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Abstract

Let D be an arc-colored digraph. The arc number a(D) of D is defined as the

number of arcs of D. The color number c(D) of D is defined as the number of

colors assigned to the arcs of D. A rainbow triangle in D is a directed triangle in

which every pair of arcs have distinct colors. Let f(D) be the smallest integer such

that if c(D) ≥ f(D), then D contains a rainbow triangle. In this paper we obtain

f(
←→
K n) and f(Tn), where

←→
K n is a complete digraph of order n and Tn is a strongly

connected tournament of order n. Moreover we characterize the arc-colored complete

digraph
←→
K n with c(

←→
K n) = f(

←→
K n)− 1 and containing no rainbow triangles. We also

prove that an arc-colored digraph D on n vertices contains a rainbow triangle when

a(D)+ c(D) ≥ a(
←→
K n)+ f(

←→
K n), which is a directed extension of the undirected case.

Keywords: arc-colored digraph, rainbow triangle, color number, complete digraph,

strongly connected tournament

1 Introduction

In this paper we only consider finite digraphs without loops or multiple arcs. For termi-

nology and notations not defined here, we refer the readers to [2] and [3].
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Let D = (V,A) be a digraph. We use a(D) to denote the number of arcs of D. If

uv ∈ A(D), then we say that u dominates v (or v is dominated by u) and uv is an in-arc

of v (or uv is an out-arc of u). For a vertex v of D, the in-neighborhood N−
D (v) of v

is the set of vertices dominating v, and the out-neighborhood N+
D (v) of v is the set of

vertices dominated by v. The in-degree d−D(v) and out-degree d+D(v) of v are defined as the

cardinality of N−
D (v) and N+

D (v), respectively. The degree dD(v) of v is defined as the sum

of d−D(v) and d+D(v). A complete digraph is a digraph obtained from a complete graph Kn

by replacing each edge xy of Kn with a pair of arcs xy and yx, denoted by
←→
K n. A complete

bipartite digraph is a digraph obtained from a complete bipartite graph Km,n by replacing

each edge xy of Km,n with a pair of arcs xy and yx, denoted by
←→
K m,n. A tournament

is a digraph obtained from a complete graph Kn by replacing each edge xy of Kn with

exactly one of the arcs xy and yx. A digraph D is strongly connected if, for each pair of

distinct vertices x and y in D, there exists an (x, y)-path. The subdigraph of D induced

by S ⊆ V (D) is denoted by D[S]. An arc-coloring of D is a mapping C : A(D) → N,

where N is the set of natural numbers. We call D an arc-colored digraph if it is assigned

such an arc-coloring C. We use C(D) and c(D) (called the color number of D) to denote

the set and the number of colors assigned to the arcs of D, respectively. If c(D) = k,

then we call D a k-arc-colored digraph. Let D be an arc-colored digraph and i a color

in C(D). We use Di to denote the arc-colored subdigraph of D induced by all the arcs

of color i. For a vertex v ∈ D, we use CN−
D(v) and CN+

D (v) to denote the set of colors

assigned to the in-arcs and the out-arcs of v, respectively. The color neighbor CND(v) of v

is defined as CND(v) = CN−
D(v)

⋃

CN+
D (v). The in-color degree d−c

D (v) and the out-color

degree d+c
D (v) of v are the cardinality of CN−

D(v) and CN+
D(v), respectively. If there is no

ambiguity, we often omit the subscript D in the above notations. A rainbow digraph is a

digraph in which every pair of arcs have distinct colors. A rainbow triangle is a directed

triangle which is rainbow.

The existence of rainbow subgraphs has been widely studied, see the survey papers

[7, 11]. In particular, the existence of rainbow triangles attracts much attention during the

past decades. For an edge-colored complete graph Kn, Gallai [8] characterized the coloring

structure of Kn containing no rainbow triangles. Gyárfás and Simonyi [9] showed that

each edge-colored Kn with ∆mon(Kn) <
2n
5 contains a rainbow triangle and this bound is

tight. Fujita et al. [6] proved that each edge-colored Kn with δc(Kn) > log2 n contains

a rainbow triangle and this bound is tight. For a general edge-colored graph G of order

n, Li and Wang [14] proved that if δc(G) ≥
√
7+1
6 n, then G contains a rainbow triangle.
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Li [13] and Li et al. [12] improved the condition to δc(G) > n
2 independently, and showed

that this bound is tight. Li et al. [15] further proved that if G is an edge-colored graph

of order n satisfying dc(u) + dc(v) ≥ n + 1 for every edge uv ∈ E(G), then it contains a

rainbow triangle. In [16], Li et al. gave some maximum monochromatic degree conditions

for an arc-colored strongly connected tournament Tn to contain rainbow triangles, and to

contain rainbow triangles passing through a given vertex. For more results on rainbow

cycles, see [1, 4, 5, 10].

In this paper, we mainly study the existence of rainbow triangles in arc-colored di-

graphs. Let D be an arc-colored digraph on n vertices. Sridharan [18] proved that the

maximum number of arcs among all digraphs of order n with no directed triangles is ⌊n
2

2 ⌋.

Thus D contains a rainbow triangle if c(D) ≥ ⌊n
2

2 ⌋ + 1. This lower bound is sharp by

considering the complete bipartite digraph
←→
K ⌊n

2
⌋,⌈n

2
⌉ with arcs assigned pairwise distinct

colors.

For an edge-colored graph G, we use e(G) and c(G) to denote the number of edges of G

and the number of colors assigned to the edges of G, respectively. Let f(G) be the smallest

integer such that if c(G) ≥ f(G), then G contains a rainbow triangle. In [9], the authors

proved that f(Kn) = n. Li et al. [12] proved that if e(G)+c(G) ≥ n(n+1)
2 , then G contains

a rainbow triangle. Note that n(n+1)
2 = n(n−1)

2 + n = e(Kn) + f(Kn). Motivated by this

result, we wonder whether an arc-colored digraph D on n vertices contains a rainbow

triangle when

a(D) + c(D) ≥ a(
←→
K n) + f(

←→
K n).

First we calculate f(
←→
K n) for n ≥ 3.

Theorem 1. Let
←→
K n be an arc-colored complete digraph of order n ≥ 3 and f(

←→
K n) be the

smallest integer such that
←→
K n with c(

←→
K n) ≥ f(

←→
K n) contains a rainbow triangle. Then

f(
←→
K n) =











⌊n
2

4 ⌋+ 3, n = 3, 4;

⌊n
2

4 ⌋+ 2, n ≥ 5.

We also investigate the structure of the arc-colored complete digraphs
←→
K n with c(

←→
K n) =

f(
←→
K n)− 1 and containing no rainbow triangles.

Theorem 2. Let Gn be the class of arc-colored complete digraphs of order n such that for

each D ∈ Gn, c(D) = f(D) − 1 and D contains no rainbow triangles. Then each D in

G3 can be decomposed into two arc-disjoint 2-arc-colored triangles ∆1 and ∆2 such that

C(∆1)
⋂

C(∆2) = ∅. For each D in G4, there exists a permutation of the vertex set of D,
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say v1v2v3v4, such that






































C(v1v2) = C(v2v3) = C(v3v4) = C(v4v1) = a,

C(v1v4) = C(v4v3) = C(v3v2) = C(v2v1) = b,

C(v1v3) = c, C(v3v1) = d,

C(v2v4) = e, C(v4v2) = f,

where a, b, c, d, e, f are pairwise distinct colors.

Each D in G5 belongs to one of the following three types of digraphs:

• Type I: There is a vertex v ∈ V (D) such that all arcs incident to v are colored by a

same color c, D − v ∈ G4 and c /∈ C(D − v);

• Type II: The vertex set of D can be partitioned into two subsets {a1, a2} and {b1, b2, b3}

such that the spanning subdigraph H of D with A(H) = {aibj|i = 1, 2; j = 1, 2, 3}

(or A(H) = {bjai|i = 1, 2; j = 1, 2, 3}) is rainbow and all arcs in A(D) \ A(H) are

colored by a same new color;

• Type III: The vertex set of D can be partitioned into two subsets {a1, a2} and

{b1, b2, b3} such that C(D[{a1, a2}]) = {a, b}, D[{b1, b2, b3}] ∈ G3, C(D[{b1, b2, b3}]) =

{c, d, e, f} and all arcs between {a1, a2} and {b1, b2, b3} are colored by g, where

a, b, c, d, e, f, g are pairwise distinct colors.

For each D ∈ Gn, n ≥ 6, the vertex set of D can be partitioned into two subsets {a1, a2, . . . ,

a⌊n

2
⌋} and {b1, b2, . . . , b⌈n

2
⌉} such that the spanning subdigraph H of D with

A(H) = {aibj |i = 1, 2, . . . , ⌊
n

2
⌋; j = 1, 2, . . . , ⌈

n

2
⌉}

or

A(H) = {bjai|i = 1, 2, . . . , ⌊
n

2
⌋; j = 1, 2, . . . , ⌈

n

2
⌉}

is rainbow and all arcs in A(D) \ A(H) are colored by a same new color.

Furthermore, we study the ”a(D) + c(D)” condition for the existence of rainbow tri-

angles in arc-colored digraphs (not necessarily complete).

Theorem 3. Let D be an arc-colored digraph on n vertices. If

a(D) + c(D) ≥











n(n− 1) + ⌊n
2

4 ⌋+ 3, n = 3, 4;

n(n− 1) + ⌊n
2

4 ⌋+ 2, n ≥ 5 ,

then D contains a rainbow triangle.
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Remark 1. By the definition of f(
←→
K n) and Theorem 1, we can see that the bound of

a(D) + c(D) in Theorem 3 is sharp.

Finally, we give a color number condition for the existence of rainbow triangles in

strongly connected tournaments.

Theorem 4. Let D be an arc-colored strongly connected tournament on n vertices. If

c(D) ≥ n(n−1)
2 − n+ 3, then D contains a rainbow triangle.

Remark 2. The bound of c(D) in Theorem 4 is sharp. Let D be a digraph with vertex set

V = {v1, v2, . . . , vn} and arc set A = ({vivj |1 ≤ i < j ≤ n} \ {v1vn})
⋃

{vnv1}. Then D is

a strongly connected tournament. Color all the arcs incident to v1 by a same color and

color the remaining arcs by pairwise distinct new colors. Then c(D) = n(n−1)
2 −(n−1)+1 =

n(n−1)
2 − n+ 2. But there is no rainbow triangle in D.

2 Proofs of the theorems

Let v be a vertex in D, and c a color in C(D). If all the arcs with color c are incident to v,

then we call c a color saturated by v. We use Cs(v) to denote the set of colors saturated

by v and define ds(v) = |Cs(v)|. If a color in C(D) is not saturated by v, then it is also a

color in C(D − v). This implies that c(D − v) = c(D)− ds(v).

Observation 1. Let D be an arc-colored complete digraph. For a vertex v ∈ D, if there

are two vertices u 6= w such that C(uv) 6= C(vw) and C(uv), C(vw) ∈ Cs(v), then uvwu

is a rainbow triangle.

Proof. Since the arc wu is not incident to v, we have C(wu) /∈ Cs(v). Namely, C(uv),

C(vw) and C(wu) are pairwise distinct colors. Thus, uvwu is a rainbow triangle.

Before presenting the proof of Theorem 1, we first prove the following lemmas.

Lemma 1. Let D be an arc-colored digraph of order n ≥ 4 without rainbow triangles.

For a vertex v ∈ D, if D − v ∼=
←→
K n−1 and ds(v) ≥ 3, then CN−(v)

⋂

Cs(v) = ∅ or

CN+(v)
⋂

Cs(v) = ∅. Moreover, if D ∼=
←→
K 4, then c(D) ≤ 5.

Proof. Let Cs(v) = {1, 2, . . . , k}, k ≥ 3. If CN+(v)
⋂

Cs(v) 6= ∅, without loss of generality,

assume that C(vw) = 1. We will show that CN−(v)
⋂

Cs(v) = ∅. By contradiction,

assume that there is a vertex u 6= w such that C(uv) ∈ Cs(v)\{1}, then uvwu is a rainbow

triangle, a contradiction. Suppose that C(wv) ∈ Cs(v) \ {1}, such as C(wv) = 2. Since
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ds(v) ≥ 3, there is an arc colored by 3 incident to v. By the above argument, this arc must

be an out-arc of v, so we can assume that C(vu) = 3. But now wvuw is a rainbow triangle,

a contradiction. Thus CN−(v)
⋂

(Cs(v) \ {1}) = ∅. Namely, 2 ∈ CN+(v), by similar

analysis we have CN−(v)
⋂

(Cs(v) \ {2}) = ∅. Hence, we have CN−(v)
⋂

Cs(v) = ∅.

If n = 4, then assume that V (D) = {v, x, y, z}, {1, 2, 3} ⊆ Cs(v), C(vx) = 1, C(vy) =

2, C(vz) = 3, D[{x, y, z}] is a
←→
K 3, C(xv) = a, C(yv) = b and C(zv) = c. Since D

contains no rainbow triangles, we have C(yx) = C(zx) = a, C(xy) = C(zy) = b and

C(xz) = C(yz) = c. So C(D) = {1, 2, 3} ∪ {a} ∪ {b} ∪ {c}. If a, b, c are pairwise distinct,

then xyzx is a rainbow triangle, a contradiction. So two of a, b and c must be a same

color. Then c(D) ≤ 5.

Lemma 2. Let D be an arc-colored complete digraph of order n ≥ 4. If D contains no

rainbow triangles, then there must be a vertex v ∈ V (D) such that ds(v) ≤ ⌊n2 ⌋.

Proof. Suppose for every vertex v ∈ V (D), we have ds(v) ≥ ⌊n2 ⌋ + 1. Let v be a vertex

of D. Since n ≥ 4, we have ds(v) ≥ 3. By Lemma 1, either CN−(v)
⋂

Cs(v) = ∅ or

CN+(v)
⋂

Cs(v) = ∅. Without loss of generality, suppose Cs(v) = {1, 2, . . . , k}, k ≥

⌊n2 ⌋+1 and C(vwi) = i, for i = 1, . . . , k. For j 6= 1, since D contains no rainbow triangles,

C(w1wj) 6= 1 and C(wjv) 6= 1, we have C(w1wj) = C(wjv). Thus, C(w1wj) /∈ Cs(w1)

for j = 2, . . . , k. Similarly, for j 6= 1, since D contains no rainbow triangles, C(wjw1) 6= j

and C(w1v) 6= j, we have C(wjw1) = C(w1v). Since C(wjw1) ∈ CN−(w1)
⋂

CN+(w1),

we can see that C(wjw1) /∈ Cs(w1) for j = 2, . . . , k. So, all colors assigned to the arcs

between w1 and {w2, . . . , wk} do not belong to Cs(w1). Note that for a pair of arcs uw1

and w1u, at most one of them has a color in Cs(w1). So,

|V (D − {w1, . . . , wk})| ≥ ds(w1) ≥ ⌊
n

2
⌋+ 1.

But now

|V (D)| = n ≥ ⌊
n

2
⌋+ 1 + ⌊

n

2
⌋+ 1 ≥ n+ 1,

a contradiction.

Now we can give the proof of Theorem 1.

Proof of Theorem 1. We divide the proof into four cases.

Case 1. n = 3.

If n = 3, then we have a(D) = 6. If c(D) ≥ ⌊n
2

4 ⌋ + 3 = 5, then at most two

arcs have a same color, other arcs all have pairwise distinct new colors. Since there are
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two arc-disjoint triangles in D, at least one of them is rainbow. Let V (D) = {u, v, w},

C(uv) = C(vw) = 1, C(wu) = 2, C(vu) = C(uw) = 3 and C(wv) = 4. Then c(D) = 4

and neither of two triangles are rainbow. So we have f(
←→
K 3) = ⌊

n2

4 ⌋+ 3 = 5.

Case 2. n = 4.

For n = 4, if c(D) ≥ ⌊n
2

4 ⌋+ 3 = 7 but D contains no rainbow triangles, then for every

vertex v ∈ V (D), the complete digraph D − v contains no rainbow triangles either. Since

f(
←→
K 3) = 5, we have c(D− v) = c(D)− ds(v) ≤ 4. So for every vertex v ∈ V (D), we have

ds(v) ≥ 3. By Lemma 1, we have c(D) ≤ 5, a contradiction.

Let V (D) = {v, x, y, z}, C(vx) = C(xy) = C(yz) = C(zv) = 1, C(vz) = C(zy) =

C(yx) = C(xv) = 2, C(vy) = 3, C(yv) = 4, C(xz) = 5 and C(zx) = 6. Then c(D) = 6

and D contains no rainbow triangles. So we have f(
←→
K 4) = ⌊

n2

4 ⌋+ 3 = 7.

Claim 1. Let D be an arc-colored
←→
K 4 without rainbow triangles. If c(D) = 6, then there

must be a permutation of the vertex set of D, say v1v2v3v4, such that







































C(v1v2) = C(v2v3) = C(v3v4) = C(v4v1) = a,

C(v1v4) = C(v4v3) = C(v3v2) = C(v2v1) = b,

C(v1v3) = c, C(v3v1) = d,

C(v2v4) = e, C(v4v2) = f,

where a, b, c, d, e, f are pairwise distinct colors.

Proof. Since f(
←→
K 3) = 5, c(D) = 6 andD contains no rainbow triangles, we have ds(v) ≥ 2

for each vertex v ∈ V (D). If there is a vertex v ∈ V (D) such that ds(v) ≥ 3, then by

Lemma 1, we have c(D) ≤ 5, a contradiction. So we have ds(v) = 2 for every vertex

v ∈ V (D). Thus for each v ∈ V (D), D − v belongs to G3.

By the structure of G3, we know that for each color i the arc-colored digraph Di

must be connected (otherwise, we recolor a component of Di by a new color, then the

obtained arc-colored complete digraph has f(
←→
K 4) colors but contains no rainbow triangles,

a contradiction) and belong to one of the following four types.

Type 1: an arc;

Type 2: a directed path of length 2;

Type 3: a directed path of length 3;

Type 4: a directed cycle of length 4.

Let Xj = {i ∈ C(D) : Di belongs to Type j} and xj = |Xj | for j = 1, 2, 3, 4. Then

7



we have










































x1 + x2 + x3 + x4 = c(D)

x1 + 2x2 + 3x3 + 4x4 = a(D)

x2 + 2x3 + 4x4 = 2

(

4

3

)

(the number of directed triangles in D)

xj ∈ N for j = 1, 2, 3, 4.

By these equations, we get x1 = 4, x2 = x3 = 0 and x4 = 2. Without loss of generality,

let X1 = {1, 2, 3, 4}, X4 = {5, 6} and let uxyzu be the directed cycle of length 4 colored

by 5. If C(xu) ∈ X1, then C(yx), C(uz) 6∈ X1 (otherwise, yxuy or xuzx is a rainbow

triangle). This forces C(yx) = C(uz) = 6. Note that D6 is a directed cycle of length

4. We have C(xu) = 6 ∈ X4. This contradicts to the assumption that C(xu) ∈ X1.

Thus C(xu) 6∈ X1. This forces C(xu) = 6. By the symmetry of the cycle uxyzu, we get

C(xu) = C(uz) = C(zy) = C(yx) = 6. For each color i = 1, 2, 3, 4, Di is an arc.

LetD be an arc-colored complete digraph of order n ≥ 5 with vertex set {v1, v2, . . . , vn}.

Let

R = {v2i−1v2j |i = 1, 2, . . . , ⌈
n

2
⌉, j = 1, 2, . . . , ⌊

n

2
⌋}.

Color the arcs in R with pairwise distinct colors and color the remaining arcs with a same

new color. Then c(D) = ⌊n
2

4 ⌋ + 1 and D contains no rainbow triangles. So f(
←→
K n) ≥

⌊n
2

4 ⌋+ 2 for n ≥ 5.

Case 3. n = 5.

For n = 5, if c(D) ≥ ⌊n
2

4 ⌋+ 2 = 8 but D contains no rainbow triangles, then for every

vertex v ∈ V (D), the complete digraph D − v contains no rainbow triangles either. Since

f(
←→
K 4) = 7, we have c(D− v) = c(D)− ds(v) ≤ 6. So for every vertex v ∈ V (D), we have

ds(v) ≥ 2. On the other hand, by Lemma 2, there must be a vertex v ∈ V (D) such that

ds(v) ≤ ⌊n2 ⌋ = 2. So there exists a vertex v ∈ V (D) such that ds(v) = 2. Let D′ = D − v,

then D′ is an arc-colored
←→
K 4 without rainbow triangles and c(D′) = 6. By Claim 1, we

can assume that V (D′) = {u, x, y, z} and






































C(ux) = C(xy) = C(yz) = C(zu) = 5,

C(uz) = C(zy) = C(yx) = C(xu) = 6,

C(uy) = 1, C(yu) = 2,

C(xz) = 3, C(zx) = 4.

8



Let Cs(v) = {7, 8}. Without loss of generality, we can assume that C(vu) = 7. Considering

the triangle vuxv, we have C(xv) 6= 8. If C(vx) = 8, then considering the triangles vuzv

and vxzv, we have C(zv) ∈ {6, 7}
⋂

{3, 8}, a contradiction. So C(vx) 6= 8. Similarly, we

have

8 /∈ {C(vy)} ∪ {C(yv)} ∪ {C(vz)} ∪ {C(zv)}.

So C(uv) = 8. By similar analysis, we have

7 /∈ {C(vx)} ∪ {C(xv)} ∪ {C(vy)} ∪ {C(yv)} ∪ {C(vz)} ∪ {C(zv)}.

Considering the triangles vuxv and vyuv, we have C(xv) = 5 and C(vy) = 2. But now

xvyx is a rainbow triangle, a contradiction. Thus, we have f(
←→
K 5) = ⌊

n2

4 ⌋+ 2 = 8.

Case 4. n ≥ 6.

Suppose Theorem 1 is true for
←→
K n−1, now we consider

←→
K n, n ≥ 6. Let D be an

arc-colored complete digraph of order n ≥ 6. If c(D) ≥ ⌊n
2

4 ⌋ + 2 but D contains no

rainbow triangles, then for every vertex v ∈ V (D), the digraph D− v contains no rainbow

triangles either. Thus, we have c(D − v) = c(D) − ds(v) ≤ ⌊ (n−1)2

4 ⌋ + 1. So for every

vertex v ∈ V (D), we have

ds(v) ≥ ⌊
n2

4
⌋+ 2−

(

⌊
(n− 1)2

4
⌋+ 1

)

=











n

2
+ 1, n is even;

n+ 1

2
, n is odd.

On the other hand, by Lemma 2, there must be a vertex v ∈ V (D) such that ds(v) ≤ ⌊n2 ⌋,

a contradiction. So we have f(
←→
K n) = ⌊

n2

4 ⌋+ 2 for n ≥ 5.

The proof is complete.

Proof of Theorem 2. Let D ∈ G3. Since the two arc-disjoint directed triangles ∆1 and

∆2 are not rainbow, we have c(∆1) ≤ 2 and c(∆2) ≤ 2. Thus 4 = c(D) ≤ c(∆1)+ c(∆2) ≤

4, the equality holds if and only if c(∆1) = c(∆2) = 2 and C(∆1)
⋂

C(∆2) = ∅.

We have already characterized G4 by Claim 1 in Theorem 1.

Let D ∈ G5. Then c(D) = f(
←→
K 5) − 1 = 8 − 1 = 7. If ds(v) = 1 for a vertex

v ∈ V (D), then we have c(D − v) = 6. By Claim 1 in Theorem 1, we can assume that

9



V (D − v) = {u, x, y, z} and







































C(ux) = C(xy) = C(yz) = C(zu) = 5,

C(uz) = C(zy) = C(yx) = C(xu) = 6,

C(uy) = 1, C(yu) = 2,

C(xz) = 3, C(zx) = 4.

Without loss of generality, we can assume that C(vu) = 7 ∈ Cs(v). Considering triangles

vuxv, vuyv and vuzv, we have C(xv) = 5 or 7, C(yv) = 1 or 7 and C(zv) = 6 or

7. Considering triangles vzxv and vzyv, we have C(vz) ∈ {4, 5, 7}
⋂

{1, 6, 7}, and hence

C(vz) = 7 = C(xv) = C(yv). Considering triangles vxzv and vxyv, we have C(vx) ∈

{5, 7}
⋂

{3, 6, 7}, and hence C(vx) = 7 = C(zv). Considering triangles vyzv and vyxv, we

have C(vy) ∈ {5, 7}
⋂

{6, 7}, and hence C(vy) = 7. Finally, considering triangles uvxu

and uvyu, we have C(uv) ∈ {6, 7}
⋂

{2, 7}, and hence C(uv) = 7. Thus, all arcs incident

to v are colored by 7 and D belongs to Type I.

Now let us consider the case that ds(v) ≥ 2 for each vertex v ∈ V (D). Let

X = {i ∈ C(D) : C(uv) = i and i ∈ Cs(u) ∩ Cs(v)},

Y = {i ∈ C(D) : i ∈ Cs(v) and i 6∈ Cs(u) if u 6= v},

Z = {i ∈ C(D) : i 6∈ Cs(v) for any v ∈ V (D)}.

Let x, y and z be the cardinality of X,Y and Z, respectively. Then we have















x+ y + z = c(D)

2x+ y =
∑

v∈V (D)

ds(v).

Recall that c(D) = 7 and ds(v) ≥ 2 for each vertex v ∈ V (D). We have











x+ y + z = 7

2x+ y ≥ 10.

Thus x ≥ z + 3 ≥ 3.

Let H be an arc-colored spanning subdigraph of D with the arcs that are assigned

colors in X. Then a(H) ≥ x ≥ 3. Since each directed path uvw in H implies a rainbow

triangle uvwu, there is no directed path of length 2 in H. Let Ĥ be the underlying graph

of H.

Case 1. Z = ∅.
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If uv, ab ∈ A(H) for four distinct vertices u, v, a, b, then without loss of generality, we

can assume that C(va) = 1. Since vauv and abva are not rainbow triangles, it is easy to

see that C(au) = C(bv) = 1. Thus 1 ∈ Z. This contradicts that Z = ∅. Thus there exists

a vertex u such that each arc in H is incident to u and hence ds(u) ≥ x.

Let uv be an arc such that C(uv) ∈ X. Let {a, b, c} = V (D)\{u, v}. Since D contains

no rainbow triangles and Z = ∅, we can assume that C(va) = C(au) = 1, C(vb) =

C(bu) = 2 and C(vc) = C(cu) = 3. This implies that {1, 2, 3} ⊆ Y and y ≥ 3. Now we

have x, y ≥ 3 and x+ y = 7. Thus either x = 3, y = 4 or x = 4, y = 3.

If x = 3, y = 4, then 10 = 2x+ y =
∑

v∈V (D)\{u} d
s(v) + ds(u) ≥ 11, a contradiction.

If x = 4, y = 3, then 11 = 2x+ y =
∑

v∈V (D)\{u} d
s(v) + ds(u) ≥ 12, a contradiction.

Case 2. x ≥ 5.

If H contains a cycle uvu, namely, C(uv), C(vu) ∈ X, where v 6= u, then it is easy to

see that none of the arcs in H appears between {u, v} and V (D)\{u, v}. Let {a, b, c} =

V (D)\{u, v}. Then either the triangle abca or the triangle cbac contains two arcs of H.

In both cases, we get a rainbow triangle. So H contains no two oppositely oriented arcs.

Moreover, there is no odd cycle in Ĥ (otherwise, there must be a directed path of length

2 in H, a contradiction.)

Note that a(H) ≥ x ≥ 5. The graph Ĥ must contain a cycle, which has to be of

length 4, say a1b1a2b2a1. Let {u} = V (D)\{a1, a2, b1, b2}. Since there is no directed path

of length 2 in H, we can assume that a1b1, a1b2, a2b1, a2b2 ∈ A(H) and all the other arcs

in D[a1, a2, b1, b2] are not contained in H. Assume that C(a1a2) = 1. Then 1 ∈ Y ∪ Z.

Consider triangles a1a2b1a1 and a1a2b2a1. We get C(b1a1) = C(b2a1) = 1. Consider

b2a1b1b2 and b1a1b2b1. We get C(b1b2) = C(b2b1) = 1. By similar analyzing process, we

finally see that all the arcs in A(D − u)\A(H) are of color 1. Recall that a(H) ≥ 5. By

the symmetry, we can assume that u is either incident to a1 or b1 in H.

If u is incident to b1 in H, then the situation has to be ub1 ∈ H (since H contains no

path of length 2). Now consider triangles ub1a1u, ub1b2u and ub1a2u. We get C(a1u) =

C(b2u) = C(a2u) = 1. Consider triangles ua1b2u and ua2b2u. We get C(ua1) = C(ua2) =

1. Again, consider the triangle ua1b1u. We get C(b1u) = 1. Now c(D − ub2) = 6. Since

c(D) = 7, there holds C(ub2) 6∈ C(D − ub2). Thus ub2 ∈ A(H). If u is incident to a1 in

H, then by a similar analyzing process, we can obtain that a1u, a2u ∈ A(H) and all the

other arcs incident to u are of color 1.

In summary, H is an orientation of K2,3 with partite sets A and B such that |A| =

2, |B| = 3 and all the arcs are from A to B or from B to A. The remaining arcs in D are

11



all colored by a same new color. So D belongs to Type II.

Case 3. z ≥ 1 and x ≤ 4.

Recall that x ≥ z + 3 ≥ 4 and x+ y + z = 7. We have x = 4, y = 2 and z = 1. Note

that

10 = 2x+ y =
∑

v∈V (D)

ds(v) ≥ 2 ∗ 5 = 10.

So ds(v) = 2 for each vertex v ∈ V (D). Now we assert that ds(v) ≥ d
Ĥ
(v). If each color

in Cs(v)∩X is only assigned to one arc in D, then there is nothing to prove. If there is a

color in Cs(v) ∩X assigned to more than two arcs, then by the definition of X, we know

that these arcs must be two oppositely oriented arcs, say vw and wv. Recolor vw by a new

color. Then the obtained arc-colored complete digraph D′ satisfies that c(D′) = f(
←→
K 5)

but D′ contains no rainbow triangles, a contradiction. So we have ds(v) ≥ d
Ĥ
(v) for each

vertex v ∈ V (D). Thus the maximum degree of Ĥ is at most 2.

If Ĥ contains a path of length 3, then without loss of generality, we can assume that

uvws is a path with uv,wv,ws ∈ A(H). Let C(vu) = 1, C(vw) = c and let p be the

vertex in D different from u, v, w and s. Since D contains no rainbow triangles, we obtain

that C(uw) = C(su) = C(vs) = C(sw) = 1 and C(wu) = C(sv) = c. It is easy to observe

that 1, c ∈ Z. Since z = 1, we have c = 1 and Z = {1}. Consider triangles uvpu, wvpw

and wspw. We get C(vp) = C(pu) = C(pw) = C(sp) = a. If a ∈ Cs(p), then considering

triangles upwu, pvsp, wpuw and vpsv, we can get

{C(up)} ∪ {C(pv)} ∪ {C(wp)} ∪ {C(ps)} ⊆ {1, a}.

Thus, we have ds(p) = 1, a contradiction. So a /∈ Cs(p) and hence a = 1. If C(up) = 2 ∈

Cs(p), then considering triangles vupv and sups, we can get C(pv), C(ps) ∈ {1, 2}. Since

ds(p) = 2, we have C(wp) 6= 2 and C(wp) ∈ Cs(p). Let C(wp) = 3. Consider triangles

wpvw and wpsw. We can get C(pv), C(ps) ∈ {1, 3}. So C(pv) = C(ps) = 1. But now

{2, 3, C(uv), C(wv), C(ws)} ⊆ X. This contradicts that x = 4. Thus C(up) /∈ Cs(p). By

similar analyzing process, we can see that C(pv), C(wp), C(ps) /∈ Cs(p). This implies that

Cs(p) = ∅, a contradiction.

If the longest path in Ĥ is of length 1, then the arcs ofH form two vertex-disjoint cycles

of length 2, say A(H) = {uv, vu, pq, qp}. Since z = 1, it is easy to check that all the arcs

between {u, v} and {p, q} has a same color, namely, the unique color in Z. Let Y = {1, 2}

and V (D)\{u, v, p, q} = {w}. Then there holds Cs(w) = {1, 2}. Since D contains no

rainbow triangles, we have C(uw) = C(wv), C(vw) = C(wu), C(pw) = C(wq), C(qw) =
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C(wp). By the symmetry, we can assume that C(uw) = C(wv) = 1. Consider triangles

uwpu, uwqu, pwvp and qwvq. We can see that the color 2 does not appear between w and

{p, q}. This forces C(vw) = C(wu) = 2 and all the arcs between w and {p, q} are colored

by the unique color in Z. So D belongs to Type III.

The remaining case is that Ĥ is composed of a path of length 2 and a cycle of length

2. Let V (D) = {u, v, w, p, q} and A(H) = {uv,wv, pq, qp}. Assume that C(vp) = a and

C(pv) = b. Then it is easy to check that each arcs between {u, v, w} and {p, q} are of

color a or b, and a, b ∈ Z. This forces a = b (since z = 1). Now the arcs vu, uw,wu, vw

are the only possible arcs that are assigned the colors in Y . Thus c(D[v, u,w]) = 4 and

each color in D[v, u,w] does not appears on A(D)\A(D[v, u,w]). So D[v, u,w] ∈ G3 and

D belongs to Type III.

Let D ∈ G6. Since D contains no rainbow triangles, we have c(D−v) ≤ 7, so ds(v) ≥ 3

for every v ∈ V (D). On the other hand, by Lemma 2, there is a vertex v ∈ V (D) such

that ds(v) ≤ ⌊n2 ⌋ = 3. So there is a vertex v ∈ V (D) such that ds(v) = 3 and c(D−v) = 7.

Since D − v contains no rainbow triangles, by the above arguments, D − v ∈ G5 and thus

belongs to one of the three types of digraphs.

Case 1. D − v belongs to Type I.

Let V (D) = {u, v, w, x, y, z}, We can assume that







































C(uy) = 1, C(yu) = 2, C(xz) = 3, C(zx) = 4,

C(ux) = C(xy) = C(yz) = C(zu) = 5,

C(uz) = C(zy) = C(yx) = C(xu) = 6,

C(wx) = C(wy) = C(wz) = C(wu) = C(uw) = C(xw) = C(yw) = C(zw) = 7.

Since ds(v) = 3, by Lemma 1, we can assume that CN−(v)
⋂

Cs(v) = ∅. Let Cs(v) =

{8, 9, 10} and C(vz) = 8. Considering the triangle vzwv, we have C(wv) = 7. But now

ds(w) ≤ 2, a contradiction.

Case 2. D − v belongs to Type III.

Let V (D) = {v, a1, a2, b1, b2, b3}. We can assume that C(a1a2) = 1, C(a2a1) = 2

and C({a1, a2}, {b1, b2, b3}) = {3}. Since ds(v) = 3, by Lemma 1, we can assume that

CN−(v)
⋂

Cs(v) = ∅. Then there must be a vertex bj such that C(vbj) ∈ Cs(v). Without

loss of generality, we can assume that C(vb1) = 8 ∈ Cs(v). Considering triangles vb1a1v

and vb1a2v, we have C(a1v) = C(a2v) = 3. Considering the triangle a1va2a1, we have
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C(va2) ∈ {2, 3}. Since C(a1b1) = 3, we can see that 3 /∈ Cs(a2) and ds(a2) ≤ 2, a

contradiction.

Case 3. D − v belongs to Type II.

Let V (D) = {v, a1, a2, b1, b2, b3}. We can assume that











C(a1b1) = 1, C(a1b2) = 2, C(a1b3) = 3,

C(a2b1) = 4, C(a2b2) = 5, C(a2b3)) = 6,

and the remaining arcs of D − v are all colored by 7.

Case 3.1. CN+(v)
⋂

Cs(v) = ∅.

Since ds(v) = 3, there must be a vertex bj such that C(bjv) ∈ Cs(v). Without loss

of generality, we can assume that C(b1v) = 8 ∈ Cs(v). Considering triangles va1b1v and

va2b1v, we have C(va1) = 1 and C(va2) = 4. Considering triangles a1b2va1 and a2b2va2,

we have C(b2v) ∈ {1, 2}
⋂

{4, 5}, a contradiction.

Case 3.2. CN−(v)
⋂

Cs(v) = ∅.

Let Cs(v) = {8, 9, 10}. If C(va1) = 8, then considering triangles va1b1v and va1b2v,

we have C(b1v) = 1 and C(b2v) = 2. Considering triangles a2b1va2 and a2b2va2, we have

C(va2) ∈ {1, 4}
⋂

{2, 5}, a contradiction. So C(va1) 6= 8. Similarly we can prove that

({C(va1)} ∪ {C(va2)})
⋂

Cs(v) = ∅.

Thus Cs(v) ⊆ {C(vb1), C(vb2), C(vb3)}. Without loss of generality, we can assume that

C(vb1) = 8, C(vb2) = 9 and C(vb3) = 10. Considering the triangle set

{vb1uv|u ∈ {a1, a2, b2, b3}}
⋃

{vb2b1v},

we have

C({uv|u ∈ {a1, a2, b1, b2, b3}}) = {7}.

Considering triangles va1b1v, va1b2v, va2b1v and va2b2v, we have

C(va1) ∈ {1, 7}
⋂

{2, 7} = {7} and C(va2) ∈ {4, 7}
⋂

{5, 7} = {7}.

Let v = a3. Then we can see that the spanning subdigraph H of D with A(H) = {aibj|i =

1, 2, 3; j = 1, 2, 3} is rainbow and all the remaining arcs are colored by a same new color

7. So the theorem is true for 3 ≤ n ≤ 6.

Let D ∈ Gn, n ≥ 7. Suppose the theorem is true for
←→
K n−1. Now we consider

←→
K n,

n ≥ 7.
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If D =
←→
K n contains no rainbow triangles and c(D) = ⌊n

2

4 ⌋ + 1, then c(D − v) ≤

⌊ (n−1)2

4 ⌋ + 1 and ds(v) ≥ ⌊n2 ⌋ for every v ∈ V (D). On the other hand, by Lemma 2,

there is a vertex v ∈ V (D) such that ds(v) ≤ ⌊n2 ⌋. So there is a vertex v ∈ V (D) such

that ds(v) = ⌊n2 ⌋ and c(D − v) = ⌊ (n−1)2

4 ⌋ + 1. By induction hypothesis, the vertex set

of D − v can be partitioned into two subsets {a1, a2, . . . , a⌊n−1

2
⌋} and {b1, b2, . . . , b⌈n−1

2
⌉}

such that the spanning subdigraph H of D with A(H) = {aibj |i = 1, 2, . . . , ⌊n−1
2 ⌋; j =

1, 2, . . . , ⌈n−1
2 ⌉} (or A(H) = {bjai|i = 1, 2, . . . , ⌊n−1

2 ⌋; j = 1, 2, . . . , ⌈n−1
2 ⌉}) is rainbow and

all arcs in A(D) \A(H) are colored by a same new color c. By symmetry, we only discuss

the case A(H) = {aibj|i = 1, 2, . . . , ⌊n−1
2 ⌋; j = 1, 2, . . . , ⌈n−1

2 ⌉}. If n is odd, then we divide

the rest of the proof into two cases.

Case 1. CN+(v)
⋂

Cs(v) = ∅.

If there is a vertex bj such that C(bjv) ∈ Cs(v). Without loss of generality, we

can assume that C(b1v) ∈ Cs(v). Considering triangles va1b1v and va2b1v, we have

C(va1) = C(a1b1) and C(va2) = C(a2b1). Considering triangles a1b2va1 and a2b2va2, we

have

C(b2v) ∈ {C(a1b1), C(a1b2)}
⋂

{C(a2b1), C(a2b2)}.

But A(H) = {aibj |i = 1, 2, . . . , ⌊n−1
2 ⌋; j = 1, 2, . . . , ⌈n−1

2 ⌉} is rainbow, a contradiction. So

C(bjv) /∈ Cs(v), for j = 1, 2, . . . , ⌈n−1
2 ⌉. Thus Cs(v) ⊆ {C(a1v), . . . , C(a⌊n−1

2
⌋v)}. Since

ds(v) = ⌊n2 ⌋ = ⌊
n−1
2 ⌋, we can see that Cs(v) = {C(a1v), . . . , C(a⌊n−1

2
⌋v)}. Considering

the triangle set

{vua1v|u ∈ V (D) \ {v, a1}}
⋃

{va1a2v},

we have

C({vu|u ∈ V (D) \ {v}}) = {c}.

Considering triangles va1bjv and va2bjv, for j = 1, 2, . . . , ⌈n−1
2 ⌉, we have

C(bjv) ∈ {C(a1bj), c}
⋂

{C(a2bj), c} = {c}.

Let v = b⌈n

2
⌉. Then we can see that the spanning subdigraph H of D with A(H) =

{aibj |i = 1, 2, . . . , ⌊n2 ⌋; j = 1, 2, . . . , ⌈n2 ⌉} is rainbow and all the remaining arcs are colored

by a same new color c.

Case 2. CN−(v)
⋂

Cs(v) = ∅.

By similar analysis, we can see that the spanning subdigraph H of D with A(H) =

{aibj |i = 1, 2, . . . , ⌈n2 ⌉; j = 1, 2, . . . , ⌊n2 ⌋} is rainbow and all the remaining arcs are colored

by a same new color c, where v = a⌈n

2
⌉.
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If n is even, then by similar analysis we can see that the spanning subdigraph H of

D with A(H) = {aibj |i = 1, 2, . . . , ⌊n2 ⌋; j = 1, 2, . . . , ⌈n2 ⌉} is rainbow and all the remaining

arcs are colored by a same new color c, where v = a⌊n

2
⌋.

The proof is complete.

Proof of Theorem 3. Suppose the contrary. Let D be a counterexample with the

smallest number of vertices, and then with the smallest number of arcs.

Claim 1. D contains two arcs uv and xy with a same color, where xy 6= vu.

Proof. Recall that the maximum number of arcs among all digraphs of order n without

directed triangles is ⌊n
2

2 ⌋ (see [18]). If c(D) ≥ ⌊n
2

2 ⌋+1, then D contains a rainbow triangle,

a contradiction. So c(D) ≤ ⌊n
2

2 ⌋. Thus, we have

a(D)− ⌊
n2

2
⌋ ≥ n(n− 1) + ⌊

n2

4
⌋+ 2− 2⌊

n2

2
⌋ =











n(n− 4)

4
+ 2 > 0, n is even;

(n− 1)(n − 3)

4
+ 2 > 0, n is odd.

So a(D) > ⌊n
2

2 ⌋. Namely, D contains a directed triangle ∆ and at least two arcs of ∆ are

colored by a same color. Note that two arcs of a triangle can only have one common end.

So D contains two arcs uv and xy with a same color, where xy 6= vu.

Claim 2.

a(D) + c(D) =











n(n− 1) + ⌊n
2

4 ⌋+ 3, n = 3, 4;

n(n− 1) + ⌊n
2

4 ⌋+ 2, n ≥ 5 .

Proof. By Claim 1, let a1 and a2 be two arcs with a same color. Then a(D−a1) = a(D)−1

and c(D − a1) = c(D). If

a(D) + c(D) ≥











n(n− 1) + ⌊n
2

4 ⌋+ 4, n = 3, 4;

n(n− 1) + ⌊n
2

4 ⌋+ 3, n ≥ 5 ,

then

a(D − a1) + c(D − a1) ≥











n(n− 1) + ⌊n
2

4 ⌋+ 3, n = 3, 4;

n(n− 1) + ⌊n
2

4 ⌋+ 2, n ≥ 5 .

Note that D − a1 contains no rainbow triangles either. Thus D − a1 is a counterexample

with fewer arcs, a contradiction.

Claim 3. For every v ∈ V (D), we have

d(v) + ds(v) ≥



























2(n− 1) + n
2 + 1, n is even;

2(n− 1) + n−1
2 + 1, n is odd and n 6= 5;

10, n = 5.
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Proof. Note that a(D − v) = a(D)− d(v) and c(D − v) = c(D)− ds(v). If

d(v) + ds(v) ≤



























2(n − 1) + n
2 , n is even;

2(n − 1) + n−1
2 , n is odd and n 6= 5;

9, n = 5,

then

a(D − v) + c(D − v) = a(D) + c(D)− (d(v) + ds(v))

≥











(n− 1)(n − 2) + ⌊ (n−1)2

4 ⌋+ 3, n = 4, 5;

(n− 1)(n − 2) + ⌊ (n−1)2

4 ⌋+ 2, n ≥ 6 .

Note that D − v does not contain a rainbow triangle. Thus D − v is a counterexample

with fewer vertices, a contradiction.

Claim 4.
∑

v∈V (D) d
s(v) ≤ 2c(D) − 1.

Proof. Let c be an arbitrary color in C(D). Note that each color c can only be saturated by

at most two vertices. So
∑

v∈V (D) d
s(v) ≤ 2c(D). Moreover, c is saturated by exactly two

vertices if and only if c appears on only one arc or on a pair of arcs between two vertices. By

Claim 1, D contains two arcs uv and xy with a same color, where xy 6= vu. Thus, at least

one color cannot be saturated by exactly two vertices. So
∑

v∈V (D) d
s(v) ≤ 2c(D)−1.

By Claims 2-4, we can get that if n ≥ 6 is even, then

2n(n−1)+
n2

2
+n ≤

∑

v∈V (D)

(d(v) + ds(v)) ≤ 2a(D)+2c(D)−1 = 2n(n−1)+
n2

2
+3. (1)

This implies that n ≤ 3, a contradiction.

If n ≥ 7 is odd, then

2n(n− 1) +
n(n− 1)

2
+ n ≤

∑

v∈V (D)

(d(v) + ds(v)) ≤ 2a(D) + 2c(D) − 1

= 2n(n− 1) +
(n− 1)(n + 1)

2
+ 3.

(2)

This implies that n ≤ 5, a contradiction. So it suffices to consider the cases n = 3, 4, 5.

For n = 3, since a(D) + c(D) = 11 and a(D) ≤ 6, we have c(D) ≥ 5 = ⌊n
2

2 ⌋+ 1. So D

contains a rainbow triangle, a contradiction.

For n = 4, we have a(D) + c(D) ≥ 19. If a(D) = 12, then D ∼=
←→
K 4 and c(D) ≥ 7.

By Theorem 1, D contains a rainbow triangle, a contradiction. If a(D) ≤ 10, then

c(D) ≥ 9 = ⌊4
2

2 ⌋+ 1. We know that D contains a rainbow triangle, a contradiction. The
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only case left is that a(D) = 11 = a(
←→
K 4)− 1 and c(D) = 8. Let u be a vertex in D such

that D− u ∼=
←→
K 3. Since f(

←→
K 3) = 5, we have ds(u) ≥ 4. Let V (D − u) = {x, y, z}. Then

there must exist two vertices in V (D−u) (say x and y) such that c(ux) and c(yu) are two

distinct colors in Cs(u). This implies that uxyu is a rainbow triangle, a contradiction.

Lemma 3. Let D be an arc-colored digraph of order 3. If a(D) + c(D) = 10 and D

contains no rainbow triangle, then D ∼=
←→
K 3.

Proof. Since D contains no rainbow triangle, we have c(D) ≤ ⌊n
2

2 ⌋ = 4 and a(D) ≥ 6. So

c(D) = 4, a(D) = 6 and D ∼=
←→
K 3.

Lemma 4. Let D be an arc-colored digraph of order 4. If a(D) + c(D) = 18 and D

contains no rainbow triangle, then D ∼=
←→
K 4.

Proof. For every v ∈ V (D), since D−v contains no rainbow triangles, we have a(D−v)+

c(D − v) ≤ 10 and hence d(v) + ds(v) ≥ 8. If d(v) + ds(v) ≥ 9 for every v ∈ V (D), then

36 ≤
∑

v∈V (D)

(d(v) + ds(v)) ≤ 2a(D) + 2c(D)− 1 = 35, (3)

a contradiction. So there is a vertex v ∈ V (D) such that d(v) + ds(v) = 8. Let V (D) =

{v, x, y, z} and d(v)+ds(v) = 8. Then a(D−v)+c(D−v) = 10. By Lemma 3, D−v ∼=
←→
K 3,

and thus D − v ∈ G3. Furthermore, by Theorem 2, we know that the color sets of the

two directed triangles in D − v is disjoint. Let C(D − v) = {1, 2, 3, 4}. If D 6∼=
←→
K 4, then

d(v) ≤ 5 and ds(v) ≥ 3. Let {5, 6, 7} ⊆ Cs(v). If there exist two vertices in V (D− v) (say

x and y) such that c(vx) and c(yv) are two distinct colors in Cs(v), then we have vxyv

is a rainbow triangle, a contradiction. So we can assume that C(vx) = 5, C(vy) = 6 and

C(vz) = 7. If yv ∈ A(D), then consider triangles vxyv and vzyv. We get C(xy) = C(yv)

and C(zy) = C(yv). Thus C(xy) = C(zy). This contradicts the structure of D − v ∈ G3.

So we have yv 6∈ A(D). Similarly, we can get xv, zv 6∈ A(D). Thus d(v) = ds(v) = 3. This

contradicts that d(v) + ds(v) = 8.

For n = 5, we have a(D) + c(D) ≥ 28. For each integer p, let Xp = {u ∈ V (D) :

a(D − u) + c(D − u) = p} and let xp = |Xp|. Since D contains no rainbow triangle,

a(D − u) + c(D − u) ≤ 18 for each vertex u ∈ V (D). So we have

∑

p≤18

xp = 5. (4)

Let Yi = {u : i ∈ C(D − u)} for each i ∈ C(D) and let yi = |Yi|. Since each color appears

in at least 3 induced subdigraphs of order 4, we have yi ≥ 3. Note that D has 5 induced
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subdigraphs of order 4, every arc of D belongs to exactly 3 of such induced subdigraphs

and every color i ∈ C(D) belongs to exactly yi of them. So we have

∑

p≤18

pxp = 3a(D) +
∑

i∈C(D)

yi = 3a(D) + 3c(D) +
∑

i∈C(D)

(yi− 3) ≥ 84+
∑

i∈C(D)

(yi− 3). (5)

By (5)− 16× (4) we can get

∑

i∈C(D)

(yi − 3) ≤ 2x18 + x17 − 4.

Case 1. x18 = 0.

In this case, since x17 ≤ 5, we have 0 ≤
∑

i∈C(D)(yi − 3) ≤ 1. This means that either

yi = 3 for all i ∈ C(D) or there is only one color j such that yj = 4.

If yi = 3 for all i ∈ C(D), then every triangle in D must be a rainbow triangle. This

implies that D contains no directed triangles. So a(D) ≤ ⌊5
2

2 ⌋ = 12. Thus

28 ≤ a(D) + c(D) ≤ 2a(D) ≤ 24,

a contradiction. If there is only one color j such that yj = 4. Then let u be the only

vertex in D such that j 6∈ C(D − u). Then D − u contains no directed triangle. Thus

a(D − u) + c(D − u) ≤ 2a(D − u) ≤ 2⌊4
2

2 ⌋ = 16. So ds(u) + d(u) ≥ 12. Note that

ds(u) + d(u) ≤ 2d(u)− a(Dj) + 1. So

a(Dj) ≤ 2d(u)− 11. (6)

On the other hand, let D′ be an arc-colored digraph such that V (D′) = V (D) and

A(D′) = (A(D)\A(Dj)) ∪ {e}. Here e is an arc from Dj. Then we have 28− a(Dj) + 1 =

a(D′) + c(D′) ≤ 2a(D′) ≤ 2⌊5
2

2 ⌋. Thus

a(Dj) ≥ 5. (7)

Combine (6) and (7). We have d(u) ≥ 8. Note that d(u) ≤ 8. We have d(u) = 8, a(Dj) = 5

and there must be a vertex v ∈ V (D − u) such that C(uv) = C(vu) = j. Let D′′ be an

arc-colored digraph such that V (D′′) = V (D) and A(D′′) = (A(D)\A(Dj)) ∪ {uv, vu}.

Then each triangle in D′′ must be a rainbow triangle. So D′′ contains no triangles. We

have

a(D)− a(Dj) + 2 = a(D′′) ≤ ⌊
52

2
⌋.

Thus a(D) ≤ 15. So c(D) ≥ 13 = ⌊5
2

2 ⌋ + 1, which implies that D contains a rainbow

triangle, a contradiction.
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Case 2. x18 ≥ 1.

In this case, there is a vertex u ∈ V (D) such that a(D − u) + c(D − u) = 18 and

d(u) + ds(u) ≥ 10. By Lemma 4, we can see that D − u ∼=
←→
K 4 and D − u ∈ G4. If

D ∼=
←→
K 5, then we obtain a rainbow triangle by Theorem 1, a contradiction. So d(u) ≤ 7

and ds(u) ≥ 3. By Lemma 1, we can assume that CN−(u) ∩ Cs(u) = ∅. Then ds(u) ≤ 4.

Let the two monochromatic cycles in D − u are xyzwx and wzyxw with colors α and β,

respectively. Assume that C(ux), C(uy) and C(uz) are three distinct colors in Cs(u). If

yu ∈ A(D), then consider triangles uxyu and uzyu, we get α = C(yu) = β, a contradiction.

So yu 6∈ A(D). Similarly, we can get xu /∈ A(D), zu /∈ A(D), wu /∈ A(D). So d(u) ≤ 4,

and thus d(u) + ds(u) ≤ 8, a contradiction.

The proof is complete.

To prove Theorem 4, we need the following famous theorem of Moon [17]:

Theorem 5 (Moon’s theorem). Let T be a strongly connected tournament on n ≥ 3

vertices. Then each vertex of T is contained in a cycle of length k for all k ∈ [3, n]. In

particular, a tournament is hamiltonian if and only if it is strongly connected.

Proof of Theorem 4. By induction on n. For n = 3, since D is strongly connected, we

can see that D is a directed triangle. If c(D) ≥ n(n−1)
2 −n+3 = 3, then all arcs of D have

distinct colors. So D is a rainbow triangle.

Suppose that every arc-colored strongly connected tournament D′ of order n− 1 with

c(D′) ≥ (n−1)(n−2)
2 − (n−1)+3 contains a rainbow triangle for n ≥ 4. Now we consider an

arc-colored strongly connected tournament D of order n. Since D is strongly connected,

by Moon’s theorem, D contains a directed (n − 1)-cycle C. Let v be the vertex not in

C. Then D − v contains a hamiltonian cycle C. Thus, D − v is strongly connected. If

c(D) ≥ n(n−1)
2 −n+3 and D contains no rainbow triangles, then D−v contains no rainbow

triangles either, and hence c(D − v) ≤ (n−1)(n−2)
2 − (n − 1) + 2. So we have

ds(v) ≥
n(n− 1)

2
− n+ 3−

(

(n− 1)(n − 2)

2
− (n− 1) + 2

)

= n− 1.

This implies that CN(v)
⋂

C(D − v) = ∅ and every two different arcs incident to v have

distinct colors. Since D is strongly connected, there exists an arc from N+(v) to N−(v).

Assume that wu ∈ A(D), where w ∈ N+(v) and u ∈ N−(v), then vwuv is a directed

triangle. Since wu ∈ A(D− v) and vw, uv are two different arcs incident to v, we can see

that vwuv is a rainbow triangle, a contradiction.

The proof is complete.
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3 Concluding remarks

By Lemmas 3 and 4 in Theorem 3, we proved that for n = 3, 4, if a(D) + c(D) =

a(
←→
K n) + f(

←→
K n)− 1 and D contains no rainbow triangles, then D ∼=

←→
K n. We conjecture

that this is true for all n ≥ 5.

Conjecture 1. LetD be an arc-colored digraph of order n ≥ 5 without containing rainbow

triangles. If a(D) + c(D) = n(n− 1) + ⌊n
2

4 ⌋+ 1, then D ∼=
←→
K n.
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