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Abstract

Let r ≥ 3 be an integer and G be a graph. Let δ(G),∆(G), α(G) and µ(G) denotes minimum
degree, maximum degree, independence number and matching number of G, respectively. Recently,
Caro, Davila and Pepper proved δ(G)α(G) ≤ ∆(G)µ(G). Mohr and Rautenbach characterized
the extremal graphs for non-regular graphs and 3-regular graphs. In this note, we characterize
the extremal graphs for all r-regular graphs in term of Gallai-Edmonds Structure Theorem, which
extends Mohr and Rautenbach’s result.
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1 Introduction

In this paper, we consider finite undirected graphs without loops. Let G be a graph with vertex set
V (G) and edge set E(G). The number of vertices of G is called its order and denoted by |V (G)|.
On the other hand, the number of edges in G is called its size and denoted by e(G). For a vertex
u of a graph G, the degree of u in G is denoted by dG(u), and the minimum and maximum vertex
degrees of G will be denoted δ(G) and ∆(G), respectively. The set of vertices adjacent to u in G
is denoted by NG(u). For S ⊆ V (G), the subgraph of G induced by S is denoted by G[S]. For
two disjoint subsets S, T ⊆ V (G), let EG(S, T ) denote the set of edges of G joining S to T and let
eG(S, T ) = |EG(S, T )|. A component is trivial if it has no edges; otherwise it is nontrivial.

A matching of a graph is a set of edges such that no two edges share a vertex in common. For a
matching M , a vertex u of G is called saturated by M if u is incident to an edge of M . A matching
M is a maximum matching of G if there does not exist a matching M ′ of G such that |M ′| > |M |.
A perfect matching of a graph is a matching saturating all vertices. The cardinality of a maximum
matching is called the matching number of G and is denoted by µ(G). An independent set is a set
of vertices in a graph, no two of which are adjacent. A maximum independent set is an independent
set of largest possible size for a given graph G. The cardinality of a maximum independent set is
called the independence number of G and is denoted by α(G).

There are many relationships between the graph parameters α(G) and µ(G). It is known that
⌊n
2 ⌋+1 ≤ α(G)+µ(G) ≤ |V (G)| ≤ α(G)+2µ(G) holds for every graph G. If α(G)+µ(G) = |V (G)|,

then G is called König-Egerváry graph [5,10]. It is easy to see that if G is a Kőnig-Egerváry graph,
then α(G) ≥ µ(G). The König-Egerváry graph have been extensively studied in [1, 3, 6, 8].

∗Supported by the National Natural Science Foundation of China under grant No.11471257 and Funda-
mental Research Funds for the Central Universities

†Corresponding email: luhongliang215@sina.com (H. Lu)

1

http://arxiv.org/abs/2001.01937v1


Recently, Levit et al. [7] showed that α(G) ≤ µ(G) under the condition that G contains an
unique odd cycle. Caro, Davial and Pepper [4] obtained the following results.

Theorem 1 (Caro, Davial and Pepper, [4]). If G is a graph, then

δ(G)α(G) ≤ ∆(G)µ(G),

and this bound is sharp.

Theorem 2 (Caro, Davial and Pepper, [4] ). If G is a r-regular graph with r > 0, then

α(G) ≤ µ(G).

They also proposed the following two open problems.

Problem 3 (Caro, Davial and Pepper, [4]). Characterize α(G) = µ(G) whenever G is 3-regular.

Problem 4 (Caro, Davial and Pepper, [4]). Characterize all graphs G for which δ(G)α(G) =
∆(G)µ(G).

Mohr and Rautenbach [9] characterized the non-regular extremal graphs as well as 3-regular
graphs, which solved Problems 3 and 4. In the note, we characterize r-regular graphs G with
α(G) = µ(G) in term of Gallai-Edmonds Structure Theorem.

Now we firstly introduce Gallai-Edmonds Structure Theorem [11]. For a graph G, denote by
DG the set of all vertices in G which are not saturated by at least one maximum matching of G. Let
AG be the neighbor set of DG, i.e., the set of vertices in V (G)−DG adjacent to at least one vertex
in DG. Finally let CG = V (G)−DG−AG. Clearly, this partition is well-defined for every graph and
dose not rely on the choices of maximum matchings. A graph G is said to be factor-critical if G− v
has a perfect matching for any vertex v ∈ V (G). A matching is said to be a near-perfect matching
if it covers all vertices but one. For a bipartite graph H = (A,B), the set A with positive surplus if
|NH(X)| > |X | for every non-empty subset X of A. The subgraph of G induced by a vertex subset
S is denoted by G[S].

Theorem 5 (Gallai-Edmonds Structure Theorem, see [11]). Let G be a graph and let DG, CG and
AG be the vertex-partition defined above. Then

(i) the component of the subgraph induced by DG are factor-critical;

(ii) the subgraph induced by CG has a perfect matching;

(iii) if M is any maximum matching of G, it contains a near-perfect matching of each component
of DG, a perfect matching of each component of CG and matches all vertices of AG with
vertices in distinct component of DG;

(iv) the bipartite graph obtained from G by deleting the vertices of CG and the edges spanned by
AG and by contracting each component of DG to a single vertex has positive surplus (as viewed
from AG);

(v) EG(CG, DG) = ∅.

The partition (DG, AG, CG) is called a canonical decomposition. When there are no confusions,
we also denote G[DG], G[AG] and G[CG] byDG, AG and CG, respectively. For a maximum matching
M and a component of Di of DG, we say that Di is M-full if some vertex of Di is matched with a
vertex in AG, otherwise, Di is M-near full.

Let G be an r-regular graph without perfect matching. A connected component Di of DG is
called “good” if Di is a non-trivial connected component and satisfies the following two properties:
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(i) α(Di) = (|V (Di)| − 1)/2;

(ii) Di contains a maximum independent set I(Di) such that EG(I(Di), AG) = ∅.

In this note, we character the extremal graphs for all r-regular graphs and obtain the following
results.

Theorem 6. Let G be a connected r-regular graph. Then α(G) = µ(G) if and only if G is bipartite
or (DG, AG, CG) satisfies that

(i) CG = ∅,

(ii) AG ⊆ I(G) for any maximum independent set of G,

(iii) every nontrivial component of DG is good.

2 Proof of Theorem 6

Before proving the Theorem 6, we firstly show the following lemma.

Lemma 7. Let G be a connected r-regular graph without perfect matching. If α(G) = µ(G), then

(i) AG ⊆ I(G) for any maximum independent set of G;

(ii) CG = ∅.

Proof. Firstly, we show (i). Let I(G) be an arbitrary maximum independent set of G, let A′
G =

I(G) ∩ AG and B′
G = I(G) ∩ BG, where BG ⊆ DG denotes the set of isolated vertices of DG. Let

q denote the number of connected components of DG. Let Di denote the connected component of
DG for 1 ≤ i ≤ q. By Theorem 5 (iii), we have

µ(G) = µ(CG) + |AG|+ µ(DG)

=
1

2
|CG|+ |AG|+

1

2

q∑

i=1

(|Di| − 1)

i.e.,

µ(G) =
1

2
|CG|+ |AG|+

1

2

q∑

i=1

(|Di| − 1) (1)

Since Di is factor-critical, we have α(Di) ≤ (|Di| − 1)/2. Thus we have

|I(G) ∩DG| ≤
1

2

q∑

i=1

(|Di| − 1).

By Theorem 5 (ii), CG has a perfect matching. Thus we infer that

α(CG) ≤
1

2
|CG|.

Hence,

α(G) = |I(G)| = |I(G) ∩CG|+ |I(G) ∩AG|+ |I(G) ∩DG|

≤ α(CG) + |A′
G|+ |B′

G|+ α(DG −BG)

≤
1

2
|CG|+ |A′

G|+ |B′
G|+

1

2

q∑

i=1

(|Di| − 1),
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i.e.,

α(G) ≤
1

2
|CG|+ |A′

G|+ |B′
G|+

1

2

q∑

i=1

(|Di| − 1), (2)

Claim 1. B′(G) = ∅.

By contradiction. Suppose that B′
G 6= ∅. Note that α(G) = µ(G). Combining (1) and (2), we

have

|AG| = |A′
G|+ |B′

G|. (3)

Since G is an regular graph and B′
G is an indepednet set, we have |NG(B

′
G)| ≥ |B′

G| with equality
if and only if G[NG(B

′
G) ∪B′

G] is a connected component of G and NG(B
′
G) is also an independent

set. Note that G is connected. So if |NG(B
′
G)| = |B′

G|, then V (G) = B′
G ∪ NG(B

′
G) and G is

an r-regular bipartite graph, which implies that G has a perfect matching by Hall’s Theorem, a
contradiction. Thus we may assume that |NG(B

′
G)| > |B′

G|. Since A′
G ∪B′

G is an independent set,
we have A′

G ⊆ AG −NG(B
′
G). Thus

|A′
G|+ |B′

G| ≤ |AG −NG(B
′
G)|+ |B′

G| < |AG|,

contradicting to (3). This completes the proof of claim 1.

By Claim 1, |AG| = |A′
G|, then we have AG = A′

G ⊆ I(G). This completes the proof of (i).

Next we show (ii). Suppose that the result does not hold. Since α(G) = µ(G), by (1) and (2),
we have

|I(G) ∩ CG| = α(CG) = µ(CG) =
1

2
|CG|.

Recall that AG ⊆ I(G). One can see that EG(AG, I(G) ∩ CG) = ∅. Since G is r-regular, we have

1

2
r|CG| = r|I(G) ∩ CG| ≤ eG(I(G) ∩ CG, CG − (I(G) ∩ CG)) ≤ r|CG − (I(G) ∩ CG)| =

1

2
r|CG|,

which implies EG(AG, CG − (I(G) ∩ CG)) = ∅. Thus we have EG(AG, CG) = ∅. Note that
EG(DG, CG) = ∅ by Theorem 5 (v). On the other hand, since G contains no perfect matchings, one
can see that DG 6= ∅ by definition of DG. Since G is connected, we may infer that CG = ∅. This
completes the proof of Lemma 7.

Proof of the Theorem 6. Firstly, we consider sufficiency. Let G be an r-regular bipartite graph

with bipartition (A,B). One can see that |A| = |B| and α(G) = |V (G)|
2 . By Hall’s Theorem, G has

a perfect matching, i.e., µ(G) = |V (G)|
2 . Therefore, α(G) = µ(G).

Now we may assume that G is a regular graph and satisfies the following three conditions

(i) CG = ∅,

(ii) AG ⊆ I(G) for any maximum independent set of G,

(iii) every nontrivial component of DG is good.

Let q denote the number of connected components ofDG and letDi denote the connected component
of DG for 1 ≤ i ≤ q. By Theorem 5 (iii),we have

µ(G) = |AG|+
1

2

q∑

i=1

(|Di| − 1). (4)
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Since Di is good for 1 ≤ i ≤ q, then Di contains an independent set I(Di) such that

|I(Di)| = (|V (Di)| − 1)/2 and EG(I(Di), AG) = ∅.

When Di is an isolated vertex, I(Di) = ∅. So I(G) = AG

⋃
∪q
i=1I(Di) is an independent set of G.

Note that

|I(G)| = |AG|+
1

2

q∑

i=1

(|Di| − 1). (5)

Since I(G) is a maximum independent set, combining (4) and (5), one can see that

µ(G) = |I(G)| = α(G).

Next, we prove the necessity. Let G be an r-regular graph with α(G) = µ(G). Let I(G) be a
maximum independent set of G. We discuss two cases.

Case 1. G has a perfect matching.

Note that

µ(G) =
1

2
|V (G)| = α(G)

and

|I(G)| =
|V (G)|

2
= |V (G)− I(G)|. (6)

One can see that

eG(I(G), V (G) − I(G)) = α(G)r =
|V (G)|

2
r.

It follows that V (G)− I(G) is an independent set and G is an r-regular bipartite graph.

Case 2. G has no perfect matching.

By Lemma 7, CG = ∅ and AG ⊆ I(G). Let BG denote the set of isolated vertices of DG. Since G
is connected, then for every x ∈ BG, EG({x}, AG) 6= ∅. So we have BG∩I(G) = ∅. So it is sufficient
for us to show that every nontrivial component Di of DG is good. Since Di is factor-critical, we
have α(Di) ≤

1
2 (|Di| − 1). Recall that AG ⊆ I(G). Then we have

α(G) = |I(G)| = |AG|+

p∑

i=1

|V (Di) ∩ I(G)| ≤ |AG|+
1

2

p∑

i=1

(|Di| − 1),

where p denotes the number of connected components of DG with order at least three. Note that

α(G) = µ(G) = |AG|+
1

2

p∑

i=1

(|Di| − 1).

Hence we have |I(G)∩ V (Di)| =
1
2 (|Di| − 1) and so I(G)∩ V (Di) is a maximum independent set of

Di. Moreover, one can see that EG(I(G) ∩ V (Di), AG) = ∅ since AG ⊆ I(G). This completes the
proof.
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