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Abstract

In this paper, we consider the minimal doubly resolving set problem in Hamming graphs, hypercubes

and folded hypercubes. We prove that the minimal doubly resolving set problem in hypercubes is

equivalent to the coin weighing problem. Then we answer an open question on the minimal doubly

resolving set problem in hypercubes. We disprove a conjecture on the metric dimension problem in

folded hypercubes and give some asymptotic results for the metric dimension and the minimal doubly

resolving set problems in Hamming graphs and folded hypercubes by establishing connections between

these problems. Using the Lindström’s method for the coin weighing problem, we give an efficient

algorithm for the minimal doubly resolving set problem in hypercubes and report some new upper

bounds. We also prove that the minimal doubly resolving set problem is NP-hard even restrict on split

graphs, bipartite graphs and co-bipartite graphs.
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1 Introduction

Let G be a finite, connected, simple and undirected graph with vertex set V = V (G) and edge set E = E(G).
The distance between vertices u and v is denoted by dG(u, v). The Cartesian product of graphs G and H ,
denoted by G�H , where V (G�H) = {(g, h) : g ∈ V (G), h ∈ V (H)}, and (g1, h1)(g2, h2) ∈ E(G�H) if
and only if g1 = g2, h1h2 ∈ E(H) or g1g2 ∈ E(G), h1 = h2. The cartesian product is associative and
G1�G2� · · ·�Gd is well-defined.

The metric dimension problem was independently defined by Slater [32], Harary and Melter [12]. A
vertex subset S resolves a graph G if every vertex is uniquely determined by its vector of distances to the
vertices in S. More formally, a vertex x of G resolves two vertices u and v of G if dG(u, x) 6= dG(v, x).
A vertex subset S is a resolving set of G if every two vertices in G are resolved by some vertex of S. A
resolving set S of G with the minimum cardinality is a metric basis of G, and the size of S is the metric

dimension of G, denoted by β(G).
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Doubly resolving sets were introduced by Cáceres et al. [5] as a tool for researching resolving sets of
Cartesian products of graph. Let G be a graph of order n ≥ 2. We say that {x, y} doubly resolves {u, v}, if
dG(u, x)− dG(u, y) 6= dG(v, x)− dG(v, y). A vertex subset S of G is a doubly resolving set of G if every pair
of distinct vertices in G is doubly resolved by some pair of vertices in S. Let Ψ(G) denote the minimum
cardinality of a doubly resolving set of a graph G 6= K1. The minimal doubly resolving set problem is
determining the minimum cardinality of a doubly resolving set for an input graph G.

Let dG(u, S) = (dG(u, x1), . . . , dG(u, xm)) and −→c = (c, . . . , c), where S = {x1, . . . , xm} is a subset of
V (G) and c is a constant. Note that the dimension of −→c would be clear from the context. Then for every

distinct vertices u, v ∈ V (G), S is a resolving set if and only if d(u, S) − d(v, S) 6= −→
0 while S is a doubly

resolving set if and only if d(u, S)− d(v, S) 6= −→c for all constant c. Hence β(G) ≤ Ψ(G). However, there is
not a function f such that Ψ(G) ≤ f(β(G)) for all graphs G. In fact, Cáceres et al. [5] proved that there is a
k-connected graph Gn,k such that β(Gn,k) ≤ 2k and Ψ(Gn,k) ≥ 2n for all k ≥ 1 and n ≥ 2. The connection
between the two problems is the following theorem that was proved in [5].

Theorem 1.1 (Cáceres et al. [5]). For all graphs G and H 6= K1,

max{β(G), β(H)} ≤ β(G�H) ≤ β(G) + Ψ(H)− 1.

The metric dimension arises in many diverse areas, including network discovery and verification [4], the
robot navigation [19] and chemistry [7]. Finding the doubly resolving set in graphs is equivalent to locating
the source of a diffusion in complex networks [8]. The metric dimension problem and minimal doubly
resolving set problem have many interesting theoretical properties which are out of the scope of this paper.
The interested reader is referred, e.g. to [3, 13, 23].

As far as general graphs are concerned, both problems are NP-hard. The proof for the metric dimension
problem is given in [19] and for the minimal doubly resolving set problem is given in [24]. Epstein et al. [10]
proved that the metric dimension problem is NP-hard even for split graphs, bipartite graphs and co-bipartite
graphs. Therefore, some researchers try to design heuristic algorithms to solve the problems. It has been
designed the genetic algorithm (GA) to solve the metric dimension problem in [21] and the minimal doubly
resolving set problem in [24]. Mladenović et al. [27] designed the variable neighborhood search algorithm
(VNS) to solve the metric dimension problem and the minimal doubly resolving set problem. Chartrand
et al. [7] and Kratica et al. [24] gave the 0–1 integer linear programming formulations for the metric dimension
problem and the minimal doubly resolving set problem respectively.

The Hamming graph Hn,q is the Cartesian product of n copies of the complete graph Kq with q vertices

Hn,q = Kq�Kq� · · ·�Kq
︸ ︷︷ ︸

n

.

Specifically, the vertex of Hn,q is an n-dimensional vector u = (u1, . . . , un) ∈ {0, 1, . . . , q − 1}n and two
vertices are adjacent if they differ in exactly one coordinate (see Figure 1). The operation of addition
(subtraction) in V (Hn,q) is defined by the modulo-q addition (subtraction) of the corresponding vector. For
example, if x = (0, 0, 1, 1, 2, 2) and y = (1, 2, 2, 1, 0, 2) are two vertices of H6,3, then x + y = (1, 2, 0, 2, 2, 1)

and x−y = (2, 1, 2, 0, 2, 0). By the definition of Hn,q, it is easy to show that dHn,q
(u, v) = dHn,q

(u−v,
−→
0 ) =

∑n

i=1 1ui 6=vi , where 1ui 6=vi = 1 if ui 6= vi and 1ui 6=vi = 0 if ui = vi.
The n-dimensional hypercube Qn, also called n-cube, is a Cartesian product of n copies of K2 (see Figure

2). Note that Qn = Hn,2. For each u ∈ V (Qn), we use u to denote its opposite vertex, that is u = u +
−→
1 .

It is clear that dQn
(u, v) =

∑n
i=1 |ui − vi| and thus dQn

(u, v) = n− dQn
(u, v).

The metric dimension of the Hamming graph is connected to Mastermind, which is a deductive game for
two players, the code setter and the code breaker. The code setter chooses a secret vector s = (s1, . . . , sn) ∈
{0, 1, . . . , q − 1}n. The task of the code breaker is to infer the secret vector by a series of questions, each
a vector t = (t1, . . . , tn) ∈ {0, 1, . . . , q − 1}n. The code setter answers with two integers, denoted by
a(s, t) = |{i : si = ti, 1 ≤ i ≤ n}| and b(s, t) = max{a(s̃, t) : s̃ is a permutation of s}. The original
commercial version of the game is n = 4 and q = 6, which was invented by Mordecai Meirowitz. Knuth
[20] showed that four questions suffice to determine s in this case. Let g(n, q) be the smallest number such
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that the code breaker can determine any s by asking g(n, q) questions at once (without waiting for the
answers). Chvátal [9] proved that g(n, q) ≤ (4+2 logq 2+o(1))n/ logq n. Kabatianski et al. [16] showed that
β(Hn,q) − (q − 1) ≤ g(n, q) ≤ β(Hn,q). Let f(n, q) be the smallest number such that the code breaker can
determine any s by asking f(n, q) questions at once without b(s, t) in the answers. Cáceres et al. [5] showed
that g(n, q) ≤ f(n, q) = β(Hn,q).

It has been showed that β(H2,q) = Ψ(H2,q) = ⌊(4q− 2)/3⌋ for all q ≥ 5 by Cáceres et al. [5] and Kratica
et al. [22]. Recently, Jiang and Polyanskii [15] gave the following nice theorem.

Theorem 1.2 (Jiang and Polyanskii [15]). β(Hn,q) = (2 + o(1))n/ logq n for all q ≥ 2.

We remark that Kabatyanskĭı and Lebedev [17] proved the above theorem for q = 3, 4. For q = 2, the
metric dimension problem in hypercubes is related to the following coin weighing problem.

Given n coins, some of them may be defective. We know the weight g of the good coins in advance
and also the weight h 6= g of the defective coins. If we weigh a subset of coins with a spring scale, then
the outcome will tell us precisely the number of defective coins among them. The coin weighing problem is
determining the minimum number M(n) of weighings by means of which the good and defective coins can
be separated under the assumption that all the family of tested subsets has to be given in advance.

More formally, the binary vector u = (u1, . . . , un) ∈ {0, 1}n is corresponding to a distribution of defective
coins, where uj = 1 if and only if the j-th coin is defective. Similarly, the binary vector x = (x1, . . . , xn) ∈
{0, 1}n is corresponding to a weighing, where xj = 1 if and only if the j-th coin is chosen to weigh. The
outcome of a weighing is a scalar product of x and u, that is u · x =

∑n

i=1 uixi. A set of binary vectors S is
called a weighing strategy if for every pair of distinct vectors u, v, there exists x ∈ S such that u · x 6= v · x.
The coin weighing problem was proposed for n = 5 by Shapiro [30] and solved by Shapiro and Fine [31].
Erdős and Rényi [11] presented a lower bound and Lindström [25] (independently by Cantor and Mills [6])
presented an upper bound. The lower bound and the upper bound are asymptotically equivalent. Almost
all exact values of M(n) are not known yet.

Theorem 1.3 (Cantor and Mills [6], Erdős and Rényi [11], Lindström [25]).

M(n) = (2 + o(1))n/ log2 n.

A surprising connection between the metric dimension problem in hypercubes and the coin weighing
problem was given in [29].

Theorem 1.4 (Sebő and Tannier [29]). |β(Qn)−M(n)| ≤ 1.

Theorems 1.3 and 1.4 imply that β(Qn) = (2 + o(1))n/ log2 n. Researchers try to get optimal upper
bounds of β(Qn) and Ψ(Qn) by heuristic algorithms. Besides the genetic algorithm and the variable neigh-
borhood search algorithm as mentioned previously, some specially algorithms are designed for the metric
dimension and minimal doubly resolving set problem in hypercubes. For example, Nikolić et al. [28] designed
a greedy algorithm and a dynamic programming procedure for the metric dimension of a hypercube by using
the symmetry property of resolving sets to reduce the size of the feasible solution set. Hertz [14] designed
an IP-based swapping algorithm for the metric dimension and minimal doubly resolving set problem in
hypercubes.

The folded hypercube is a graph obtained by merging opposite vertices of a hypercube. A vertex of
a folded n-cube Fn is denoted by [u] = {u, u}, where u is a vertex of Qn. [u][v] ∈ E(Fn) if and only if
uv ∈ E(Qn) or uv ∈ E(Qn) (see Figure 3). Note that uv ∈ E(Qn) if and only if ūv̄ ∈ E(Qn). It is easy to
show that dFn

([u], [v]) = min{dQn
(u, v), n− dQn

(u, v)}. Recently, Zhang et al. [33] gave the upper bound of
metric dimension of folded n-cube.

Theorem 1.5 (Zhang et al. [33]). β(Fn) ≤ n− 1 for all odd n ≥ 5 and β(Fn) ≤ 2n− 4 for all even n ≥ 6.

They raised the following conjecture.

Conjecture 1.1 (Zhang et al. [33]). If n ≥ 5 is odd, then β(Fn) = n− 1.
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Figure 3. The graph F3

The paper is organized as follows. Based on a new concept of doubly distance resolving sets, we reveal
the relationship between resolving sets and doubly resolving sets in Section 2. Using the preliminary results
in Section 2, we show that Ψ(Hn,q) = (2 + o(1))n/ logq n and Ψ(Qn) = M(n) + 1 in Section 3. Hence, we
construct a bridge between the minimal doubly resolving set problem in hypercubes and the coin weighing
problem. Using the result of the coin weighing problem, we prove that Ψ(Qn) ≤ Ψ(Qn+1) ≤ Ψ(Qn) + 1,
which answer an open question in [14]. In Section 4, by exploring the connection of the metric dimension
problems between hypercubes and folded hypercubes, we give a shorter proof for Theorem 1.5 and disprove
Conjecture 1.1. Some asymptotic results of β(Fn) and Ψ(Fn) are also given. In Section 5, we prove that the
minimal doubly resolving set problem is NP-hard for split graphs, bipartite graphs and co-bipartite graphs.
In Section 6, using the bridge between the minimal doubly resolving set problem in hypercubes and the
coin weighing problem, we explore algorithms and experimental results for the minimal doubly resolving
set problem in hypercubes and get some better upper bounds of Ψ(Qn) when n ≤ 93. We also give precise
values of β(Fn) and Ψ(Fn) when n ≤ 9.

2 Preliminary results

The following lemma is obvious but helpful to identify a doubly resolving set of a graph.

Lemma 2.1 (Kratica et al. [24]). Let S = {x1, x2, . . . , xm} be a doubly resolving set of G. Then for every pair
of distinct vertices u, v ∈ V (G), there exists xj ∈ S, such that dG(u, x1)− dG(u, xj) 6= dG(v, x1)− dG(v, xj).

Now we introduce a new concept to reveal the relationship between resolving sets and doubly resolving
sets of graphs. Let G be a graph of order n ≥ 2. Given a vertex x ∈ V (G), a vertex subset S of G is a doubly

distance resolving set of G on x if every pair of vertices {u, v} with dG(u, x) 6= dG(v, x) is doubly resolved
by some pair of vertices in S ∪ {x}. In other words, S = {x1, x2, . . . , xm} is a doubly distance resolving
set of G on x if and only if dG(u, x) is uniquely determined by the vector (dG(u, x)− dG(u, x1), dG(u, x)−
dG(u, x2), . . . , dG(u, x)− dG(u, xm)) for any u ∈ V (G).

Lemma 2.2. Let S be a resolving set of G. Let x ∈ S and T be a doubly distance resolving set of G on x.
Then S ∪ T is a doubly resolving set of G.

Proof. Let u, v be two distinct vertices of G. If dG(u, x) 6= dG(v, x), then {u, v} can be doubly resolved by
the definition of T . If dG(u, x) = dG(v, x), then there is a vertex y such that dG(u, y) 6= dG(v, y) by the
definition of S and we have dG(u, x)− dG(u, y) 6= dG(v, x)− dG(v, y). It leads that {u, v} is doubly resolved
by {x, y}. Therefore, S ∪ T is a doubly resolving set of G.

Let φ(G, x) denote the minimum cardinality of a doubly distance resolving set of G on x and φ(G) =
max{φ(G, x) : x ∈ V (G)}.
Theorem 2.3. Let G be a graph of order n ≥ 2. Then

φ(G) ≤ Ψ(G) ≤ β(G) + φ(G).
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Proof. For every vertex x, since every doubly resolving set is a doubly distance resolving set on x by
definition, we have φ(G, x) ≤ Ψ(G) and thus φ(G) ≤ Ψ(G).

Let S be a resolving set of G with |S| = β(G). Let x ∈ S and T be a doubly distance resolving set of G
on x with |T | = φ(G, x). By Lemma 2.2, S ∪ T is a doubly resolving set of G and then Ψ(G) ≤ |S ∪ T | ≤
|S|+ |T | = β(G) + φ(G, x) ≤ β(G) + φ(G).

A function f : V (G) → V (G) is an automorphism of G if f is bijective such that uv ∈ E(G) if and only
if f(u)f(v) ∈ E(G). A graph G is called a vertex-transitive graph if for every pair of vertices {x, y}, there
is an automorphism f such that f(x) = y.

Lemma 2.4. Let G be a vertex-transitive graph of order n ≥ 2. Then the following holds:
(a) φ(G) = φ(G, x) for every x ∈ G.
(b) For every x ∈ G, there is a minimum (doubly) resolving set S of G such that x ∈ S.

Proof. We just prove (a). The proof of (b) is similar. Let y be the vertex such that φ(G, y) = φ(G). Let S
be a minimum doubly distance resolving set of G on x. By the definition of vertex-transitive graph, there
is an automorphism f : V (G) → V (G) such that f(x) = y. Then f(S) = {f(s) : s ∈ S} is a doubly distance
resolving set of G on y. It leads that φ(G) = φ(G, y) ≤ |f(S)| = φ(G, x) ≤ φ(G), i.e. φ(G) = φ(G, x).

3 Hamming graphs and hypercubes

Let x, y be two vertices of Hn,q. It is clear that f(u) = u−x+ y is an automorphism of Hn,q with f(x) = y.
Then Hn,q is a vertex-transitive graph. By the Lemma 2.4(b), we have the following corollary, which was
proved for q = 2 on the metric dimension problem in [28].

Corollary 3.1. There is a minimum (doubly) resolving set S of Hn,q such that
−→
0 ∈ S.

Lemma 3.2. For every positive integer n, φ(Hn,q) ≤ min{q − 1, n}.

Proof. Since Hn,q is a vertex-transitive graph, it suffices to prove that φ(Hn,q,
−→
0 ) ≤ min{q−1, n} by Lemma

2.4(a).

Let S = {−→1 , . . . ,−−−→q − 1}. We will prove that S is a doubly distance resolving set of Hn,q on
−→
0 . Let

u be a vertex of Hn,q and f(u, c) =
∑n

i=1 1ui=c, where 1ui=c = 1 if ui = c and 1ui=c = 0 if ui 6= c. Let

au,c = dHn,q
(u,

−→
0 )− dHn,q

(u,−→c ). Then we have

au,c =

n∑

i=1

1ui 6=0 −
n∑

i=1

1ui 6=c = (n− f(u, 0))− (n− f(u, c)) = f(u, c)− f(u, 0).

Since
∑q−1

c=0 f(u, c) = n, we have

q−1
∑

c=1

au,c =

q−1
∑

c=1

f(u, c)− (q − 1)f(u, 0) =

q−1
∑

c=1

f(u, c)− (q − 1)

(

n−
q−1
∑

c=1

f(u, c)

)

= q

q−1
∑

c=1

f(u, c)− (q − 1)n.

Then

dHn,q
(u,

−→
0 ) =

q−1
∑

c=1

f(u, c) =

∑q−1
c=1 au,c + (q − 1)n

q
.

Therefore, dHn,q
(u,

−→
0 ) is uniquely determined by the vector (au,1, . . . , au,q−1), i.e. S is a doubly distance

resolving set of Hn,q on
−→
0 .

Now we assume that n ≤ q − 1. Let T = {−→1 , . . . ,−→n }. Then we will prove that T is a doubly distance

resolving set ofHn,q on
−→
0 . If there is a pair of vertices {u, v} such that dHn,q

(u,
−→
0 ) 6= dHn,q

(v,
−→
0 ) and au,c =
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av,c for all c ∈ {1, . . . , n}, then, without loss of generality, we assume that b = dHn,q
(v,

−→
0 )−dHn,q

(u,
−→
0 ) ≥ 1.

We have f(u, 0) = n − dHn,q
(u,

−→
0 ) = n − (dHn,q

(v,
−→
0 ) − b) = f(v, 0) + b and f(u, c) = au,c + f(u, 0) =

av,c+f(v, 0)+b = f(v, c)+b for all c ∈ {1, . . . , n}. But it leads that∑n
c=0 f(u, c) =

∑n
c=0(f(v, c)+b) ≥ n+1,

a contradiction.

By the Theorem 2.3, we have β(Hn,q) ≤ Ψ(Hn,q) ≤ β(Hn,q) + min{q − 1, n}. Then we immediately get
the following theorem by Theorem 1.2.

Theorem 3.3. Ψ(Hn,q) = (2 + o(1))n/ logq n for all q ≥ 2.

Now we focus on the special Hamming graph, that is the hypercube Qn. We have

dQn
(u, x) =

n∑

i=1

|ui − xi| =
n∑

i=1

ui + xi − 2uixi = u · −→1 + x · −→1 − 2(u · x).

Note that u · x =
∑n

i=1 uixi is the inner product of u and v. Then

dQn
(u,

−→
0 )− dQn

(u, x) = 2(u · x)− x · −→1 .
Firstly, we prove the equivalence between the minimal doubly resolving set problem in hypercubes and

the coin weighing problem.

Theorem 3.4. For every positive integer n, we have Ψ(Qn) = M(n) + 1.

Proof. We first prove that M(n) ≤ Ψ(Qn)− 1. By Corollary 3.1, let S be a doubly resolving set of Qn such

that
−→
0 ∈ S and |S| = Ψ(Qn). Now we need to prove that S′ = S\{−→0 } is a weighing strategy. Suppose

not, then there are two distinct vertices u, v ∈ V (Qn), such that u · x = v · x for each x ∈ S′. It leads that

dQn
(u,

−→
0 )− dQn

(u, x) = 2(u · x)− (x · −→1 ) = 2(v · x)− (x · −→1 ) = dQn
(v,

−→
0 )− dQn

(v, x) for each x ∈ S′. By
Lemma 2.1, S is not a doubly resolving set, a contradiction.

Now we prove that Ψ(Qn) ≤ M(n) + 1. Let S be a weighing strategy such that |S| = M(n). Then

we prove that S′ = S ∪ {−→0 } is a doubly resolving set. Suppose not, then there are two distinct vertices

u, v ∈ V (Qn), such that dQn
(u,

−→
0 ) − dQn

(u, x) = dQn
(v,

−→
0 ) − dQn

(v, x) for each x ∈ S. Then u · x =

(dQn
(u,

−→
0 )− dQn

(u, x) + x · −→1 )/2 = (dQn
(v,

−→
0 )− dQn

(v, x) + x · −→1 )/2 = v · x, a contradiction.

By Theorem 1.1, it is easy to know that

β(Qn) ≤ β(Qn+1) = β(Qn�K2) ≤ β(Qn) + Ψ(K2)− 1 = β(Qn) + 1.

But it is an open problem whether Ψ(Qn) has the similar property (see Hertz [14]). Since we know that
the coin weighing problem and minimal doubly resolving set problem in hypercubes are equivalent, it is not
difficult to answer this open problem using the result of the coin weighing problem.

Theorem 3.5. For every positive integer n, we have Ψ(Qn) ≤ Ψ(Qn+1) ≤ Ψ(Qn) + 1.

Proof. By Theorem 3.4, we need to prove that M(n) ≤ M(n+ 1) ≤ M(n) + 1.
Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two distinct distribution of defective coins. Let S be a

weighing strategy for n + 1 coins such that |S| = M(n + 1). Then there exists x = (x1, . . . , xn+1) ∈ S,
such that u′ · x 6= v′ · x, where u′ = (u1, . . . , un, 0) and v′ = (v1, . . . , vn, 0). Let x′ = (x1, . . . , xn). Then
u · x′ = u′ · x 6= v′ · x = v · x′. Thus, S′ = {x′ = (x1, . . . , xn) : x = (x1, . . . , xn+1) ∈ S} is a weighing strategy
for n coins, i.e. M(n) ≤ M(n+ 1).

Let u = (u1, . . . , un+1) and v = (v1, . . . , vn+1) be two distinct distribution of defective coins. If un+1 6=
vn+1, then u · y 6= v · y where y = (0, . . . , 0, 1). Now we assume that un+1 = vn+1. Let S be a weighing
strategy for n coins such that |S| = M(n). Then there exists x = (x1, . . . , xn) ∈ S, such that u′ · x 6= v′ · x,
where u′ = (u1, . . . , un) and v′ = (v1, . . . , vn). Let x′ = (x1, . . . , xn, 0). Then u · x′ = u′ · x 6= v′ · x = v · x′.
Thus, S′ = y ∪ {x′ = (x1, . . . , xn, 0) : x = (x1, . . . , xn) ∈ S} is a weighing strategy for n + 1 coins, i.e.
M(n+ 1) ≤ M(n) + 1.
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4 Folded hypercubes

It is clear that f([u]) = [u − x + y] is an automorphism of Fn with f([x]) = [x − x + y] = [y]. Then Fn

is a vertex-transitive graph. In this section, we will use some precise values of β(Qn) and β(Fn) that have
calculated in [2, 5] (see Table 1).

n 1 2 3 4 5 6 7 8 9
β(Qn) 1 2 3 4 4 5 6 6 7
β(Fn) - 1 3 6 4 8 6 11 -

Table 1. β(Qn) and β(Fn), n ≤ 9

Lemma 4.1. For every integer n ≥ 3, β(Fn) ≥ β(Qn).

Proof. Let f : V (Fn) → V (Qn) be a function such that f([x]) = x if x1 = 0 and f([x]) = x if x1 = 1. If S is
a vertex set of Fn, then f(S) = {f([x]) : [x] ∈ S}. It suffices to prove that if S is a resolving set of Fn, then
f(S) is a resolving set of Qn.

For every two distinct vertices u, v ∈ V (Qn) with u 6= v, since S is a resolving set of Fn, there is a vertex
[x] ∈ S, such that dFn

([u], [x]) 6= dFn
([v], [x]) with f([x]) = x. Let d1 = dFn

([u], [x]) and d2 = dFn
([v], [x]).

Then dQn
(u, x) ∈ {d1, n − d1} and dQn

(v, x) ∈ {d2, n − d2}. If dQn
(u, x) = dQn

(v, x), since d1 6= d2,
we have d1 + d2 = n. Since max{d1, d2} ≤ n/2, we have d1 = d2 = n/2, a contradiction. Therefore,
dQn

(u, x) 6= dQn
(v, x).

Now we consider the case that u = v. Since Fn is a vertex-transitive graph, we can assume that

u =
−→
0 , v =

−→
1 . Note that for each y ∈ V (Qn), we have dQn

(u, y)+dQn
(v, y) = n. If there is a vertex x ∈ f(S)

such that dQn
(u, x) 6= dQn

(v, x), then we have done. Otherwise, for each x ∈ f(S), we have dQn
(u, x) =

dQn
(v, x) = n/2. It leads that n is even. Let S′ = {[x] :∑n

i=1 xi = n/2}. Then S ⊆ S′. However, {[s], [t]}
cannot be resolved by S′, where s = (1, 0, 0, . . . , 0) and t = (0, 1, 0, . . . , 0), since dFn

([s], [x]) = dFn
([t], [x]) =

n/2− 1 for each [x] ∈ S′. Then S′ is not a resolving set of Fn, a contradiction.

What is more, we prove that equality holds if n ≥ 3 is odd.

Lemma 4.2. If n ≥ 3 is odd, then β(Fn) = β(Qn).

Proof. By Lemma 4.1, it suffices to prove that β(Fn) ≤ β(Qn). Let g : V (Qn) → V (Fn) be a function such
that g(x) = [x]. If S is a vertex set of Qn, then g(S) = {[x] : x ∈ S}. It suffices to prove that if S is a
resolving set of Qn, then g(S) is a resolving set of Fn.

For every x ∈ S and distinct vertices [u], [v] ∈ V (Fn), if [x] resolves [u], [v], we have done. Otherwise,
without loss of generality, we assume that dQn

(u, x) = dFn
([u], [x]) = dFn

([v], [x]) = dQn
(v, x). Then

dQn
(u, x)− dQn

(v, x) = u · −→1 − v · −→1 − (2u · x− 2v · x) = 0. It shows that u · −→1 + v · −→1 is even.
Since S is a resolving set ofQn, there is a vertex y ∈ S such that dQn

(u, y) 6= dQn
(v, y). Let d1 = dQn

(u, y)
and d2 = dQn

(v, y). Then dFn
([u], [y]) = min{d1, n− d1} and dFn

([v], [y]) = min{d2, n− d2}. If [y] does not
resolve [u] and [v], then d1 + d2 = n. Besides, d1 + d2 = 2y · −→1 + u · −→1 + v · −→1 − (2u · y + 2v · y). It leads

that u · −→1 + v · −→1 is odd, a contradiction.

If n is even, equality does not hold in general, such as β(F4) = 6 6= 4 = β(Q4). If n is even, the following
lemma provides the upper bound.

Lemma 4.3. For every positive integer n, β(Fn+1) ≤ 2β(Qn).

Proof. For each x ∈ V (Qn), let x
0 = (x1, . . . , xn, 0) and x1 = (x1, . . . , xn, 1) be the two vertices in V (Qn+1).

It suffices to prove that if S is a resolving set of Qn, then S′ = {[x0], [x1] : x ∈ S} is a resolving set of Fn+1.
Let [u], [v] ∈ V (Fn) be two distinct vertices. Without loss of generality, we assume that un+1 = vn+1 = 0.

Let u′ = (u1, . . . , un) and v′ = (v1, . . . , vn). Then since S is a resolving set of Qn, there is a vertex x ∈ S such
that dQn

(u′, x) 6= dQn
(v′, x). Let d1 = dQn

(u′, x) and d2 = dQn
(v′, x). Then dFn+1

([u], [x0]) = min{d1, n+
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1 − d1}, dFn+1
([u], [x1]) = min{d1 + 1, n − d1}, dFn+1

([v], [x0]) = min{d2, n + 1 − d2}, dFn+1
([v], [x1]) =

min{d2 +1, n− d2}. If [x0] or [x1] resolves {[u], [v]}, we have done. Otherwise, we have d1 + d2 = n+1 and
(d1 + 1) + (d2 + 1) = n+ 1, a contradiction.

Recall that β(Qn+1) ≤ β(Qn) + 1 and hence β(Qn+m) ≤ β(Qn) + m. Since β(Q5) = 4, β(Qn) ≤
β(Q5) + n − 5 = n − 1 if n ≥ 5. By Lemma 4.2, β(Fn) = β(Qn) ≤ n − 1 for odd n ≥ 5. By Lemma 4.3,
β(Fn) ≤ 2β(Qn−1) ≤ 2n − 4 for even n ≥ 6. This is a shorter proof of Theorem 1.5. Since β(Q9) = 7,
β(Qn) ≤ β(Q9)+n− 9 = n− 2 for odd n ≥ 9. It implies that Conjecture 1.1 is false. Furthermore, we have
the following asymptotic result of β(Fn) by Lemmas 4.1–4.3 and β(Qn) = (2 + o(1))n/ log2 n.

Theorem 4.4. If n is odd, then β(Fn) = (2 + o(1))n/ log2 n. If n is even, then (2 + o(1))n/ log2 n ≤
β(Fn) ≤ (4 + o(1))n/ log2 n.

Now we consider the doubly distance resolving set of Fn.

Lemma 4.5. If n = 2k + 1 ≥ 3 is odd, then φ(Fn) ≤ (n+ 1)/2.

Proof. Let xi = (xi
1, . . . , x

i
n) ∈ V (Qn) such that

xi
j =

{

1 j = 2i− 1 or 2i

0 otherwise
for 1 ≤ i ≤ k and xk+1

j =

{

1 j = 2k + 1

0 otherwise.

Let S = {[x1], . . . , [xk+1]}. Then it suffices to prove that S is a doubly distance resolving set of Fn on [
−→
0 ].

Let [u] be a vertex of Fn. Without loss of generality, we assume that dQn
(u,

−→
0 ) ≤ k. Then dFn

([u], [
−→
0 ]) =

∑n

j=1 uj . Let ai = dFn
([u], [

−→
0 ])− dFn

([u], [xi]). Then

ai = dQn
(u,

−→
0 )−min{dQn

(u, xi), dQn
(u, xi)} = max{2u · xi − xi · −→1 , 2u · xi − xi · −→1 }.

Therefore

ai = max






2(u2i−1 + u2i)− 2, 2





n∑

j=1

uj − u2i − u2i−1



− (n− 2)






for 1 ≤ i ≤ k

and

ak+1 = max






2u2k+1 − 1, 2





n∑

j=1

uj − u2k+1



− (n− 1)






.

Firstly, if ai is even for every i ≤ k and ak+1 is odd, then ai = 2(u2i−1 + u2i) − 2 for every i ≤ k and
ak+1 = 2u2k+1 − 1. Thus,

n∑

j=1

uj =
k+1∑

i=1

u · xi =

(
k+1∑

i=1

ai + n

)

/2.

Secondly, if ak+1 is even, then

2





n∑

j=1

uj − u2k+1



− (n− 1) > 2u2k+1 − 1 ⇒ 2
n∑

j=1

uj > 4u2k+1 + n− 2 ≥ n− 2 = 2k − 1.

Since dQn
(u,

−→
0 ) =

∑n

j=1 uj ≤ k, we have
∑n

j=1 uj = k.

Finally, if ai is odd for some i ≤ k, then ai = 2
(
∑n

j=1 uj − u2i − u2i−1

)

− (n− 2) and

2(u2i−1 + u2i)− 2 < 2





n∑

j=1

uj − u2i − u2i−1



− (n− 2) ⇒ u2i−1 + u2i <
2
∑n

j=1 uj − (n− 4)

4
≤ 3

4
.
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It leads that u2i−1 + u2i = 0. We have
∑n

j=1 uj = (ai + n− 2)/2 + (u2i−1 + u2i) = (ai + n− 2)/2.

From the above discussion, dFn
([u], [

−→
0 ]) is uniquely determined by the vector (a1, . . . , ak+1). Therefore,

S is a doubly distance resolving set of Fn on [
−→
0 ].

Lemma 4.6. If n = 2k is even, then φ(Fn) ≤ n− 1.

Proof. Let xi = (xi
1, . . . , x

i
n) ∈ V (Qn) such that for 0 ≤ i ≤ n,

xi
j =

{

1 j ≤ i

0 otherwise

Let S = {[x1], . . . , [xn−1]}. It suffices to prove that S is a doubly distance resolving set of Fn on [
−→
0 ].

Let [u] be a vertex of Fn. Without loss of generality, we assume that dQn
(u,

−→
0 ) ≤ k. Then dFn

([u], [
−→
0 ]) =

∑n

j=1 uj . Let ai = dFn
([u], [

−→
0 ])− dFn

([u], [xi]),

bi = dQn
(u,

−→
0 )− dQn

(u, xi) = 2u · xi − xi · −→1 = 2

i∑

j=1

uj − i

and

ci = dQn
(u,

−→
0 )− dQn

(u, xi) = 2u · xi − xi · −→1 = 2

n∑

j=i+1

uj − (n− i).

Then

ai = max{bi, ci} = max






2

i∑

j=1

uj − i, 2

n∑

j=i+1

uj − (n− i)






.

Let di = bi − ci. First, since b0 = cn = 0, we have d0 ≤ 0 and dn ≥ 0. Second, |di+1 − di| ≤ |bi+1 − bi|+
|ci+1− ci| = |2ui+1−1|+ |1−2ui+1| = 2. Third, since bi+ ci = 2

∑n
j=1 uj −n is even, di is even. Combining

them with the principle of bisection method, there is a k such that dk = 0, i.e. ak = bk = ck. Besides, for
each i such that bi 6= ci, we have ai = max{bi, ci} > (bi + ci)/2 =

∑n
j=1 uj − n/2 = (bk + ck)/2 = ak, i.e.

ak = min{ai : i ∈ {0, 1, . . . , n}}. Note that a0 = an = 0. Therefore,

n∑

j=1

uj =

k∑

j=1

uj +

n∑

j=k+1

uj =
ak + k

2
+

ak + (n− k)

2
= ak +

n

2
.

From the above, dFn
([u], [

−→
0 ]) is uniquely determined by the vector (a1, . . . , ak+1). Therefore, S is a

doubly distance resolving set of Fn on [
−→
0 ].

By Theorems 2.3 and 4.4, we have the following theorem.

Theorem 4.7. If n ≥ 3 is odd, then Ψ(Fn) ≤ β(Fn) + (n + 1)/2 = n/2 + o(n). If n is even, then
Ψ(Fn) ≤ β(Fn) + n− 1 = n+ o(n).

5 NP-completeness

A split graph is a graph whose vertex set is the disjoint union of a clique C and an independent set I. In
other words, every two vertices in C are connected by an edge, while no two vertices in I are connected by
an edge. There is no restriction on edges having one end in C and one end in I.

Similarly, a bipartite graph is a graph whose vertex set is the disjoint union of two independent sets S1

and S2. A co-bipartite graph is a graph whose vertex set is the disjoint union of two cliques C1 and C2.
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In this section, we prove that the minimal doubly resolving set problem is NP-hard even for split graphs,
bipartite graphs and co-bipartite graphs. The proof is an extension of the proof for metric dimension problem
in [10]. Besides, we omit some details that were mentioned in [10].

The 3-dimensional matching problem is defined as follows. Given three disjoint sets A,B,C such that
|A| = |B| = |C| = n, and a set of triples S ⊆ A×B ×C, is there a subset S′ ⊆ S such that each element of
A ∪B ∪C occurs in exactly one of the triples of S′. It is well-known that 3-dimensional matching problem
is NP-hard, due to Karp [18].

For each subset S′ ⊆ S, the cost of S′ is calculated by c(S′) = |S′|+3n−|⋃(a,b,c)∈S′{a, b, c}|. Note that if
S′ is a 3-dimensional matching, then c(S′) = n. Let N = 212n and n′ = nN . Let A =

⋃N
i=1 Ai, B =

⋃N
i=1 Bi

and C =
⋃N

i=1 Ci, where Ai, Bi, Ci are the copies of A,B,C respectively. Let S =
⋃N

i=1 Si, where Si is

the copy of S corresponding to Ai, Bi, Ci. It is clear that S ′ =
⋃N

i=1 S
′
i ⊆ S is a 3-dimensional matching

if S′ ⊆ S is a 3-dimensional matching and S′
i is the copy of S′ corresponding to Ai, Bi, Ci. Furthermore,

Epstein et al. [10] proved the following lemma.

Lemma 5.1 (Epstein et al. [10]). There is a 3-dimensional matching S′ ⊆ S if and only if there is a subset
S ′ ⊆ S such that c(S ′) ≤ n′ +

√
n′ − 1.

Let S = {s0, s1, . . . , sτ−1}, v = ⌈log2 τ⌉ and K = n′ + v + 5. Note that K < n′ +
√
n′ − 4. They

construct a graph G whose vertices are partitioned into two sets I = {sA, sB, sC , sD} ∪ S and J = A ∪ B ∪
C ∪ {d0, d1, . . . , dv−1}. If u ∈ J and v ∈ I, then {u, v} ∈ E in the seven following cases (see Figure 4):

1. u ∈ A and v = sA.
2. u ∈ B and v = sB.
3. u ∈ C and v = sC .
4. u ∈ A ∪ B ∪ C and v = sD.
5. u ∈ {a, b, c} and v = (a, b, c) ∈ S
6. u = di and v = sj such that ⌊j/2i⌋ mod 2 = 1
7. u = di and v = sD,
The set of additional edges of G is defined according to the following cases. For the case of bipartite

graphs there are no additional edges. For the case of split graphs, J is a clique and I is an independent set,
and for the case of co-bipartite graphs both I and J are cliques. Clearly, the construction of the graph G in
all cases can be done in polynomial time. Then they prove the following lemma.

Lemma 5.2 (Epstein et al. [10]). (a) If G has a resolving set L such that |L| ≤ K, then there is a subset
S ′ ⊆ S such that c(S ′) ≤ K + 3 < n′ +

√
n′ − 1.

(b) If there is a 3-dimensional matching S ′ ⊆ S, then L = S ′ ∪ {sA, sB, sC, sD} ∪ {d0, d1, . . . , dv−1} is a
resolving set of G. Note that |L| = K − 1.

Now let us consider the minimal doubly resolving set problem.

Lemma 5.3. (a) If G has a doubly resolving set L such that |L| ≤ K, then there is a subset S ′ ⊆ S such
that c(S ′) ≤ K + 3 < n′ +

√
n′ − 1.

(b) If there is a 3-dimensional matching S ′ ⊆ S, then L = S ′ ∪ {sA, sB, sC, sD} ∪ {d0, d1, . . . , dv−1} is a
doubly resolving set of G. Note that |L| = K − 1.

Proof. By Lemma 5.2(a), we get (a) immediately since L is also a resolving set. In order to prove (b), by
Lemmas 2.2 and 5.2(b), it suffices to prove that L′ = {sA, sB, sC} ∪ {d0, d1, . . . , dv−1} is a doubly distance
resolving set on sD.

It is easy to check that for each u ∈ V (G), dG(u, sD) ≤ 2. In addition, for the case that G is a co-bipartite
graph, dG(u, sD) ≤ 1. Let {u, v} be the pair of vertices with dG(u, sD) 6= dG(v, sD). Then there exist only
three possibilities:

Case 1: u = sD and dG(v, sD) = 1. If v ∈ {d0, d1, . . . , dv−1}, then {u, v} is doubly resolved by {u, v}. If
v ∈ A ∪ B ∪ C, then without loss of generality, we assume that v ∈ A. Since dG(u, u)− dG(v, u) = 0 − 1 <
1 − 1 ≤ dG(u, sA) − dG(v, sA), {u, v} is doubly resolved by {u, sA}. The following situations only happen
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sA sB sC sD

a1 b1 c1a2 b2 c2a3 b3 c3

s0 s1 s2 s3 s4 s5 s6

d0 d1 d2

I

J

I

J

Figure 4. An example for constructing for the case of bipartite graphs (the instance actually is much larger),
where S = {(a1, b1, c1), (a1, b2, c3), (a1, b3, c2), (a2, b1, c2), (a2, b2, c3), (a3, b3, c1), (a3, b3, c2)}

when G is a co-bipartite graph. If v ∈ {sA, sB, sC}, then {u, v} is doubly resolved by {u, v}. If v ∈ S, then
dG(u, u)− dG(v, u) = 0− 1 < 1− 1 = dG(u, sA)− dG(v, sA), i.e. {u, v} is doubly resolved by {u, sA}.

Case 2: u = sD and dG(v, sD) = 2. If v ∈ {sA, sB, sC}, then {u, v} is doubly resolved by {u, v}. If v ∈ S,
then dG(u, u)− dG(v, u) = 0− 2 < 2− 2 = dG(u, sA)− dG(v, sA), i.e. {u, v} is doubly resolved by {u, sA}.

Case 3: dG(u, sD) = 1 and dG(v, sD) = 2. If u ∈ A ∪ B ∪ C, then without loss of generality, we assume
that u ∈ A. If v ∈ S, then dG(u, sD)−dG(v, sD) = 1−2 < 2−2 ≤ dG(u, sB)−dG(v, sB), i.e. {u, v} is doubly
resolved by {sD, sB}. If v ∈ {sA, sB, sC}, then dG(u, sD)− dG(v, sD) = 1− 2 < 1− 0 ≤ dG(u, v)− dG(v, v),
i.e. {u, v} is doubly resolved by {sD, v}. Now we assume that u ∈ {d0, d1, . . . , dv−1}. If v ∈ S, then
dG(u, sD) − dG(v, sD) = 1 − 2 < 2 − 2 ≤ dG(u, sA) − dG(v, sA), i.e. {u, v} is doubly resolved by {sD, sA}.
If v ∈ {sA, sB, sC}, then dG(u, sD) − dG(v, sD) = 1 − 2 < 2 − 0 ≤ dG(u, v) − dG(v, v), i.e. {u, v} is doubly
resolved by {sD, v}.

Note that by Lemmas 5.1 and 5.3, there is a 3-dimensional matching S′ ⊆ S if and only if G has a doubly
resolving set L such that |L| ≤ K. From the above, we get the following theorem.

Theorem 5.4. Given a value K and a graph G that is a split graph, a bipartite graph or a co-bipartite
graph, deciding whether Ψ(G) ≤ K is NP-complete.
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6 Algorithms and experimental results

Lindström’s construction of weighing strategy is a very creative method. For the details and the correctness,
the interested reader is referred to Section 2.4 in [1].

Let T be a finite set and F ⊆ 2T a collection of subsets. F is called a (simplicial) complex if A ∈ F and
B ⊆ A imply B ∈ F . Recall that M(n) is the minimum number of weighings for n coins. Lindström proved
the following theorem.

Theorem 6.1 (Lindström [26]). M(
∑

A∈F |A|) ≤ |F| − 1 for every complex F .

For a positive integer m, the binary representation can be written to m =
∑t

i=1 2
ki . Then let Fm =

{k1, k2, . . . , kt} with F0 = ∅. For example, 10 = (1010)2 = 21 + 23 and F10 = {1, 3}. It is easy to know
that Fm = {F0, F1, . . . , Fm−1} is a complex. Based on Theorems 3.4 and 3.5, we can construct a doubly
resolving set of Qn with cardinality |F| for every complex F and n ≤∑A∈F |A|. Our algorithm for finding
upper bounds of Ψ(Qn) is given in Algorithm 1.

Algorithm 1: Finding upper bounds of Ψ(Qn).
Input: A positive integer m.
Output: Upper bounds P (n) of Ψ(Qn) for n ≤∑A∈Fm

|A|.
1 N := 0;
2 for i := 1 to m− 1 do

3 N2 := N ;
4 j := i;
5 while j > 0 do

6 if j mod 2 = 1 then

7 N2 := N2 + 1;
8 j := ⌊j/2⌋;
9 for n := N + 1 to N2 do

10 P (n) := i+ 1;
11 N := N2;

We use βn and Ψn to denote the upper bounds of β(Qn) and Ψ(Qn), respectively. The genetic algo-
rithm (GA), variable neighborhood search (VNS) algorithm and IP-based swapping (IPBS) algorithm were
reported in [24], [27] and [14], respectively. Our computing method is Algorithm 1. Due to the limita-
tion of the memory space and computing time, the previous results only compute for n ≤ 22. Except for
n = 14, 16, 18, our upper bounds are same with them (see Table 2). Note that conversely their results ac-
tually improved the Lindström’s upper bounds for coin weighing problem in n = 14, 16, 18, i.e. M(14) ≤ 8,
M(16) ≤ 9 and M(18) ≤ 10. In addition, our upper bound of Ψ(Q28) is better than the upper bound of
β(Q28) that founded by IPBS (see Table 3). Recall that β(Qn) ≤ Ψ(Qn). What is more, when 29 ≤ n ≤ 90,
all of our upper bounds of Ψ(Qn) are not more than the upper bounds of β(Qn) that is calculated by a
dynamic programming (DP) procedure in [28] (see Table 4). Besides, some of our upper bounds of Ψ(Qn)
are even better than their upper bounds of β(Qn).
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n GA VNS IPBS Our
1 2 - - 2
2 3 - - 3
3 4 - - 4
4 4 - - 4
5 5 - - 5
6 6 - - 6
7 6 - - 6
8 7 7 7 7
9 7 7 7 7
10 8 8 8 8
11 8 8 8 8
12 9 8 8 8
13 9 9 9 9
14 10 9 9 10
15 10 10 10 10
16 11 10 10 11
17 12 11 11 11
18 - - 11 12
19 - - 12 12
20 - - 12 12
21 - - 13 13
22 - - 13 13

Table 2. Ψn, n ≤ 22

n βn (IPBS) Ψn (Our)
23 13 14
24 14 14
25 14 14
26 15 15
27 15 15
28 16 15

Table 3. βn and Ψn, 23 ≤ n ≤ 28

n 29 30 31 32 33 34 35 36 37 38 39 40 41

βn (DP) 16 16 16 16 17 18 19 19 20 21 21 22 22
Ψn (Our) 16 16 16 16 17 18 18 19 19 20 20 20 21

n 42 43 44 45 46 47 48 49 50 51 52 53 54

βn (DP) 23 23 23 24 24 25 25 26 27 28 28 29 30
Ψn (Our) 21 22 22 22 23 23 23 24 24 24 24 25 25

n 55 56 57 58 59 60 61 62 63 64 65 66 67

βn (DP) 30 30 31 31 32 32 32 32 32 32 32 32 32

Ψn (Our) 26 26 26 27 27 27 28 28 28 28 29 29 29
n 68 69 70 71 72 73 74 75 76 77 78 79 80

βn (DP) 32 32 32 32 32 32 32 32 32 32 32 32 32
Ψn (Our) 30 30 30 30 31 31 31 31 32 32 32 32 32

n 81 82 83 84 85 86 87 88 89 90 91 92 93

βn (DP) 33 34 35 35 36 37 37 38 38 39 - - -
Ψn (Our) 33 34 34 35 35 36 36 36 37 37 38 38 38

Table 4. βn and Ψn, 29 ≤ n ≤ 93

Recall that Chartrand et al. [7] and Kratica et al. [24] have given the 0–1 integer linear programming
formulations for the metric dimension problem and the minimal doubly resolving set problem respectively.
Using the similar method, we give the 0–1 integer linear programming formulations for computing φ(G, s).

For a doubly distance resolving set S of G on s, let

xt =

{

1 if t ∈ S

0 otherwise.
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Let T (G, s) = {(u, v) : dG(u, s) 6= dG(v, s)}. Let

A(u,v),(s,t) =

{

1 if dG(u, s)− dG(u, t) 6= dG(v, s)− dG(v, t)

0 otherwise.

The following 0–1 linear programming model of calculating the value of φ(G, s) can be formulated as:

min
∑

t∈V (G)

xt (1)

s.t.
∑

t∈V (G)

A(u,v),(s,t)xt ≥ 1 ∀(u, v) ∈ T (G, s) (2)

xt ∈ {0, 1} ∀t ∈ V (G). (3)

By Lemma 2.1, it is easy to see that each feasible solution of (2)-(3) defines a doubly distance resolving set
S of G on s, and vice versa.

We use 0–1 linear programming model to compute β(Fn), φ(Fn) and Ψ(Fn) for n ≤ 10 by Gurobi
Optimizer (see Table 5). Note that the values of β(Fn) for n ≤ 8 have computed in [2].

n 2 3 4 5 6 7 8 9 10
β(Fn) 1 3 6 4 8 6 11 7 ≤ 14
Ψ(Fn) 2 3 6 5 9 6 11 7 ≤ 14
φ(Fn) 1 1 3 2 5 3 6 3 ≤ 8

Table 5. β(Fn), φ(Fn) and Ψ(Fn), n ≤ 10

7 Open problems

In Section 3, we proved that Ψ(Hn,q) ≤ β(Hn,q) + q − 1. However, we do not know whether it is best
possible. We pose the following question.

Question 7.1. For every positive integer n, determine the smallest positive value f(q), such that Ψ(Hn,q) ≤
β(Hn,q) + f(q).

By the values of β(Fn) and Ψ(Fn) for n ≤ 10 in Table 5, we raise the following conjecture.

Conjecture 7.1. For every integer n ≥ 2, β(Fn) ≤ Ψ(Fn) ≤ β(Fn) + 1.

We observe that β(F2n) ≈ 2β(F2n−1), Ψ(F2n) ≈ 2Ψ(F2n−1) and φ(F2n) ≈ 2φ(F2n−1) when n is small by
Table 5. Besides, it seems to remain true when n is large by comparing Lemma 4.2 with Lemma 4.3, as well
as comparing Lemma 4.5 with Lemma 4.6. We pose the following question and conjecture that the values
are 2.

Question 7.2. Determine the values of

lim
n→+∞

β(F2n)

β(F2n−1)
, lim
n→+∞

Ψ(F2n)

Ψ(F2n−1)
, lim
n→+∞

φ(F2n)

φ(F2n−1)
.
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[11] P. Erdős, A. Rényi, On two problems of information theory, Magyar Tud. Akad. Mat. Kutató Int. Közl.
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