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Abstract

Metric dimension is a graph parameter motivated by problems in robot navigation,
drug design, and image processing. In this paper, we answer several open extremal
problems on metric dimension and pattern avoidance in graphs from (Geneson, Metric
dimension and pattern avoidance, Discrete Appl. Math. 284, 2020, 1-7). Specifically,
we construct a new family of graphs that allows us to determine the maximum possible
degree of a graph of metric dimension at most k, the maximum possible degeneracy of
a graph of metric dimension at most k, the maximum possible chromatic number of
a graph of metric dimension at most k, and the maximum n for which there exists a
graph of metric dimension at most k that contains Kn,n.

We also investigate a variant of metric dimension called edge metric dimension and
solve another problem from the same paper for n sufficiently large by showing that
the edge metric dimension of P d

n is d for n ≥ dd−1. In addition, we use a probabilistic
argument to make progress on another open problem from the same paper by showing
that the maximum possible clique number of a graph of edge metric dimension at
most k is 2Θ(k). We also make progress on a problem from (N. Zubrilina, On the edge
dimension of a graph, Discrete Math. 341, 2018, 2083-2088) by finding a family of
new triples (x, y, n) for which there exists a graph of metric dimension x, edge metric
dimension y, and order n. In particular, we show that for each integer k > 0, there
exist graphs G with metric dimension k, edge metric dimension 3k(1− o(1)), and order
3k(1 + o(1)).

Keywords metric dimension, edge metric dimension, extremal functions, pattern avoidance
AMS subject classification 05C12, 05C90

1 Introduction

The parameter of metric dimension for graphs has been studied for several decades [5, 11,
17, 16] and is motivated by models of robot navigation [11], drug design [2, 3, 8], and image
processing [13]. Suppose that a robot is dropped somewhere unknown in a graph and is able
to move from vertex to vertex. Some vertices in the graph have landmarks, and the robot
can measure its distance in the graph to any landmark. We want to find the fewest number
of landmarks so that the robot can determine its current vertex by only using the distances
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to the landmarks. In other words, we need to find the fewest number of landmarks so that
for any two vertices u, v ∈ G, there exists a landmark ℓ for which u and v have different
distances to ℓ, i.e. the landmark ℓ distinguishes u and v. We say that a set of landmarks is
a resolving set for G if any two vertices in G can be distinguished by some landmark in the
set. Equivalently, let the distance vector of a vertex v be the vector (d1, · · · , dk) where di is
the distance of v to the ith landmark. A set of landmarks is a resolving set if and only if no
two vertices have the same distance vector. The metric dimension dim(G) of the graph G
is the minimum size of a resolving set of G.

Recently Kelenc et al [9] defined a variant of metric dimension in which the robot moves
from edge to edge instead of vertex to vertex. In this variant, the robot can still measure
its distance in the graph to any landmark, where we define the distance d(e, w) of edge
e = {u, v} to vertex w as min(d(u, w), d(v, w)). As with the standard metric dimension,
we say that landmark ℓ distinguishes edges e and f if e and f have different distances to
ℓ. We say that a set of landmarks is an edge resolving set for G if any two edges in G
can be distinguished by some landmark in the set. The edge metric dimension edim(G) of
the graph G is the minimum size of an edge resolving set of G. This variant has already
been investigated in several recent publications that focus on generalized Petersen graphs
[4], necklace graphs [12], sunlet graphs and prism graphs [14], graph operations [15], convex
polytopes [18], and extremal values [19].

1.1 Past results and open problems

Kelenc et al compared dim(G) and edim(G) in [9] and proved that the number of edges in a
graph of edge metric dimension k and diameter D is at most (D+1)k. They asked whether
there is a bound on dim(G) in terms of edim(G) or vice versa. Zubrilina [20] showed that
edim(G)
dim(G)

is unbounded and improved the bound on the maximum number of edges in a graph

of edge metric dimension k and diameter D to
(

k
2

)

+kDk−1+Dk. Zubrilina also characterized
the graphs of order n with edge metric dimension n− 1, asked for a characterization of the
graphs of order n with edge metric dimension n − 2, asked whether there exist graphs G
with edim(G) ≫ 2dim(G), and more generally asked for the triples (x, y, n) for which there
exist graphs of metric dimension x, edge metric dimension y and order n [20]. Geneson
[6] characterized the graphs of edge metric dimension n − 2 and improved the bound on
the maximum number of edges in a graph of edge metric dimension k and diameter D

to (
⌊

2D
3

⌋

+ 1)k + k
∑⌈D

3
⌉

i=1 (2i)k−1. Geneson also proved a number of results about metric
dimension and pattern avoidance.

Khuller et al [11] proved that no graph of metric dimension at most k contains a clique
of size 2k + 1. Kelenc et al [9] proved that no graph of edge metric dimension at most
k contains K1,2k+1. Geneson [6] proved that these bounds are sharp, implying that the
maximum possible clique number of a graph of metric dimension at most k is 2k. Geneson
also asked what is the maximum possible clique number of a graph of edge metric dimension
at most k [6]. This quantity only had rough bounds, a lower bound of k + 1 and an upper
bound of O(2k/2).

Geneson [6] also proved that the maximum degree of a graph of edge metric dimension
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at most k is 2k. For the same problem with metric dimension, Geneson showed that the
maximum degree of a graph of metric dimension at most k is between 3k − k− 1 and 3k − 1.
As a corollary, this showed that the maximum number of edges in a graph of order n and

metric dimension k is at most (3k−1)n
2

.
Furthermore, Geneson showed that the maximum n for which there exists a graph of

metric dimension at most k that contains Kn,n as a subgraph is in the range [2k/2− 1, 3k/2].
Geneson also showed that the maximum possible chromatic number and maximum possible
degeneracy of a graph of metric dimension at most k are bounded in [2k, 3k] and [2k−1, 3k−1]
respectively. In addition, Geneson proved that edim(P d

n) ≤ d and asked about the exact value
of edim(P d

n) in general.

1.2 New results

We introduce a family of infinite graphs Dk for k = 1, 2, . . . in which we can embed all graphs
of metric dimension k. We use this family to prove a number of extremal results about metric
dimension, including that the maximum degree of any graph of metric dimension at most k
is 3k − 1, the maximum number of edges in a graph on n vertices with metric dimension k

is n(3k−1)(1−o(1))
2

, the maximum n for which there exists a graph of metric dimension at most
k that contains Kn,n as a subgraph is n = 2k−1, and the maximum size of a wheel subgraph
of a graph of metric dimension at most k is 3k. We also use the Dk family to show that the
maximum possible chromatic number of any graph of metric dimension at most k is 2k and
the maximum possible degeneracy of any graph of metric dimension at most k is 3k−1

2
. This

answers multiple open problems from [6].
We also answer Zubrilina’s question of whether there exist graphs G with edim(G) ≫

2dim(G) affirmatively. We learned that independently the paper [10] answered the same ques-
tion with a very different construction. Regardless, we use the new construction to make
progress on Zubrilina’s question of finding the triples (x, y, n) for which there exist graphs
of metric dimension x, edge metric dimension y and order n by showing that for all ǫ > 0,
there exist graphs G for which edim(G) ≫ 2dim(G) and edim(G)

|V (G)|
≥ 1− ǫ.

Using a probabilistic argument, we make progress on another problem from [6] by proving
that the maximum possible clique number of a graph of edge metric dimension at most k is
2Θ(k). We solve another problem from [6] for n sufficiently large by proving that dim(P d

n) =
edim(P d

n) = d for all n ≥ dd−1.

1.3 Structure of the paper

In Section 2, we define the family Dk and use it to prove our results on maximum degree,
number of edges, chromatic number, degeneracy, complete bipartite subgraphs, and wheels.
Section 3 has our other pattern avoidance results. In Section 4, we provide new constructions
of families of graphs with edim(G) ≫ 2dim(G) and new triples (x, y, n). Finally in Section
5, we prove that dim(P d

n) = edim(P d
n) = d for all n ≥ dd−1. In Section 6 we conclude and

discuss some related open questions.
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2 The family Dk

In this section, we define a family of graphs Dk that is very useful for proving extremal
results about metric dimension. Let Dk be the graph on the vetrex set Z

k
≥0 with edges

between points that differ by at most one in each coordinate.

Lemma 2.1. Any graph of metric dimension k can be embedded as a subgraph of Dk by

sending each point to its distance vector with respect to a given resolving set of k landmarks.

Proof. If G has metric dimension k, and there is an edge between vertices u and v in G, then
the distances from u and v to any landmark differ by at most 1. Thus the images of u and
v are connected by an edge in Dk, regardless of the set of landmarks that we choose.

Consider the induced subgraph Ck(q) of Dk whose vertex set consists of the integer points
in the k-dimensional cross polytope centered at (q, · · · , q) having as a face the (k−1)-simplex
with its corners at the k points with all coordinates equal to q except for one coordinate
which is equal to 0.

This graph has metric dimension at most k, since if we let vi be the point with ith

coordinate 0 and all others q, then the distance vector of each point x with respect to the
set of landmarks consisting of the vertices vi is exactly x.

The following corollary explains the usefulness of Dk for pattern avoidance problems in
graphs of bounded metric dimension.

Corollary 2.2. Given a graph H, there exist a graph of metric dimension at most k con-

taining H if and only if H is contained in Dk.

Proof. The forward direction follows since every graph of metric dimension at most k can
be embedded in Dk, and the backward direction follows since any copy of H in Dk can be
translated to a copy of H in Ck(q) for any sufficiently large q.

Theorem 2.3. The maximum possible degree of any graph of metric dimension at most k
is 3k − 1.

Proof. It is immediate that the maximum degree of Dk is 3k − 1, so the maximum possible
degree of a graph of metric dimension at most k is 3k − 1 by Corollary 2.2 with the family
of stars K1,n.

We use Wn to denote the wheel on n + 1 vertices. In the next result, we show that the
maximum size of a wheel subgraph in a graph of metric dimension at most k is the same as
the maximum size of a star subgraph. This result also uses the family Dk.

Theorem 2.4. For k ≥ 2, the maximum n for which there exists a graph of metric dimension

at most k that contains a subgraph isomorphic to the wheel Wn is n = 3k − 1.

Proof. It suffices to show that the subgraph of Dk on {0, 1, 2}k − {1}k has an Hamiltonian
cycle. For k = 2, we use the cycle (0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0), (0, 0).

Suppose for inductive hypothesis that the subgraph of Dk on {0, 1, 2}k − {1}k has
a Hamiltonian cycle a1, a2, . . . , aj, a1 with j = 3k − 1. Then the subgraph of Dk+1 on

{0, 1, 2}k+1 − {1}k+1 has the Hamiltonian cycle 0a1, 0a2, . . . , 0aj, 01
k, 1aj , 1aj−1, . . . , 1a2,

2a1, 2a2, . . . , 2aj , 21
k, 1a1, 0a1 by the inductive hypothesis.
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We also obtain a sharp bound on the maximum number of edges using the family Ck(q).

Theorem 2.5. The maximum number of edges in a graph on n vertices with metric dimen-

sion k is
n(3k−1)(1−o(1))

2
.

Proof. The upper bound is immediate from Theorem 2.3, while the lower bound follows
since the proportion of vertices that are interior in Ck(q) can get arbitrarily close to 1 as
q → ∞.

As an immediate corollary, we determine the maximum possible degeneracy of any graph
of metric dimension at most k.

Theorem 2.6. The maximum possible degeneracy of any graph of metric dimension at most

k is 3k−1
2

.

Proof. The upper bound follows since Dk has degeneracy at most 3k−1
2

: for any subgraph H
of Dk, the minimal point of H with respect to the lexicographical order has degree at most
3k−1
2

in H . Thus any graph of metric dimension at most k also has degeneracy at most 3k−1
2

.
The lower bound follows from Theorem 2.5 for n sufficiently large and the well-known fact
that any graph G with m edges and n vertices has degeneracy at least m

n
.

Dk is also useful for finding the maximum possible chromatic number.

Theorem 2.7. The maximum possible chromatic number of any graph of metric dimension

at most k is 2k.

Proof. The lower bound was proved in [6]. For the upper bound, note that we can assign
a color to each point of (Z/2Z)k and color each vertex with the color corresponding to its
distance vector modulo 2. This gives a valid coloring of the graph, since if two vertices are
adjacent their distance vectors differ by at most 1 in each coordinate.

Next we use the Dk family to solve another open problem from [6], the maximum n for
which there exists a graph of metric dimension at most k that contains Kn,n.

Theorem 2.8. The maximum n for which there exists a graph of metric dimension at most

k that contains Kn,n as a subgraph is n = 2k−1.

Proof. The lower bound is immediate from Corollary 2.2 by considering the subgraph of Dk

on {0, 1}k with one part having the vertices with first coordinate 0 and the other part having
the vertices with first coordinate 1.

For the upper bound, suppose we have a copy of Kn,n with parts X and Y in a graph
of metric dimension at most k: we classify the landmarks into two types: L is type A if
the set of closest vertices to L in the Kn,n only has vertices from X , L is type B if the set
of closest vertices to L in the Kn,n only has vertices from Y , and L is type C if the set
of closest vertices to L in the Kn,n has vertices from both X and Y . Then |X| ≤ 2|A|+|C|

and |Y | ≤ 2|B|+|C|. If all landmarks are type C, there are only two possible coordinates in
the distance vectors for the vertices of the copy of Kn,n, so there are at most 2k vertices in
the Kn,n, which means n ≤ 2k−1. On the other hand if some landmark is not type C, then
2|A|+|C| ≤ 2k−1 or 2|B|+|C| ≤ 2k−1.
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We also use Dk to bound the maximum possible minimum degree of a graph of metric
dimension at most k.

Theorem 2.9. The maximum possible minimum degree in any graph of metric dimension

at most k is at most 3k−1.

Proof. Any landmark has degree at most 3k−1. Indeed, considering the graph as embedded
in Dk, all neighbours of the ith landmark vi have ith coordinate 1 and differ by at most one
from vi in every other coordinate.

We can see that the bound in the last theorem is sharp for k = 2, using the subgraph
of D2 bounded by the square with vertices at (1, 0), (0, 1), (1, 2), (2, 1). It is also sharp for
k = 3, using a rhombic dodecahedron with the 3 points (q, q, 0), (q, 0, q), (0, q, q) at corners of
the dodecahedron where four faces meet. This family that maximizes the minimum degree
for k = 2 and k = 3 is similar in structure to the family in [7] that maximizes the order of
a graph of metric dimension k and diameter D. It is unclear, however, whether it could be
generalized to higher dimensions while still keeping a minimum degree of 3k−1.

3 Further results on metric dimension and pattern avoid-

ance in graphs

In [6], Geneson asked what is the maximum possible clique number of a graph of edge metric
dimension at most k. This quantity was bounded between k+1 and O(2k/2) in [6]. We show
next that it is 2Θ(k), using a probabilistic method.

Theorem 3.1. The maximum possible clique number of a graph of edge metric dimension

at most k is 2Θ(k).

Proof. Consider the set S of ternary strings of length k, having digits among {0, 1, 2}. Let
V be the subset of S whose digits are among {0, 1}. Let + denote base 3 addition. Using
the binomial theorem, we can see that there are Θ(

∑k
i=0

(

k
i

)

2k−i(2i)2) = Θ(6k) unordered
pairs {p, q} with p = {a, b} and q = {c, d} for a, b, c, d,∈ V such that a+ b = c+ d.

If we uniformly at random select a subset R of exactly t = Θ((8
3
)
k

3 ) elements from V ,
the expected number of {p, q} with p = {a, b} and q = {c, d} such that a + b = c + d and

a, b, c, d ∈ R is O(t4 6k

16k
). We can make this expected number less than t

2
using t = Θ((8

3
)
k

3 ).

So there exists a subset T of V having t = Θ((8
3
)
k

3 ) distinct elements such that the number
of {p, q} with p = {a, b} and q = {c, d} such that a + b = c + d is less than t

2
. For each of

these {p, q} with p = {a, b} and q = {c, d} such that a + b = c + d, we remove one of the

strings a, b, c, d from T , leaving us with a set U of size Θ((8
3
)
k

3 ), which has no distinct {a, b}
and {c, d} such that a+ b = c+ d.

Now, construct a K|U | and add 2k vertices a1, a2, ...ak, b1, b2, ..., bk. Join ai to a vertex v
in the K|U | if the string corresponding to v has ith digit 0, similarly join bi to v if the corre-
sponding string has ith digit 1. We claim that a1, a2, ...ak, b1, b2, ...bk uniquely distinguishes
the edges of the K|U |. First of all, note that the edges of the K|U | are precisely those edges
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having no coordinate 0. Because of the way we joined the ai, bi to the edges, we can see that
it is sufficient to ensure that for any two edges of the K|U |, the two sums of the two pairs of
strings corresponding to the endpoints of the edges are different. However, U was chosen to
satisfy this property. This means that the edge resolving set indeed uniquely distinguishes
the edges of the K|U |.

Thus, we constructed a graph of edge metric dimension at most 2k having a Kn with
n = Θ((8

3
)
k

3 ). This shows that the maximum n for which there exists a graph of edge metric

dimension at most k containing Kn satisfies n = Ω((8
3
)
k

6 ).

Up to a constant factor, we also bound the maximum n for which there exists a graph
of metric dimension at most k that contains a subgraph isomorphic to the n-dimensional
hypercube.

Theorem 3.2. The maximum n for which there exists a graph of metric dimension at most

k that contains a subgraph isomorphic to the n-dimensional hypercube Qn is n = Θ(k log(k)).

Proof. Since the order of a graph of metric dimension k and diameter D is at most (D+1)k,
we have 2n ≤ (n + 1)k, which implies that n ≤ 3k log2(k). For the lower bound, it is known
that dim(Q 1

2
k log2(k)

) ≤ k [1].

4 New triples

In order to prove our result about new triples (x, y, n), we introduce a construction of another
family of graphs of metric dimension k that has maximum degree 3k − 1. Let L be the set
of points in Dk with one coordinate 0 and all others equal to 2 and let Mk be the induced
subgraph of Dk with vertex set {1, 2, 3}k ∪ L.

We prove a lemma that we will apply to the family Mk to show that for each integer
k > 0, there exist graphs G with metric dimension k, edge metric dimension 3k(1 − o(1)),
and order 3k(1 + o(1)).

Lemma 4.1. If G has order n and some vertex of degree n − 1 − x that is within distance

2 of all vertices in G, then edim(G) ≥ n− 1− x− 2x.

Proof. Let v be the vertex of degree n− 1− x. We may assume that n− 1− x ≥ 2x, or else
the lemma is already trivially true. Let y1, . . . , y2x+1 denote any 2x + 1 distinct neighbors
of v. Let S = V (G) − {y1, . . . , y2x+1}. To prove the Lemma, it suffices to show that there
exist two distinct edges vyi and vyj with the same distance vector with respect to S, since
that would imply that every edge resolving set for G must contain at least n − 1 − x − 2x

neighbors of v.
For each i = 1, . . . , 2x + 1, d(v, vyi) = 0 and d(u, vyi) = 1 for each neighbor u of v in S.

Each vertex u ∈ S that is not a neighbor of v has distance 2 to v, so d(u, vyi) ∈ {1, 2}.
So, for any distinct yi and yj, the only distances d(u, vyi) and d(u, vyj) on which vyi and

vyj can differ for u ∈ S are the vertices u 6∈ N [v]. There are x vertices u ∈ S that are not
in N [v], since v has degree n − 1 − x. So there are 2x distinct possibilities for the tuple of
distances from an edge vyi to S, but there are 2x + 1 vertices yi. Thus by the pigeonhole
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principle, there exist two distinct edges vyi and vyj with the same tuple of distances to S,
so S is not an edge resolving set for G. Thus every edge resolving set for G must contain at
least n− 1− x− 2x neighbors of v, so edim(G) ≥ n− 1− x− 2x.

We can use the last lemma on the graphs Mk to obtain the following result which answers
the question of Zubrilina of whether there exist graphs G for which edim(G) ≫ 2dim(G) [20].

Theorem 4.2. For all ǫ > 0, there exist graphs G for which edim(G) ≫ 2dim(G) and
edim(G)
|V (G)|

≥
1− ǫ.

Proof. For k sufficiently large, Mk is such a graph, since |V (Mk)| = 3k + k, edim(Mk) ≥
3k − 1− 2k by Lemma 4.1 (with the vertex (2, 2, 2) and x = k) and dim(Mk) = k.

As a result, we also obtain new triples (x, y, n) of integers for which there exist graphs of
metric dimension x, edge metric dimension y, and order n.

Corollary 4.3. For each integer k > 0, there exist graphs with metric dimension k, edge
metric dimension 3k(1− o(1)), and order 3k(1 + o(1)).

Next we provide a construction that shows there is no upper bound on edim(G) only
in terms of dim(G). This was shown independently by [10], but our construction is very
different from the one in [10], so we include it here.

Theorem 4.4. There is no upper bound on edim(G) only in terms of dim(G).

Proof. Consider the graphs C2(q) (the induced subgraph of D2 on the square with corners
(0, q), (q, 0), (q, 2q) and (2q, q)) for q ≥ 1. These graphs all have metric dimension 2, as
noted in Section 2.

Now we show that edim(C2(q)) ≥ q − 1. For this, note that, in order to distinguish
the two diagonals of a unit square (i.e. pair of edges of the form {(x, y), (x+ 1, y + 1)} and
{(x+ 1, y), (x, y + 1)}), we need to have a landmark somewhere on the continuation of one
of these diagonals. Indeed, the two edges have the same distance to every other point.

In other words, for any integers q < t, s < 3q with t 6≡ s (mod 2), we must have a
landmark on either the line x + y = t or the line x − y = s. However, if we have less than
q − 1 landmarks, then there will be some even q < t < 3q for which no landmark satisfies
x+ y = t and, similarly, an odd q < s < 3q for which no landmark satisfies x− y = s. This
is a contradiction, so edim(C2(q)) ≥ q − 1.

We thus have constructed a family of graphs with metric dimension 2 and arbitrarily
large edge metric dimension, which shows that there cannot be any upper bound on edim(G)
depending uniquely on dim(G).

5 Metric dimension and edge metric dimension of d-

dimensional grids

We prove in this section that P d
n has both metric dimension and edge metric dimension d

for n sufficiently large. This answers a question from [6] for n sufficiently large.

8



Theorem 5.1. If n ≥ dd−1, then dim(P d
n) = d.

Proof. It is known that for all d, n we have dim(P d
n) ≤ d. For the lower bound, we note

that P d
n has nd vertices and it’s diameter is (n − 1)d. It is known that graphs with metric

dimension k and diameter D have order at most k +Dk [11]. Thus k + ((n− 1)d)k ≥ nd. If
dim(P d

n) is less than d, then it is at most d−1, so (d−1)+((n−1)d)d−1 ≥ nd. But n ≥ dd−1

implies that nd ≥ (nd)d−1. We can see that (nd)d−1 > (d− 1) + ((n− 1)d)d−1, which means
nd > (d−1)+((n−1)d)d−1, which contradicts the earlier inequality (d−1)+((n−1)d)d−1 ≥ nd.
Thus if n ≥ dd−1, then we have dim(P d

n) = d.

Also, we can use the inequality in the last proof to derive the next bound, of independent
interest when n < dd−1.

Lemma 5.2. For general n, d we have dim(P d
n) ≥

d log(n)
log(d(n−1)+1)

.

A similar technique also allows us to prove the analogous result for edge metric dimension.

Theorem 5.3. If n ≥ dd−1, then edim(P d
n) = d.

Proof. It is known that edim(P d
n) ≤ d [6]. For the lower bound, note that P d

n has d(n−1)nd−1

edges. Graphs with diameter D and edge metric dimension k have at most (D + 1)k edges
[9]. If the edge metric dimension is at most d− 1, there are at most (d(n− 1)+ 1)d−1 edges,
so d(n− 1)nd−1 ≤ (d(n− 1) + 1)d−1, but this is clearly false for n ≥ dd−1 and d ≥ 2. Thus if
n ≥ dd−1, then edim(P d

n) = d.

As before, we can use the inequality in the last proof to derive the next bound.

Lemma 5.4. For general n, d we have edim(P d
n) ≥

log(d)+log(n−1)+(d−1)log(n)
log(d(n−1)+1)

6 Concluding remarks

In this paper, we completely resolved the problems from [6] of determining the maximum
possible degree of a graph of metric dimension at most k, the maximum possible degeneracy
of a graph of metric dimension at most k, the maximum possible chromatic number of
a graph of metric dimension at most k, the maximum n for which there exists a graph of
metric dimension at most k that containsKn,n, and the values of dim(P d

n) and edim(P d
n) for n

sufficiently large with respect to d. Using these results, we made new progress on Zubrilina’s
problem of finding all triples (x, y, n) for which there exists a graph of metric dimension x,
edge metric dimension y, and order n. In particular, we proved that for each integer k > 0,
there exist graphs G with metric dimension k, edge metric dimension 3k(1−o(1)), and order
3k(1 + o(1)).

We showed that the maximum possible clique number of a graph of edge metric dimension
at most k is 2Θ(k), sharpening the lower bound of k + 1 from [6]. We also showed that the
largest wheel in a graph of metric dimension at most k has 3k vertices and the maximum n for
which there exists a graph of metric dimension at most k that contains Qn is n = Θ(k log(k)).
It would be interesting to find the exact value for the maximum possible clique number of
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a graph of edge metric dimension at most k, and and the exact value of the maximum n
for which there exists a graph of metric dimension at most k that contains Qn. Another
interesting problem is to investigate the maximum n for which there exists a graph of edge
metric dimension at most k that contains Qn.

We determined that the maximum possible minimum degree of a graph of metric dimen-
sion k is 3k−1 for k = 2 and k = 3, but this extremal problem is open for all k > 3. For
metric dimension and pattern avoidance, we have investigated extremal results for contain-
ment and avoidance of complete graphs, complete bipartite graphs, stars, hypercube graphs,
and wheels. It would also be interesting to investigate similar extremal results for other
families of subgraphs such as balanced spiders, full binary trees, and multidimensional grids.
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[1] J. Cáceres, C. Hernando, M. Mora, I. Pelayo, M. Puertas, C. Seara, and D. Wood. On
the Metric Dimension of Cartesian Products of Graphs. SIAM J. Discrete Math. 21
(2007) 423-441.

[2] G. Chartrand, L. Eroh, M. Johnson, and O. Oellermann. Resolvability in graphs and
the metric dimension of a graph. Discrete Appl. Math. 105 (2000) 99-113.

[3] G. Chartrand, C. Poisson, and P. Zhang. Resolvability and the upper dimension of
graphs. Comput. Math. with Appl. 39 (2000) 19-28.
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