ANTI-RAMSEY THRESHOLD OF CYCLES

gabriel ferreira barros, Bruno pasqualotto cavalar, GUILHERME OLIVEIRA MOTA, AND OLAF PARCZYK

Abstract

For graphs G and H, let $G \xrightarrow{\text { rb }} H$ denote the property that for every proper edge colouring of G there is a rainbow copy of H in G. Extending a result of Nenadov, Person, Škorić and Steger (2017), we determine the threshold for $G(n, p) \xrightarrow{\mathrm{rb}} C_{\ell}$ for cycles C_{ℓ} of any given length $\ell \geqslant 4$.

§1. Introduction

In this paper we investigate an anti-Ramsey property of random graphs. Given graphs G and H, we denote by $G \xrightarrow{\mathrm{rb}} H$ the following anti-Ramsey property: for every proper edge colouring of G there is a rainbow copy of H in G, i.e. a subgraph of G isomorphic to H in which all edges have distinct colours.

In 1992, Rödl and Tuza [12] proved the following result, which answered affirmatively a question raised by Spencer (see [4, p. 29]) asking whether there are graphs of arbitrarily large girth containing a rainbow cycle in every proper edge colouring.

Theorem 1 ([12]). For every positive integer t and every positive δ with $\delta<1 /(2 t+1)$ there exists n_{0} such that for every $n \geqslant n_{0}$ there exists an n-vertex graph G with girth at least $t+2$ having the property $G \xrightarrow{\mathrm{rb}} C_{\ell}$, for $2 t+1 \leqslant \ell \leqslant n^{\delta}$, where C_{ℓ} is an ℓ-vertex cycle.

In their proof, Rödl and Tuza showed that $G(n, p) \xrightarrow{\mathrm{rb}} C_{\ell}$ holds a.a.s. ${ }^{1}$ for a small p. Note that since $G \xrightarrow{\mathrm{rb}} H$ is an increasing property, there exists a threshold ${ }^{2} p_{H}^{\mathrm{rb}}=p_{H}^{\mathrm{rb}}(n)$ for any fixed graph H (see [2]). In [6], Kohayakawa, Konstadinidis and Mota obtained an upper bound for the threshold p_{H}^{rb} for any fixed graph H in terms of the maximum 2-density $m_{2}(H)=\max \{(e(J)-1) /(v(J)-2): J \subseteq H, v(J) \geqslant 3\}$.

Date: 2020/06/04, 12:41am.
G. F. Barros was partially supported by CAPES. B. P. Cavalar was partially supported by FAPESP (Proc. 2018/05557-7). G. O. Mota was partially supported by CNPq (304733/2017-2, 428385/2018-4) and FAPESP (2018/04876-1, 2019/13364-7). O. Parczyk was partially supported by Technische Universität Ilmenau, the Carl Zeiss Foundation, and the DFG (Grant PA 3513/1-1). The collaboration of the authors was supported by CAPES/DAAD PROBRAL (Proc. 430/15). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.
${ }^{1}$ A property in $G(n, p)$ holds asymptotically almost surely (a.a.s.) if the probability tends to one as n tends to infinity.
${ }^{2}$ The threshold for a property is a function $\hat{p}=\hat{p}(n)$ such that $G(n, p)$ a.a.s. has this property if $p \gg \hat{p}$ and a.a.s. does not have it if $p \ll \hat{p}$.

Theorem 2 ([6]). Let H be a fixed graph. Then there exists a constant $C>0$ such that a.a.s. $G(n, p) \xrightarrow{\mathrm{rb}} H$ whenever $p=p(n) \geqslant C n^{-1 / m_{2}(H)}$. In particular, $p_{H}^{r b} \leqslant n^{-1 / m_{2}(H)}$.

A classical result in Ramsey Theory obtained by Rödl and Ruciński [11] implies that $n^{-1 / m_{2}(H)}$ is the threshold for the following Ramsey property, as long as H contains a cycle: every colouring of $E(G(n, p))$ with r colours contains a monochromatic copy of H. In view of this result, it is plausible to conjecture that $n^{-1 / m_{2}(H)}$ is also the threshold for the antiRamsey property, for any fixed graph H. However, as proved in [7], there are infinitely many graphs H for which the threshold p_{H}^{rb} is asymptotically smaller than $n^{-1 / m_{2}(H)}$. Recently, this result was extended to a larger family of graphs (see [1]). On the other hand, Nenadov, Person, Škorić and Steger [10] proved that at least for sufficiently large cycles and complete graphs H the lower bound for p_{H}^{rb} matches the upper bound $n^{-1 / m_{2}(H)}$ of Theorem 2.

Theorem 3 ([10]). If H is a cycle on at least 7 vertices or a complete graph on at least 19 vertices, then $p_{H}^{r b}=n^{-1 / m_{2}(H)}$.

In [8], Kohayakawa, Mota, Parczyk and Schnitzer extended Theorem 3, by showing that for all complete graphs K_{ℓ} with $\ell \geqslant 5$ the threshold $p_{K_{\ell}}^{\mathrm{rb}}$ is in fact $n^{-1 / m_{2}\left(K_{\ell}\right)}$, and for K_{4} we have $p_{K_{4}}^{\mathrm{rb}}=n^{-7 / 15} \ll n^{-1 / m_{2}\left(K_{4}\right)}$. Our result determines the threshold $p_{C_{\ell}}^{\mathrm{rb}}$ for every cycle C_{ℓ} on $\ell \geqslant 4$ vertices.

Theorem 4. Let $\ell \geqslant 5$ be an integer. Then $p_{C_{\ell}}^{r b}=n^{-1 / m_{2}(H)}$. Furthermore, $p_{C_{4}}^{r b}=n^{-3 / 4}$.
In Section 2 we prove Theorem 4 for cycles with at least 5 vertices. Similarly to what happens with complete graphs, the situation for C_{4} is different: For $p=n^{-3 / 4} \ll n^{-1 / m_{2}\left(C_{4}\right)}$ the random graph $G(n, p)$ a.a.s. contains a small graph F such that $F \xrightarrow{\mathrm{rb}} C_{4}$. In Section 3 we prove that $p_{C_{4}}^{\mathrm{rb}}=n^{-3 / 4}$ gives the treshold for $C_{4}{ }^{3}$ and we finish with some concluding remarks in Section 4. We use standard notation and terminology (see e.g. [3] and [5]). In particular, given a subgraph H of a graph G, we write $G-H$ for the graph obtained from G by removing all vertices that belong to H and all edges incident with these vertices.

§2. Cycles on at least five vertices

In [10], Nenadov, Person, Škorić, and Steger provide a general framework that reduces some Ramsey problems into deterministic problems for graphs with bounded maximum density, where the maximum density of a graph G is denoted by

$$
m(G)=\max \left\{\frac{e(J)}{v(J)}: J \subseteq G, v(J) \geqslant 1\right\}
$$

The proof of Theorem 3 for cycles relies on the following lemma (see [10, Lemma 24]).

[^0]Lemma 5 ([10]). Let $\ell \geqslant 7$ be an integer and G be a graph such that $m(G)<m_{2}\left(C_{\ell}\right)$. Then $G \xrightarrow{\text { rb }} C_{\ell}$.

In fact they prove a slightly stronger statement for which they need a non-strict inequality relating the densities [10, Corollary 13]. The condition $\ell \geqslant 7$ in Theorem 3 is simply a consequence of the restriction on the cycle length imposed in Lemma 5, as observed by the authors [10]. We extend Lemma 5, proving the following result, where we note that $m_{2}\left(C_{\ell}\right)=(\ell-1) /(\ell-2)$.

Lemma 6. Let $\ell \geqslant 5$ be an integer and G be a graph such that $m(G)<(\ell-1) /(\ell-2)$. Then, $G \xrightarrow{\mathrm{rb}} C_{\ell}$

Theorem 4 thus follows immediately by replacing Lemma 5 with our Lemma 6 in the proof of Theorem 3 in [10]. We remark that the proof of Lemma 6 considers all the cycle lengths in the range $\ell \geqslant 5$, i.e. it is not a proof only for the cases $\ell=5$ and $\ell=6$.

Throughout this section let $\ell \geqslant 5$ be an integer and G be a graph with $m(G)<$ $(\ell-1) /(\ell-2)$. We use the term k-path to refer to a path with k vertices. For the proof of Lemma 6, we will define a partial proper edge colouring of G such that every ℓ-cycle has two non-adjacent edges with the same colour. Clearly, having defined such a partial edge colouring, we can extend it to a proper edge colouring (for instance, the uncoloured edges may be assigned distinct colours).
2.1. Cycle components. Let $\mathcal{C}_{\ell}(G)$ be the set of all ℓ-cycles of G. We start by defining key concepts that we use throughout our proof. The edge intersection graph of $\mathcal{C}_{\ell}(G)$ is the graph whose vertex set is $\mathcal{C}_{\ell}(G)$ and whose edges correspond to pairs $\left\{C, C^{\prime}\right\}$ such that $C \neq C^{\prime}$ and $E(C) \cap E\left(C^{\prime}\right) \neq \varnothing$. A subgraph $H \subseteq G$ is a C_{ℓ}-component of G if it is the union of all ℓ-cycles corresponding to the vertices of some component of the edge intersection graph of $\mathcal{C}_{\ell}(G)$.
 from H_{1} as follows. Suppose we have defined $H_{1} \subseteq \cdots \subseteq H_{i}$ for $i \geqslant 1$. If there is an ℓ cycle C in G such that $C \nsubseteq H_{i}$ and $E(C) \cap E\left(H_{i}\right) \neq \varnothing$, then we put $H_{i+1}=H_{i} \cup C$; otherwise we terminate the construction and set $H=H_{i}$. Let t be such that $H=H_{t}$. We call $\left(H_{1}, \ldots, H_{t}\right)$ a construction sequence of H. For brevity, sometimes we will identify a $C_{\ell^{\prime}}$-component with a construction sequence of it; for example, we will write "a $C_{\ell^{-}}$ component $\left(H_{1}, \ldots, H_{t}\right)$ ".

Note that there can be multiple new ℓ-cycles appearing in H_{i+1} that were not present in H_{i} before; this will be the main problem to deal with when constructing the partial colouring. Also note that the process just described allows us to reconstruct a C_{ℓ}-component starting from any ℓ-cycle of it. Also note that two ℓ-cycles belonging to distinct $C_{\ell^{-}}$ components may share vertices (obviously they do not share edges).
We start the colouring procedure in some C_{ℓ}-component H of G. Once we have coloured the edges of H avoiding a rainbow C_{ℓ}, we proceed to assign colours different from those

Figure 1. Possible configurations of a C_{ℓ} added to H_{i} to form H_{i+1}.
used in H to edges of a $C_{\ell^{-}}$-component of $G-E(H)$, using the same procedure. We continue colouring edges in this manner (taking an uncoloured C_{ℓ}-component, colouring it and removing its edges) until we have considered all the ℓ-cycles of G. Thus, our aim is to describe the colouring procedure of an arbitrary C_{ℓ}-component H of G.

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a C_{ℓ}-component of G. Since producing a colouring which avoids rainbow C_{ℓ} is a trivial task if the C_{ℓ}-component has only one cycle, we may assume $t \geqslant 2$. The following proposition is crucial in our proof and, given a C_{ℓ}-component $\left(H_{1}, \ldots, H_{t}\right)$, describes for any $1 \leqslant i \leqslant t-1$ the possible structure of an ℓ-cycle C which is added to H_{i} to form H_{i+1}, i.e. $C \subseteq H_{i+1}$, but $C \nsubseteq H_{i}$ and $E(C) \cap E\left(H_{i}\right) \neq \varnothing$. (see Figure 1).

Proposition 7. Let $\ell \geqslant 5$ be an integer, G be a graph with $m(G)<(\ell-1) /(\ell-2)$ and $\left(H_{1}, \ldots, H_{t}\right)$ be a C_{ℓ}-component of G. Then, the following holds for every $1 \leqslant i \leqslant t-1$.

If C is an ℓ-cycle added to H_{i} to form H_{i+1}, then there exists a labelling $C=u_{1} u_{2} \cdots u_{\ell} u_{1}$ such that exactly one of the following occurs, where $2 \leqslant k \leqslant \ell$ and $3 \leqslant j \leqslant \ell-1$:
$\left(A_{k}\right) u_{1} u_{2} \cdots u_{k}$ is a k-path in H_{i} and $u_{k+1}, \ldots, u_{\ell} \notin V\left(H_{i}\right)$;
$\left(B_{j}\right) u_{1} u_{2} \in E\left(H_{i}\right), u_{2} u_{3} \notin E\left(H_{i}\right),\left\{u_{3}, \ldots, u_{\ell}\right\} \backslash\left\{u_{j}\right\} \subseteq V\left(H_{i+1}\right) \backslash V\left(H_{i}\right), u_{j} \in$ $V\left(H_{i}\right)$.

We refer to each of $\left(A_{k}\right)$ and $\left(B_{j}\right)$ as a configuration of H_{i+1}. Before proving Proposition 7 , let us discuss some ideas used for this purpose. To show that some of the configurations are not possible or do not happen often during the construction of $\left(H_{1}, \ldots, H_{t}\right)$, we heavily use the fact that $m(G)<(\ell-1) /(\ell-2)$.

For any $1 \leqslant j \leqslant i$, define parameters e_{j}, v_{j} and c_{j} as follows: e_{j} is the number of edges in $E\left(H_{j+1}\right) \backslash E\left(H_{j}\right)$, while v_{j} stands for the number of vertices in $V\left(H_{j+1}\right) \backslash V\left(H_{j}\right)$. Lastly, let c_{j} be the number of components of $H_{j+1}-H_{j}$. Note that if $v_{j}=0$, then $e_{j} \geqslant 1$, and if $v_{j} \geqslant 1$, then the components of $H_{j+1}-H_{j}$ are paths and we get $e_{j} \geqslant v_{j}+c_{j} \geqslant v_{j}+1$. Therefore, we conclude that, for $1 \leqslant j \leqslant i$ we have $e_{j} \geqslant v_{j}+1$ Also, since any ℓ-cycle added to H_{j} to form H_{j+1} contains at least one edge of H_{j}, for $1 \leqslant j \leqslant i$, we have $v_{j} \leqslant \ell-2$. Note that we have

$$
\begin{equation*}
\frac{\ell-1}{\ell-2}>m(G) \geqslant \frac{e\left(H_{i+1}\right)}{v\left(H_{i+1}\right)}=\frac{\ell+\sum_{j=1}^{i} e_{j}}{\ell+\sum_{j=1}^{i} v_{j}} \tag{1}
\end{equation*}
$$

Using the bounds $e_{j} \geqslant v_{j}+1$ and $v_{j} \leqslant \ell-2$, we obtain

$$
\begin{equation*}
\frac{\ell-1}{\ell-2}>\frac{\ell+e_{i}+\sum_{j=1}^{i-1}\left(v_{j}+1\right)}{\ell+v_{i}+\sum_{j=1}^{i-1} v_{j}} \geqslant \frac{\ell+e_{i}+(i-1)(\ell-1)}{\ell+v_{i}+(i-1)(\ell-2)} \tag{2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
e_{i}<\frac{(\ell-1) v_{i}+\ell}{\ell-2} . \tag{3}
\end{equation*}
$$

We are ready to prove Proposition 7.

Proof of Proposition 7. We will prove the result for all possible values of v_{i} (i.e., $0 \leqslant v_{i} \leqslant$ $\ell-2)$. If $v_{i}=\ell-2$, then we have configuration $\left(A_{2}\right)$.

Now let $v_{i}=\ell-3$, which means that there are exactly three vertices of C in H_{i}. If these vertices form a path, then we have configuration $\left(A_{3}\right)$. On the other hand, let u_{1}, u_{2} and w be the vertices of C in H_{i} and let $u_{1} u_{2}$ be an edge of H_{i}. If there is an edge of C between w and $\left\{u_{1}, u_{2}\right\}$, then let w.l.o.g. $u_{2} w$ be this edge. Then, we have configuration $\left(B_{3}\right)$, where $u_{3}=w$. It there is no edge of C between w and $\left\{u_{1}, u_{2}\right\}$, then w.l.o.g. C contains a path $P_{1}=u_{2}, u_{3}, \ldots, u_{j-1}, w$ (with at least two edges) between u_{2} and w with all edges outside H_{i}, and a path $P_{2}=w, u_{j+1}, \ldots, u_{\ell}, u_{1}$ between w and u_{1} with all edges outside H_{i}, such that w is the only common vertex of P_{1} and P_{2}. Then, we have configuration $\left(B_{j}\right)$, where $u_{j}=w$ and $4 \leqslant j \leqslant \ell-1$ (as u_{3} and u_{ℓ} are vertices outside H_{i}).

Finally, let $0 \leqslant v_{i} \leqslant \ell-4$. From (3) we have $e_{i} \leqslant v_{i}+1$. Then, $H_{i+1}-H_{i}$ has only one component, which implies that the vertices of C in H_{i} form a path of length $\ell-v_{i}$, where we have $4 \leqslant \ell-v_{i} \leqslant \ell$. Therefore, we have configuration $\left(A_{k}\right)$ with $4 \leqslant k \leqslant \ell$.
2.2. Proof of Lemma 6. Given a C_{ℓ}-component H described by a construction sequence $\left(H_{1}, \ldots, H_{t}\right)$, we will colour the edges of H_{1}, H_{2} and so on iteratively, avoiding rainbow ℓ-cycles. For configurations $\left(A_{k}\right)$ with $2 \leqslant k \leqslant \ell-2$ we are always able to assign a new colour i to two non-adjacent new edges. All other configurations may appear at most twice in $\left(H_{1}, \ldots, H_{t}\right)$, and in these cases we will colour all previous configurations carefully so that we are able to proceed.

Arguments involving calculations similar to those we did on (1) and (2) will be referred to as density arguments. For example, when H_{i} has configuration $\left(A_{\ell}\right)$, we have $v_{i}=0$ and $e_{i}=1$, which following the calculations in (1) and (2) implies that there cannot be another occurrence of $\left(A_{\ell}\right)$, as this would imply

$$
\frac{\ell-1}{\ell-2}>m(G) \geqslant \frac{e\left(H_{i+1}\right)}{v\left(H_{i+1}\right)}=\frac{\ell+\sum_{j=1}^{i} e_{j}}{\ell+\sum_{j=1}^{i} v_{j}} \geqslant \frac{\ell+2+(i-3)(\ell-1)}{\ell+(i-3)(\ell-2)}
$$

which gives the following contradiction, as $\ell \geqslant 5$:

$$
\ell(\ell-1)>(\ell-2)(\ell+2)
$$

Figure 2. Examples of cases to consider when colouring $E\left(H_{i+1}\right) \backslash E\left(H_{i}\right)$.
Similarly, one can show that configuration $\left(A_{\ell-1}\right)$, where $v_{i}=1$ and $e_{i}=2$, appears at most twice and any $\left(B_{j}\right)$, where $v_{i}=\ell-3$ and $e_{i}=\ell-1$, at most once. Furthermore, when one of these configurations appears, the occurrence of $\left(A_{k}\right)$ with $3 \leqslant k \leqslant \ell-2$ is restricted, while only $\left(A_{2}\right)$ can appear arbitrarily often. We will refer to these estimates as the density argument.

Proof of Lemma 6. Let $\ell \geqslant 5$ be an integer and G be a graph such that $m(G)<(\ell-$ 1) $/(\ell-2)$. Choose an arbitrary ℓ-cycle H_{1} in G and assign a colour c_{1} to a pair of nonadjacent edges of H_{1}. Let $H=H_{t}$, with $t \geqslant 2$, be the C_{ℓ}-component of G obtained from a construction sequence $\left(H_{1}, \ldots, H_{t}\right)$.

Now we consider a few cases according to which configurations given by Proposition 7 occur in $\left(H_{1}, \ldots, H_{t}\right)$. For each $1 \leqslant i \leqslant t-1$, note that there can be many cycles in H_{i+1} that are not in H_{i}. We will assign colours to the edges of $E\left(H_{i+1}\right) \backslash E\left(H_{i}\right)$ such that in H_{i+1} any ℓ-cycle has two edges coloured with the same colour.

Since the connected components of $H_{i+1}-H_{i}$ are paths, in case each of these paths contains two vertices, we can give a new colour c to two non-adjacent edges of $E\left(H_{i+1}\right)$ \ $E\left(H_{i}\right)$. Then, any ℓ-cycle of H_{i+1} that contains these paths becomes non-rainbow (see Figure 2-(a)). If H_{i+1} has configuration $\left(A_{k}\right)$ with $2 \leqslant k \leqslant \ell-2$, this is how we proceed, unless stated otherwise. But it may be the case that H_{i+1} contains an ℓ-cycle that is not in H_{i} and it does not contains such paths (it can be formed with edges between vertices of H_{i} and components of $H_{i+1}-H_{i}$ of only one vertex (see Figure 2-(b)) and we have to be more careful colouring these edges.

Recall that by the density argument preceding this proof, configuration $\left(A_{\ell}\right)$ appears at most once, $\left(A_{\ell-1}\right)$ at most twice, and any $\left(B_{j}\right)$ at most once. As observed above, if for every $1 \leqslant i \leqslant t-1$, the graph H_{i+1} has configuration $\left(A_{k}\right)$ with $2 \leqslant k \leqslant \ell-2$, we can easily avoid a rainbow C_{ℓ} by assigning, for each $1 \leqslant i \leqslant t-1$, a new colour c_{i+1} to two non-adjacent edges of $E\left(H_{i+1}\right) \backslash E\left(H_{i}\right)$. Thus, from now on we assume that there exists at least one $H_{i+1}(1 \leqslant i \leqslant t-1)$ with configuration $\left(A_{\ell-1}\right)$, $\left(A_{\ell}\right)$, or $\left(B_{j}\right)$ for some $3 \leqslant j \leqslant \ell$. We split our proof into a few cases, depending on the occurrence of these configurations.

Case 1. There is an index $1 \leqslant i_{1} \leqslant t-1$ such that $H_{i_{1}+1}$ has configuration $\left(A_{\ell}\right)$.

In this case, for all $i \neq i_{1}, H_{i+1}$ has configuration $\left(A_{2}\right)$ or $\left(A_{3}\right)$, by the density argument. Moreover, at most one H_{i+1} (for some $1 \leqslant i \leqslant t-1$) has configuration $\left(A_{3}\right)$.

Let $C=u_{1} u_{2} \cdots u_{\ell} u_{1}$ be an ℓ-cycle added to $H_{i_{1}}$ to form $H_{i_{1}+1}$, where $P=u_{1} u_{2} \cdots u_{\ell}$ is an ℓ-path in $H_{i_{1}}$ and $u_{\ell} u_{1} \notin E\left(H_{i_{1}}\right)$. The number of ℓ-cycles in $H_{i_{1}+1}$ which are not in $H_{i_{1}}$ is exactly the number of ℓ-paths in $H_{i_{1}}$ with endpoints u_{1} and u_{ℓ}.

First suppose that P is the only ℓ-path between u_{1} and u_{ℓ} in $H_{i_{1}}$. Let C^{\prime} be an ℓ-cycle in $H_{i_{1}}$ that contains the edge $u_{2} u_{3}$. W.l.o.g. we may assume that $H_{1}=C^{\prime}$. Then, give colour c_{1} to two non-adjacent edges of C^{\prime} that are not $u_{2} u_{3}$. For every H_{i+1} with $1 \leqslant i \leqslant i_{1}-1$ we assign a new colour c_{i+1} to two non-adjacent edges in $E\left(H_{i+1}\right) \backslash E\left(H_{i}\right)$ (different from $\left.u_{2} u_{3}\right)$. Therefore, in step $H_{i_{1}+1}$, we can give a new colour $c_{i_{1}+1}$ to $u_{1} u_{\ell}$ and $u_{2} u_{3}$. Note that this partial colouring of $H_{i_{1}+1}$ gives two edges of the same colour in each C_{ℓ}.

Suppose that $H_{i_{1}}$ contains more than one ℓ-path between u_{1} and u_{ℓ}. Let $P^{\prime}=$ $u_{1} x_{2} \cdots x_{\ell-1} u_{\ell}$ with $P^{\prime} \neq P$ be one of these paths. Since there is no other configuration $\left(A_{k}\right)$ with $k \geqslant 4$, one can see that $P \cup P^{\prime}$ contains cycle of length $2 \ell-2,2 \ell-4$, or ℓ. One can check that if $P \cup P^{\prime}$ contains an ℓ-cycle C^{\prime}, then ℓ must be even, and $P \cap C^{\prime}$ has length $\ell / 2$.

If $P \cup P^{\prime}$ forms a $(2 \ell-2)$-cycle C^{\prime}, then C^{\prime} appears in $H_{i_{1}}$ with configuration $\left(A_{2}\right)$. W.l.o.g. we assume that $i_{1}=2$. Then, we colour alternately the edges of C^{\prime} with a colour c_{1}, which implies that each of $E(P)$ and $E\left(P^{\prime}\right)$ contains at least two non-adjacent edges with the same colour. Note that H_{2} may contain at most one other ℓ-path $P^{\prime \prime}$ between u_{1} and u_{ℓ}, in which case ℓ must be even (and so $\ell \geqslant 6$). But such $P^{\prime \prime}$ contains at least two consecutive edges of P and two consecutive edges of P^{\prime} and then it must contain two edges with colour c_{1}. Therefore, every ℓ-cycle in $H_{i_{1}+1}$ is non-rainbow.

Suppose now that $P \cup P^{\prime}$ contains a $(2 \ell-4)$-cycle C^{\prime}. Then, C^{\prime} appears in $H_{i_{1}}$ with configuration $\left(A_{3}\right)$ (with two ℓ-cycles having exactly a 3 -path in common). We may assume w.l.o.g. that $x_{2}=u_{2}, H_{2}$ has configuration $\left(A_{3}\right)$ and $\left(P \cup P^{\prime}\right)-u_{1} \subseteq H_{2}$ (note that C^{\prime} lies in $\left.\left(P \cup P^{\prime}\right)-u_{1}\right)$. We colour the edges of C^{\prime} alternately with two colours c_{1} and c_{2}. If ℓ is even, then there may be another $(\ell-1)$-path $P^{\prime \prime}$ between u_{2} and u_{ℓ} in H_{2} (other than $P-u_{1}$ and $P^{\prime}-u_{1}$). One can easily check that $P^{\prime \prime}$ must contain two edges with the same colour (c_{1} or c_{2}), by observing the colours given to the edges of C^{\prime} which are adjacent to the endpoints of the 3 -path $x y z$, where $x, z \in C^{\prime}$ and y is the unique vertex in $\left(\left(P \cup P^{\prime}\right)-u_{1}\right)-C^{\prime}$.

Now consider that $P \cup P^{\prime}$ contains an ℓ-cycle C^{\prime}. W.l.o.g. $H_{1}=C^{\prime}$. Thus, we just colour the edges of C^{\prime} alternately with two colours c_{1} and c_{2}. Since $\ell \geqslant 6$, this implies that both paths P and P^{\prime} have two non-adjacent edges with the same colour.

Case 2. There are $1 \leqslant i_{1}<i_{2} \leqslant t-1$ such that $H_{i_{1}+1}$ and $H_{i_{2}+1}$ have configuration $\left(A_{\ell-1}\right)$.

By the density argument, this case occurs only if $\ell=5$ and every H_{i+1} has configuration $\left(A_{2}\right)$ for $i \neq i_{1}, i_{2}$. Let $C=u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$ and $C^{\prime}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ be cycles where C is in $H_{i_{1}+1}$ but not in $H_{i_{1}}$ and C^{\prime} is in $H_{i_{2}+1}$ but not in $H_{i_{2}}$. W.l.o.g. let $P=u_{1} u_{2} u_{3} u_{4}$ and $P^{\prime}=v_{1} v_{2} v_{3} v_{4}$ in $H_{i_{2}}$ be 4-paths, and $u_{5} \notin V\left(H_{i_{1}}\right)$ and $v_{5} \notin V\left(H_{i_{2}}\right)$.

Note that P is the only 4 -path between u_{1} and u_{4} in $H_{i_{1}}$ and thus C is the only 5 -cycle added to $H_{i_{1}}$ to form $H_{i_{1}+1}$. However, it is possible that besides P^{\prime} there exists one other 4 -path $P^{\prime \prime}$ in $H_{i_{2}}$ between v_{1} and v_{4}. If this is the case, then $P^{\prime} \cup P^{\prime \prime}$ contains either a 4 -cycle or a 6 -cycle. This information will be useful in what follows.

We divide this proof into three parts depending on the structure of P in $H_{i_{1}}$: (a) the three edges of P lie in the same 5-cycle, (b) exactly two consecutive edges of P lie in the same 5 -cycle, or (c) any 5 -cycle in $H_{i_{1}}$ contains at most one edge of P.
(a) the three edges of P lie in the same 5 -cycle.
W.l.o.g. assume that all the edges of P lie in H_{1} and $i_{1}=1$. Hence H_{1} is of the form $H_{1}=u_{1} u_{2} u_{3} u_{4} x_{5} u_{1}$ for some x_{5}. Note that $C^{\prime \prime}=u_{1} x_{5} u_{4} u_{5} u_{1}$ is a 4 -cycle in H_{2}.

Suppose all the edges of P^{\prime} lie in H_{2}. Then, w.l.o.g., we may assume $i_{2}=2$. If the endpoints of P^{\prime} are u_{1} and u_{3}, then there is another 4-path $P^{\prime \prime}$ between u_{1} and u_{3} in H_{1}, say w.l.o.g. $P^{\prime}=u_{1} u_{5} u_{4} u_{3}$ and $P^{\prime \prime}=u_{1} x_{5} u_{4} u_{3}$. We assign a colour c_{1} to $u_{4} x_{5}, u_{1} u_{2}$ and $u_{3} v_{5}$, and a colour c_{2} to $u_{2} u_{3}, u_{4} u_{5}$ and $v_{5} u_{1}$. In this way we make all 5 -cycles in H_{3} non-rainbow. The case in which the ends of P^{\prime} are u_{4} and u_{2} is symmetric.

For all the remainder possibilities for the endpoints of P^{\prime}, we assign a colour c_{1} to $u_{1} u_{2}$ and $u_{4} u_{3}$. If the endpoints of P^{\prime} are two adjacent vertices in $V\left(C^{\prime \prime}\right)$, then we colour two non-adjacent edges of C^{\prime} with a new colour c_{2}. If the ends of P^{\prime} are u_{1} and u_{4}, then the colouring we gave to $u_{1} u_{2}$ and $u_{4} u_{3}$ already makes every 5 -cycle in H_{3} non-rainbow. If the endpoints of P^{\prime} are x_{5} and a vertex in $\left\{u_{2}, u_{3}\right\}$, then we assign a new colour c_{2} to $v_{5} x_{5}$ and $u_{2} u_{3}$. The case in which the ends of P^{\prime} are u_{5} and a vertex in $\left\{u_{2}, u_{3}\right\}$ is symmetric. Thus, we assume that there is no 4 -path with endpoints v_{1} and v_{4} and all edges in H_{2}.

If at most two edges of P^{\prime} are in H_{2}, then for any 4-path with endpoints v_{1} and v_{4} its edges in H_{2} must be consecutive. Hence we may assume w.l.o.g. that, for P^{\prime}, the edge $v_{3} v_{4}$ is not in $E\left(H_{2}\right)$. Because there is no triangle in $H_{i_{2}}$ there can be no 6 -cycle in $H_{i_{2}}$ As the unique 4-cycle in $H_{i_{2}}$ has its edges in H_{2}, the 4-path $P^{\prime \prime}$ between v_{1} and v_{4} $\left(P^{\prime \prime} \neq P^{\prime}\right)$, if it exists, contains the edge $v_{3} v_{4}$. Note that we can colour two non-adjacent edges of any H_{i} with configuration $\left(A_{2}\right)$ avoiding colouring the edge $v_{3} v_{4}$. Thus, we assign a colour c_{1} to $u_{1} u_{2}$ and $u_{3} u_{4}$, and a new colour c_{2} to $v_{3} v_{4}$ and $v_{5} v_{1}$.
(b) exactly two consecutive edges of P lie in the same 5-cycle.
W.l.o.g. H_{1} contains the edges $u_{1} u_{2}$ and $u_{2} u_{3}$ but does not contain $u_{3} u_{4}$. Thus H_{1} is of the form $H_{1}=u_{1} u_{2} u_{3} x_{4} x_{5} u_{1}$ for some x_{4} and x_{5}, and $C^{\prime \prime}=u_{1} x_{5} x_{4} u_{3} u_{4} u_{5} u_{1}$ is a 6 -cycle in $H_{i_{1}+1}$. Note that $C^{\prime \prime}$ is the only 6 -cycle in $H_{i_{2}}$, and $H_{i_{2}}$ contains no 4 cycle. Hence, there are at most two 4 -paths between v_{1} and v_{4}. If there are two such paths, they correspond to two internally disjoint paths in $C^{\prime \prime}$. Suppose that $E\left(P^{\prime}\right) \subseteq$
$E\left(C^{\prime \prime}\right)$. In this case, alternately colour the edges of $C^{\prime \prime}$ with colours c_{1} and c_{2} and, for $1 \leqslant i \leqslant t-1$, with $i \neq i_{1}, i_{2}$, assign a new colour c_{i+2} to two non-adjacent edges in $E\left(H_{i+1}\right) \backslash\left(E\left(H_{i}\right) \cup\left\{u_{3} u_{4}\right\}\right)$. Now we assume that $E\left(P^{\prime}\right) \nsubseteq E\left(C^{\prime \prime}\right)$. Thus P^{\prime} is the only 4-path between v_{1} and v_{4} in $H_{i_{2}}$. If $E\left(P^{\prime}\right) \subseteq E\left(H_{1}\right)$ then $E\left(P^{\prime}\right) \cap\left\{u_{1} u_{2}, u_{2} u_{3}\right\} \neq \varnothing$ (since $E\left(P^{\prime}\right) \nsubseteq E\left(C^{\prime \prime}\right)$, the path P^{\prime} cannot be $u_{1} x_{5} x_{4} u_{3}$), and we colour $u_{4} u_{5}$ and the two non-adjacent edges in $E\left(P^{\prime}\right)$ with c_{1}. Assign a new colour c_{i+1} to two non-adjacent edges in $E\left(H_{i+1}\right) \backslash E\left(H_{i}\right)$, for $1 \leqslant i \leqslant t-1, i \neq i_{1}, i_{2}$. Now we assume that $E\left(P^{\prime}\right) \nsubseteq E\left(H_{1}\right)$ (possibly $P^{\prime}=P$). Therefore, P^{\prime} has an edge $v_{j} v_{j+1}$ with $1 \leqslant j \leqslant 3$ which does not belong to $E\left(H_{1}\right)$. Colour $u_{2} u_{3}, x_{4} x_{5}$ and an edge in $\left\{u_{5} u_{1}, u_{5} u_{4}\right\} \backslash\left\{v_{j} v_{j+1}\right\}$ with c_{1}, and give a new colour $c_{i_{2}+1}$ to $v_{j} v_{j+1}$ and to some edge in $\left\{v_{5} v_{1}, v_{5} v_{4}\right\}$ not incident with v_{j} nor with v_{j+1}.
(c) any 5-cycle in $H_{i_{1}}$ contains at most one edge of P.

In $H_{i_{2}}$ there are neither 4 -cycles nor 6 -cycles, and therefore P^{\prime} is the only 4 -path between v_{1} and v_{4}. We may assume w.l.o.g. that H_{1} contains $u_{2} u_{3}$. If $P^{\prime}=P$, then we assign a colour c_{1} to the edges $u_{2} u_{3}, u_{5} u_{1}$ and $v_{5} u_{4}$, and assign a new colour c_{i+1} to two non-adjacent edges in $E\left(H_{i+1}\right) \backslash E\left(H_{i}\right)$, for $1 \leqslant i \leqslant t-1, i \neq i_{1}, i_{2}$. Now we assume that $P^{\prime} \neq P$. Since P^{\prime} is the only 4 -path in $H_{i_{2}}$ between v_{1} and v_{4}, we know that P^{\prime} and P cannot have both endpoints in common. Therefore, w.l.o.g., we may assume that $v_{1} \notin$ $\left\{u_{1}, u_{2}, u_{4}\right\}$. We assign a new colour c_{1} to the edges $u_{2} u_{3}$ and $u_{5} u_{1}$. If $v_{2} v_{3} \in\left\{u_{2} u_{3}, u_{5} u_{1}\right\}$ then colour $v_{5} v_{1}$ with c_{1}, otherwise, colour $v_{2} v_{3}$ and $v_{5} v_{1}$ with a new colour c_{2}. Then, we assign a new colour c_{i+2} to two non-adjacent edges in $E\left(H_{i+1}\right) \backslash\left(E\left(H_{i}\right) \cup\left\{v_{2} v_{3}\right\}\right)$, for $1 \leqslant i \leqslant t-1, i \neq i_{1}, i_{2}$.

Case 3. There is exactly one $1 \leqslant i_{1} \leqslant t-1$ such that $H_{i_{1}+1}$ has Configuration $\left(A_{\ell-1}\right)$.

By the density argument, H_{i+1} has Configuration $\left(A_{k}\right)$ with $2 \leqslant k \leqslant 4$ for all $i \neq i_{1}$. Let $C=u_{1} u_{2} \cdots u_{\ell} u_{1}$ be a cycle where C is in $H_{i_{1}+1}$ but not in $H_{i_{1}}$ and let $P=u_{1} \cdots u_{\ell-1}$ be an $(\ell-1)$-path in $H_{i_{1}}$. The number of ℓ-cycles in $H_{i_{1}+1}$ which are not in $H_{i_{1}}$ is exactly the number of $(\ell-1)$-paths in $H_{i_{1}}$ with endpoints u_{1} and $u_{\ell-1}$. The remainder of the proof of Case 3 is similar to the proof of Case 1, but we include it here for completeness.

First, suppose that P is the only $(\ell-1)$-path between u_{1} and $u_{\ell-1}$ in $H_{i_{1}}$ Let C^{\prime} be an ℓ-cycle in $H_{i_{1}}$ that contains the edge $u_{2} u_{3}$. W.l.o.g. $H_{1}=C^{\prime}$. Then, give colour c_{1} to two non-adjacent edges of C^{\prime} that are not $u_{2} u_{3}$. For every H_{i+1} with $1 \leqslant i \leqslant i_{1}-1$ we assign a new colour c_{i+1} to two non-adjacent edges in $E\left(H_{i+1}\right) \backslash E\left(H_{i}\right)$ different from $u_{2} u_{3}$. Therefore, in step $H_{i_{1}+1}$, we give a new colour $c_{i_{1}+1}$ to $u_{1} u_{\ell}$ and $u_{2} u_{3}$. Note that in this partial colouring of $H_{i_{1}+1}$ every copy of C_{ℓ} has two non-adjacent edges of the same colour.

Suppose that $H_{i_{1}}$ contains more than one $(\ell-1)$-path between u_{1} and $u_{\ell-1}$. Let $P^{\prime}=u_{1} x_{2} \cdots x_{\ell-2} u_{\ell-1}$ with $P^{\prime} \neq P$ be one of these paths. Since there is no configuration
$\left(A_{k}\right)$ with $k \geqslant 5$, one can see that $P \cup P^{\prime}$ contains an even cycle of length $2 \ell-4,2 \ell-6$, or ℓ.

If $P^{\prime} \cup P$ forms a $(2 \ell-4)$-cycle C^{\prime} in $H_{i_{1}}\left(P^{\prime}\right.$ and P are internally disjoint), then we may assume w.l.o.g. that $i_{1}=2$, that H_{2} has configuration $\left(A_{3}\right)$, and $P \cup P^{\prime} \subseteq H_{2}$. Then, we assign alternately colours c_{1} and c_{2} to the edges of C^{\prime}. Note that if ℓ is even then H_{2} may contain another $(\ell-1)$-path $P^{\prime \prime}$ between u_{1} and $u_{\ell-1}$. But then it is not hard to see that $P^{\prime \prime}$ contains two edges of C^{\prime} with the same colour. So assume that there is no $(2 \ell-4)$-cycle containing P.
Suppose now that $P \cup P^{\prime}$ contains a $(2 \ell-6)$-cycle C^{\prime}. Since there is no $(2 \ell-4)$ cycle containing P, we may assume w.l.o.g. that $x_{2}=u_{2}, H_{2}$ has configuration $\left(A_{4}\right)$, and $\left(P \cup P^{\prime}\right)-u_{1} \subseteq H_{2}$. We colour the edges of C^{\prime} alternately with two colours c_{1} and c_{2}, and colour the two non-adjacent edges of $C^{\prime} \cap H_{1}$ with a new colour c_{3}. If ℓ is even, then there may be another path $P^{\prime \prime}$ between u_{2} and $u_{\ell-1}$ in H_{2}. Such path contains the edges of $C^{\prime} \cap H_{1}$, and therefore have two edges with the same colour.

Now consider that $P \cup P^{\prime}$ contains an ℓ-cycle C^{\prime} (of course, we have that ℓ is even). We assume that there is no $(\ell-1)$-path $P^{\prime \prime}$ in $H_{i_{1}}$ between u_{1} and $u_{\ell-1}$ such that $P^{\prime \prime} \cup P$ or $P^{\prime \prime} \cup P^{\prime}$ contains a cycle with length $2 \ell-6$ or $2 \ell-4$. W.l.o.g. $H_{1}=C^{\prime}$. Thus, we just colour the edges of C^{\prime} alternately with two colours c_{1} and c_{2}, and we assign a new colour c_{i+2} to two non-adjacent edges in $E\left(H_{i+1}\right) \backslash E\left(H_{i}\right)$ for $1 \leqslant i \leqslant t-1, i \neq i_{1}$.

Case 4. There is $1 \leqslant i_{1} \leqslant t-1$ such that $H_{i_{1}+1}$ has configuration $\left(B_{j}\right)$ for some $3 \leqslant j \leqslant \ell$.
By the density argument, H_{i+1} has configuration $\left(A_{2}\right)$ for all $i \neq i_{1}$. Let $C=$ $u_{1} u_{2} \cdots u_{\ell} u_{1}$ be an ℓ-cycle added to $H_{i_{1}}$ to form $H_{i_{1}+1}$, where $P=u_{1} u_{2} \cdots u_{j}$ is a j path for some $3 \leqslant j \leqslant \ell$, and $\left(\left\{u_{3}, \ldots, u_{\ell}\right\} \backslash\left\{u_{j}\right\}\right) \subseteq V\left(H_{i+1}\right) \backslash V\left(H_{i}\right)$. If there is a path P^{\prime} in $H_{i_{1}}$ between u_{1} and u_{j} such that $V\left(P^{\prime}\right) \cup\left\{u_{j+1}, \ldots, u_{\ell}\right\}$ induces an ℓ-cycle in $H_{i_{1}+1}$ or there is a path $P^{\prime \prime}$ in $H_{i_{1}}$ between u_{2} and u_{j} such that $V\left(P^{\prime \prime}\right) \cup\left\{u_{3}, \ldots, u_{j-1}\right\}$ induces an ℓ-cycle in $H_{i_{1}+1}$, then $H_{i_{1}+1}$ can be constructed with a construction sequence in which the last two steps has configuration $\left(A_{\ell-j+3}\right)$ and $\left(A_{j}\right)$, respectively, and therefore we have a construction sequence that we already know how to colour (see Cases 1, 2, and 3). So we may suppose that $H_{i_{1}}$ contains none of these paths, and thus we assign a new colour $c_{i_{1}+1}$ to $u_{2} u_{3}$ and $u_{\ell} u_{1}$.

§3. Cycle on four vertices

In this section we prove that $p_{C_{4}}^{\mathrm{rb}}=n^{-3 / 4}$. By a classical result of Bollobás (see [5]), we know that if $p \gg n^{-3 / 4}$, then a.a.s. $G(n, p)$ contains a copy of $K_{2,4}$. It is not hard to see that in any proper colouring of the edges of $K_{2,4}$ there is a rainbow copy of C_{4}, which implies that $p_{C_{4}}^{\mathrm{rb}} \leqslant n^{-3 / 4}=n^{-m\left(K_{2,4}\right)}$.

Let $G=G(n, p)$ where $p \ll n^{-3 / 4}$. To prove that a.a.s. $p_{C_{4}}^{\mathrm{rb}} \geqslant n^{-3 / 4}$, we define a sequence $F=C_{4}^{1}, \ldots, C_{4}^{\ell}$ of copies of C_{4} in G as a C_{4}-chain if for any $2 \leqslant i \leqslant \ell$ we have $E\left(C_{4}^{i}\right) \cap\left(\bigcup_{j=1}^{i-1} E\left(C_{4}^{i}\right)\right) \neq \varnothing$.

We want to show that a.a.s. there exists a proper colouring of G that contains no rainbow copy of C_{4}. For that, consider maximal C_{4}-chains with respect to the number of C_{4} 's. First, we colour the edges of the maximal C_{4}-chains avoiding in a way that all the C_{4} 's in such chains are non-rainbow. Then, it is enough to give new colours for each of the remaining edges (those that do not belong to the C_{4}-chains).

To colour the edges in the C_{4}-chains, from Markov's inequality and the union bound, we know that a.a.s. G does not contain any graph H with $m(H) \geqslant 4 / 3$ and $|V(H)| \leqslant 12$. Let $F=C_{4}^{1}, \ldots, C_{4}^{\ell}$ be an arbitrary C_{4}-chain in G with $m(F) \geqslant 4 / 3$. Let $2 \leqslant i \leqslant \ell$ be the smallest index such that $F^{\prime}=C_{4}^{1}, \ldots, C_{4}^{i}$ has density $m\left(F^{\prime}\right) \geqslant 4 / 3$. Then, since $F^{\prime \prime}=C_{4}^{1}, \ldots, C_{4}^{i-1}$ has density $m\left(F^{\prime \prime}\right)<4 / 3$, it is not hard to explore the structure of G to conclude that $\left|V\left(F^{\prime \prime}\right)\right| \leqslant 10$, which implies $\left|V\left(F^{\prime}\right)\right| \leqslant 12$, as $\left|V\left(F^{\prime}\right) \backslash V\left(F^{\prime \prime}\right)\right| \leqslant 2$, a contradiction. Therefore, a.a.s. every C_{4}-chain F in G satisfies $m(F)<4 / 3$.

Let $F=C_{4}^{1}, \ldots, C_{4}^{\ell}$ be any C_{4}-chain in G (with $m(F)<4 / 3$). If we have $\mid V\left(C_{4}^{i}\right) \backslash$ $V\left(C_{4}^{i-1}\right) \mid=2$ for every $2 \leqslant i \leqslant \ell$, then it is easy to give a new colour to two non-adjacent edges of $E\left(C_{4}^{i}\right)-E\left(C_{4}^{i-1}\right)$, avoiding a rainbow copy of C_{4}. Note that F can have at most one C_{4}^{i} such that $\left|V\left(C_{4}^{i}\right) \backslash V\left(C_{4}^{i-1}\right)\right|=1$, as otherwise $m(F) \geqslant 4 / 3$. But in this case, since $m(F)<4 / 3$, we have $\ell \leqslant 4$, which makes easy to colour F with no rainbow copies of C_{4}.

§4. Concluding remarks

The problem of determining the threshold p_{H}^{rb} for the anti-Ramsey property $G(n, p) \xrightarrow{\mathrm{rb}} H$ for graphs H is far from being completely solved. We believe that an adaptation of the framework developed in [10] and the ideas described in this paper could be useful to prove that $n^{-1 / m_{2}(H)}$ is in fact the threshold for other classes of graphs, for example, not so small bipartite graphs H (note that this is not the case for C_{4}). One of the main direction for future research is to solve the following problem.

Problem 8. Determine all graphs H such that $p_{H}^{r b}=n^{-1 / m_{2}(H)}$.
We remark that the only graphs H for which the threshold is known and it is not $n^{-1 / m_{2}(H)}$ are cycles and complete graphs on four vertices. Thus, to determine the threshold for a large family of graphs for which it is not given by the maximum 2-density is also an interesting problem.

References

[1] P. Araújo, Y. Kohayakawa, T. Martins, L. Mattos, W. Mendonça, L. Moreira, and G. O. Mota, On the anti-Ramsey threshold for non-balanced graphs. in preparation. $\uparrow 2$
[2] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35-38. $\uparrow 1$
[3] R. Diestel, Graph theory, Fourth, Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010. MR2744811 (2011m:05002) $\uparrow 2$
[4] P. Erdős, Some old and new problems in various branches of combinatorics, Proc. 10th southeastern conference on combinatorics, graph theory and computing, 1979, pp. 19-37. $\uparrow 1$
[5] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience, New York, 2000. $\uparrow 2,10$
[6] Y. Kohayakawa, P. B. Konstadinidis, and G. O. Mota, On an anti-Ramsey threshold for random graphs, European Journal of Combinatorics 40 (2014), 26-41. $\uparrow 1,2$
\qquad , On an anti-Ramsey threshold for sparse graphs with one triangle, Journal of Graph Theory 87 (2017), 176-187. $\uparrow 2$
[8] Y. Kohayakawa, G. O. Mota, O. Parczyk, and J. Schnitzer, Anti-Ramsey threshold of complete graphs, Feb. 2019. submitted. $\uparrow 2$
[9] G. O. Mota, Advances in anti-Ramsey theory for random graphs, Encontro de Teoria da Computação (ETC-CSBC) 2 (2017), no. 1/2017. $\uparrow 2$
[10] R. Nenadov, Y. Person, N. Škorić, and A. Steger, An algorithmic framework for obtaining lower bounds for random Ramsey problems, J. Combin. Theory Ser. B (2017). http://dx.doi.org/10.1016/j.jctb.2016.12.007. $\uparrow 2,3,11$
[11] V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), no. 4, 917-942. $\uparrow 2$
[12] V. Rödl and Z. Tuza, Rainbow subgraphs in properly edge-colored graphs, Random Structures Algorithms 3 (1992), no. 2, 175-182. $\uparrow 1$

Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil E-mail address: \{gbarros | brunopc | mota\} @ime.usp.br

London School of Economics, Department of Mathematics, London, WC2A 2AE, UK. E-mail address: ○.parczyk@lse.ac.uk

[^0]: ${ }^{3}$ We remark that a sketch of the proof for C_{4} was given in a short abstract of the fourth author [9].

