arXiv:2006.00681v2 [cs.DM] 29 Dec 2020

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS
FLAVIA BONOMO-BRABERMAN AND CAROLINA LUCIA GONZALEZ

ABSTRACT. By providing a new framework, we extend previous results on locally
checkable problems in bounded treewidth graphs. As a consequence, we show how to
solve, in polynomial time for bounded treewidth graphs, double Roman domination
and Grundy domination, among other problems for which no such algorithm was
previously known. Moreover, by proving that fixed powers of bounded degree and
bounded treewidth graphs are also bounded degree and bounded treewidth graphs,
we can enlarge the family of problems that can be solved in polynomial time for these
graph classes, including distance coloring problems and distance domination problems
(for bounded distances).

1. INTRODUCTION

Many combinatorial optimization problems in graphs can be classified as vertex
partitioning problems. The partition classes have to verify inner-properties and/or
inter-properties, and there is an objective function to minimize or maximize. Some
of these properties are locally checkable, that is, the property that each vertex has to
satisfy with respect to the partition involves only the vertex and its neighbors. This is
the case of stable set, dominating set and k-coloring, among others.

In the spirit of generalizing this kind of problems, in [6,7] Bodlaender defined the
local condition composition (LCC) and edge condition composition (ECC) problems,
and showed polynomial-time algorithms to solve LCC problems on bounded treewidth
and bounded degree graphs, and ECC problems on bounded treewidth graphs. In [61]
Telle defined the locally checkable vertex partitioning (LCVP) problems and in [15],
Bui-Xuan, Telle and Vatshelle presented dynamic programming algorithms for LCVP
problems that run in polynomial time on many graph classes, including interval graphs,
permutation graphs and Dilworth k graphs, and in fixed-parameter single-exponential
time parameterized by boolean-width. In [17], Cattanéo and Perdrix defined a different
generalization of LCVP problems that allows us to deal with properties of the subset
that are not necessarily locally checkable, as for example being connected, and prove
hardness results for LCVP problems and such generalizations.

In this paper, we define a new framework for locally checkable problems, which we
call r-locally checkable problems. In a r-locally checkable problem, every vertex v has
a list of colors L, that it can receive, along with the cost w,; of receiving each color
t € L,. There is a function check that, for each vertex v and each coloring c of the
closed neighborhood of radius r of v, determines if the colors assigned to v and the
vertices at distance at most r from v are permitted for v. We include edge labels /.,
whose values may be involved in the checking functions. For technical reasons, other
simple operators are also required, such as one that combines the costs and one that
compares them. This approach generalizes LCVP problems, including other problems
such as {k}-domination (which cannot be expressed as a LCVP problem, at least not in

2010 Mathematics Subject Classification. 05C15, 05C69, 05C85, 68Q25, 68R10.
Key words and phrases. locally checkable problem, vertex partitioning problem, local condition

composition problem, double Roman domination, Grundy domination, treewidth.
1

http://arxiv.org/abs/2006.00681v2

2 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

an straightforward way). We further consider a set of global properties (which might
be, for example, that certain sets of the partition induce a connected or an acyclic
subgraph). In this way, ECC problems can be modeled within our framework.

A key notion to our paper is the treewidth of a graph, which was introduced by
Robertson and Seymour [56] (and previously considered under different names by
Bertele and Brioschi [5] and Halin [41]). Graphs of treewidth at most k are called
partial k-trees. Some graph classes with bounded treewidth include: forests (treewidth
1); pseudoforests, cacti, outerplanar graphs, and series-parallel graphs (treewidth at
most 2); Halin graphs and Apollonian networks (treewidth at most 3) [8, 11,50, 56].
In addition, control flow graphs arising in the compilation of structured programs also
have bounded treewidth (at most 6) [62].

To solve 1-locally checkable problems in bounded treewidth graphs, we give an algo-
rithm based on a rather simple computation of a recursive function traversing a special
tree decomposition, using dynamic programming as it is usual with this kind of prob-
lems, but with an abstraction of the “extra” parameters involved in ad-hoc solutions of
locally checkable problems. In order to formally describe this abstraction, we introduce
the concept of partial neighborhoods. A partial neighborhood system gives us tools to
accumulate information from the neighbors of a vertex. According to the sizes of the
sets and the time complexity of the functions involved, we distinguish polynomial and
constant partial neighborhood systems. Then our algorithm is polynomial when some
mild conditions are satisfied. The main result of this paper is the following.

Theorem 5.5.1. Let F be a family of graphs of bounded treewidth. Consider a family
of instances of a 1-locally checkable problem with a polynomial partial neighborhood
system, where

e GEeF,
e C =max{|L,|: v € V(G)} is polynomial in the input size, and
e the functions @ and min can be computed in polynomial time.

Then there exists an algorithm that solves these instances in polynomial time. Fur-
thermore, if we have a constant partial neighborhood system, C is bounded by a con-
stant, and the functions @ and min can be computed in constant time, then the time
complezity of such algorithm is O(|V(G)|).

Furthermore, by proving that fixed powers of bounded degree and bounded treewidth
graphs are also bounded degree and bounded treewidth graphs, we can enlarge the
family of problems that can be solved in polynomial time for these graph classes, in-
cluding distance coloring problems (packing chromatic number [14,30,36,60], L(p, 1)-
coloring [18,19,38,39]), distance independence [29], distance domination [43], and dis-
tance LCVP problems [48], for bounded distances. These results are unified in the
following corollary of Section 6.

Corollary 6.0.3. Let F be a family of graphs of bounded treewidth and bounded degree.
Then, for any r-locally checkable problem with G € F, C polynomial in the input size,
and all functions check, min and @ computable in polynomial time, there exists a
polynomial-time algorithm that solves it.

We also prove that NP-complete problems can be reduced to some 1-locally checkable
problems in complete graphs, even when restricting the sets of colors and edge labels
to {0, 1}. Thus, a generalization of the polynomiality to bounded clique-width graphs
is not possible unless P=NP.

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 3

We show how to model double Roman domination, minimum chromatic violation and
Grundy domination as 1-locally checkable problems with polynomial partial neighbor-
hood systems. As a result, we obtain polynomial-time algorithms to solve these prob-
lems for bounded treewidth graphs. Until the date and to the best of our knowledge,
no such algorithms were previously known.

Courcelle’s celebrated theorem (see [24]) states that every graph problem definable in
Monadic Second-Order (MSO) logic can be solved in linear time for bounded treewidth
graphs. However, its main drawback is that the multiplicative constants in the running
time of the algorithm generated with an MSO-formula can be extremely large [33].
In contrast, the statement of our problem is closer to natural language, and the time
complexity of the algorithm for bounded treewidth graphs is fully detailed and involves
relatively small constants.

A similar approach for a family of problems of different nature was presented in [21].
Namely, the authors define the framework of algebraic path problems, enclosing weighted
shortest path, dataflow problems, regular expressions, and other problems arising in
program analysis in the area of software engineering, and they present an algorithm to
solve this framework of problems in concurrent systems such that each of the compo-
nents is a bounded treewidth graph.

The present paper is organized as follows. Section 2 contains the necessary pre-
liminaries and basic definitions. The central notion of the paper, r-locally checkable
problems; is formally introduced in Section 3. In Section 4, we study 1-locally check-
able problems in complete graphs, under different hypothesis. In Section 5 we give
an algorithm to solve 1-locally checkable problems parameterized by treewidth. In
Section 6 we analyze the time complexity of r-locally checkable problems in bounded
treewidth and bounded degree graphs, and prove that fixed powers of such graphs are
also bounded treewidth and bounded degree graphs. In Section 7 we extend the al-
gorithm from Section 5 with some global properties. In particular, this recovers the
results in [6,7] for LCC problems. In Section 8 we show how to model different prob-
lems as 1-locally checkable problems with polynomial partial neighborhood systems,
obtaining polynomial-time algorithms to solve these problems for bounded treewidth
graphs. We include in Appendix A the definition of the locally checkable problems
mentioned throughout the article.

2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

2.1. Algebraic definitions. Let S be a set. A closed binary operation on S is a
function x: S x S — S. It is usual to write *(s1, s9) as s; * sg. Such an operation is
commutative if s; * so = s9 x 51 for all s1,59 € S, and it is associative if (s1 % $3) *x $3 =
81 % (89 % s3) for all s1, 89,53 € S. An element e € S is neutral (also called identity) if
exs=sxe=sforall s €S. An element a € S is absorbing if a xs = s*a = a for
all s € S. It is easy to prove that if s € S is a neutral (resp. absorbing) element, then
this element is unique. A commutative and associative operation * can be naturally
extended to any nonempty finite subset of S, writing Y ,cxP(z) when {P(z) : = €
X} C S and X is finite and nonempty, moreover, if the operation also has a neutral
element e then we define % ,cpP(x) = e.

Let S be a set and * be a closed binary operation on S. Then (S, %) is a monoid
if x is associative and has a neutral element. If is also commutative then (.5, x) is a
commutative monoid.

A binary relation R on a set S is a subset of the Cartesian product S x S. It
is usual to write (s1,s2) € R as s1Rsy. We say that R is reflexive if sRs for all

4 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

s € S, antisymmetric if s1Rsy A s9Rs; = s1 = sg for all sq,s9 € S, and transitive
if s7Rsy A s9Rs3 = s1Rs3 for all s1, 89,53 € S. If R is reflexive, antisymmetric and
transitive, then (S, R) is called a partial order (or partially ordered set). If in addition
$1Rs2 V s9R sy for every s1,s9 € S, then (S, R) is a total order (or totally ordered set).

Let (S, =) be a totally ordered set. A maximum element is an element m € S such
that s < m for all s € S. Note that not every totally ordered set has a maximum
element, and it is easy to prove that if it does have a maximum element then this
element is unique. The minimum operation, min, is the closed binary operation on S
such that min(sy, s9) = s1 if 57 < $9 and min(sy, s9) = sq if s9 < 1. It is easy to prove
that min is commutative and associative.

A set of natural numbers is co-finite if its complement with respect to the set of
natural numbers is finite.

We denote by [a,b], with a,b € Z and a < b, the set of all integer numbers greater
than or equal to a and less than or equal to b, that is {a,a + 1,...,b}.

Given a set S and a function f: S — R, the weight of the function f (finite or
infinite) is defined as f(S) = > s f(s).

Throughout this paper we will work with the set BooL = {TRUE, FALSE} of boolean
values and all the usual logical operators, such as =, A, V and =-.

Let f: A — B be a function and let S C A. We denote by f|s the function f
restricted to the domain S, that is, the function f|g: S — B is defined as f|s(s) = f(s)
for all s € S.

2.2. Automata. A deterministic finite-state automaton is a five-tuple (@, %, 9, qo, F)
that consists of

e (): a finite set of states,

e > a finite set of input symbols (often called the alphabet),
e): Q XX — Q: a transition function,

e go € (Q: an initial or start state, and

o FF'C @Q: aset of final or accepting states.

We say that an automaton M = (Q, %, 6, qo, F') accepts a string s;. . .s,, with n > 1,
if and only if s; € ¥ for all 1 <i <mn and 6(...0(3(qo, $1),52) ..., Sn) € F.

For example, the automaton M = ({qo, ¢1},{1},9, g0, {q1}) where 6(qo,1) = ¢; and
d(q1,1) = qo, is an automaton that accepts sequences of an odd number of 1s.

For more about automata theory we refer the reader to [47].

2.3. Computability. A function is polynomial time computable if there exists an al-
gorithm A and a polynomial p(n) such that, for all inputs of length n, A computes the
function and runs in time less than or equal to p(n).

All sets considered in this article contain elements that can be encoded and passed
as parameters to a computable function.

We will not delve further into this topic. For more information we refer the reader
to the vast literature on computability theory.

2.4. Basic definitions on graphs. Let GG be a finite, simple and undirected graph.
We denote by V(G) and E(G) the vertex set and edge set, respectively, of G. For any
W C V(G), we denote by G[W] the subgraph of G induced by W. Let Ng(v) (open
neighborhood of v) be the set of neighbors of v € V(G) and let Ng[v] = Ng(v) U {v}
(closed neighborhood of v). The closed neighborhood of a set S'is Ng[S] = J,cq Nalv).
The degree of a vertex v is dg(v) = |Ng(v)|. The maximum degree of a vertex in G is

denoted by A(G).

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 5

A graph class is a collection of graphs that is closed under isomorphism. Given a
graph class G, we say that G is of bounded degree if sup{A(G) | G € G} < 0.

A graph G is connected if for every pair of vertices u,v in V(G) there exists a path
in G from u to v. A connected component of a graph is an inclusion-wise maximal
connected subgraph of it. For two vertices x,y in a connected graph GG, we denote by
distg(z,y) the distance between x and y, that is, the length (number of edges) of a
shortest x,y-path in G. Let NE[v] be the set of vertices at distance at most k from
v in G, and NE(v) = NE[v] — {v}. Let ME(v) be the set of edges whose endpoints
at distance at most & from v in G. The k-th power of G is the graph denoted by G¥
such that for all distinct vertices x,y in V(G), = is adjacent to y in G* if and only if
distg(z,y) < k.

A complete graph is a graph whose vertices are pairwise adjacent. We denote by K,
the complete graph on r vertices. A clique (resp. stable set or independent set) in a
graph is a set of pairwise adjacent (resp. nonadjacent) vertices. The maximum size of
a clique (resp. independent set) in the graph G is denoted by w(G) (resp. a(G)).

A graph G is bipartite if V(G) can be partitioned into two stable sets V; and V5,
and G is complete bipartite if every vertex of V; is adjacent to every vertex of V5. We
denote by K, s the complete bipartite graph with |Vi| = r and |Va| = s. The star S, is
the complete bipartite graph K ,_;.

A proper k-coloring of a graph is a partition of its vertices into at most k stable sets,
each of them called color class. Equivalently, a proper k-coloring is an assignment of
colors to vertices such that adjacent vertices receive different colors, and the number
of colors used is at most k. The chromatic number x(G) of a graph G is the minimum
k that allows a proper k-coloring of G. In the more general LIST-COLORING problem,
each vertex v has a list L(v) of available colors for it.

A pair of vertices or a pair of edges dominate each other when they are either equal
or adjacent, while a vertex and an edge dominate each other when the vertex be-
longs to the edge. We will denote by yyw(G), for U, W sets of elements of G, the
minimum cardinality or weight of a subset S of U which dominates W. The pa-
rameter vy is also denoted simply by 7, and the associated problem is known as
MINIMUM DOMINATING SET. Parameters vy g and yg v are associated with the MIN-
IMUM VERTEX COVER and MINIMUM EDGE COVER, respectively. In the MINIMUM
{k}-DOMINATION problem, given a graph G we want to find the minimum weight of a
function f: V(G) = {0,1,...,k} such that 37y, f(u) > k for all v € V(G).

For a graph G and uv € E(G), the graph obtained by subdividing uv in G arises
from G by adding a new vertex w, making w adjacent to u and v, and then deleting
the edge uv. The subdivision graph of G, obtained by subdividing each of the edges
of G, is S(G) = (V',E') where V! = V(G) U E(G) and E' = {ve : v € V(G),e €
E(G), and v is an endpoint of e}.

The jagged graph of G is J(G) = (V', E') where V' = V(G) U E(G) and E' =
E(G)U{ve:v e V(G),e € E(G), and v is an endpoint of e}.

The line graph of a graph G is denoted by L(G) and has as vertex set F(G), where
two vertices are adjacent in L(G) if and only if the corresponding edges have a common
endpoint (i.e., are adjacent) in G. The total graph of G, denoted by T(G), is defined
similarly: its vertex set is V(G) U E(G), V(G) induces G, E(G) induces L(G), and
v e V(G), vw € E(G) are adjacent in T(G) if and only if either v = u or v = w.

A graph, or a subgraph of a graph, is acyclic if it does not contain a cycle of length
at least three. An acyclic graph is called a forest. A tree is a connected acyclic graph.
In a tree T', we usually call the elements in V(7) nodes. A node with degree at most 1

6 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

is called a leaf and a node of degree at least 2 is called an internal node. A tree is
called a rooted tree if one vertex has been designated the root, in which case the edges
have a natural orientation, towards or away from the root. For a rooted tree T" and
u € V(T), the neighbor of u on the path to the root is called the parent of u and a
vertex v is a child of u if u is the parent of v. A binary tree is a rooted tree where
every internal node has at most two children.

2.5. Definitions and preliminary results on treewidth. A tree-decomposition of
a graph G is a family {X; : ¢ € I} of subsets of V(G) (called bags), together with a
tree T' with V(T') = I, satisfying the following properties:
(W1) Uie[Xi =V(G).
(W2) Every edge of G has both its ends in X; for some i € I.
(W3) For all v € V(G), the set of nodes {i € I : v € X;} induces a subtree of 7.
The width of the tree-decomposition is max{|X;| — 1 : i € I'}. The treewidth of G,
denoted tw(G), is the minimum w > 0 such that G has a tree-decomposition of width
less or equal w.
Given a graph class G, the treewidth of G is tw(G) = sup{tw(G) | G € G}. We say
that G is of bounded treewidth if tw(G) < oc.
We will often make use of the following basic properties of the treewidth, some of
which can be easily deduced.

Proposition 2.5.1. Let G be a family of graphs of bounded treewidth. If G € G then
[E(G)] s O([V(G)]).
Proposition 2.5.2. If H is a subgraph of a graph G then tw(H) < tw(G).

) <
Theorem 2.5.3 ([57, pages 1 and 2|). For every graph G, tw(G) > w(G)—1. Moreover,
tw(G) > x(G) — 1.

Theorem 2.5.4 ([50, page 76]). The treewidth of S(G) is equal to the treewidth of G.
Theorem 2.5.5. The treewidth of J(G) is less than or equal to tw(G) + 1.

A tree-decomposition (7', {X;}ev(r)) is nice [50, Definition 13.1.4] if
e T'is a rooted binary tree;

e if a node ¢ has two children j and k then X; = X; = Xj; (join node)
e if a node ¢ has one child j, then either
e | Xi| =1]X;|—1and X; C X, or (forget node)
o |[Xi| =[X;|+1and X; D Xj. (introduce node)

Let T; be the subtree of T rooted at node i. We will denote by G; the subgraph of
G induced by ey (r,) X;-

Theorem 2.5.6 (|9, Theorem 1]). There exists an algorithm, that given an n-vertex
graph G and an integer k, in time O(c*n) for some ¢ € N, either outputs that the
treewidth of G is larger than k, or constructs a tree-decomposition of G of width at
most bk + 4.

Theorem 2.5.7 ([50, Lemma 13.1.3]). For constant k, given a tree-decomposition of
a graph G of width k and O(n) nodes, where n is the number of vertices of G, one can
find a nice tree-decomposition of G of width k and with at most 4n nodes in O(n) time.

However, we will work with a slight modification of nice tree decompositions, where
the bags of the root and leaves have only one vertex each.

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 7

Definition 2.5.8. A tree-decomposition (7', {X;}icv (1)) is called easy if
e T is a binary tree rooted at r such that | X,| = 1;

e if a node ¢ has two children j and k then X; = X, = Xj; (join node)
e if a node 7 has one child 7, then either
e | Xi| =]X;| —1and X; C X, or (forget node)
o |X;|=|X;|+1and X; D Xj; (introduce node)
e if a node ¢ has no children, then |X;| = 1. (leaf node)

It is straightforward to prove that, given a nice tree-decomposition (T, { X; }ev (1)) of
width & and O(n) nodes, one can construct in O(kn) time an easy tree-decomposition

of width k& and O(kn) nodes.

2.6. Definitions and preliminary results on frameworks for locally checkable
problems. Throughout this article we will make special emphasis on two previous
frameworks for locally checkable problems. In this section we review their definitions
and results related to our work.

2.6.1. LCVP problems. Let o and p be finite or co-finite subsets of non-negative integer
numbers. A subset S of vertices of a graph G is a sigma-rho set, or simply (o, p)-set, of
G if for every v in S, |[N(v) N S| € o, and for every v in V(G)\ S, |[N(v)N S| € p. The
locally checkable vertex subset problems [61] consist of finding a minimum or maximum
(o, p)-set in an input graph G, possibly on vertex weighted graphs.

A generalization of these problems asks for a partition of V(G) into ¢ classes, with
each class satisfying a certain (o, p)-property, as follows. A degree constraint matrix
D, is a g x ¢ matrix with entries being finite or co-finite subsets of non-negative integer
numbers. A D, -partition of a graph G is a partition {V}, Va,..., V,} of V/(G) such that
for 1 <1i,j < g it holds that for every v € V;, [N (v) NV;| € D,[i, j]. A locally checkable
vertex partitioning (LCVP) problem [61] consists of deciding if G has a D, partition.
Optimization versions can be defined, possibly on vertex weighted graphs.

The distance-r locally checkable vertex partitioning problems [48] further generalize
LCVP problems by considering, for each vertex v, N{(v) instead of Ng(v).

In [15], Bui-Xuan, Telle and Vatshelle presented dynamic programming algorithms
for LCVP problems that run in polynomial time on many graph classes, including inter-
val graphs, permutation graphs and Dilworth k graphs, and in fixed-parameter single-
exponential time parameterized by boolean-width. In [48] Jaffke, Kwon, Stromme
and Telle presented dynamic programming algorithms for distance-r locally checkable
vertex partitioning problems in graphs of bounded mim-width.

2.6.2. LCC and ECC problems. In [6,7] Bodlaender defined the local condition composi-
tion (LCC) and edge condition composition (ECC) problems, and showed polynomial-
time algorithms to solve LCC problems on bounded treewidth and bounded degree
graphs, and ECC problems on bounded treewidth graphs.

Definition 2.6.1 ([6, Definition 2.9]). Let II be a graph decision problem, and let Dy
be the set of instances of II, Y17 the set of instances for which the answer is “yes”, and
s : D — N be a function that assigns sizes to instances of II. We say Il is a basic local
condition problem, if and only if there exist

e non-negative integers m,c € N,

e m commutative monoids (M1, ®!), ..., (M™, &™), and

e a tuple (M™F @™ <) such that (M™ &™) is a commutative monoid,
(M™+1 <) isatotal order and a < b = a®™ e < b@™cforall a,b,c € M™!

8 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

such that
e cach D € Dy is of the form (G, (X,Y, Ry, ..., Ry, K, 1)), where
e (7 is an undirected graph
e X is a finite set with s(D) > | X|
e Y is a finite set with s(D) > |Y|
o for all 7, 1 <1i < m, R; denotes a subset of M®

o« K € M™t!
o for all i, 1 < ¢ < m + 1, there exists a function wval;, that maps all 4-tuples,
consisting of an instance D = (G, (X, Y, Ry, ..., Ry, K, I)) € Dy, a vertex

v € V(G), and functions f: N&[v] — X, g: M&(v) — Y, to elements of M;,
such that for all (constants) d € N*:

(1) there exists an algorithm that calculates val;(D, v, f, g), for all D = (G, (X,
Y,Ri, ..., Ry, K, I)) € D, v € V(G), f: N&v] = X, g: M&(v) = Y
with degree(G) < d, in time, polynomial in s(D).

(2) if 1 <4 < m, there is a polynomial p;, such that for all D = (G, (X, Y,
Ry, ..., Ry, K, I)) € Dy, with degree(G) < d and subsets W C V(G) :
{DBuew vali(D, w, flngw) 9lag) | f1 NEW] = X, g0 MEW) — Y} <

pi(s(D)).
(3) there exists an algorithm that calculates a @' b for given a,b, such that
there are D = (G, (X, Y, Ry, ..., Ry, K, I)) € Dy, with degree(G) <

d, Wy C V(G), Wy C V(G), WynWy = 0, f: No[W, U Wy — X,
g: MEWLUW,) = Y, a = @ en, vali(D,w, fInepu) 9lmew)) and b =
@Z}EWQ vali(D,w, f|new); 9|mew)), in time, polynomial in s(D).

(4) if i = m+ 1, then there exists an algorithm, that calculates whether a < b
for given a, b, such that there are D = (G, (X, Y, Ry, ..., Ry, K, I)) € Dy,
with degree(G) < d, W C V(G), fi: N&[W] — X, for NE[W] — X,
g1: ME(W) = Y, go: ME(W) — Y, a = @Zg&vvalmH(D,w,fﬂNé[w],
91lme (w)) and b = @ZL;}V Valyy1(D;w, folNefuls 92l g (w)) or b = K, in time
polynomial in s(D).

(5) if 1 < ¢ < m, there exists an algorithm that calculates for all D = (G,
(X, Y, Ry, ..., Ry, K, I)) € Dy with degree(G) < d, f: V(G) —» X,
g: E(G) — Y and given a = eaquV(G) vali(D,w, f|new)s 9lmew)) whether
a € R;, in time polynomial in s(D).

e For all D = (G,(X,Y,Ry,...,Rn, K, 1)) € Dy : D € Yy, if and only if there
exists functions f: V(G) — X, ¢g: E(G) — Y, with

(1) Vi, 1 % t<m: @ZGV(G) Uall(DvUv f‘Né[v]7g|Mé(U)) € R
(2) @Umg\—/(g) 'Ua'lm-l—l(Da v, f|Né[U}ag|Mé(v)) S K.

Definition 2.6.2 ([6, Definition 2.10]). Let II be a graph decision problem. We say
IT is a local condition composition problem, if and only if there exists a basic local
condition composition problem IT" and a graph-invariant polynomial transformation
from II to IT". The class of local condition composition problems is denoted by LCC.

Definition 2.6.3 ([6, Definition 2.11]). Let II be a graph decision problem, and let
Dy be the set of instances of II, Yy the set of instances for which the answer is “yes”,
and s : D — N be a function that assigns sizes to instances of II. We say II is a basic
edge condition problem, if and only if there exist

e a non-negative integer m € N,
e m commutative monoids (M1, ®'), ..., (M™, &™), and

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 9

e a tuple (M™1 @™+l <) such that (M™ @™T!) is a commutative monoid,
(M™! <) isatotal order and a < b = a®™ e <X bp™ e forall a,b,c € M™T!

such that

e cach D € Dy is of the form (G, (XY, Ry,..., Ry, K,I)), where
e (7 is an undirected graph
e X is a finite set with s(D) > | X|
e Y is a finite set with s(D) > |Y|
o for all 7, 1 < i < m, R; denotes a subset of M®
o« K € M™*!

e for all 4, 1 < ¢ < m + 1, there exists a function wval;, that maps all 4-tuples,
consisting of an instance D = (G, (X, Y, Ry, ..., Ry, K, I)) € Dy, an edge
w € E(G), and functions f: {u,v} — X, g: {uv} — Y, to elements of M,,
such that:

(1) there exists an algorithm that calculates val;(D, e, f, g), for all D = (G, (X,
Y, Ry, ..., Rn, K, I)) € Dy, wv € E(G), f: {u,v} = X, g: {uv} - Y in
time, polynomial in s(D).

(2) if 1 < i < m, there is a polynomial p;, such that for all D = (G, (X, Y,
Ry, ..., Ry, K, I)) € Dy, and subsets E' C E(G) : \{@ZUGE, val;(D, uv,
7, 1), 9(u)) | £+ Na(E) = X,g: E — Y}| < pi(s(D).

(3) there exists an algorithm that calculates a®'b for given a, b, such that there
are D = (G, (X, Y, Ry, ..., R, K, I)) € Du, By C E(G), Es C E(G),
E1 OEQ = @, f: Ng<E1 UEQ) — X, g: El UE2 — Y, a = @Z B ’U(IZZ‘<D,

uve
w, f(w), F(v), g(uv)) and b= @y, vali(D, wv, f(u), f(v), gluv)), in
time, polynomial in s(D).

(4) if i = m + 1, then there exists an algorithm, that calculates whether a <
b for given a,b, such that there are D = (G, (X, Y, Ry, ..., Rn, K,
) € Du, E' C E(G), fi: No(E") = X, fo: No(E') = X, 1 E' —
Y, 20 B/ = Y, a = @ZZEE/ Valy 1 (D, wv, fi(u), fi(v), g1(uwv)) and b =
@I valy (D, uv, fo(u), fo(v), ga(uv)) or b = K, in time polynomial in
s(D).

(5) if 1 < ¢ < m, there exists an algorithm that calculates for all D = (G,
(X, Y, Ry, ..., Ry, K, I)) € D, f: V(G) - X, g: E(G) — Y and
given a = EBfweE(G) val;(D, uv, f(u), f(v), g(uv)) whether a € R;, in time
polynomial in s(D).

e For all D = (G,(X,Y,Ry,...,Rn, K, 1)) € Dy : D € Yy, if and only if there
exists functions f: V(G) — X, ¢g: E(G) — Y, with

(1) Vi,1 <i<m:D,epa vali(D, uv, f(u), f(v), g(uv)) € R;
(2) @?:;_@(G’) valm-f-l(Dv uv, f(u)v f(’l}), g(U’U)) < K.

Definition 2.6.4 ([6, Definition 2.12]). Let IT be a graph decision problem. We say
IT is an edge condition composition problem, if and only if there exists a basic edge
condition composition problem IT" and a graph-invariant polynomial transformation
from II to IT". The class of edge condition composition problems is denoted by ECC.

Theorem 2.6.5 ([6, Theorem 2.5]). ECC C LCC.

Theorem 2.6.6 ([6, Theorem 3.7]). (i) Let Il € LCC, and let k,d € NT. Let © be a
class of graphs with G € © = degree(G) < d A treewidth(G) < k. Then II restricted to
© can be solved in polynomial time.

10 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

(i) Let 1 € ECC, and let k € Nt. Let © be a class of graphs with G € © =
treewidth(G) < k. Then II restricted to © can be solved in polynomial time.

3. r-LOCALLY CHECKABLE PROBLEMS

Let r € N. Let G be a simple undirected graph. Then suppose we have the following:

e a set LABELS and, for each edge e € F(G), a label {, € LABELS;

» a set COLORS and, for every vertex v € V(G), a nonempty set (also called list)
L, C COLORS of possible colors for v;

« a totally ordered set (WEIGHTS, <) with a maximum element (called ERROR),
together with the minimum operation of the order < (called min) and a closed
binary operation on WEIGHTS (called @) that is commutative and associative,
has a neutral element (called eg) and an absorbing element that is equal to
ERROR, and is such that s; < s9 = s1Ps3 =X s9@s3 for all s1, s9, 53 € WEIGHTS;

o for every vertex v € V(G) and for every color i € L,, a weight (or cost)
W,; € WEIGHTS — { ERROR} of assigning color i to vertex v; and

e a function check that, given a vertex v € V(G) and given a color assignment
c: NG[v] — UueN&M L, such that c¢(u) € L, for all u € N} [v], returns TRUE if

the vertex v together with its neighborhood of radius r (considering the labels of
the edges uv with u € N{,(v)) satisfies a certain condition, and FALSE otherwise.

We say that an assignment of colors to vertices c is valid in V' if V' is the domain of ¢
and c(v) € L, for all v € V, and it is proper if it is valid in V(G) and check (v, ¢|nz))
is true for every v € V(G). The weight of a color assignment ¢ valid in V' is w(c) =
Docv Woe(w)-

Given all the previously defined G, ¢., L,, (WEIGHTS, =, ®), W,; and check, an
r-locally checkable problem consists of finding the minimum weight (according to the
order <) of a proper assignment of colors to vertices. If no such coloring exists, the
answer should be ERROR.

If we further consider a set I1(c) of global properties (such as “the subgraph induced
by the set {v : ¢(v) = i} is connected and [{v : c¢(v) = j}| < 17), then a generalized
r-locally checkable problem consists of finding the minimum weight (according to the
order <) of a proper color assignment ¢ that satisfies the properties in I1(c).

3.1. Examples. Many different optimization and decision problems can be modeled
as r-locally checkable problems (for a decision problem we can say, for example, that
the answer is “no” if and only if the minimum weight of a proper coloring is ERROR).

For the examples shown throughout this paper, we will assume that, otherwise stated,
the definitions of L, are for all v € V(G), of w,,; for all v € V(G) and all ¢ € L,, and
of check(v,c) for all v € V(G) and all color assignments ¢ valid in Ng[v]. Also, if the
labels ¢, are not specified, we can assume they are all equal to 1.

In Table 1 we show some examples of coloring, domination, independence and pack-
ing problems as 1-locally checkable problems. Their definitions can be found in Ap-
pendix A.

Observe that for list-coloring and H-coloring we are only interested in determining
whether such coloring exists or not, so we do not use the weights for optimizing the
solution, instead we use them precisely for determining if a solution is correct. For
k-coloring we can make use of weights to determine the smallest 7 < k for which there
exists a j-coloring in G (in particular, we could set k as a known upper bound for the
chromatic number to obtain it).

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 11

Problem WEIGHTS, X, @ L, Wo,i check(v, c¢)
k-coloring NU {400}, <,max | [1,k] i Yu € Ng(v). c(u) # c(v)
k-chromatic sum NU {400}, <, + [1, K] i Yu € Ng(v). c(u) # ¢(v)
List-coloring NU{+o0}, <, + input 0 Vu € Ng(v). c(u) # ¢(v)
H-coloring NU {400}, <, + V(H) 0 Vu € Ng(v).c(u) € Ny (c(v))
k-tuple domination NU {400}, <, + {0,1} i Y ueNg €W =k
Total k-tuple domination | NU {400}, <,+ | {0,1} | i Y ueNe(w) W) > k
k-domination NU {400}, <, + {0,1} i c(0) =0= 3 engw c(w) 2k
{k}-domination NU {400}, <, + [0, k] i Duengly €)=k
k-rainbow domination NU {400}, <, + Pl li] Useng)| =k
Roman domination NU{+c0},<,+ | {0,1,2}| i |c(v)=0= Jue Ng(v).c(u) =2
Independent set NU{—oco}, >, + {0,1} i () =1= 3 eng c(u) =0
{k}-packing function NU{—o0o}, >, + [0, %] i Puenal) Cu) <k
{k}-limited packing NU{—oco}, >, + {0,1} i Pueng c(w) <k

TABLE 1. Examples of 1-locally checkable problems.

For the total version of most of these domination problems we only need to replace

N[v] by N(v).

For weighted versions of these problems, weights are part of the input.

For problems where the input graph is directed, we can consider edge labels that
also carry the direction of the edge, and the check function can use it to distinguish
in-neighbors and out-neighbors.

3.2. LCVP problems. The problem of deciding if a graph G has a D, partition can
be modeled as a 1-locally checkable problem in the following way:

o LU - [[laq]]a

o (WEIGHTS, <, ®) = (NU {+00}, <, +);

e W,, =0; and

e check(v,c) =Vj € [l,q]. {u:u e N@w)Aclu) =3} € Dyle(v), j].

Therefore, our framework is a generalization of LCVP problems. Furthermore, it allows
us to model more problems, like {k}-domination.

3.3. LCC and ECC problems. Consider an ECC problem II. By definition, there
exists a basic ECC problem II' such that II can be reduced to II'. We will show that
IT" can be reduced to a generalized 1-locally checkable problem in the jagged graph of
the input graph.

Construct J(G) from the input graph G. Let (M*, ®*, <*) be obtained by adding a
maximum element to (M™ @™+ <) Then

e L, =X for all v € V(G), and
Ly =L, x L, xY forall uww € E(G);
o (WEIGHTS, <, @) = (M*, <*, @*);
e W,, =eg for all v € V(G), and
W, (2a,30,y) = Vlmi1 (D, uv, 2y, 2, y) for all wv € E(G);

12 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

e check(v,c) = TRUE for all v € V(G) and all color assignments ¢ valid in
Njlv], and
check(uv, c) = (c(uv); = c(u) A c(uv)y = ¢(v)) for all uv € E(G) and all color
assignments c valid in N;()le]; and

o Global properties II(c): @'
all i € [1,m].

ZweE(G) val; (D, uv, c(uv)q, c(uv)q, c(uv)s) € R;, for

With a similar approach, we can reduce a LCC problem in bounded degree graphs
to a generalized r-locally checkable problem in the jagged graph of the input graph
(for an appropriate r). Construct J(G) from the input graph G. Let (M*, @* <*) be
obtained by adding a maximum element to (M™*! @™t <), For all v € V(G), let
F, and G, be, respectively, the sets of all functions f: N [v] = X and g: M} (v) = Y
(notice that I, and G, are finite sets that can be computed in polynomial time). Then

e L,=F, xG, for all v € V(G), and
Ly, =Y for all wv € E(G);

o (WEIGHTS, =, ®) = (M*, 2*, @*);

* Wy (fg) = Valmy1(D,v, f,g) for all v € V(G), and
Wy = €o for all wv € E(G);

o for all v € V(J(G)) and all color assignments ¢ valid in N} [v], check(v,c)
checks that fu(z) = fu(®) and gu(y) = Gu(y) (Where (fy,gu) = c(u) and
(fus gw) = c(w)) for all u,w € N [v] N V(G), z € Ny [v] N Ng[u] N NG [w]
and y € N [v] N Mg (u) N Mg(w); and

 Global properties I1(c): @iev(G) val; (D, v, c(v)1,c(v)s) € R;, for all i € [1,m].

4. 1-LOCALLY CHECKABLE PROBLEMS IN COMPLETE GRAPHS

It is easy to see that we can polynomially reduce NP-complete problems in graphs to
particular 1-locally checkable problems in complete graphs, even when restricting the
sets of colors and edge labels to {0,1}. Indeed, we can transform the classical domi-
nation problem in a graph G to the following 1-locally checkable problem in complete
graphs. We construct a complete graph G’ such that V(G') = V(G) and set

o Uy, =1if wv € E(G) and ¢, = 0 otherwise;
e L,={0,1};

o (WEIGHTS, X, ®) = (RU {+00}, <, +);

* W,; = 1; and

e check(v,c) = (c(v) + ZueNg/(v)(C(u) Ayy) > 1).

It is clear that the minimum weight of a proper coloring in this instance equals 7(G),
and this transformation can be performed in polynomial time.

If we restrict LABELS to {1}, we can still find a polynomial-time reduction from the
domination problem in a graph G to a 1-locally checkable problem in a complete graph
G’ such that V(G') = V(G), by setting:

* Ly = {0, Ne[v]};
o (WEIGHTS, =, ®) = (RU {400}, <, +);
* W,p =0 and W, n,q) = 1; and

e check(v,c) = (v € Uueng c(u))

Of course, 1-locally checkable problems are polynomial-time solvable under appro-
priate conditions.

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 13

Theorem 4.0.1. Consider a 1-locally checkable problem and a family of instances
where

e (G is a complete graph;

e l.=1 foralle e E(G);

e the number of all possible colors (that is, the size of the set UUGV(G) L,) is
bounded by a constant; and

e check(v,c) can be computed in polynomial time and only depends on v, c¢(v) and
the number of neighbors of each color that v has.

Then this problem can be solved in polynomial time in |V (G)| for these instances.

Proof. Assume COLORS = {cy,...,cc}. Notice that since G is a complete graph then
Nglv] = V(G) for all v € V(G). Therefore, by the restrictions imposed to check,
we can assume there exists a function check’ such that check(v, c(v), (ki,...,ke)) =
check(v, c), where k; = |{u € V(G) : c(u) = ¢;}| for all i € [1,C].

For every distribution of colors (ki, ..., kc), with k; € Ny for all i@ € [1,C] and
such that S5 k = |[V(G)|, we need to verify if it can actually be achieved (that
is, there exists a proper color assignment c¢ such that k; = [{u € V(G) : c(u) = ¢}
for all « € [1,C]), and if so, find one such proper assignment of colors to vertices of
minimum weight. To this end, we construct a directed capacitated network F' with
vertices ¢ for all ¢ € COLORS, (v,i) for all v € V(G) and all i € L,, v for all v € V(G),
and s and ¢. There is a directed edge of capacity ko) and cost 0 from s to 4 for all
i € COLORS. There is a directed edge of capacity 1 and cost 0 from i to (v, 1) if k; > 1
and check' (v, 1, (ky,...,ke)) is true. There is a directed edge of capacity 1 and cost
W, ; from (v,7) to v for all v € V(G), i € L,. There is a directed edge of capacity 1 and
cost 0 from v to ¢ for all v € V(G). There are no more edges than these ones. Note
that the distribution (ki, ..., kc) is achievable if and only if the maximum flow in F' is
|V (G)], and in this case the proper assignment of colors to vertices of minimum weight
corresponds to the maximum flow in F of minimum cost.

Finally, the answer to the problem is obtained by finding the minimum proper color
assignment among the ones found for all achievable distributions of colors.

Since C is bounded by a constant, the number of distributions of colors is polynomial
in |V(G)| (because it is (‘V(Cé)icfl) < (IV(G)| + 1)), check! (v, i, (ki, ..., ke)) can be
computed in polynomial time, constructing F' takes polynomial time, and the problem
of finding the maximum flow of minimum cost is polynomial-time solvable, then the
statement holds. dJ

5. 1-LOCALLY CHECKABLE PROBLEMS IN BOUNDED TREEWIDTH GRAPHS

In this section we give a polynomial-time algorithm to solve 1-locally checkable prob-
lems in bounded treewidth graphs, under mild conditions. In Section 6 we show that
these results can be extended to r-locally checkable problems (for any fixed r» > 1) in
bounded treewidth and bounded degree graphs. In Section 7 we will explain how to
modify the algorithm in order to add some global properties.

We will solve the problem in a dynamic programming fashion, traversing an easy
tree decomposition (see Definition 2.5.8) of the input graph and describing how to
proceed with each type of node of the tree decomposition, as it is usual with this
kind of problems, but with an abstraction of the “extra” parameters involved in ad-
hoc solutions of locally checkable problems. In order to describe this abstraction, and
hence the algorithm, we first need to introduce the concept of partial neighborhoods.

14 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

5.1. Partial neighborhoods. We define a system that, roughly speaking, gives us
tools to accumulate information from the neighbors of a vertex.

Definition 5.1.1. A partial neighborhood system for an instance of a 1-locally checkable
problem consists of:

e A set N,;, for every v € V(G) and i € L, together with a closed binary
operation Y on N, that is commutative and associative and has a neutral
element e, ;.

A function newN,;, for every v € V(G) and i € L,, that given u € Ng(v) and
J € L, returns an element of N, ; (possibly making use of the label of the edge
vu).

e A function check,;: N,; — BooL, for every v € V(G) and i € L,. This

v,c(v)
u€ENgG(v)

for every vertex v € V(G) and every color assignment ¢ valid in Ng[v].

function must satisfy check, c((Hﬂ newN y c(v) (u,c(u))) = check(v, c)

In words, with newN, ;(u, j) we create new information, that says how u having color

j affects v when having color i. The operation H”¢ combines two pieces of informa-
v,c(v)
u€ENg

simply verifies a condition over all the information collected from the neighbors of v. Fi-

v,c(v)
u€Ng(v)

to make these tools analogous to the use of check(v,c). We refer to the elements of
N, as partial neighborhoods of vertex v with color i.

tion. For a color assignment c valid in Ng[v], checky c(w) (Eﬂ (0) MW Ny c(0) (1, c(u)))

nally, we require the equality check, () <H§| newN o) (1, c(u))) = check(v, c)

Remark 5.1.2. For every instance of a 1-locally checkable problem there exists a par-
tial neighborhood system. We will show how to construct one. The idea behind
the following partial neighborhood system is to store all the colors assigned to the
neighbors of v, where 1 represents that a neighbor has not yet been assigned a
color, and X can be thought as an error sign. Let v € V(G), i € L, and as-
sume Ng(v) = {ur,...,uqu@}- Let N,; be the set of all dg(v)-tuples such that
xy, € Ly, U{L, x} for all h € [1,dg(v)]. Let 8" be such that

ny ifny =nj ornj =1
(nB™ n'), =<n) ifn, =1 and nj #1
x otherwise

for all h € [1,dg(v)]. Let newN, ;(up, j) be the de(v)-tuple that has j in its position
h and L in all its other positions. Let z € N,;. If x = (j1,..., Jagw)) With j, € Ly,
for all h € [1,dg(v)], let ¢ be the color assignment in Ng[v] such that ¢(v) = i and
c(up) = jp for all h € [1,dg(v)], and then define check, ;(x) = check(v, c). Otherwise,
let check, ;(r) = FALSE.

Finding partial neighborhood systems that have smaller sets N, ; is of extreme im-
portance because it reduces the time complexity of the algorithm given in Section 5.3.
We say a partial neighborhood system is polynomial (resp. constant) if it is such that
max{|N,;| : v € V(G),i € L,} is polynomial (resp. constant) in the size of the input
of the problem, and all the functions check, ;, eg,, EY and newN v can be computed
in time polynomial (resp. constant) in the input size. In Table 2 we show constant
partial neighborhood systems of the locally checkable problems listed in Table 1.

Another key concept is the following. Let X C V(@) and ¢ be a color assignment
valid in X. Given a partial neighborhood system, a valid partial neighborhood mapping
for ¢ is a function 7 of domain X such that n(v) € N, . for all v € X.

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS

Problem Ny n @B n/ newlN, ;(u,j) | checkyi(n)
k-coloring BooL nAn' j#i n
k-chromatic sum BooL nAn' VX! n
List-coloring BooL nAn' jFi n
H-coloring BooL nAn' j € Ng(i) n
k-tuple domination [0, k] min(n + n’, k) J n+i>k
Total k-tuple domination [0, k] min(n + n’, k) J n>k
k-domination [0, k] min(n + n’, k) J i=0=>n>k
{k}-domination [0, k] min(n +n’', k) J n+i1>k
k-rainbow domination pI B nuUn/ J InUil =k
Roman domination BooL nVn' j=2 1=0=n
Independent set {0,1} min(n +n’,1) J i=1=n=0
{k}-packing function [0,k+1] | min(n +n',k+1) J n<k
{k}-limited packing [0,k+1] | min(n+n/,k+1) J n<k

TABLE 2. Examples of partial neighborhood systems for 1-locally check-
able problems.

Finally, given v € V(G) and i € L,, any function f: N,; — BooL is called a
checking function for (v,1).

5.2. Notation and definitions. The following definitions and notation will be useful
throughout the rest of the article. To make the notation less cumbersome, we write ¢,
instead of ¢(v).

e Function extended with one element in its domain. Let f: X — Y and
x ¢ X. Then the function f*7¥: X U{z} — Y U{y} is such that f*7¥(z) =y
and f*7Y(z) = f(z) for all z € X.

e Function with one element less in its domain. Let f: X — Y and
x € X. Then the function f~*: X — {x} — Y is such that f~%(z) = f(z) for
all z € X — {z}.

o Graph where some edges are removed. Let H be a graph. Then H™° is
the graph such that V(H %) = V(H) and E(H™®) = E(H) — {uv : u,v € S}.

e Neutral weight mapping. Let X C V(G). Then the function w$: X —
WEIGHTS is such that w$ (v) = eg for all v € X.

e Equality checking function. For every v € V(G), every i € L, and every
n € Ny, let eq,: N,,; — BOOL be the function such that eq,(n') = (n = n/)
for all n’ € N, ;.

e Function that returns equality checking functions. Let X C V(G), ¢ be
a color assignment valid in X and 7 be a valid partial neighborhood mapping
for ¢. Then let ¢" be the function of domain X such that ¢} is egy(,) for all
veX.

* Reduction of a partial neighborhood mapping. Let X C V(G), ¢ be
a color assignment valid in X, n be a valid partial neighborhood mapping
for ¢ and v € X. Then the function 7™ of domain X — {v} is such that

16 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

U (u) = n(u) B newN(v,c(v)) if u € X N Ng(v) and 7~°(u) = n(u)
otherwise.

e Neutral partial neighborhood mapping. Let X C V(G) and ¢ be a color
assignment valid in X. Then the function 7t of domain X is such that n%(v) =
€v,cv) for all v € X. Observe that 7 is a valid partial neighborhood mapping
for c.

e Partial neighborhood in a subgraph. Let H be a subgraph of G and ¢ be
a color assignment valid in V(H). Then we define NS such that NS(v, ¢, H) =

BHZ’EC(NUL(U) newN, o) (u, c(u)) for all v € V(H). Roughly speaking, Ns(v, ¢, H)
is the information we can obtain from the neighbors of v in H and the color

assignment c.

5.3. Algorithm. Consider an instance of a 1-locally checkable problem with a partial
neighborhood system. Let G be the input graph and let (7', {X;}icv(r)) be an easy
tree decomposition of G.

For every X C V(G), every G’ subgraph of G such that X C V(G’) and Ng[V(G') —
X] € V(G'), every color assignment ¢ valid in X, every n that is a valid partial
neighborhood mapping for ¢, and every ¢ such that ¢, € {check,)} U {eq, : n €
Noew) } for all v € X, we say that a function f is a (X, ¢, 7, ¢)-coloring in G' if

e f is a color assignment valid in V(G’),

e f(v) =c(v) for all v € X,

o & (n(v) B Ns(v, f,G')) = TRUE for all v € X, and
o check(u, f|ngyw) = TRUE for all u € V(G') — X.

For a (X, ¢, n,¢)—coloring f in G’ and a function w: X — WEIGHTS, we define the
weight under w of f as Wy (f) = (B cx w(v)) @ (EBUGV(G,)_X Wv,f(v)>.
For every node t, let D; be the set of all tuples (5, ¢,w, n, ¢) such that
® S g Xt7
e ¢ is a color assignment valid in X,
e w: X; — WEIGHTS is such that w(v) € {eq, Wy @) } for all v € X,
e 7 is a valid partial neighborhood mapping for ¢, and
e ¢ is a function that, given a vertex v € X;, returns a checking function for
(v,¢(v)) such that ¢, € {check, o)} U{egn : n € Ny };
and let \;: D, — WEIGHTS be defined by
M(S, ¢, w,m, ¢) = min{w,(f) : fis a (X, c,n,¢)coloring in G,™°}
for every (S, c,w,n,¢) € D;.

Remark 5.3.1. Notice that if there are no (X, ¢, n, ¢)—colorings in G, then we have
(S, c,w, n,¢) = ERROR.

The following result is immediate from the previous definitions.

Corollary 5.3.2. If r is the root of T then the minimum weight of a proper coloring
in G s
min{ (0, c,w,nS, ¢) : (0, ¢c,w,n, ¢) € D,, and
W(V) = Wy e(0) and ¢, = checky o) for all v € X, }.

We will show how to compute A in a recursive way.

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 17

Lemma 5.3.3 (Leaf node). Let t be a leaf node and X; = {v}. Then
(S, c,w,m,) = { w(v) Af &(n(v))

ERROR otherwise

Proof. Notice that in this case V (G, ™) = {v} = X,.

If ¢,(n(v)) = FALSE then, by definition, there are no (X, ¢, n,¢)-colorings in G,
Therefore, \ (S, ¢,w,n,¢) = ERROR, leading to the desired equality.

If ¢,(n(v)) = TRUE then, by definition, ¢ is the only possible (X, ¢, 7, ¢)—coloring in
G, 5. Therefore, \ (S, ¢,w,n, &) = min{w,(f) : f is a (Xy, ¢, 1, ¢)—coloring in G, "} =
W, (c) = w(v). O

Lemma 5.3.4 (Forget node). Let t be a forget node, s be the child of t and X — X; =
{v}. Then

)\t<57 c,w,n, ¢) ?elin{)‘ (i’ wv—)WUﬂ-’ nv—)ev,i’ év—wheckvﬂ-)}.
Proof. Notice that v ¢ S and also G, =G,
By definition of A; we have
)\ S v—1 V= Wy 4 v%evl vv%checkv i
min{As(S, ¢, w* T, n)}

- min{mm{w ooy (f) 1 fis a (X, ¢V pueni gvmreheckody coloring in G 7))
1€ Ly

= min{ Wi (f) 17 € Ly A fis a (X, ¢ g7, @ eheckod) coloring in Gy},

Let i € L,. We claim that every f that is a (X, V7% nv=evi, gvreheckui)_coloring in
G, is also a (X;, ¢, n,¢)—coloring in G,™°. Conversely, every f that is a (X, ¢, n,¢)—
coloring in G, is also a (X, /W) gr=euso @rmeheckosw)) coloring in Gy ™. We
prove the first claim (the second one is similar) by showing each of the items of the
definition of (X, ¢,7, ¢)—coloring in G, holds:

e f(w) = c(w) for all w € X; (because it is true for all w € Xj),
e [is a color assignment valid in V(G,™) = V(G,™),
o check(u, f) = TRUE for all u € V(G, ™) — X, = V(G ™) — X; — {v} and
check(v, f) = check,; (Ns(v, f, G;S))
= check, (ew' B Ns(v, f, G;S))
_ ézﬁcheckm (?7(@) Ev,i NS(U, f, Gs—\S>)
= TRUE
(because f(v) = 1), and
o ¢, (n(w) B Ns(w, f, Gy ™)) = TRUE for all w € X, (because it is true for
all w € X, and E(G,™®) = B(G,™)).

Clearly, W_v-v, s (f) = W, (f) for every f that is a (X;,¢,n,¢)—coloring in G;™°

Therefore

min{w_v—w,; (f) 14 € Ly A f is a (X, 7% nu—evi ¢vocheckoy coloring in Gy}
= min{w,(f) : f is a (X;, ¢, n, ¢)-coloring in G,™°}
=)‘t(Sa C, W, 1, é)

18 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

Lemma 5.3.5 (Introduce node). Let t be an introduce node, s be the child of t and
X, — X, = {v}. Let n, = n(v) B*W xs(v, ¢, G, °[Xy]). Then

o Jw@) @ A(S = {v} e wT ™ ET) if Go(ny)
(S, ¢,w,m, €) = { ERROR otherwise

Proof. Observe that v ¢ V(G, 5~ ")) and Ng,-s[v] € X; (because (T, {X}icv(r)) is
a tree-decomposition), and that this implies that NS(v, ¢, G, ™) = NS(v, ¢, G, 7[X}]).

If ¢,(n,) = FALSE then, by definition, there are no (X, ¢, n, ¢)-colorings in G, and
we also have A\ (S, ¢,w,n, ¢) = ERROR.

Now assume that ¢,(n,) = TRUE. It is straightforward to prove that if a function f
isa (X, ¢V, n™~", ¢ ¥)—coloring in G, 5D then the function f77¢) is a (X, e,m, ¢)—
coloring in G, and w,,(f*7")) = w(v) ® Wy-+(f). Furthermore, it is also straight-
forward to prove that for every (Xi,c,n,¢)—coloring ¢ in G, the function ¢~" is a
(X,, e, ™, & ¥)—coloring in G"~ Y and w(v) ® W, (g7") = W, (g). Therefore

A (S, e,w,m, ¢)
= min{w,(g) : g is a (X;, ¢, 7, &)—coloring in G}
= min{w(®) ® Wy (f) : fis a (X,, ¢, 0™, &%) coloring in G, 111
=w(v) ®min{w,—.(f): fis a (X, ¢ ", 0~ ¢"")—coloring in Gsﬂ(S—{v})}
=w() ® (S —{v}, ¢, w ¥, n™", 7).
O]

Lemma 5.3.6 (Join node). Let t be a join node and r and s be the children of t.

We say that a pair (n.,ms) of valid partial neighborhood mappings for ¢ is good if
Eo(n(v) B NS(v, ¢, Gy 0 [X,]) BY®) p,.(v) BYW) ny(v)) ds true for all v € X,.

Let W =@, cx, w(v). Then

At(S’ C’w’n’é) - (H)un d{W@)‘T<XﬁC?w§(r7nsvém)€B>\3<Xsacaw§(57nsvéns>}'

Trms) is goo
Proof. Recall that X, = X, = X,.

For every color assignment f valid in V(G,™), denote by f|, (resp. f|s) the re-
striction of f to V(G,™") (resp. V(G,™™*)). Let W = D.ex, w(v). Notice that
Wl f) =W & W, (f[r) ® Wag, (f[s) for every color assignment f valid in V(G,™).

Suppose there exists a (Xj, ¢, n, ¢)—coloring in G,"¥ and let f be one of them. Let
n, and 7, be functions of domain X, such that 7,(v) = NS(v, f, G,”™") and n,(v) =
NS(v, f, G 7% for all v € X,

Since V (G, ™) NV (G,™) = X, then V(G, ™) NV (G,)N Ng-x, (v) = (. More-
over, since f is a (X, ¢, n,¢)—coloring in G, then we know that, for all v € X,
NS(v, ¢, Gy 0 [X,]) BYe®) . (v) BY®) ny(v) = NS(v, f,Gy°) and thus é,(n(v) B
NS(v, ¢, Gy [X,]) B2, (v) B y(v)) = TRUE. Therefore, the functions 7, and 7,
form a good pair of valid partial neighborhood mappings for c.

It is straightforward to prove that f|, is a (X,, ¢, n¢, ¢)-coloring in G, and that
flsis a (X, ¢,n¢, &%)—coloring in G,™**. Hence,

Wo(f) =W & Wag, (flr) ® Wag (f]5)
Z W S5)‘T’(XT7 Gy wg(w na ém) SZ)‘S(XSa ¢, w;sansa éns)
> min {W @ N (X, c,wk,, 75, ¢7) @ A(Xs, 6wk, me, ¢7))

(nr,ms) is good

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 19

Since min{w,(f) : fis a (X;,¢,n,¢) coloring in G;°} = ERROR if there are no
(X4, ¢, m, ¢)—colorings in G,™°, we obtain

)\t(sa c,w,1, é)
= min{w,(f) : fis a (X;, ¢, 7, ¢)-coloring in G,™°}
> - min AW O A(Xo, ¢, w5, 710, E7) O As(X, ¢ whe,, e, ¢

(nr,ms) is good

To conclude, we will show that the other inequality holds.

If ming,, 5.) is good {W @ A\ (Xor, ¢, w0k, , mE, E7) @ Ao(X, ¢, w0k, 1S, ¢)} = ERROR then
the statement trivially holds. Otherwise, the minimum is realized by a good pair
(1, 7s), and A (X, ¢, w$, S, &) # ERROR and A\s(X, ¢, wk_, n¢, é7) # ERROR. There-

fore there exists a (X, ¢, n¢, ¢)—coloring fr in G, and a (Xs, ¢, e, &%)—coloring fs in
G such that Wy (fr) = A\ (X, ¢, wk,, nE, €7) and W (fs) = As(X5, ¢, e, mE, E).
Let f be a functlon of domain V(G ™) such that
o f(v) = c(v) for all v € X,,
¢ f(v) = f,(v) for all v € V(G,™") = X,, and
e f(v) = fu(v) for all v € V(G,™5) — X,
It is straightforward to prove that fis a (X;, ¢, n,¢)—coloring in G;°, and also that
7 (resp. j/’;) is the restriction of f to V(G, ™) (resp. V(G,™**)). Therefore,

min ~ {W &N\ (X,, ¢, w15,) B N\(Xy, c,w,ns, 7))}

(nr,ms) is good

=W o \N(X,, ¢, Wk, 1M, €)@)\ (X, c, Wk, ,nc,cns)
= W@Wwﬁw (fr> @Wu&s (fS)

= WW(}\)
> min{w,(f) : f is a (X;, ¢,n, ¢)coloring in G, ™}
= MN(S,c,w,n,).
Consequently,
M(S e m &) = min (W@ A (X e 7€) @MKo e 7))

(nr,ms) is good

t

Then there is a simple algorithm to compute A. Indeed, based on the recurrence
given in lemmas 5.3.3, 5.3.4, 5.3.5 and 5.3.6, the algorithm is executed in a bottom-
up fashion (that is, first for all the leaf nodes, then for their parents, and so on) by
computing A\ (S, ¢,w,n,¢) € WEIGHTS for every node t and every (S,c,w,n,¢) € D;.
Finally, the result is obtained by finding the minimum among all \,((, ¢,w, n¢, ¢) such
that r is the root of T', ¢ is a color assignment valid in X, w: X,, - WEIGHTS is such
that w(v) = Wy for all v € X, and ¢, = check, o) for all v € X,.

5.4. Time complexity. Let & = max{|X;| : ¢t € V(T)}, N = max{|N,;| : v €
V(G),1 € L,} and C = max{|L,| : v € V(G)}. Let ts, tm, tnewn, ta, and ty, be upper
bounds for the executing time of all the functions check,; and egq,, B", newN,;,
@, and min, respectively. Other operations are assumed to run in constant time. In
particular, we are assuming that we access W, ; in constant time.

Traversing the tree T requires O(|V(T)]) time. In O(k?*|V(T)|+k|E(G)]|) time we can
construct the adjacency matrices of all the graphs G[X;] with ¢t € V(T) (by traversing

20 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

T top-down and computing Ng,(v) N X; only for nodes ¢ that are the child of a forget
nodes s with X;— X, = {v}). Also, in O(k) time we can construct each of the necessary
function extensions and restrictions, and in O((tg + t,ewn) k) We can construct each of
the necessary n~".

We analyze four separate cases, and the proof in each one of them is straightforward.

e Leaf node: O(t:)

e Forget node: O(k* + (k + tmin)C)

o Introduce node: O((tg + tpewn)k + te + tg + k?)

e Join node: O((tm + tnewn)k* + tak + ((tm + to)k + to + tmin)N?F)

Each one of them is computed for every possible tuple (S, ¢, w,n,¢). We know that
there are no more than 2% - C* - 28 - N* . (1 + N)* of such tuples, and that constructing
each of them requires O(k) operations.

In summary, the time complexity of this algorithm is O((tak + (k + tmin)C + (tg +
tnewn) K2 + ((tg + to)k + to + tmin)NZ)AECENF(N + DKV (T)| + k| E(G))).

5.5. Special cases. The next result easily follows from the previous time complexity
analysis, Proposition 2.5.1, Theorem 2.5.6 and Theorem 2.5.7.

Theorem 5.5.1. Let F be a family of graphs of bounded treewidth. Consider a family
of instances of a 1-locally checkable problem with a polynomial partial neighborhood
system, where

e GEeF,
e C =max{|L,| : v € V(G)} is polynomial in the input size, and
e the functions @ and min can be computed in polynomial time.

Then there exists an algorithm that solves these instances in polynomial time. Fur-
thermore, if we have a constant partial neighborhood system, C is bounded by a con-
stant, and the functions @ and min can be computed in constant time, then the time
complexity of such algorithm is O(|V(G)|).

In particular, this result, together with Table 2, implies that all the problems listed in
Table 1 can be solved in O(|V(G)|) time. For other problems, under certain hypothesis
we can give a more generic polynomial partial neighborhood system, hence the next
result.

Corollary 5.5.2. Let F be a family of graphs of bounded treewidth. Consider a family
of instances of a 1-locally checkable problem where

e GEF,

* |Usev(a) Lol is bounded by a constant,

e @ and min can be computed in polynomial time, and

e check(v,c) can be computed in polynomial time and only depends on v, c¢(v) and
the number of neighbors of each color that v has.

Then, for such instances, the problem can be solved in polynomial time.

Proof. For each instance, let COLORS = UveV(G) L, and define the following partial
neighborhood system:
° Nv,i — [[07 dG(U)]]|COLORs\;
e (nB* n'); = min(n; + nf, dg(v)) for all j € COLORS;
e newN,;(u,j); =1 and
newN, ;(u, j), = 0 for all h € COLORS — {j};

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 21

e check, (n) = check(v,c) where ¢ is any color assignment valid in Ng[v] such
that c¢(v) =i and [{u: u € Ng(v) Ac(u) = j}| =n; for all j € COLORS. Note
that we can construct ¢ in polynomial time using flow algorithms.

By Theorem 5.5.1, the statement holds. O

5.6. LCVP problems. In Section 3.2 we have seen how to model the problem of
deciding if G has a D, partition as a 1-locally checkable problem, and now we extend
it with a partial neighborhood system. Let m(S) be the maximum of S if S is finite,
or the maximum of S if S is co-finite. Then

e N, is the Cartesian product of the sets [1, m(D,[i, j]) + 1] for all 1 < j < g;

o nHY 1’ is such that (nB n'); = min(n; +n}, m(D,li, j]) +1) forall 1 < j < g;

e newN, ;(u,j) is the tuple such that its jth entry is 1 and all its other entries

are 0; and

e check,;(n) = (Vj € [1,q].n; € D3, j]).

Therefore, with the algorithm in Section 5.3, we can solve LCVP problems in
bounded treewidth graphs in O(¢|V(G)|) time, for some constant ¢ (which equals
k + 2 if k is the width of a given tree-decomposition of). This recovers the results
obtained by Telle in [61].

6. r-LOCALLY CHECKABLE PROBLEMS IN BOUNDED TREEWIDTH AND BOUNDED
DEGREE GRAPHS

Recall the partial neighborhood system defined in Remark 5.1.2, for which N' <
(C +2)2(@. Hence, the next result easily follows from Theorem 5.5.1.

Corollary 6.0.1. Let F be a family of graphs of bounded treewidth and bounded degree.
Then for any 1-locally checkable problem with input graph G € F, C polynomial in the
input size, and all functions check, min and @& computable in polynomial time, there
exists a polynomial-time algorithm that solves it.

Furthermore, the next lemma shows that fixed powers of bounded treewidth and
bounded degree graphs are also bounded treewidth and bounded degree graphs, there-
fore extending the results of the previous sections to more problems in these graph
classes.

Lemma 6.0.2. Let G be a graph and p > 2. Then
A(G) < A(GP) < A(G)?

and

max(tw(G), A(G)) < tw(G?) < (tw(G) + 1)(A(G) + 1)1 — 1.
Proof. The inequality A(G) < A(GP) < A(G)? follows easily from the definition of

power of a graph. Let v be a vertex of G of maximum degree. In GP, the graph
induced by Ng[v] is a clique of size A(G) + 1 and, by Theorem 2.5.3, we get that
tw(GP) > A(G). Since G is a subgraph of GP and by Proposition 2.5.2, we have
tw(GP) > tw(G).

Now assume (T, {X;}iev (1)) is a tree decomposition of G. For every t € V(T), let
Y; be the set of vertices that are at distance less than or equal to [5] from a vertex of
X;. We will prove that (7', {Y:}iev(r)), is a tree decomposition of G?.

Clearly, U,ey (1) Ye = V(G) = V(GP), so property (W1) holds.

Let u,v be two vertices that are neighbors in G?. If they are also neighbors in G,
then there exists a bag X; that contains both of the vertices and since X; C Y;, we

22 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

get that property (W2) holds in this case. If not, there exists a vertex w that is at
distance at most [£] from both u and v in G. Therefore, since there exists a bag X
that contains w, this implies that w € Y; (because X; C Y;) and u,v € Y; (because u, v
are at distance at most [5] from w € X;). Consequently, property (W2) also holds in
this remaining case.

Now we will prove that (W3) holds. For all u € V(G), let TX =T[{t € V(T) : u €
XY and T)) = T[{t € V(T) : u € Y;}]. Applying property (W3) to (T, {X; }ev (1)),
we obtain that T is a subtree of T for every u € V(G). Let v € V(G). We will
prove that T is connected. By definition of the bags Y;, we know that v € Y; if and
only if t € V(T,Y) or t € V() for some u such that d(v,u) < [5]. Let t € V(T,Y).
Notice that in order to prove that 7Y is connected it is sufficient to prove that there
exists a path in T between ¢ and every s € V(TY) — V(TX). Let s € V(TY) — V(TX)
and let v, € Y, be such that d(v,v,) < [5]. Since T,Y is a subtree of T for every
u € V(GQ), and V(TX)NV(TX) # 0 for all uw € E(G) (because of property (W2)
applied to (T, {X¢}iev(r)) and the edge uw), and there exists a path in G between v
and vs, we get that there exists a path in 7" between ¢ and s. Therefore (W3) holds for
(T AYihev(r))-

Since every bag Y; has at most (tw(G)+1)(A(G)+1)21 vertices, we obtain tw(GP) <
(tw(G) + 1)(A(G) + 1)=1 — 1. O

1-

Directly from Lemma 6.0.2 and Corollary 6.0.1, by reducing the problem to a
locally checkable problem in G", the next result easily follows.

Corollary 6.0.3. Let F be a family of graphs of bounded treewidth and bounded degree.
Then, for any r-locally checkable problem with G € F, C polynomial in the input size,
and all functions check, min and @ computable in polynomial time, there exists a
polynomial-time algorithm that solves it.

As a result, the algorithm of Section 5 can be instantiated to solve, in polynomial
time for bounded treewidth and bounded degree graphs, distance coloring problems [14,
18,19,30,36,38,39,60], distance independence [29], distance domination problems [43],
and distance LCVP problems [48], for bounded distances.

A similar result has been obtained by Jaffke, Kwon, Stremme and Telle for the
distance versions of the LCVP problems in bounded MIM-width graphs [48].

7. DEALING WITH GLOBAL PROPERTIES IN BOUNDED TREEWIDTH GRAPHS

In this section we explain how to modify the previous algorithm in order to handle
some global properties. The general idea in all of these cases is to modify)\; by extend-
ing it with new parameters (that is, at each node ¢t we compute A (S, ¢,w,n,¢,...)). For
simplicity, in the following subsections we omit some parts of the original algorithm,
writing only the necessary changes.

7.1. The size of a color class is an element of a particular set. Suppose we
want the class of color j to have a size that is an element of a set ¢ C Nj.

Consider a deterministic finite-state automaton (@, {1}, 9, qo, F') that accepts a string
of n consecutive characters 1 if and only if n € o. Notice that for all finite sets
o C Ny there exists such an automaton: let m be the maximum element of o,) =
{50,y Sms1}, Qo = S0, F' = {s; 11 € 0}, and (s;,1) = s;41 for all 0 < i < m and
0(Sma1,1) = Spr1. Although, for time complexity issues, when m is not a constant we
might be interested in another automata, with constant number of states (for example,
if o is the set of odd numbers in [0, |V (G)]|], we only need two states).

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 23

In the algorithm, at each node ¢, we add a parameter state; that stores the state of
the partial size of the color class j, and also a parameter accept; that checks if we are
in the desired state, and then proceed in the following way.

e Leaf node: Now we also need to check if accept;(state;) is true.
e Forget node: For all i € L,, let stateé = state; if i # j and stateé = d(state;, 1)
otherwise. Then

(..., statej, accept;) = min{A(. .., state;, accept;) 1 i € Ly}

e Introduce node: Remains the same (with state; and accept; added to \,).
e Join node: For all ¢ € @, let eq,: Q — BooOL be such that eq,(¢') = (¢ = ¢') for all
¢ € Q). Then

Ae(. .., statej, accept;) = min{W @A, (..., state;, eq,) BAs(. .., q, acceptj) : g € QA...}.

e At the root r where X, = {v}, we compute all \.(...,s,,a), with a such that a(s) =

(s € F), and s, = qp if ¢(v) # j and s, = §(qo, 1) otherwise.

Note that it is easy to generalize this idea to more classes by simply adding as many
state; and accept; as needed (each of them with its own automaton), and even to a set
J of classes by replacing statements of the form “i # 57 with “i ¢ J”.

The time complexity now depends on the number of states and color classes to
restrict. We can assume that checking if a state is an accepting one is a constant-time
operation and so is computing d(s,1). Let R be the number of color classes (or sets
of color classes) to restrict and let S be the size of the largest set of states among all
considered automata. The only changes in complexity are:

e Leaf node: add R.

e Forget node: add 2RC.

e Introduce node: add 2R.

o Join node: multiply by S™.

e When we multiply by the number of all possible combinations of the parameters
of \¢: add a factor (S(S +1))%.

In particular, the complexity of the algorithm remains polynomial in |V(G)| if R is
bounded by a constant, allowing us to, for example, ask for a color class to be non-
empty or to have at most one element.

7.2. LCC-like properties. Let (M, ®) be a commutative monoid. Suppose we want
to satisfy an expression of the form €,y f(v,¢) € X for some X C M and function
f that receives a vertex v and a color assignment valid in Ng[v]. For all V' C V(G),
let M (V') be the set of different values that @, f(v,c) can have. Assume that, for
every V. C V(G), |[M(V)| is bounded by some polynomial in the size of the input.
Also assume that computing x @& y and = € X can be done in polynomial time for all
x,y € M and X C M.

Let (M*,®*) be obtained by adding an absorbing element E* to (M, ®), and let
e* be the neutral element. Consider other items similar to the partial neighborhood
system for check, but for f:

e A set /\//Zi, for every v € V(G) and i € L,, together with a closed binary

. ~v7l
operation B = on N, ; that is commutative and associative and has a neutral
element e, ;.

—_—

A function newN, ;, for every v € V(G) and i € L,, that given u € Ng(v) and
jJ € L, returns an element of N, ;.

24 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

e A function f,;: /\71; — M, for every v € V(G) and i € L,. This function
NU,C(U) —~—
must satisfy fy () (HﬂueNG(U)newNU,c(v)(u,c(u))) = f(v,c) for every vertex
v € V(G) and every color assignment ¢ valid in Ng[v].

In the algorithm, at each node ¢, we add to \; the following parameters: x, that
stores the state of a partial accumulation of values f(v, ¢); accept, that checks if we are
in the desired state (similar to the idea in the previous subsection); 77, that carries the
values of the “partial neighborhood for f” of the vertices in X;; and f, that behaves like
¢ except that instead of providing functions of codomain BOOL, it provides functions
of codomain M*. Then proceed in the following way.

e Leaf node: Now we also need to check if accept(z ®* f,(7j(v))) is true.
e Forget node:

M(. .. @, accept, 77, f) = min{ (.. ., z, accept, 77", f”_’f”"') 11 € Ly}

« Introduce node: Accumulate in z the value of f,(7j(v)), remove v from the domain
of the new functions, and compute the new partial neighborhoods of the vertices in
Xs.

e Join node: For all m € M, let eq,,: M — BoOL be such that eg,,(m’) = (m =m’)
for all m’ € M. For all 7], let f7 be the function defined as f7(n) = e* if n = 7j(v)
and ﬁ;ﬁ(n) = E* otherwise. For all X C V(@) and color assignment ¢ valid in X,
let 7; be the function of domain X such that 7¢(v) = €,.@) for all v € X. For
all H subgraph of G' and all color assignment ¢ valid in V(H), let NS(v,c, H) =

sz(;i(v)mm(v)(u, c(u)) for all v € V(H). Then
(..., @, accept, 1,]7) =min{WW o \.(..., e, eqnm,, ﬁf, fm) DN(.. €, eqms,ﬁf, f%) :
m, € M(V(G,)=X,)Am, € M(V(Gy)—X) Aaccept(@e, fuliw)B" 5, (v)@" "

~v,c(v)

()BT NS (v, ¢, G VX)) @7))
e At the root r, with X, = {v}, we compute all A\.(...,e,a,75, f), where a is such that
a($) = ("L‘ € X)v and fv = fv,c(v)~

Note that it is easy to generalize this idea to more properties like this, by simply
adding as many groups of parameters as needed. If the number of this properties is
bounded by a constant, then the complexity of the algorithm remains polynomial.

This, along with the ideas and results in sections 3.3, 5 and 6, recovers the main
results from Bodlaender in [6,7].

7.3. One color class is connected. Suppose we want the class of color j to be
connected.

At each node ¢, we add the parameter comp; : X; — [1, k] that maps vertices of
color j to natural numbers that represent connected components. A

In the following items, let X} denote {u : u € X; A ¢(u) = j}, and N/(v) denote
NG (’U) N th .
e Leaf node: Remains the same.
e Forget node: \(...,comp;) = min{A(...,comp}) : i € L,} where comp is such

that: A

o if i # j then comp’(u) = comp;(u) for all u € X/, and

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 25

I {minueNj(v){compj(u)} if N} (v) #0
o comp;j(v) = s ; :
any value in [1, k] — {comp;(u) : u € X]} otherwise
and, for all u € X7, compj: (u) = compj:(v) if there exists z € th(v) such that
comp;(u) = comp;(z), and compg(u) = comp;(u) otherwise.

In other words, if v is a neighbor of two or more vertices of different connected com-
ponents then those connected components can be unified, and if v is not a neighbor
of any other vertex of color j then it is in a new connected component.

e Introduce node: If c(v) # j then it remains the same (adding comp; to A;).
Otherwise, we split the case related to ¢,(n,) = TRUE in the following ones:
o If there exists u € X7 such that comp;(v) = comp;(u) then A\(...,comp;) =
(v compy).

o If there does not exist u € X7 such that comp;(v) = comp;(u), and X7 #) then
Ai(...,comp;) = ERROR.

o If X7 = () then let M = ({qo,q1},{1},0,qo, {q0}) be an automaton such that
0(q0,1) = q1 and 0(q1,1) = ¢1. We use M to request that the class of color j is
empty in Gj, therefore \(...,comp;) = ... A(. .., qo, €4y,)-

That is, if v belongs to a different connected component than all the vertices of
color 7 in X, then there is no way to connect v with them and we get an error. Also,
if there are no vertices of color j in X, then there cannot be any vertices of color j
in Gy, because Ng(V(G) — V(Gs)) NV(Gs) C X,.

» Join node: For every 5 C {comp;(v) : v € X]} let comp?
for all v € X},

be a function such that,

comp;(v) =

{min(S) if comp;(v) € S

comp;(v) otherwise.

At this node we need to unify the different connected components. To do so,
on one branch we unify a set S of them while on the other branch we unify a set
R of them, such that S U R = {comp;(v) : v € X]} and |[SN R| = 1. Then
M- comp;) = min{W & A (..., comp3) & A(...,compl) : SUR = {comp;(v) :
vEXIIAISAR/ =1A...}.

o At the root r where X, = {v}, the function comp; is such that comp;(v) = 1.

As before, notice that it is easy to generalize this idea to more classes or sets of
classes by adding as many comp; functions as needed.

Let J be the number of color classes (or sets of color classes) to restrict. The only
changes in complexity are:

e Leaf node: add J.

e Forget node: add (C — 1+ k*)J.

e Introduce node: add kJ.

« Join node: multiply by (k2%)7.

e When we multiply by the number of all possible combinations of the parameters

of \;: add a factor (k*)7.

Note that because in the introduce node we require that the class of color j is empty,
we also need to compute A(.. ., qo, eqy,) for allt € T', but this addition does not change
the time complexity here (due to the fact that both S and R are bounded by a constant
in this case).

7.4. One color class is acyclic. (For undirected graphs.)

26 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

It can be done in essentially the same way as for the connected property. The only
difference is that in the introduce node we do as in the original algorithm, and in the
forget node we check if v is a neighbor of at least two vertices that belong to the same
component (in which case there is a cycle and we raise an error).

8. APPLICATIONS

In this section we show how to model different problems as 1-locally checkable prob-
lems with polynomial partial neighborhood systems. As a result, we obtain polynomial-
time algorithms to solve these problems for bounded treewidth graphs. For double
Roman domination, minimum chromatic violation and Grundy domination (and their
variants), no such algorithms were previously known (until the date and to the best of
our knowledge). As regards the problems that were already known to be polynomial-
time solvable for the before-mentioned classes, it is worth to mention how to restate
these problems as 1-locally checkable problems, even when the time complexity of the
proposed solution is worse than the best one known, because problems modeled this
way can be easily modified or combined, adding global properties or more restrictions,
or even dealing with some distance versions, and they can inspire the statement of
other problems as 1-locally checkable problems.

Throughout this section, we will assume that, otherwise stated, the definitions of NV, ;
are for all v € V(@) and i € L,, of n B n’ for all v € V(G), i € L, and n,n’ € N,
of newN, ;(u, j) for all v € V(G), i € L,, u € Ng(v) and j € L,, and of check, ;(n) for
allv e V(G),i€ L, and n € N, ;.

8.1. Double Roman domination. This problem was first defined in [4] and proved
to be NP-complete for bipartite and chordal graphs in [2].

A double Roman dominating function on a graph G is a function f: V(G) —
{0,1,2,3} having the property that if f(v) = 0, then vertex v must have at least
two neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(v) =1,
then vertex v must have at least one neighbor w with f(w) > 2. The weight of a double
Roman dominating function f is the sum f(V(G)) = >_ ¢y () f(v), and the minimum
weight of a double Roman dominating function on G is the double Roman domination
number of G.

We can model the Double Roman domination problem as a 1-locally checkable prob-
lem in the following way:

o L, ={0,1,2,3};
o (WEIGHTS, =%, ®) = (RU {400}, <, +);
e Wy = 27
e check(v,c) = (c(v)=0 = (Ju,w € Ng(v).u # w A c(u) = c(w) = 2)
V' (Fu € Ng(v). c(u) = 3))
A (e(v)=1 = Fu € Ng(v).c(u) > 2).

It is easy to see that some of its variants, such as perfect [27], independent [53], outer
independent [1] and total [59], can be modeled by making slight modifications to the
previous items.

By Corollary 5.5.2, the Double Roman domination problem can be solved in poly-
nomial time for graphs of bounded treewidth. However, we show a constant partial
neighborhood system and therefore obtain a linear-time algorithm:

° Nv,i - {07 172} X {07 1}’

N Hﬂvvi n/ e (mln(nl + n/l, 2), mlIl(TLQ + n/27 1))7

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 27

(0,0) ifj <1
e newlN,;(u,j) =4 (1,0) if j =2
(0,1) ifj=3;

o check,;(n)=(1=0=mn,>2Vna>1)A(i=1=ny+ny>1).

Notice that this partial neighborhood system simply counts (until it saturates) the
number of neighbors assigned with 2 and also the ones assigned with 3. For other
versions of the double Roman domination problem, we might require to also count the
number of neighbors assigned with 0 or 1.

8.2. Minimum chromatic violation problem. This NP-hard problem was first de-
fined in [10] as a generalization of the k-coloring problem.

Given a graph G, a set of weak edges F' C E(G) and a positive integer k, the mini-
mum chromatic violation problem asks for a k—coloring of the graph G' = (V(G), E(G)—
F') minimizing the number of weak edges with both endpoints receiving the same color.

We can reduce this problem to the following 1-locally checkable problem in the
subdivision graph S(G):

e L, =[1,k] for all v € V(G),
Ly, = L, X L, for all wv € E(G);
e (WEIGHTS, =%, 8) = (RU {400}, <, +);
e W,; =0forallveV(G),ielL,,
W, (i,i) = 1 for all uv € E(G),i € L, N Ly,
W, i,j) = 0 for all wv € E(G),i1 € Ly, j € L, — {i};
e check(v,c) = TRUE for all v € V(G),
check(uv, ¢) = (c(uv) = (c(u), c(v))) for all uv € F, and
check(uv, ¢) = (c(uv) = (c(u), c(v)) A c(u) # c(v)) for all uv € E(G) — F.

Basically, every edge in GG is colored with a pair of colors and checks if these are the
colors of its endpoints. Edges in F' are allowed to have endpoints of the same color,
while edges not in F' always produce an error when colored with a pair of equal colors.
If an edge is colored with a pair of equal colors then its weight is 1, otherwise is 0.

In this way we have C = k?. We give a constant partial neighborhood system for
this model:

e N,; = BooL for all v € V(S(G)),i € Ly;

e nH” n' = (nAn') for all v € V(S(GQ)),i € L, and n,n' € N, ;;

e newN,;(e,j) = TRUE for all v € V(G),i € L,,e € Ng)(v),J € Le,
NEWN yy (cy.e0) (U, J) = (J = ¢) for all wv € E(G), ¢y € Ly, ¢y € Ly, j € Ly,
neWN yy (co.e,) (V1) = (J = ¢,) for all uwv € E(G), ¢, € Ly, ¢y € Ly, j € Ly;

e check,;(n) = TRUE for all v € V(G),i € L,,n € N, .,
checkyy i j(n) = n for all wv € F,i € Ly, j € Ly,n € Ny i.j),
checkyy ;5 (n) = (n A i # j) for all wv € E(G) — F,i € Ly, j € Ly,n € Nuw (i)-

Therefore, when k is bounded by a constant the minimum chromatic violation prob-
lem can be solved in linear time for graphs of bounded treewidth.

8.3. Grundy domination number. This problem was introduced in [12] and proved
to be NP-complete even for chordal graphs.

A sequence S = (vy, ..., v) of distinct vertices of a graph G is a dominating sequence
if {v1,..., vt} is a dominating set of GG, and S is called a legal (dominating) sequence if
(in addition) N[v;] — U;;ll N[v;] # 0 for each i. We say that v; footprints the vertices
in Nv;| — U;_:ll Nlv;], and that v; is the footprinter of every u € Nv;] — U;_:ll Nlv;]

28 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

(notice that every vertex in V(G) has a unique footprinter). We are interested in the
maximum length of a legal dominating sequence in G.

Given a legal sequence S, every vertex v € V(@) can be associated with a pair
(Pvs fu), where p, is the position of v in S (or L if v is not in S) and f, is the position
in S of the footprinter of v. Directly from the definition of legal sequences we can deduce
the following statement. A set {(p,, f,) : v € V(G)} determines a legal sequence if and
only if the following conditions are satisfied:

(1) for all v € V(G), there exists a unique v € Ng[v] such that f, = p,, and f, < p,
for all w € Ng[v] (i.e., v is properly footprinted),

(2) for all v € V(G), if p, #L then there exists u € Ng[v| such that f, = p, (i.e.,
if v appears in the sequence then it footprints at least one vertex), and

(3) pv # py for all u,v € V(G) such that u # v and p, #L (i.e., two vertices that
appear in the sequence cannot have the same position in it).

Notice that conditions 1 and 2 are locally checkable, but the last one is not. However,
we claim that the Grundy domination problem can be reduced to the following 1-locally
checkable problem. Let n = |[V(G)] and L= n+ 1.

e L,=({1,...,n}U{L}) x{1,...,n};
o (WEIGHTS, =, ®) = (RU {—o0}, >, +);
e forall fe{l,....n}, Wy (15 =0and Wy s =1forall p#L;
o check(v,c) (F'u € Ng[v]. c(v)e = c(u);)
(Vu € Ng[v]. c(v)2 < c(u))
(c(v); #L= Fu € Ng[v]. c(v); = c(u)s)
(c(v) #L= Yu € Ng(v).c(v); # c(u)q).

Let G be a graph. Let ¢ be a proper coloring of GG in the previous 1-locally checkable
problem, and let (p,, f,) = c¢(v) for all v € V(G). Conditions 1 and 2 are trivially
satisfied. Suppose that the last condition is not satisfied. Then there are two different
vertices u, v such that p, = p, #.L. By definition of check, we know that

* u ¢ Nglv],
e if there exists a vertex w such that f,, > p, = p, then v ¢ Ng[w] and u ¢ Ng[w]
(thus, w ¢ Nglv] and w ¢ Nglu]), and
e if there exists a vertex w € Ng[u] such that f, = p, = p, then w ¢ Ng[v].
Therefore, Nglu| N Nglv] = F such that f, < p, = p, for all w € F. Now we can
assign colors (p.,, f1,) for every w € V(G), such that

1) Pw ifpwgpuandw?év
P = pw + 1 otherwise

> > > |l

and
= fw if fu, < pu, or fu, = p, and w ¢ Ng[v]
“ | fu+1 otherwise.

That is, we move one position forward all the vertices that appear after v in S and
increase the necessary f,. It is easy to see that this new assignment preserves the
“legality” of u (i.e., if Ng[u] — {2z : 2 € Ng[w]| A py < pu} # 0 then Nglu] —{z : z €
Nelw] Apl, < pl} # 0) and also of all the other vertices.

In order to give a polynomial-time algorithm for the Grundy domination problem
in bounded treewidth graphs, we define a constant partial neighborhood system as
follows:

e Now.p) = {0,1,2} x BooL x BooL x Boot;

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 29

o n BYPH ! = (min(n; + n},2),n0 Anb,ns V ng,ng Anj);
e newlNy p, 7.,) (U, (Pus; fu)) = n where:

T 0 otherwise,
* n2 = (fy < pu),
* n3 = (py —f)
* 4 = (py # Pu);
o checky, f() = m<2A(m=1=f#p A(m=0= f=p))
A (Th/\fﬁp)
N (p#Ll= (n3Vp=f))

We can also model the Grundy total domination problem (defined in [13]) in a very
similar way, by simply removing the cases where a vertex can footprint itself.

For both problems, since C is O(|V(G)]?), and we defined a constant partial neigh-
borhood system, the time complexity of the algorithm is polynomial in |V (G)| for a
graph G in a family of bounded treewidth graphs.

8.4. Additive coloring. Let 7 be an upper bound of the additive chromatic number.
It was shown in [3] that the additive chromatic number in a graph G is at most
A(G)? — A(G) + 1.

To model the additive coloring problem as a 1-locally checkable problem with a
partial neighborhood system, we define the colors to be pairs of integers (n, s), where
n represents the number assigned to the vertex and s the sum of the numbers assigned
to its neighbors. Formally:

o Ly = [1,n] x [1, A(G)n];

e (WEIGHTS, =, ®) = (RU {400}, <, max);

° Wyi = Zlv

o check(v,c) = (Yu € Ng(v). c(u)z # c(v)2) A (c(v)2 = D ueNa() c(u)1>.

It is straightforward to derive a polynomial partial neighborhood system for this

model. One possibility is the following:
e N,; = BooL x [1,A(G)n + 1];
o nEY n/ = (ny Any, min(ny + nh, A(G)n + 1));
o newN,;i(u,j) = (iz # j2, j1)
e check, (n) = ny A (ia = ng).

Then C is O(A(G)n?) and N is O(A(G)n), implying that there exists a polynomial-

time algorithm to compute 7(G) for graphs G in a class of graphs of bounded treewidth.

Another polynomial time algorithm was obtained by R. Grappe, L. N. Grippo, and M.
Valencia-Pabon (personal communication).

8.5. Distance domination problems. These problems can be naturally expressed
as r-locally checkable problems, for some r depending on the characteristics of the
problem. Moreover, some of them are in fact 1-locally checkable problems.

We will start by showing how to model the distance k-domination problem as a
1-locally checkable problem. To do this, we restate the problem in the following way:
vertices receive integers from 0 to k (that represent their distance to a vertex of the
distance k-dominating set), and vertices with a number greater than 0 must satisfy the
condition of having a neighbor with the preceding number assigned. Then

® LU - [[07 k:]]v

30 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

e (WEIGHTS, =, ®) = (RU {400}, <, +);
e W,0=1and
w,; =0 for all i € [1, k];
e check(v,c) = (c¢(v) > 0= Ju € Ng(v).c(u) = c(v) — 1).

It only remains to show a constant partial neighborhood system in order to get a
linear-time algorithm for this problem in bounded treewidth graphs:

e N, = Boor;

e nEY 0/ =nvVvn/;

e newlN,,(u,j)=(j=1i—1);
e check,(n) = (i > 0= n).

Notice that with a similar argument we can model similar problems involving more
than two sets in the partition. The idea is to make the colors indicate how far the
vertices are from every other color. For example, if we have to color the graph
with {7, g,b} in such a way that every vertex is at distance at most 3 from a ver-
tex of color r and at distance at most 2 from a vertex of color g, following this
idea to model the problem as a 1-locally checkable problem, our set of colors is
{7“0,1, 70,25 91,05 92,05 93,0, b1,17 b2,17 53,1, b1,2, b2,27 b3,2}-

However, when there are restrictions over the distance between vertices of the same
color, the previous approach would not work. We will now explain how to model these
problems when the required distance is 2.

Let us work with the semitotal domination problem. We first restate the problem in
order to differentiate two possible situations for a vertex in D (colors D; and D,) and
two possible situations for a vertex not in D (colors D and D,). Vertices of color D,
represent those vertices in D that have a neighbor in D, vertices of color D, represent
those vertices in D that are at distance 2 of another vertex in D, vertices of color D,
represent those vertices not in D that are the nexus between two vertices in D, and
vertices of color D represent all the remaining ones. Then we can set

L4 LU = {Dl,DQ,E,E*};
¢ (WEIGHTS, <, ®) — (R U {+o0}, <, +);
o Wv,Dl = Wv,Dg = 1, and
W, 5 =W,5. =0;
o check(v,c) = (c(v) € {D, D1} = 3u € Ng(v). c(u) € {Dy, Ds})
A (c(v) = Dy = Fu € Ng(v). c(u) = D)
A (c(v) = D, = Fu,w € Ng(v).u # w A c(u), c(w) € {Dy, Dy}).
And we can naturally give a constant partial neighborhood system:
° Nv,i = {07 17 2}7
e n B 1/ = min(n + n’, 2);
o Ifi e {Dl,ﬁ,ﬁ*}I
1 if j € {D1, Dy}

NUi)) = .
newN (i, j) {O otherwise,
{1 if j = D,
>
n

if1 = DQZ

newlN,;(u,j) = .
i) 0 otherwise;

) for i € {D, Dy, Dy}, and

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 31

Notice that in the restatement of semitotal domination we changed the “duties” of
the vertices: the ones in charge of checking that a vertex of color D is at distance 2
of another vertex in D are now the vertices of color D.,.

Combining the ideas of the two previous problems we can model other related prob-
lems (such as total distance 2-domination) as 1-locally checkable problems.

8.6. Problems involving edges. Consider locally checkable problems where, for ev-
ery edge, a certain condition comprising their endpoints and their consecutive edges
must be satisfied. We will show how to reduce these problems to 1-locally checkable
problems in the jagged graph J(G) of the input graph G. We consider two kind of
problems: when edges do not have requirements over other edges, and when they do.

For the first class of problems, the reduction is straightforward. We might need to
duplicate the colors in order to distinguish the colors assigned to edges from the colors
assigned to vertices. As an example, we show how to model vertex cover:

e L, ={0,1} for all v € V(G) and
L, = {0} for all wv € E(G);

e (WEIGHTS, %) = (RU {+00}, <) and @ = +;

e Wy ;=i forallv' € V(J(Q)),i € Ly;

e check(v,c) = TRUE for all v € V(G), and
check(uv, c¢) = (c(u) + c¢(v) > 1) for all wv € E(G).

And we give a constant partial neighborhood system:

L4 Nv/,i - {O, 1};

o n BV 0/ = min(n + n', 1);

e newlN, ;(u',j) = j; and

e check, (n) = TRUE for all v € V(G),i € L,, and
checkyyo(n) = (n > 1) for all wv € E(G).

Edge cover is basically the same as vertex cover but interchanging vertices and edges.

As regards the second class of these problems, since two edges in F(G) that share an
endpoint are at distance two in J(G), we can use the ideas from semitotal domination:
the neighbors in J(G) of the edges in E(G) (which are vertices in V(G)) are the ones in
charge of checking the requirements of the edges in E(G). We illustrate the maximum
matching problem, for which we can set:

e L, ={0} for all v € V(G) and
L., ={0,1} for all uv € E(G);

e (WEIGHTS, =) = (RU{—00},>) and & = +;

e Wy ;=i forallv € V(J(Q)),i € Ly;

e check(v,c) = (ZueNG(U) c(uv) < 1) for all v € V(G), and
check(uv, ¢) = TRUE for all uv € E(G).

And we give a constant partial neighborhood system:

L4 Nv/,i == {O, 1};

o n B 0/ = min(n + n', 1);

e newN, ;(u',j) = j; and

e check,o(n) = (n <1) for all v € V(G), and
checky, ;(n) = TRUE for all uv € E(G),i € Ly,.

32 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

ACKNOWLEDGEMENTS

This work was partially supported by ANPCyT PICT-2015-2218, UBACyT Grants
20020190100126BA, 20020170100495BA and 20020160100095BA (Argentina), and Pro-
grama Regional MATHAMSUD MATH190013. Carolina L. Gonzalez is partially sup-
ported by a CONICET doctoral fellowship.

REFERENCES

[1] H. Abdollahzadeh Ahangar, M. Chellali, and S. Sheikholeslami. Outer independent double Roman
domination. Applied Mathematics and Computation, 364:124617, 2020.

[2] H. A. Ahangar, M. Chellali, and S. M. Sheikholeslami. On the double Roman domination in
graphs. Discrete Applied Mathematics, 232:1-7, 2017.

[3] S. Akbari, M. Ghanbari, R. Manaviyat, and S. Zare. On the lucky choice number of graphs.
Graphs and Combinatorics, 29(2):157-163, Mar. 2013.

[4] R. A. Beeler, T. W. Haynes, and S. T. Hedetniemi. Double Roman domination. Discrete Applied
Mathematics, 211:23-29, 2016.

[5] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, Inc., USA, 1972.

[6] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. Technical report,
USA, 1987.

[7] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In T. Lepisto and
A. Salomaa, editors, Automata, Languages and Programming, pages 105—118, Berlin, Heidelberg,
1988. Springer Berlin Heidelberg.

[8] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer
Science, 209(1):1-45, 1998.

[9] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk.
An O(cFn) 5-approximation algorithm for treewidth. In 2018 IEEE 54th Annual Symposium on
Foundations of Computer Science, pages 499-508, 2013.

[10] M. Braga, D. Delle Donne, M. Escalante, J. Marenco, M. Ugarte, and M. Varaldo. The minimum
chromatic violation problem: a polyhedral study. FElectronic Notes in Discrete Mathematics,
62:309-314, 2017. LAGOS’17 — IX Latin and American Algorithms, Graphs and Optimization.

[11] A. Brandstadt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey, volume 3 of STAM Mono-
graphs on Discrete Mathematics. Society for Industrial and Applied Mathematics, Philadelphia,
1999.

[12] B. Bresar, T. Gologranc, M. Milani¢, D. F. Rall, and R. Rizzi. Dominating sequences in graphs.
Discrete Mathematics, 336:22-36, 2014.

[13] B. Bresar, M. A. Henning, and D. F. Rall. Total dominating sequences in graphs. Discrete Math-
ematics, 339(6):1665-1676, 2016.

[14] B. Bresar, S. Klavzar, and D. F. Rall. On the packing chromatic number of Cartesian products,
hexagonal lattice, and trees. Discrete Applied Mathematics, 155(17):2303-2311, 2007.

[15] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast dynamic programming for locally checkable
vertex subset and vertex partitioning problems. Theoretical Computer Science, 511:66-76, 2013.

[16] T. Calamoneri. The L(h,k)-Labelling Problem: A Survey and Annotated Bibliography. The
Computer Journal, 49(5):585-608, 05 2006.

[17] D. Cattanéo and S. Perdrix. The parameterized complexity of domination-type problems and
application to linear codes. In T. V. Gopal, M. Agrawal, A. Li, and S. B. Cooper, editors, Theory
and Applications of Models of Computation - 11th Annual Conference, TAMC 2014, Chennai,
India, April 11-13, 201/. Proceedings, volume 8402 of Lecture Notes in Computer Science, pages
86-103. Springer, 2014.

[18] G. J. Chang and D. Kuo. The L(2,1)-labeling problem on graphs. SIAM Journal on Discrete
Mathematics, 9(2):309-316, 1996.

[19] G. J. Chang and C. Lu. Distance-two labelings of graphs. Furopean Journal of Combinatorics,
24(1):53-58, 2003.

[20] G. J. Chang, J. Wu, and X. Zhu. Rainbow domination on trees. Discrete Applied Mathematics,
158(1):8-12, 2010.

[21]

22]

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 33

K. Chatterjee, R. Ibsen-Jensen, A. K. Goharshady, and A. Pavlogiannis. Algorithms for algebraic
path properties in concurrent systems of constant treewidth components. ACM Transactions on
Programming Languages and Systems, 40(3):9:1-9:43, 2018.

E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi. Total domination in graphs. Networks,
10(3):211-219, 1980.

E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi. Roman domination in
graphs. Discrete Mathematics, 278(1):11-22, 2004.

B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable graphs.
Theoretical Computer Science, 109(1):49-82, 1993.

S. Czerwinski, J. Grytczuk, and W. Zelazny. Lucky labelings of graphs. Information Processing
Letters, 109(18):1078-1081, 20009.

J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467, 1965.

A. T. Egunjobi and T. W. Haynes. Perfect double Roman domination of trees. Discrete Applied
Mathematics, 2020.

P. Erdos, A. L. Rubin, and H. Taylor. Choosability in graphs. In Proc. West Coast Conf. on
Combinatorics, Graph Theory and Computing, Congressus Numerantium, volume 26, pages 125—
157, 1979.

H. Eto, F. Guo, and E. Miyano. Distance-d independent set problems for bipartite and chordal
graphs. J. Comb. Optim., 27(1):88-99, Jan. 2014.

J. Fiala and P. A. Golovach. Complexity of the packing coloring problem for trees. Discrete
Applied Mathematics, 158(7):771-778, 2010. Third Workshop on Graph Classes, Optimization,
and Width Parameters Eugene, Oregon, USA, October 2007.

J. F. Fink and M. S. Jacobson. n-Domination in Graphs, pages 283-300. John Wiley & Sons,
Inc., USA, 1985.

P. Firby and J. Haviland. Independence and average distance in graphs. Discrete Applied Math-
ematics, 75(1):27-37, 1997.

M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revis-
ited. Annals of Pure and Applied Logic, 130(1):3-31, 2004. Papers presented at the 2002 IEEE
Symposium on Logic in Computer Science (LICS).

R. Gallant, G. Gunther, B. Hartnell, and D. Rall. Limited packings in graphs. Discrete Applied
Mathematics, 158(12):1357-1364, 2010.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, J. M. Harris, and D. F. Rall. Broadcast
chromatic numbers of graphs. Ars Combinatoria, 86:33-49, 2008.

W. Goddard, M. A. Henning, and C. A. McPillan. Semitotal domination in graphs. Utilitas
Mathematica, 94:67-81, 2014.

D. Gongalves. On the L(p, 1)-labelling of graphs. In S. Felsner, editor, 2005 European Conference
on Combinatorics, Graph Theory and Applications (EuroComb '05), volume DMTCS Proceedings
vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb
'05) of DMTCS Proceedings, pages 81-86, Berlin, Germany, 2005. Discrete Mathematics and
Theoretical Computer Science.

J. R. Griggs and R. K. Yeh. Labelling graphs with a condition at distance 2. STAM Journal on
Discrete Mathematics, 5(4):586-595, 1992.

B. Griinbaum. Acyclic colorings of planar graphs. Israel Journal of Mathematics, 14(4):390-408,
1973.

R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171-186, 1976.

F. Harary and T. W. Haynes. Double domination in graphs. Ars Combinatoria, 55:201-213, 04
2000.

T. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs. Boca Raton:
CRC Press, 1998.

J. He and H. Liang. Complexity of total {k}-domination and related problems. In M. Atallah,
X.-Y. Li, and B. Zhu, editors, Frontiers in Algorithmics and Algorithmic Aspects in Information
and Management, pages 147-155, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

M. A. Henning. Distance domination in graphs. In T. W. Haynes, S. T. Hedetniemi, and P. J.
Slater, editors, Domination in Graphs: Advanced Topics, chapter 12. Marcel Dekker, Inc., 1997.

34
[46]
(47]

(48]

[52]

[53]

[63]
[64]

F. BONOMO-BRABERMAN AND C.L. GONZALEZ

M. A. Henning and A. P. Kazemi. k-tuple total domination in graphs. Discrete Applied Mathe-
matics, 158(9):1006-1011, 2010.

J. E. Hopcroft and J. D. Ullman. Introduction To Automata Theory, Languages, And Computa-
tion. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1990.

L. Jaffke, O. joung Kwon, T. J. F. Strgmme, and J. A. Telle. Generalized Distance Dom-
ination Problems and Their Complexity on Graphs of Bounded mim-width. In C. Paul and
M. Pilipczuk, editors, 13th International Symposium on Parameterized and Exact Computation
(IPEC 2018), volume 115 of Leibniz International Proceedings in Informatics (LIPIcs), pages
6:1-6:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

R. M. Karp. Reducibility among Combinatorial Problems, pages 85-103. Springer US, Boston,
MA, 1972.

T. Kloks. Treewidth, volume 842 of Lecture Notes in Computer Science. Springer-Verlag Berlin
Heidelberg, 1 edition, 1994.

E. Kubicka and A. J. Schwenk. An introduction to chromatic sums. In Proceedings of the 17th
Conference on ACM Annual Computer Science Conference, CSC 89, pages 39-45, New York,
NY, USA, 1989. Association for Computing Machinery.

V. A. Leoni and E. G. Hinrichsen. {k}-packing functions of graphs. In P. Fouilhoux, L. E. N.
Gouveia, A. R. Mahjoub, and V. T. Paschos, editors, Combinatorial Optimization, pages 325-335,
Cham, 2014. Springer International Publishing.

H. Maimani, M. Momeni, S. Nazari Moghaddam, F. Rahimi Mahid, and S. Sheikholeslami.
Independent double Roman domination in graphs. Bulletin of the Iranian Mathematical Society,
46:543-555, 2020.

A. Meir and J. W. Moon. Relations between packing and covering numbers of a tree. Pacific
Journal of Mathematics, 61(1):225-233, 1975.

@. Ore. Theory of graphs, volume XXXVIII of Colloquium Publications. American Mathematical
Society, Providence, 3rd edition, 1962.

N. Robertson and P. Seymour. Graph minors. III. Planar tree-width. Journal of Combinatorial
Theory, Series B, 36(1):49-64, 1984.

N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of
Algorithms, 7(3):309-322, 1986.

E. Sampathkumar and H. B. Walikar. The connected domination number of a graph. Journal of
Mathematical and Physical Sciences, 13:607-613, 1979.

Z. Shao, J. Amjadi, S. M. Sheikholeslami, and M. Valinavaz. On the total double Roman domi-
nation. IEEE Access, 7:52035-52041, 2019.

C. Sloper. An eccentric coloring of trees. Australasian Journal of Combinatorics, 29:309-321,
2004.

J. A. Telle. Vertex Partitioning Problems: Characterization, Complexity and Algorithms on Par-
tial k-Trees. PhD thesis, University of Oregon, 1994.

M. Thorup. All structured programs have small tree width and good register allocation. Infor-
mation and Computation, 142(2):159-181, 1998.

V. G. Vizing. Vertex colorings with given colors. Diskret. Analiz, 29:3-10, 1976.

M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal on Applied Math-
ematics, 38(3):364-372, 1980.

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 35

APPENDIX A. PROBLEMS DEFINITIONS

We define here the decision versions of the problems mentioned along the paper.
Other similar problems can also be modeled as r-locally checkable problems.

A.1. Domination problems.
DOMINATING SET [55]
Instance: A (weighted) graph G and a positive integer k.
Question: Does there exist S C V(G) of size (weight) at most k& and such that | N[v] N
S| > 1 for every v € V(G)?

TOTAL DOMINATION [22]

Instance: A (weighted) graph G and a positive integer k.

Question: Does there exist S C V(G) of size (weight) at most k and such that |N(v)N
S| > 1 for every v € V(G)?

k-TUPLE DOMINATION [42]

Instance: A (weighted) graph G and a positive integer /.

Question: Does there exist S C V(G) of size (weight) at most ¢ and such that | N[v] N
S| > k for every v € V(G)?

TOTAL k-TUPLE DOMINATION [46]

Instance: A (weighted) graph G and a positive integer /.

Question: Does there exist S C V(G) of size (weight) at most ¢ and such that |N(v) N
S| > k for every v € V(G)?

k-DOMINATION [31]

Instance: A (weighted) graph G and a positive integer /.

Question: Does there exist S C V(G) of size (weight) at most ¢ and such that | N(v)N
S| >k for every v € V(G) \ S?

{k}-DOMINATION [44]

Instance: A graph G and a positive integer /.

Question: Does there exist a function f: V(G) — {0,
and such that f(N[v]) > k for every v € V(

k-RAINBOW DOMINATION [20]
Instance: A graph G and a positive integer /.

1,...,k} of weight at most ¢
)?

at most ¢ and such that for every vertex v € V(G) for which f(v) = 0 we
have U, engp f(w) = {1, ..., k}?

SEMITOTAL DOMINATING SET [37]

Instance: A (weighted) graph G with no isolated vertex and a positive integer k.

Question: Does there exist a dominating set D C V(G) of size (weight) at most k and
such that every vertex in D is within distance two of another vertex in D?

DISTANCE k-DOMINATION (also called k-COVERING) [45, 54]

Instance: A (weighted) graph G and a positive integer /.

Question: Does there exist a set S C V(G) of size (weight) at most ¢ and such that
every vertex in GG is within distance k from a vertex in S7

CONNECTED DOMINATING SET [58]

Instance: A (weighted) graph G and a positive integer k.

Question: Does there exist a dominating set of G of size (weight) at most &k that
induces a connected subgraph of G?

36 F. BONOMO-BRABERMAN AND C.L. GONZALEZ

ROMAN DOMINATION [23]

Instance: A graph G and a positive integer k.

Question: Does there exist a function f: V(G) — {0,1,2} of weight at most k& and
such that every vertex u € V(G) for which f(u) = 0 is adjacent to at least
one vertex v € V(G) for which f(v) =27

GRUNDY TOTAL DOMINATION [13]
Instance: A graph G and a positive integer k.

Question: Does there exist a sequence (vy, ..., v) of distinct vertices of G such that
>k, {v,...,v} is a dominating set of G and N(v;) — U;;ll N(vj) # 0 for
each 7

A.2. Coloring problems.
k-COLORING [35]
Instance: A graph G.
Question: Does there exist a function c¢: V(G) — {1,...,k} such that c(u) # c(v)
whenever uv € E(G)?

LIST-COLORING [28,63]
Instance: A graph G and a set L(v) of colors for each vertex v € V(G).
Question: Does there exist a proper coloring ¢ such that ¢(v) € L, for all v € V(G)?

k-CHROMATIC SUM [51]
Instance: A graph G.
Question: Is there a proper coloring c of the graph G such that) _, c(v) < k7

ADDITIVE COLORING (also called LUCKY LABELING) [25]

Instance: A graph G and a positive integer k.

Question: Does there exist a function f: V(G) — {1,...,k} such that for every two
adjacent vertices u, v the sums of numbers assigned to their neighbors are

different (that is, >°, ¢y f(W) # 20 cnw) f(2))7

ACYCLIC COLORING [40]

Instance: A graph G and a positive integer k.

Question: Does there exist a k-coloring of G such that of every subgraph of G spanned
by vertices of two of the colors is acyclic (in other words, is a forest)?

L(h, k)-LABELING [16]

Instance: A graph G and a positive integer s.

Question: Does there exist a labeling of its vertices by integers between 0 and s such
that adjacent vertices of GG are labeled using colors at least h apart, and
vertices having a common neighbor are labeled using colors at least k£ apart?

A.3. Independence problems.

INDEPENDENT SET [35]

Instance: A (weighted) graph G and a positive integer k.

Question: Does there exist an independent set of G of size (weight) at least k7

k-INDEPENDENT SET (also called DISTANCE d-INDEPENDENT SET) [29, 32]

Instance: A graph G and a positive integer s.

Question: Does there exist X C V(G) of size at least s such that the distance between
every two vertices of X is at least k + 17

A NEW APPROACH ON LOCALLY CHECKABLE PROBLEMS 37

A 4. Packing problems.
{k}-PACKING FUNCTION [52]
Instance: A graph G and a positive integer /.
Question: Does there exist a function f: V(G) — {0,1,..., k} of weight at least £ and
such that f(N[v]) < k for every v € V(G)?

k-LIMITED PACKING [34]

Instance: A graph G and a positive integer .

Question: Does there exist a function f: V(G) — {0, 1} of weight at least ¢ and such
that f(N[v]) <k for every v € V(G)?

PACKING CHROMATIC NUMBER [14]

Instance: A graph G and a positive integer k.

Question: Can G be partitioned into disjoint classes X, ..., X} where vertices in X;
have pairwise distance greater than 7

A.5. Problems involving edges.
MATCHING [26]
Instance: A(n) (edge weighted) graph G and a positive integer k.
Question: Does there exist a set M C E(G) of pairwise non-adjacent edges of size
(weight) at least k7

EDGE DOMINATION [64]

Instance: A(n) (edge weighted) graph G and a positive integer k.

Question: Does there exist F' C E(G) of size (weight) at most k& and such that every
edge in F(G) shares an endpoint with at least one edge in F'?

VERTEX COVER [49]

Instance: A (weighted) graph G and a positive integer k.

Question: Does there exist S C V(G) of size (weight) at most k& and such that every
edge in E(G) has at least one endpoint in S7

EDGE COVER [35]

Instance: A(n) (edge weighted) graph G and a positive integer k.

Question: Does there exist F' C E(G) of size (weight) at most k& and such that every
vertex in V(G) belongs to at least one edge in F'?

UNIVERSIDAD DE BUENOS AIRES. FACULTAD DE CIENCIAS EXACTAS Y NATURALES. DEPARTA-
MENTO DE COMPUTACION. BUENOS AIRES, ARGENTINA. / CONICET-UNIVERSIDAD DE BUENOS
AIRES. INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION (ICC). BUENOS AIRES,
ARGENTINA.

Email address: fbonomo@dc.uba.ar

CONICET-UNIVERSIDAD DE BUENOS AIRES. INSTITUTO DE INVESTIGACION EN CIENCIAS DE
LA CoMPUTACION (ICC). BUENOS AIRES, ARGENTINA.
Email address: cgonzalez@dc.uba.ar

	1. Introduction
	2. Basic definitions and preliminary results
	2.1. Algebraic definitions
	2.2. Automata
	2.3. Computability
	2.4. Basic definitions on graphs
	2.5. Definitions and preliminary results on treewidth
	2.6. Definitions and preliminary results on frameworks for locally checkable problems

	3. r-locally checkable problems
	3.1. Examples
	3.2. LCVP problems
	3.3. LCC and ECC problems

	4. 1-locally checkable problems in complete graphs
	5. 1-locally checkable problems in bounded treewidth graphs
	5.1. Partial neighborhoods
	5.2. Notation and definitions
	5.3. Algorithm
	5.4. Time complexity
	5.5. Special cases
	5.6. LCVP problems

	6. r-locally checkable problems in bounded treewidth and bounded degree graphs
	7. Dealing with global properties in bounded treewidth graphs
	7.1. The size of a color class is an element of a particular set
	7.2. LCC-like properties
	7.3. One color class is connected
	7.4. One color class is acyclic

	8. Applications
	8.1. Double Roman domination
	8.2. Minimum chromatic violation problem
	8.3. Grundy domination number
	8.4. Additive coloring
	8.5. Distance domination problems
	8.6. Problems involving edges

	Acknowledgements
	References
	Appendix A. Problems definitions
	A.1. Domination problems
	A.2. Coloring problems
	A.3. Independence problems
	A.4. Packing problems
	A.5. Problems involving edges

