same colour.

Since the connected components of Hi`1 ´ Hi are paths, in case each of these paths

contains two vertices, we can give a new colour c to two non-adjacent edges of EpHi`1qr

EpHiq. Then, any ℓ-cycle of Hi`1 that contains these paths becomes non-rainbow (see Fig-

ure 2-(a)). If Hi`1 has configuration pAkq with 2 ď k ď ℓ ´ 2, this is how we proceed,

unless stated otherwise. But it may be the case that Hi`1 contains an ℓ-cycle that is not

in Hi and it does not contains such paths (it can be formed with edges between vertices

of Hi and components of Hi`1 ´ Hi of only one vertex (see Figure 2-(b)) and we have to

be more careful colouring these edges.

Recall that by the density argument preceding this proof, configuration pAℓq appears

at most once, pAℓ´1q at most twice, and any pBjq at most once. As observed above, if

for every 1 ď i ď t ´ 1, the graph Hi`1 has configuration pAkq with 2 ď k ď ℓ ´ 2, we

can easily avoid a rainbow Cℓ by assigning, for each 1 ď i ď t ´ 1, a new colour ci`1 to

two non-adjacent edges of EpHi`1q r EpHiq. Thus, from now on we assume that there

exists at least one Hi`1 (1 ď i ď t ´ 1) with configuration pAℓ´1q, pAℓq, or pBjq for some

3 ď j ď ℓ. We split our proof into a few cases, depending on the occurrence of these

configurations.
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Case 1. There is an index 1 ď i1 ď t ´ 1 such that Hi1`1 has configuration pAℓq.

In this case, for all i ‰ i1, Hi`1 has configuration pA2q or pA3q, by the density argument.

Moreover, at most one Hi`1 (for some 1 ď i ď t ´ 1) has configuration pA3q.

Let C “ u1u2 ¨ ¨ ¨ uℓu1 be an ℓ-cycle added to Hi1
to form Hi1`1, where P “ u1u2 ¨ ¨ ¨ uℓ

is an ℓ-path in Hi1
and uℓu1 R EpHi1

q. The number of ℓ-cycles in Hi1`1 which are not

in Hi1
is exactly the number of ℓ-paths in Hi1

with endpoints u1 and uℓ.

First suppose that P is the only ℓ-path between u1 and uℓ in Hi1
. Let C 1 be an ℓ-cycle in

Hi1
that contains the edge u2u3. W.l.o.g. we may assume that H1 “ C 1. Then, give colour

c1 to two non-adjacent edges of C 1 that are not u2u3. For every Hi`1 with 1 ď i ď i1 ´ 1

we assign a new colour ci`1 to two non-adjacent edges in EpHi`1qrEpHiq (different from

u2u3). Therefore, in step Hi1`1, we can give a new colour ci1`1 to u1uℓ and u2u3. Note

that this partial colouring of Hi1`1 gives two edges of the same colour in each Cℓ.

Suppose that Hi1
contains more than one ℓ-path between u1 and uℓ. Let P 1 “

u1x2 ¨ ¨ ¨ xℓ´1uℓ with P 1 ‰ P be one of these paths. Since there is no other configura-

tion pAkq with k ě 4, one can see that P Y P 1 contains cycle of length 2ℓ ´ 2, 2ℓ ´ 4, or

ℓ. One can check that if P Y P 1 contains an ℓ-cycle C 1, then ℓ must be even, and P X C 1

has length ℓ{2.

If P Y P 1 forms a p2ℓ ´ 2q-cycle C 1, then C 1 appears in Hi1
with configuration pA2q.

W.l.o.g. we assume that i1 “ 2. Then, we colour alternately the edges of C 1 with a colour

c1, which implies that each of EpP q and EpP 1q contains at least two non-adjacent edges

with the same colour. Note that H2 may contain at most one other ℓ-path P 2 between

u1 and uℓ, in which case ℓ must be even (and so ℓ ě 6). But such P 2 contains at least

two consecutive edges of P and two consecutive edges of P 1 and then it must contain two

edges with colour c1. Therefore, every ℓ-cycle in Hi1`1 is non-rainbow.

Suppose now that P Y P 1 contains a p2ℓ ´ 4q-cycle C 1. Then, C 1 appears in Hi1
with

configuration pA3q (with two ℓ-cycles having exactly a 3-path in common). We may

assume w.l.o.g. that x2 “ u2, H2 has configuration pA3q and pP Y P 1q ´ u1 Ď H2 (note

that C 1 lies in pP Y P 1q ´ u1). We colour the edges of C 1 alternately with two colours c1

and c2. If ℓ is even, then there may be another pℓ ´ 1q-path P 2 between u2 and uℓ in H2

(other than P ´ u1 and P 1 ´ u1). One can easily check that P 2 must contain two edges

with the same colour (c1 or c2), by observing the colours given to the edges of C 1 which

are adjacent to the endpoints of the 3-path xyz, where x, z P C 1 and y is the unique

vertex in ppP Y P 1q ´ u1q ´ C 1.

Now consider that P Y P 1 contains an ℓ-cycle C 1. W.l.o.g. H1 “ C 1. Thus, we just

colour the edges of C 1 alternately with two colours c1 and c2. Since ℓ ě 6, this implies

that both paths P and P 1 have two non-adjacent edges with the same colour.

Case 2. There are 1 ď i1 ă i2 ď t ´ 1 such that Hi1`1 and Hi2`1 have configura-

tion pAℓ´1q.

7



By the density argument, this case occurs only if ℓ “ 5 and every Hi`1 has configura-

tion pA2q for i ‰ i1, i2. Let C “ u1u2u3u4u5u1 and C 1 “ v1v2v3v4v5v1 be cycles where C

is in Hi1`1 but not in Hi1
and C 1 is in Hi2`1 but not in Hi2

. W.l.o.g. let P “ u1u2u3u4

and P 1 “ v1v2v3v4 in Hi2
be 4-paths, and u5 R V pHi1

q and v5 R V pHi2
q.

Note that P is the only 4-path between u1 and u4 in Hi1
and thus C is the only 5-cycle

added to Hi1
to form Hi1`1. However, it is possible that besides P 1 there exists one

other 4-path P 2 in Hi2
between v1 and v4. If this is the case, then P 1 YP 2 contains either

a 4-cycle or a 6-cycle. This information will be useful in what follows.

We divide this proof into three parts depending on the structure of P in Hi1
: (a) the

three edges of P lie in the same 5-cycle, (b) exactly two consecutive edges of P lie in the

same 5-cycle, or (c) any 5-cycle in Hi1
contains at most one edge of P .

(a) the three edges of P lie in the same 5-cycle.

W.l.o.g. assume that all the edges of P lie in H1 and i1 “ 1. Hence H1 is of the

form H1 “ u1u2u3u4x5u1 for some x5. Note that C2 “ u1x5u4u5u1 is a 4-cycle in H2.

Suppose all the edges of P 1 lie in H2. Then, w.l.o.g., we may assume i2 “ 2. If the

endpoints of P 1 are u1 and u3, then there is another 4-path P 2 between u1 and u3 in

H1, say w.l.o.g. P 1 “ u1u5u4u3 and P 2 “ u1x5u4u3. We assign a colour c1 to u4x5, u1u2

and u3v5, and a colour c2 to u2u3, u4u5 and v5u1. In this way we make all 5-cycles in H3

non-rainbow. The case in which the ends of P 1 are u4 and u2 is symmetric.

For all the remainder possibilities for the endpoints of P 1, we assign a colour c1 to u1u2

and u4u3. If the endpoints of P 1 are two adjacent vertices in V pC2q, then we colour two

non-adjacent edges of C 1 with a new colour c2. If the ends of P 1 are u1 and u4, then the

colouring we gave to u1u2 and u4u3 already makes every 5-cycle in H3 non-rainbow. If

the endpoints of P 1 are x5 and a vertex in tu2, u3u, then we assign a new colour c2 to v5x5

and u2u3. The case in which the ends of P 1 are u5 and a vertex in tu2, u3u is symmetric.

Thus, we assume that there is no 4-path with endpoints v1 and v4 and all edges in H2.

If at most two edges of P 1 are in H2, then for any 4-path with endpoints v1 and v4

its edges in H2 must be consecutive. Hence we may assume w.l.o.g. that, for P 1, the

edge v3v4 is not in EpH2q. Because there is no triangle in Hi2
there can be no 6-cycle

in Hi2
As the unique 4-cycle in Hi2

has its edges in H2, the 4-path P 2 between v1 and v4

(P 2 ‰ P 1), if it exists, contains the edge v3v4. Note that we can colour two non-adjacent

edges of any Hi with configuration pA2q avoiding colouring the edge v3v4. Thus, we assign

a colour c1 to u1u2 and u3u4, and a new colour c2 to v3v4 and v5v1.

(b) exactly two consecutive edges of P lie in the same 5-cycle.

W.l.o.g. H1 contains the edges u1u2 and u2u3 but does not contain u3u4. Thus H1

is of the form H1 “ u1u2u3x4x5u1 for some x4 and x5, and C2 “ u1x5x4u3u4u5u1 is

a 6-cycle in Hi1`1. Note that C2 is the only 6-cycle in Hi2
, and Hi2

contains no 4-

cycle. Hence, there are at most two 4-paths between v1 and v4. If there are two such

paths, they correspond to two internally disjoint paths in C2. Suppose that EpP 1q Ď
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EpC2q. In this case, alternately colour the edges of C2 with colours c1 and c2 and,

for 1 ď i ď t ´ 1, with i ‰ i1, i2, assign a new colour ci`2 to two non-adjacent edges

in EpHi`1q r pEpHiq Y tu3u4uq. Now we assume that EpP 1q Ę EpC2q. Thus P 1 is the

only 4-path between v1 and v4 in Hi2
. If EpP 1q Ď EpH1q then EpP 1q X tu1u2, u2u3u ‰ ∅

(since EpP 1q Ę EpC2q, the path P 1 cannot be u1x5x4u3), and we colour u4u5 and the two

non-adjacent edges in EpP 1q with c1. Assign a new colour ci`1 to two non-adjacent edges

in EpHi`1q r EpHiq, for 1 ď i ď t ´ 1, i ‰ i1, i2. Now we assume that EpP 1q Ę EpH1q

(possibly P 1 “ P ). Therefore, P 1 has an edge vjvj`1 with 1 ď j ď 3 which does not

belong to EpH1q. Colour u2u3, x4x5 and an edge in tu5u1, u5u4u r tvjvj`1u with c1, and

give a new colour ci2`1 to vjvj`1 and to some edge in tv5v1, v5v4u not incident with vj nor

with vj`1.

(c) any 5-cycle in Hi1
contains at most one edge of P .

In Hi2
there are neither 4-cycles nor 6-cycles, and therefore P 1 is the only 4-path

between v1 and v4. We may assume w.l.o.g. that H1 contains u2u3. If P 1 “ P , then we

assign a colour c1 to the edges u2u3, u5u1 and v5u4, and assign a new colour ci`1 to two

non-adjacent edges in EpHi`1q r EpHiq, for 1 ď i ď t ´ 1, i ‰ i1, i2. Now we assume

that P 1 ‰ P . Since P 1 is the only 4-path in Hi2
between v1 and v4, we know that P 1 and

P cannot have both endpoints in common. Therefore, w.l.o.g., we may assume that v1 R

tu1, u2, u4u. We assign a new colour c1 to the edges u2u3 and u5u1. If v2v3 P tu2u3, u5u1u

then colour v5v1 with c1, otherwise, colour v2v3 and v5v1 with a new colour c2. Then,

we assign a new colour ci`2 to two non-adjacent edges in EpHi`1q r pEpHiq Y tv2v3uq,

for 1 ď i ď t ´ 1, i ‰ i1, i2.

Case 3. There is exactly one 1 ď i1 ď t ´ 1 such that Hi1`1 has Configuration pAℓ´1q.

By the density argument, Hi`1 has Configuration pAkq with 2 ď k ď 4 for all i ‰ i1.

Let C “ u1u2 ¨ ¨ ¨ uℓu1 be a cycle where C is in Hi1`1 but not in Hi1
and let P “ u1 ¨ ¨ ¨ uℓ´1

be an pℓ´1q-path in Hi1
. The number of ℓ-cycles in Hi1`1 which are not in Hi1

is exactly

the number of pℓ ´ 1q-paths in Hi1
with endpoints u1 and uℓ´1. The remainder of the

proof of Case 3 is similar to the proof of Case 1, but we include it here for completeness.

First, suppose that P is the only pℓ ´ 1q-path between u1 and uℓ´1 in Hi1
Let C 1 be

an ℓ-cycle in Hi1
that contains the edge u2u3. W.l.o.g. H1 “ C 1. Then, give colour c1

to two non-adjacent edges of C 1 that are not u2u3. For every Hi`1 with 1 ď i ď i1 ´ 1

we assign a new colour ci`1 to two non-adjacent edges in EpHi`1qrEpHiq different from

u2u3. Therefore, in step Hi1`1, we give a new colour ci1`1 to u1uℓ and u2u3. Note that in

this partial colouring of Hi1`1 every copy of Cℓ has two non-adjacent edges of the same

colour.

Suppose that Hi1
contains more than one pℓ ´ 1q-path between u1 and uℓ´1. Let

P 1 “ u1x2 ¨ ¨ ¨ xℓ´2uℓ´1 with P 1 ‰ P be one of these paths. Since there is no configuration
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pAkq with k ě 5, one can see that P Y P 1 contains an even cycle of length 2ℓ ´ 4, 2ℓ ´ 6,

or ℓ.

If P 1 Y P forms a p2ℓ ´ 4q-cycle C 1 in Hi1
(P 1 and P are internally disjoint), then we

may assume w.l.o.g. that i1 “ 2, that H2 has configuration pA3q, and P YP 1 Ď H2. Then,

we assign alternately colours c1 and c2 to the edges of C 1. Note that if ℓ is even then H2

may contain another pℓ ´ 1q-path P 2 between u1 and uℓ´1. But then it is not hard to

see that P 2 contains two edges of C 1 with the same colour. So assume that there is no

p2ℓ ´ 4q-cycle containing P .

Suppose now that P Y P 1 contains a p2ℓ ´ 6q-cycle C 1. Since there is no p2ℓ ´ 4q-

cycle containing P , we may assume w.l.o.g. that x2 “ u2, H2 has configuration pA4q,

and pP YP 1q´u1 Ď H2. We colour the edges of C 1 alternately with two colours c1 and c2,

and colour the two non-adjacent edges of C 1 X H1 with a new colour c3. If ℓ is even, then

there may be another path P 2 between u2 and uℓ´1 in H2. Such path contains the edges

of C 1 X H1, and therefore have two edges with the same colour.

Now consider that P Y P 1 contains an ℓ-cycle C 1 (of course, we have that ℓ is even).

We assume that there is no pℓ ´ 1q-path P 2 in Hi1
between u1 and uℓ´1 such that P 2 Y P

or P 2 Y P 1 contains a cycle with length 2ℓ ´ 6 or 2ℓ ´ 4. W.l.o.g. H1 “ C 1. Thus, we

just colour the edges of C 1 alternately with two colours c1 and c2, and we assign a new

colour ci`2 to two non-adjacent edges in EpHi`1q r EpHiq for 1 ď i ď t ´ 1, i ‰ i1.

Case 4. There is 1 ď i1 ď t´1 such that Hi1`1 has configuration pBjq for some 3 ď j ď ℓ.

By the density argument, Hi`1 has configuration pA2q for all i ‰ i1. Let C “

u1u2 ¨ ¨ ¨ uℓu1 be an ℓ-cycle added to Hi1
to form Hi1`1, where P “ u1u2 ¨ ¨ ¨ uj is a j-

path for some 3 ď j ď ℓ, and ptu3, . . . , uℓu r tujuq Ď V pHi`1q r V pHiq. If there is a

path P 1 in Hi1
between u1 and uj such that V pP 1q Y tuj`1, . . . , uℓu induces an ℓ-cycle

in Hi1`1 or there is a path P 2 in Hi1
between u2 and uj such that V pP 2q Y tu3, . . . , uj´1u

induces an ℓ-cycle in Hi1`1, then Hi1`1 can be constructed with a construction sequence

in which the last two steps has configuration pAℓ´j`3q and pAjq, respectively, and there-

fore we have a construction sequence that we already know how to colour (see Cases 1, 2,

and 3). So we may suppose that Hi1
contains none of these paths, and thus we assign a

new colour ci1`1 to u2u3 and uℓu1. �

§3. Cycle on four vertices

In this section we prove that prb

C4
“ n´3{4. By a classical result of Bollobás (see [5]),

we know that if p " n´3{4, then a.a.s. Gpn, pq contains a copy of K2,4. It is not hard to

see that in any proper colouring of the edges of K2,4 there is a rainbow copy of C4, which

implies that prb

C4
ď n´3{4 “ n´mpK2,4q.

Let G “ Gpn, pq where p ! n´3{4. To prove that a.a.s. prb

C4
ě n´3{4, we define a

sequence F “ C1

4
, . . . , Cℓ

4
of copies of C4 in G as a C4-chain if for any 2 ď i ď ℓ we have

EpCi
4
q X

`
Ťi´1

j“1
EpCi

4
q
˘

‰ ∅.
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We want to show that a.a.s. there exists a proper colouring of G that contains no

rainbow copy of C4. For that, consider maximal C4-chains with respect to the number of

C4’s. First, we colour the edges of the maximal C4-chains avoiding in a way that all the

C4’s in such chains are non-rainbow. Then, it is enough to give new colours for each of

the remaining edges (those that do not belong to the C4-chains).

To colour the edges in the C4-chains, from Markov’s inequality and the union bound,

we know that a.a.s. G does not contain any graph H with mpHq ě 4{3 and |V pHq| ď 12.

Let F “ C1

4
, . . . , Cℓ

4
be an arbitrary C4-chain in G with mpF q ě 4{3. Let 2 ď i ď ℓ

be the smallest index such that F 1 “ C1

4
, . . . , Ci

4
has density mpF 1q ě 4{3. Then, since

F 2 “ C1

4
, . . . , Ci´1

4 has density mpF 2q ă 4{3, it is not hard to explore the structure of G

to conclude that |V pF 2q| ď 10, which implies |V pF 1q| ď 12, as |V pF 1q r V pF 2q| ď 2, a

contradiction. Therefore, a.a.s. every C4-chain F in G satisfies mpF q ă 4{3.

Let F “ C1

4
, . . . , Cℓ

4
be any C4-chain in G (with mpF q ă 4{3). If we have |V pCi

4
q r

V pCi´1

4 q| “ 2 for every 2 ď i ď ℓ, then it is easy to give a new colour to two non-adjacent

edges of EpCi
4
q ´ EpCi´1

4 q, avoiding a rainbow copy of C4. Note that F can have at most

one Ci
4

such that |V pCi
4
q r V pCi´1

4 q| “ 1, as otherwise mpF q ě 4{3. But in this case,

since mpF q ă 4{3, we have ℓ ď 4, which makes easy to colour F with no rainbow copies

of C4.

§4. Concluding remarks

The problem of determining the threshold prb

H for the anti-Ramsey property Gpn, pq
rb

ÝÑH

for graphs H is far from being completely solved. We believe that an adaptation of the

framework developed in [10] and the ideas described in this paper could be useful to

prove that n´1{m2pHq is in fact the threshold for other classes of graphs, for example, not

so small bipartite graphs H (note that this is not the case for C4). One of the main

direction for future research is to solve the following problem.

Problem 8. Determine all graphs H such that prb

H “ n´1{m2pHq.

We remark that the only graphs H for which the threshold is known and it is not

n´1{m2pHq are cycles and complete graphs on four vertices. Thus, to determine the thresh-

old for a large family of graphs for which it is not given by the maximum 2-density is

also an interesting problem.
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