Regular graphs with equal matching number and independence number*

Hongliang Lu ${ }^{\dagger}$ Zixuan Yang
School of Mathematics and Statistics, Xian Jiaotong University
Xi'an, Shaanxi 710049, P.R.China

Abstract

Let $r \geq 3$ be an integer and G be a graph. Let $\delta(G), \Delta(G), \alpha(G)$ and $\mu(G)$ denotes minimum degree, maximum degree, independence number and matching number of G, respectively. Recently, Caro, Davila and Pepper proved $\delta(G) \alpha(G) \leq \Delta(G) \mu(G)$. Mohr and Rautenbach characterized the extremal graphs for non-regular graphs and 3 -regular graphs. In this note, we characterize the extremal graphs for all r-regular graphs in term of Gallai-Edmonds Structure Theorem, which extends Mohr and Rautenbach's result.

Keywords: Independence number; matching number; regular graphs 2010 Mathematical Subject Classification: 05C69

1 Introduction

In this paper, we consider finite undirected graphs without loops. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of G is called its order and denoted by $|V(G)|$. On the other hand, the number of edges in G is called its size and denoted by $e(G)$. For a vertex u of a graph G, the degree of u in G is denoted by $d_{G}(u)$, and the minimum and maximum vertex degrees of G will be denoted $\delta(G)$ and $\Delta(G)$, respectively. The set of vertices adjacent to u in G is denoted by $N_{G}(u)$. For $S \subseteq V(G)$, the subgraph of G induced by S is denoted by $G[S]$. For two disjoint subsets $S, T \subseteq V(G)$, let $E_{G}(S, T)$ denote the set of edges of G joining S to T and let $e_{G}(S, T)=\left|E_{G}(S, T)\right|$. A component is trivial if it has no edges; otherwise it is nontrivial.

A matching of a graph is a set of edges such that no two edges share a vertex in common. For a matching M, a vertex u of G is called saturated by M if u is incident to an edge of M. A matching M is a maximum matching of G if there does not exist a matching M^{\prime} of G such that $\left|M^{\prime}\right|>|M|$. A perfect matching of a graph is a matching saturating all vertices. The cardinality of a maximum matching is called the matching number of G and is denoted by $\mu(G)$. An independent set is a set of vertices in a graph, no two of which are adjacent. A maximum independent set is an independent set of largest possible size for a given graph G. The cardinality of a maximum independent set is called the independence number of G and is denoted by $\alpha(G)$.

There are many relationships between the graph parameters $\alpha(G)$ and $\mu(G)$. It is known that $\left\lfloor\frac{n}{2}\right\rfloor+1 \leq \alpha(G)+\mu(G) \leq|V(G)| \leq \alpha(G)+2 \mu(G)$ holds for every graph G. If $\alpha(G)+\mu(G)=|V(G)|$, then G is called König-Egerváry graph 5010. It is easy to see that if G is a Kőnig-Egerváry graph, then $\alpha(G) \geq \mu(G)$. The König-Egerváry graph have been extensively studied in [1]3,6][8].

[^0]Recently, Levit et al. [7] showed that $\alpha(G) \leq \mu(G)$ under the condition that G contains an unique odd cycle. Caro, Davial and Pepper [4] obtained the following results.

Theorem 1 (Caro, Davial and Pepper, [4). If G is a graph, then

$$
\delta(G) \alpha(G) \leq \Delta(G) \mu(G)
$$

and this bound is sharp.
Theorem 2 (Caro, Davial and Pepper, [4]). If G is a r-regular graph with $r>0$, then

$$
\alpha(G) \leq \mu(G)
$$

They also proposed the following two open problems.
Problem 3 (Caro, Davial and Pepper, 4). Characterize $\alpha(G)=\mu(G)$ whenever G is 3-regular.
Problem 4 (Caro, Davial and Pepper, [4). Characterize all graphs G for which $\delta(G) \alpha(G)=$ $\Delta(G) \mu(G)$.

Mohr and Rautenbach [9] characterized the non-regular extremal graphs as well as 3-regular graphs, which solved Problems 3 and 4] In the note, we characterize r-regular graphs G with $\alpha(G)=\mu(G)$ in term of Gallai-Edmonds Structure Theorem.

Now we firstly introduce Gallai-Edmonds Structure Theorem [11. For a graph G, denote by D_{G} the set of all vertices in G which are not saturated by at least one maximum matching of G. Let A_{G} be the neighbor set of D_{G}, i.e., the set of vertices in $V(G)-D_{G}$ adjacent to at least one vertex in D_{G}. Finally let $C_{G}=V(G)-D_{G}-A_{G}$. Clearly, this partition is well-defined for every graph and dose not rely on the choices of maximum matchings. A graph G is said to be factor-critical if $G-v$ has a perfect matching for any vertex $v \in V(G)$. A matching is said to be a near-perfect matching if it covers all vertices but one. For a bipartite graph $H=(A, B)$, the set A with positive surplus if $\left|N_{H}(X)\right|>|X|$ for every non-empty subset X of A. The subgraph of G induced by a vertex subset S is denoted by $G[S]$.

Theorem 5 (Gallai-Edmonds Structure Theorem, see [11). Let G be a graph and let D_{G}, C_{G} and A_{G} be the vertex-partition defined above. Then
(i) the component of the subgraph induced by D_{G} are factor-critical;
(ii) the subgraph induced by C_{G} has a perfect matching;
(iii) if M is any maximum matching of G, it contains a near-perfect matching of each component of D_{G}, a perfect matching of each component of C_{G} and matches all vertices of A_{G} with vertices in distinct component of D_{G};
(iv) the bipartite graph obtained from G by deleting the vertices of C_{G} and the edges spanned by A_{G} and by contracting each component of D_{G} to a single vertex has positive surplus (as viewed from A_{G});
(v) $E_{G}\left(C_{G}, D_{G}\right)=\emptyset$.

The partition $\left(D_{G}, A_{G}, C_{G}\right)$ is called a canonical decomposition. When there are no confusions, we also denote $G\left[D_{G}\right], G\left[A_{G}\right]$ and $G\left[C_{G}\right]$ by D_{G}, A_{G} and C_{G}, respectively. For a maximum matching M and a component of D_{i} of D_{G}, we say that D_{i} is M-full if some vertex of D_{i} is matched with a vertex in A_{G}, otherwise, D_{i} is M-near full.

Let G be an r-regular graph without perfect matching. A connected component D_{i} of D_{G} is called "good" if D_{i} is a non-trivial connected component and satisfies the following two properties:
(i) $\alpha\left(D_{i}\right)=\left(\left|V\left(D_{i}\right)\right|-1\right) / 2$;
(ii) D_{i} contains a maximum independent set $I\left(D_{i}\right)$ such that $E_{G}\left(I\left(D_{i}\right), A_{G}\right)=\emptyset$.

In this note, we character the extremal graphs for all r-regular graphs and obtain the following results.

Theorem 6. Let G be a connected r-regular graph. Then $\alpha(G)=\mu(G)$ if and only if G is bipartite or $\left(D_{G}, A_{G}, C_{G}\right)$ satisfies that
(i) $C_{G}=\emptyset$,
(ii) $A_{G} \subseteq I(G)$ for any maximum independent set of G,
(iii) every nontrivial component of D_{G} is good.

2 Proof of Theorem 6

Before proving the Theorem 6, we firstly show the following lemma.
Lemma 7. Let G be a connected r-regular graph without perfect matching. If $\alpha(G)=\mu(G)$, then
(i) $A_{G} \subseteq I(G)$ for any maximum independent set of G;
(ii) $C_{G}=\emptyset$.

Proof. Firstly, we show (i). Let $I(G)$ be an arbitrary maximum independent set of G, let $A_{G}^{\prime}=$ $I(G) \cap A_{G}$ and $B_{G}^{\prime}=I(G) \cap B_{G}$, where $B_{G} \subseteq D_{G}$ denotes the set of isolated vertices of D_{G}. Let q denote the number of connected components of D_{G}. Let D_{i} denote the connected component of D_{G} for $1 \leq i \leq q$. By Theorem 5 (iii), we have

$$
\begin{aligned}
\mu(G) & =\mu\left(C_{G}\right)+\left|A_{G}\right|+\mu\left(D_{G}\right) \\
& =\frac{1}{2}\left|C_{G}\right|+\left|A_{G}\right|+\frac{1}{2} \sum_{i=1}^{q}\left(\left|D_{i}\right|-1\right)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\mu(G)=\frac{1}{2}\left|C_{G}\right|+\left|A_{G}\right|+\frac{1}{2} \sum_{i=1}^{q}\left(\left|D_{i}\right|-1\right) \tag{1}
\end{equation*}
$$

Since D_{i} is factor-critical, we have $\alpha\left(D_{i}\right) \leq\left(\left|D_{i}\right|-1\right) / 2$. Thus we have

$$
\left|I(G) \cap D_{G}\right| \leq \frac{1}{2} \sum_{i=1}^{q}\left(\left|D_{i}\right|-1\right)
$$

By Theorem 5 (ii), C_{G} has a perfect matching. Thus we infer that

$$
\alpha\left(C_{G}\right) \leq \frac{1}{2}\left|C_{G}\right|
$$

Hence,

$$
\begin{aligned}
\alpha(G)=|I(G)| & =\left|I(G) \cap C_{G}\right|+\left|I(G) \cap A_{G}\right|+\left|I(G) \cap D_{G}\right| \\
& \leq \alpha\left(C_{G}\right)+\left|A_{G}^{\prime}\right|+\left|B_{G}^{\prime}\right|+\alpha\left(D_{G}-B_{G}\right) \\
& \leq \frac{1}{2}\left|C_{G}\right|+\left|A_{G}^{\prime}\right|+\left|B_{G}^{\prime}\right|+\frac{1}{2} \sum_{i=1}^{q}\left(\left|D_{i}\right|-1\right),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\alpha(G) \leq \frac{1}{2}\left|C_{G}\right|+\left|A_{G}^{\prime}\right|+\left|B_{G}^{\prime}\right|+\frac{1}{2} \sum_{i=1}^{q}\left(\left|D_{i}\right|-1\right) \tag{2}
\end{equation*}
$$

Claim 1. $B^{\prime}(G)=\emptyset$.
By contradiction. Suppose that $B_{G}^{\prime} \neq \emptyset$. Note that $\alpha(G)=\mu(G)$. Combining (11) and (2), we have

$$
\begin{equation*}
\left|A_{G}\right|=\left|A_{G}^{\prime}\right|+\left|B_{G}^{\prime}\right| . \tag{3}
\end{equation*}
$$

Since G is an regular graph and B_{G}^{\prime} is an indepednet set, we have $\left|N_{G}\left(B_{G}^{\prime}\right)\right| \geq\left|B_{G}^{\prime}\right|$ with equality if and only if $G\left[N_{G}\left(B_{G}^{\prime}\right) \cup B_{G}^{\prime}\right]$ is a connected component of G and $N_{G}\left(B_{G}^{\prime}\right)$ is also an independent set. Note that G is connected. So if $\left|N_{G}\left(B_{G}^{\prime}\right)\right|=\left|B_{G}^{\prime}\right|$, then $V(G)=B_{G}^{\prime} \cup N_{G}\left(B_{G}^{\prime}\right)$ and G is an r-regular bipartite graph, which implies that G has a perfect matching by Hall's Theorem, a contradiction. Thus we may assume that $\left|N_{G}\left(B_{G}^{\prime}\right)\right|>\left|B_{G}^{\prime}\right|$. Since $A_{G}^{\prime} \cup B_{G}^{\prime}$ is an independent set, we have $A_{G}^{\prime} \subseteq A_{G}-N_{G}\left(B_{G}^{\prime}\right)$. Thus

$$
\left|A_{G}^{\prime}\right|+\left|B_{G}^{\prime}\right| \leq\left|A_{G}-N_{G}\left(B_{G}^{\prime}\right)\right|+\left|B_{G}^{\prime}\right|<\left|A_{G}\right|
$$

contradicting to (3). This completes the proof of claim 1.
By Claim 1, $\left|A_{G}\right|=\left|A_{G}^{\prime}\right|$, then we have $A_{G}=A_{G}^{\prime} \subseteq I(G)$. This completes the proof of (i).
Next we show (ii). Suppose that the result does not hold. Since $\alpha(G)=\mu(G)$, by (11) and (2), we have

$$
\left|I(G) \cap C_{G}\right|=\alpha\left(C_{G}\right)=\mu\left(C_{G}\right)=\frac{1}{2}\left|C_{G}\right|
$$

Recall that $A_{G} \subseteq I(G)$. One can see that $E_{G}\left(A_{G}, I(G) \cap C_{G}\right)=\emptyset$. Since G is r-regular, we have

$$
\frac{1}{2} r\left|C_{G}\right|=r\left|I(G) \cap C_{G}\right| \leq e_{G}\left(I(G) \cap C_{G}, C_{G}-\left(I(G) \cap C_{G}\right)\right) \leq r\left|C_{G}-\left(I(G) \cap C_{G}\right)\right|=\frac{1}{2} r\left|C_{G}\right|
$$

which implies $E_{G}\left(A_{G}, C_{G}-\left(I(G) \cap C_{G}\right)\right)=\emptyset$. Thus we have $E_{G}\left(A_{G}, C_{G}\right)=\emptyset$. Note that $E_{G}\left(D_{G}, C_{G}\right)=\emptyset$ by Theorem $5(\mathrm{v})$. On the other hand, since G contains no perfect matchings, one can see that $D_{G} \neq \emptyset$ by definition of D_{G}. Since G is connected, we may infer that $C_{G}=\emptyset$. This completes the proof of Lemma 7

Proof of the Theorem 6. Firstly, we consider sufficiency. Let G be an r-regular bipartite graph with bipartition (A, B). One can see that $|A|=|B|$ and $\alpha(G)=\frac{|V(G)|}{2}$. By Hall's Theorem, G has a perfect matching, i.e., $\mu(G)=\frac{|V(G)|}{2}$. Therefore, $\alpha(G)=\mu(G)$.

Now we may assume that G is a regular graph and satisfies the following three conditions
(i) $C_{G}=\emptyset$,
(ii) $A_{G} \subseteq I(G)$ for any maximum independent set of G,
(iii) every nontrivial component of D_{G} is good.

Let q denote the number of connected components of D_{G} and let D_{i} denote the connected component of D_{G} for $1 \leq i \leq q$. By Theorem 5 (iii), we have

$$
\begin{equation*}
\mu(G)=\left|A_{G}\right|+\frac{1}{2} \sum_{i=1}^{q}\left(\left|D_{i}\right|-1\right) \tag{4}
\end{equation*}
$$

Since D_{i} is good for $1 \leq i \leq q$, then D_{i} contains an independent set $I\left(D_{i}\right)$ such that

$$
\left|I\left(D_{i}\right)\right|=\left(\left|V\left(D_{i}\right)\right|-1\right) / 2 \text { and } E_{G}\left(I\left(D_{i}\right), A_{G}\right)=\emptyset
$$

When D_{i} is an isolated vertex, $I\left(D_{i}\right)=\emptyset$. So $I(G)=A_{G} \bigcup \cup_{i=1}^{q} I\left(D_{i}\right)$ is an independent set of G. Note that

$$
\begin{equation*}
|I(G)|=\left|A_{G}\right|+\frac{1}{2} \sum_{i=1}^{q}\left(\left|D_{i}\right|-1\right) \tag{5}
\end{equation*}
$$

Since $I(G)$ is a maximum independent set, combining (4) and (5), one can see that

$$
\mu(G)=|I(G)|=\alpha(G)
$$

Next, we prove the necessity. Let G be an r-regular graph with $\alpha(G)=\mu(G)$. Let $I(G)$ be a maximum independent set of G. We discuss two cases.

Case 1. G has a perfect matching.
Note that

$$
\mu(G)=\frac{1}{2}|V(G)|=\alpha(G)
$$

and

$$
\begin{equation*}
|I(G)|=\frac{|V(G)|}{2}=|V(G)-I(G)| \tag{6}
\end{equation*}
$$

One can see that

$$
e_{G}(I(G), V(G)-I(G))=\alpha(G) r=\frac{|V(G)|}{2} r
$$

It follows that $V(G)-I(G)$ is an independent set and G is an r-regular bipartite graph.
Case 2. G has no perfect matching.
By Lemma 7 , $C_{G}=\emptyset$ and $A_{G} \subseteq I(G)$. Let B_{G} denote the set of isolated vertices of D_{G}. Since G is connected, then for every $x \in B_{G}, E_{G}\left(\{x\}, A_{G}\right) \neq \emptyset$. So we have $B_{G} \cap I(G)=\emptyset$. So it is sufficient for us to show that every nontrivial component D_{i} of D_{G} is good. Since D_{i} is factor-critical, we have $\alpha\left(D_{i}\right) \leq \frac{1}{2}\left(\left|D_{i}\right|-1\right)$. Recall that $A_{G} \subseteq I(G)$. Then we have

$$
\alpha(G)=|I(G)|=\left|A_{G}\right|+\sum_{i=1}^{p}\left|V\left(D_{i}\right) \cap I(G)\right| \leq\left|A_{G}\right|+\frac{1}{2} \sum_{i=1}^{p}\left(\left|D_{i}\right|-1\right)
$$

where p denotes the number of connected components of D_{G} with order at least three. Note that

$$
\alpha(G)=\mu(G)=\left|A_{G}\right|+\frac{1}{2} \sum_{i=1}^{p}\left(\left|D_{i}\right|-1\right)
$$

Hence we have $\left|I(G) \cap V\left(D_{i}\right)\right|=\frac{1}{2}\left(\left|D_{i}\right|-1\right)$ and so $I(G) \cap V\left(D_{i}\right)$ is a maximum independent set of D_{i}. Moreover, one can see that $E_{G}\left(I(G) \cap V\left(D_{i}\right), A_{G}\right)=\emptyset$ since $A_{G} \subseteq I(G)$. This completes the proof.

References

[1] F. Bonomo, M. Dourado, G. Durán, L. Faria, L. Grippo and M. Safe, Forbidden subgraphs and the König-Egerváry property, Discrete Appl. Math., 161 (2013), 175-180.
[2] E. Boros, M. Golumbic and V. Levit, On the number of vertices belonging to all maximum stable sets of a graph, Discrete Appl. Math., 124 (2002), 17-25.
[3] J. Bourjolly and W. Pulleyblank, König-Egerváry graphs, 2-bicritical graphs and fractional matchings, Discrete Appl. Math., 24 (1989), 63C-82.
[4] Y. Caro, R. Davila and R. Pepper, New results relating independence and matchings, https://arxiv.org/abs/1909.09093.
[5] R. Deming, Independence numbers of graphsan extension of the König-Egerváry theorem, Discrete Math., 27 (1979), 23-33.
[6] V. Levit and E. Mandrescu, On maximum matchings in König-Egerváry graphs, Discrete Appl. Math., 161 (2013), 1635-1638.
[7] V. Levit and E. Mandrescu, On the critical difference of almost bipartite graphs, https://arxiv.org/abs/1905.09462v1.
[8] L. Lovsz and M. Plummer, Matching Theory, in: Annals of Discrete Mathematics, vol.29, North-Holland, 1986.
[9] E. Mohr and D. Rautenbach, Cubic graphs with equal independence number and matching number, https://arxiv.org/abs/1910.11762.
[10] F. Sterboul. A characterization of the graphs in which the transversal number equals the matching number, J. Combin. Theory Ser. A, 27 (1979), 228C229.
[11] Q. Yu and G. Liu, Graph Factors and Matching Extensions, Springer (2010. ISBN: 9783540939511) (print).

[^0]: *Supported by the National Natural Science Foundation of China under grant No. 11471257 and Fundamental Research Funds for the Central Universities
 ${ }^{\dagger}$ Corresponding email: luhongliang215@sina.com (H. Lu)

