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Abstract

Let r > 3 be an integer and G be a graph. Let §(G), A(G), a(G) and pu(G) denotes minimum
degree, maximum degree, independence number and matching number of G, respectively. Recently,
Caro, Davila and Pepper proved 6(G)a(G) < A(G)u(G). Mohr and Rautenbach characterized
the extremal graphs for non-regular graphs and 3-regular graphs. In this note, we characterize
the extremal graphs for all r-regular graphs in term of Gallai-Edmonds Structure Theorem, which
extends Mohr and Rautenbach’s result.
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1 Introduction

In this paper, we consider finite undirected graphs without loops. Let G be a graph with vertex set
V(G) and edge set E(G). The number of vertices of G is called its order and denoted by |V (G)].
On the other hand, the number of edges in G is called its size and denoted by e(G). For a vertex
u of a graph G, the degree of u in G is denoted by dg(u), and the minimum and maximum vertex
degrees of G will be denoted §(G) and A(G), respectively. The set of vertices adjacent to u in G
is denoted by Ng(u). For S C V(G), the subgraph of G induced by S is denoted by GI[S]. For
two disjoint subsets S, T C V(G), let E¢(S,T) denote the set of edges of G joining S to T and let
eq(S,T) = |Eg(S,T)|. A component is trivial if it has no edges; otherwise it is nontrivial.

A matching of a graph is a set of edges such that no two edges share a vertex in common. For a
matching M, a vertex u of G is called saturated by M if u is incident to an edge of M. A matching
M is a mazimum matching of G if there does not exist a matching M’ of G such that |M’'| > |M].
A perfect matching of a graph is a matching saturating all vertices. The cardinality of a maximum
matching is called the matching number of G and is denoted by u(G). An independent set is a set
of vertices in a graph, no two of which are adjacent. A mazimum independent set is an independent
set of largest possible size for a given graph G. The cardinality of a maximum independent set is
called the independence number of G and is denoted by a(G).

There are many relationships between the graph parameters a(G) and u(G). It is known that
5] +1 < a(G)+u(G) < V(G)| < a(G)+2u(G) holds for every graph G. If o(G) 4+ u(G) = [V(G)|,
then G is called Konig-Egervdry graph [BI10]. It is easy to see that if G is a Kénig-Egervéry graph,
then a(G) > u(G). The Konig-Egervary graph have been extensively studied in [T1,3L618].
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Recently, Levit et al. [7] showed that «(G) < p(G) under the condition that G contains an
unique odd cycle. Caro, Davial and Pepper [4] obtained the following results.

Theorem 1 (Caro, Davial and Pepper, [d). If G is a graph, then
5(G)alG) < AG(G),
and this bound is sharp.
Theorem 2 (Caro, Davial and Pepper, [4] ). If G is a r-reqular graph with r > 0, then
a(G) < u(G).
They also proposed the following two open problems.
Problem 3 (Caro, Davial and Pepper, []). Characterize a(G) = p(G) whenever G is 3-regular.

Problem 4 (Caro, Davial and Pepper, []). Characterize all graphs G for which §(G)a(G) =
A(G)u(G).

Mohr and Rautenbach [9] characterized the non-regular extremal graphs as well as 3-regular
graphs, which solved Problems Bl and @ In the note, we characterize r-regular graphs G with
a(G) = u(G) in term of Gallai-Edmonds Structure Theorem.

Now we firstly introduce Gallai-Edmonds Structure Theorem [II]. For a graph G, denote by
D¢ the set of all vertices in G which are not saturated by at least one maximum matching of G. Let
Ag be the neighbor set of D¢, i.e., the set of vertices in V(G) — D¢g adjacent to at least one vertex
in D¢. Finally let Co = V(G) — Dg — Ag. Clearly, this partition is well-defined for every graph and
dose not rely on the choices of maximum matchings. A graph G is said to be factor-critical if G — v
has a perfect matching for any vertex v € V(G). A matching is said to be a near-perfect matching
if it covers all vertices but one. For a bipartite graph H = (A, B), the set A with positive surplus if
[N (X)| > | X| for every non-empty subset X of A. The subgraph of G induced by a vertex subset
S is denoted by G[S].

Theorem 5 (Gallai-Edmonds Structure Theorem, see [I1]). Let G be a graph and let Dg, Cq and
Ag be the vertez-partition defined above. Then

(i) the component of the subgraph induced by D¢ are factor-critical;
(i) the subgraph induced by Cq has a perfect matching;

(iil) #f M is any mazimum matching of G, it contains a near-perfect matching of each component
of D¢g, a perfect matching of each component of Ca and matches all vertices of Ag with
vertices in distinct component of Dg;

(iv) the bipartite graph obtained from G by deleting the vertices of Cq and the edges spanned by
Ag and by contracting each component of D¢ to a single vertex has positive surplus (as viewed
from Ag);

(v) Ec(Cq,Dg) = 0.

The partition (Dg, Ag, Cq) is called a canonical decomposition. When there are no confusions,
we also denote G[D¢], G[A¢] and G[C¢| by Dg, Ag and Cg, respectively. For a maximum matching
M and a component of D; of D¢, we say that D; is M-full if some vertex of D; is matched with a
vertex in Ag, otherwise, D; is M-near full.

Let G be an r-regular graph without perfect matching. A connected component D; of D¢ is
called “good” if D; is a non-trivial connected component and satisfies the following two properties:



(i) a(Di) = (V(Di)] = 1)/2;
(ii) D; contains a maximum independent set I(D;) such that Eq(I(D;), Ag) = 0.

In this note, we character the extremal graphs for all r-regular graphs and obtain the following
results.

Theorem 6. Let G be a connected r-regqular graph. Then o(G) = u(G) if and only if G is bipartite
or (Dg, Ag,Cq) satisfies that

(i) Ce =0,
(ii) Ag C I(G) for any maximum independent set of G,

(iil) every nontrivial component of D¢ is good.

2 Proof of Theorem 6

Before proving the Theorem 6, we firstly show the following lemma.

Lemma 7. Let G be a connected r-regular graph without perfect matching. If a(G) = p(G), then
(i) Ag C I(G) for any mazimum independent set of G;
(i) Cq = 0.
Proof. Firstly, we show (i). Let I(G) be an arbitrary maximum independent set of G, let Ay, =
I(G) N Ag and By, = I(G) N B, where Be; € D¢ denotes the set of isolated vertices of Dg. Let

q denote the number of connected components of Dg. Let D; denote the connected component of
D¢ for 1 <i < ¢q. By Theorem [ (iii), we have

wWG) = u(Cq) + [Ac| + n(Dg)

1 1
= 5ICal+ 4gl + 5 > (IDil - 1)

i=1
ie.,

q

w(G) = 31Cal + |Aal + 5 S (D]~ 1) 1)

i=1
Since D; is factor-critical, we have a(D;) < (|D;| — 1)/2. Thus we have

q

1(G) N Del < 53 "(1Dil - 1),

i=1

By Theorem [ (ii), C has a perfect matching. Thus we infer that

1
a(Cg) < 5|Cc|

Hence,

a(G) = [I(G)| = [I(G) N Ca| + [1(G) N Ag| + [I(G) N Dg|

< a(Cq) +|Ag| + |Bg| + a(Dg — Bg)

<«
1 1<
< §|CG| + |Ag| + |Bg| + 3 Z(IDZ-I -1),

i=1



ie.,

1 q
|CG|+|AIG|+|B/G|+§Z(|DZ'|_1)7 (2)

i=1

a(G) <

N =

Claim 1. B'(G) = 0.

By contradiction. Suppose that By, # 0. Note that o(G) = p(G). Combining (@) and @), we
have

[Ac| = |AG| + | Bgl- (3)

Since G is an regular graph and By, is an indepednet set, we have |Ng(By,)| > |Bg| with equality
if and only if G[Ng(B¢;) U Bg;] is a connected component of G and N¢/(By;) is also an independent
set. Note that G is connected. So if [Ng(Bg)| = |Bg|, then V(G) = By U Ng(Bg;) and G is
an r-regular bipartite graph, which implies that G has a perfect matching by Hall’'s Theorem, a
contradiction. Thus we may assume that [Ng(Bg;)| > |Bg|. Since Af, U By, is an independent set,
we have A, C Ag — Ng(By;). Thus

[AG| + 1Bg| < [Ac = Na(Bg)| + [Bal < |4cl,
contradicting to ([B]). This completes the proof of claim 1.
By Claim 1, |Ag| = |Ay|, then we have Ag = Ay, C I(G). This completes the proof of (i).

Next we show (ii). Suppose that the result does not hold. Since «(G) = u(G), by @) and @),
we have

[1(G) N Cal = a(Cg) = u(Ca) = 31Cal.

Recall that Ag C I(G). One can see that Fg(Ag, [(G) N Cg) = 0. Since G is r-regular, we have
1 1
57‘|C@| =r|I(G)NCq| <ec(I(G)NCqs,Ce— (I(G)NCg)) <r|Ce — (I(G)NCq)| = 5T|Cc|,

which implies Eq(Ag,Ce — (I(G) N Cg)) = 0. Thus we have Eq(Ag,Cq) = (. Note that
E¢(Dg,Cqg) =0 by Theorem[Hl (v). On the other hand, since G contains no perfect matchings, one
can see that Dg # () by definition of Dg. Since G is connected, we may infer that Cg = (). This
completes the proof of Lemma [7l O

Proof of the Theorem 6. Firstly, we consider sufficiency. Let G be an r-regular bipartite graph
with bipartition (A4, B). One can see that |A| = |B| and «(G) = m By Hall’s Theorem, G has
a perfect matching, i.e., u(G) = @ Therefore, a(G) = p(G).
Now we may assume that G is a regular graph and satisfies the following three conditions
(i) Co =10,
(ii) Ag C I(G) for any maximum independent set of G,

(iii) every nontrivial component of D¢ is good.

Let g denote the number of connected components of D¢ and let D; denote the connected component
of D¢ for 1 <i < ¢. By Theorem [ (iii),we have

w(@) =14l + 3 (D1 - 1), (1)

=1



Since D; is good for 1 <4 < ¢, then D; contains an independent set I(D;) such that

[I(Dy)| = (IV(Di)| = 1)/2 and Ec(I(Ds), Ac) = 0.
When D; is an isolated vertex, I(D;) = 0. So I(G) = Ag|JU!_,I(D;) is an independent set of G.
Note that
14
(&)l = Ac| + 5 > (1Di| = 1). (5)

=1

Since I(G) is a maximum independent set, combining (@) and (), one can see that

Next, we prove the necessity. Let G be an r-regular graph with «(G) = u(G). Let I(G) be a
maximum independent set of G. We discuss two cases.

Case 1. G has a perfect matching.

Note that
w@G) = V(G| = a(G)
and
e =2 - v - 16) (6)
One can see that
ec(I(@),V(G) - I(G)) = a(G)r = IV(2G)| .

It follows that V(G) — I(G) is an independent set and G is an r-regular bipartite graph.
Case 2. G has no perfect matching.

By Lemmal[ll C; = () and Ag C I(G). Let Bg denote the set of isolated vertices of D¢g. Since G
is connected, then for every x € Bg, Eq({z}, Ag) # 0. So we have B¢ NI(G) = (. So it is sufficient
for us to show that every nontrivial component D; of D¢ is good. Since D; is factor-critical, we
have a(D;) < £(|D;| — 1). Recall that Ag C I(G). Then we have

P

a(G) = |I(G)| = [Ag| + Y V(D) N I(G)| < [Aa| + 5 (1Dl ~ 1),

i=1
where p denotes the number of connected components of Dg with order at least three. Note that

P

a(G) = (@) = || + 3 S (IDi ~ 1)

i=1

Hence we have [I[(G) NV (D;)| = 3(|D;| — 1) and so I(G) NV (D;) is a maximum independent set of
D;. Moreover, one can see that Eq(I(G) NV (D;), Ag) = 0 since Ag C I(G). This completes the
proof. O
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