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Abstract

Let D be an arc-colored digraph. The arc number a(D) of D is defined as the
number of arcs of D. The color number ¢(D) of D is defined as the number of
colors assigned to the arcs of D. A rainbow triangle in D is a directed triangle in
which every pair of arcs have distinct colors. Let f(D) be the smallest integer such
that if ¢(D) > f(D), then D contains a rainbow triangle. In this paper we obtain
f (?n) and f(T},), where ?n is a complete digraph of order n and T, is a strongly
connected tournament of order n. Moreover we characterize the arc-colored complete
digraph ?n with c(?n) = f(?n) — 1 and containing no rainbow triangles. We also
prove that an arc-colored digraph D on n vertices contains a rainbow triangle when

a(D)+¢(D) > a(?n) + f(?n), which is a directed extension of the undirected case.

Keywords: arc-colored digraph, rainbow triangle, color number, complete digraph,

strongly connected tournament

1 Introduction

In this paper we only consider finite digraphs without loops or multiple arcs. For termi-

nology and notations not defined here, we refer the readers to [2] and [3].
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Let D = (V, A) be a digraph. We use a(D) to denote the number of arcs of D. If
uv € A(D), then we say that u dominates v (or v is dominated by u) and uv is an in-arc
of v (or uv is an out-arc of u). For a vertex v of D, the in-neighborhood N, (v) of v
is the set of vertices dominating v, and the out-neighborhood N5 (v) of v is the set of
vertices dominated by v. The in-degree dp,(v) and out-degree dj,(v) of v are defined as the
cardinality of N, (v) and N}, (v), respectively. The degree dp(v) of v is defined as the sum
of d,(v) and dj,(v). A complete digraph is a digraph obtained from a complete graph K,
by replacing each edge xy of K, with a pair of arcs xy and yx, denoted by ?n A complete
bipartite digraph is a digraph obtained from a complete bipartite graph K, ,, by replacing
each edge xy of K,,, with a pair of arcs zy and yz, denoted by ?mn A tournament
is a digraph obtained from a complete graph K, by replacing each edge xy of K, with
exactly one of the arcs xy and yx. A digraph D is strongly connected if, for each pair of
distinct vertices z and y in D, there exists an (z,y)-path. The subdigraph of D induced
by S C V(D) is denoted by DI[S]. An arc-coloring of D is a mapping C : A(D) — N,
where N is the set of natural numbers. We call D an arc-colored digraph if it is assigned
such an arc-coloring C'. We use C(D) and ¢(D) (called the color number of D) to denote
the set and the number of colors assigned to the arcs of D, respectively. If ¢(D) = k,
then we call D a k-arc-colored digraph. Let D be an arc-colored digraph and i a color
in C(D). We use D' to denote the arc-colored subdigraph of D induced by all the arcs
of color i. For a vertex v € D, we use CN(v) and CNj)(v) to denote the set of colors
assigned to the in-arcs and the out-arcs of v, respectively. The color neighbor C Np(v) of v
is defined as CNp(v) = CNp, (v) |JCN} (v). The in-color degree d,“(v) and the out-color
degree df°(v) of v are the cardinality of C N, (v) and CNJ (v), respectively. If there is no
ambiguity, we often omit the subscript D in the above notations. A rainbow digraph is a
digraph in which every pair of arcs have distinct colors. A rainbow triangle is a directed
triangle which is rainbow.

The existence of rainbow subgraphs has been widely studied, see the survey papers
[7,[IT]. In particular, the existence of rainbow triangles attracts much attention during the
past decades. For an edge-colored complete graph K,,, Gallai [8] characterized the coloring
structure of K, containing no rainbow triangles. Gyarfids and Simonyi [9] showed that
each edge-colored K,, with A™"(K,) < 2?” contains a rainbow triangle and this bound is
tight. Fujita et al. [6] proved that each edge-colored K, with §¢(K,) > logs n contains

a rainbow triangle and this bound is tight. For a general edge-colored graph G of order

n, Li and Wang [I4] proved that if §¢(G) > \/76*'171, then G contains a rainbow triangle.



Li [13] and Li et al. [I2] improved the condition to 6°(G) > % independently, and showed
that this bound is tight. Li et al. [I5] further proved that if G is an edge-colored graph
of order n satisfying d°(u) + d°(v) > n+ 1 for every edge uwv € E(G), then it contains a
rainbow triangle. In [16], Li et al. gave some maximum monochromatic degree conditions
for an arc-colored strongly connected tournament 7, to contain rainbow triangles, and to
contain rainbow triangles passing through a given vertex. For more results on rainbow
cycles, see [11, 4] [5 [10].

In this paper, we mainly study the existence of rainbow triangles in arc-colored di-
graphs. Let D be an arc-colored digraph on n vertices. Sridharan [I8] proved that the
maximum number of arcs among all digraphs of order n with no directed triangles is L"Q—QJ
Thus D contains a rainbow triangle if ¢(D) > L”Z—QJ + 1. This lower bound is sharp by
considering the complete bipartite digraph ?L% [NES with arcs assigned pairwise distinct
colors.

For an edge-colored graph G, we use e(G) and ¢(G) to denote the number of edges of G
and the number of colors assigned to the edges of G, respectively. Let f(G) be the smallest
integer such that if ¢(G) > f(G), then G contains a rainbow triangle. In [9], the authors
proved that f(K,) = n. Liet al. [12] proved that if e(G) +¢(G) > w, then G contains

a rainbow triangle. Note that n(n2+1) = n(nz_l) +n =e(K,) + f(K,). Motivated by this
result, we wonder whether an arc-colored digraph D on n vertices contains a rainbow

triangle when

a(D) + (D) > a(K ) + (K ).
First we calculate f (?n) for n > 3.

Theorem 1. Let ?n be an arc-colored complete digraph of order n > 3 and f(?n) be the
smallest integer such that ?n with c(?n) > f(?n) contains a rainbow triangle. Then

We also investigate the structure of the arc-colored complete digraphs ?n with C(?n) =

f (?n) — 1 and containing no rainbow triangles.

Theorem 2. Let G, be the class of arc-colored complete digraphs of order n such that for
each D € G, ¢(D) = f(D) —1 and D contains no rainbow triangles. Then each D in
Gs can be decomposed into two arc-disjoint 2-arc-colored triangles A1 and Ao such that

C(A1) N C(Az) =0. For each D in Gy, there exists a permutation of the vertex set of D,



say v1vau3vy, such that

(

C(v1vs) = C(vavs) = C(ugvy) = Clvgv1) = a,
C(vivg) = C(vgv3) = C(vgva) = Clvgvy) = b,
Clvivs) = ¢, Clvgvr) = d,
Clvgvg) =€, Clvgva) = f,

where a,b, c,d, e, f are pairwise distinct colors.

Each D in Gs belongs to one of the following three types of digraphs:

o Type I: There is a vertex v € V(D) such that all arcs incident to v are colored by a

same color ¢, D —v € Gy and ¢ ¢ C(D — v);

e Type II: The vertex set of D can be partitioned into two subsets {a1,as} and {by,ba, b3}
such that the spanning subdigraph H of D with A(H) = {a;bj|i = 1,2;5 = 1,2,3}
(or A(H) = {bja;li = 1,2;j = 1,2,3}) is rainbow and all arcs in A(D)\ A(H) are

colored by a same new color;

e Type III: The vertexr set of D can be partitioned into two subsets {ai,as} and
{bl,bg,bg} such that C(D[{al,ag}]) = {a, b}, D[{bl,bg,bg}] S g3; C(D[{bl,bg,bg}]) =
{c,d,e, f} and all arcs between {ai,as} and {b1,ba,bs} are colored by g, where

a,b,c,d,e, f,g are pairwise distinct colors.

For each D € G,,, n > 6, the vertex set of D can be partitioned into two subsets {a1,as, ...,

GL%J} and {by,ba, ..., b[%ﬁ such that the spanning subdigraph H of D with

A(H) = {ab;|i = 1,2,...,ng;]‘ — 1,2, 2]

2
or
. n . n
A(H) :{bjai’Z:1,27---7L§J;J :1,2,...,[5}}

is rainbow and all arcs in A(D)\ A(H) are colored by a same new color.

Furthermore, we study the "a(D) + ¢(D)” condition for the existence of rainbow tri-

angles in arc-colored digraphs (not necessarily complete).

Theorem 3. Let D be an arc-colored digraph on n vertices. If

a(D) + (D) > n(n—1) + L"TQJ 3, n=34

n(n—l)—i—{"{j—i—l n>5,

then D contains a rainbow triangle.



Remark 1. By the definition of f (?n) and Theorem [I, we can see that the bound of
a(D) + ¢(D) in Theorem [ is sharp.

Finally, we give a color number condition for the existence of rainbow triangles in

strongly connected tournaments.

Theorem 4. Let D be an arc-colored strongly connected tournament on n vertices. If

e(D) > @ —n+ 3, then D contains a rainbow triangle.

Remark 2. The bound of ¢(D) in Theorem [lis sharp. Let D be a digraph with vertex set
V ={v1,v2,...,v,} and arc set A = ({vv;|1 <i<j <n}\ {vivy}) U{vpv1}. Then D is
a strongly connected tournament. Color all the arcs incident to vy by a same color and
color the remaining arcs by pairwise distinct new colors. Then ¢(D) = @ —(n—-1)+1=

—n(n2_1) —n + 2. But there is no rainbow triangle in D.

2 Proofs of the theorems

Let v be a vertex in D, and ¢ a color in C(D). If all the arcs with color ¢ are incident to v,
then we call ¢ a color saturated by v. We use C*(v) to denote the set of colors saturated
by v and define d*(v) = |C*¥(v)|. If a color in C(D) is not saturated by v, then it is also a
color in C(D — v). This implies that ¢(D —v) = ¢(D) — d*(v).

Observation 1. Let D be an arc-colored complete digraph. For a vertex v € D, if there
are two vertices uw # w such that C(uv) # C(vw) and C(uv),C(vw) € C*(v), then wvwu

s a rainbow triangle.

Proof. Since the arc wu is not incident to v, we have C(wu) ¢ C*(v). Namely, C(uv),

C(vw) and C(wu) are pairwise distinct colors. Thus, uvwu is a rainbow triangle. O
Before presenting the proof of Theorem [Il we first prove the following lemmas.

Lemma 1. Let D be an arc-colored digraph of order n > 4 without rainbow triangles.
For a vertex v € D, if D — v = ?n_l and d*(v) > 3, then CN~(v)(C*(v) = 0 or
CN*(v)C*(v) = 0. Moreover, if D = ?4, then ¢(D) < 5.

Proof. Let C5(v) ={1,2,...,k}, k>3. ECN™T(v)C*(v) # 0, without loss of generality,
assume that C'(vw) = 1. We will show that CN~(v)(C*(v) = 0. By contradiction,
assume that there is a vertex u # w such that C(uv) € C*(v)\ {1}, then uvwu is a rainbow

triangle, a contradiction. Suppose that C(wv) € C*(v) \ {1}, such as C(wv) = 2. Since



d*(v) > 3, there is an arc colored by 3 incident to v. By the above argument, this arc must
be an out-arc of v, so we can assume that C'(vu) = 3. But now wvuw is a rainbow triangle,
a contradiction. Thus CN~(v)((C*(v) \ {1}) = 0. Namely, 2 € CN*(v), by similar
analysis we have CN~(v) [ (C%(v) \ {2}) = 0. Hence, we have CN~(v) [ C*(v) = 0.

If n = 4, then assume that V(D) = {v,z,y, 2}, {1,2,3} C C*(v), C(vz) =1, C(vy) =
2, C(vz) = 3, D[{x,y,z}] is a ?3, C(zv) = a, C(yv) = b and C(zv) = c¢. Since D
contains no rainbow triangles, we have C(yx) = C(z2z) = a, C(zy) = C(zy) = b and
C(zz) =C(yz) =c. So C(D)={1,2,3} U{a}U{b} U{c}. If a, b, c are pairwise distinct,
then xyzzx is a rainbow triangle, a contradiction. So two of a, b and ¢ must be a same

color. Then ¢(D) < 5. O

Lemma 2. Let D be an arc-colored complete digraph of order n > 4. If D contains no

rainbow triangles, then there must be a verter v € V(D) such that d*(v) < [5].

Proof. Suppose for every vertex v € V(D), we have d°(v) > |[5]| + 1. Let v be a vertex
of D. Since n > 4, we have d*(v) > 3. By Lemma [I either CN~(v)(C%(v) = 0 or
CNT(v)C*(v) = 0. Without loss of generality, suppose C*(v) = {1,2,...,k}, k >
|5]+1and C(vw;) =i, fori=1,...,k. For j # 1, since D contains no rainbow triangles,
Cluwnwy) # 1 and Cluyv) # 1, we have Clwrwy) = Clwyv). Thus, Clunw;) ¢ C*(ws)
for j =2,..., k. Similarly, for j # 1, since D contains no rainbow triangles, C(wj;w1) # j
and C(wiv) # j, we have C(wjw;) = C(wyv). Since C(wjw1) € CN™ (w1)(VCN*(wy),
we can see that C(w;wi) ¢ C*(wy) for j = 2,...,k. So, all colors assigned to the arcs
between wy and {ws,...,w;} do not belong to C*(w;). Note that for a pair of arcs uw,

and wju, at most one of them has a color in C*(wy). So,
n
V(D — {wy,...,wg})| > d*(wy) > {§J + 1.

But now

VD)l =n> Sl +1+[5]+12n+1,

a contradiction. O

Now we can give the proof of Theorem [l

Proof of Theorem [Il. We divide the proof into four cases.
Case 1. n = 3.

If n = 3, then we have a(D) = 6. If ¢(D) > L"TQJ + 3 = 5, then at most two

arcs have a same color, other arcs all have pairwise distinct new colors. Since there are



two arc-disjoint triangles in D, at least one of them is rainbow. Let V(D) = {u,v,w},
C(uv) = C(vw) = 1, C(wu) = 2, C(vu) = C(uw) = 3 and C(wv) = 4. Then ¢(D) = 4

and neither of two triangles are rainbow. So we have f(?g) = L"{J +3=5.

Case 2. n =4.

n2

For n =4, if ¢(D) > | %] +3 = 7 but D contains no rainbow triangles, then for every
vertex v € V (D), the complete digraph D — v contains no rainbow triangles either. Since
f(?g) =5, we have ¢(D —v) = ¢(D) — d*(v) < 4. So for every vertex v € V(D), we have
d*(v) > 3. By Lemmal/[Il we have ¢(D) < 5, a contradiction.

Let V(D) = {v,z,y,z}, C(vz) = C(zy) = C(yz) = C(zv) = 1, C(vz) = C(zy) =
C(yx) = C(zv) = 2, C(vy) = 3, C(yv) = 4, C(rz) =5 and C(zx) = 6. Then ¢(D) =6

2

and D contains no rainbow triangles. So we have f(?4) = 5] +3=T.

Claim 1. Let D be an arc-colored ?4 without rainbow triangles. If ¢(D) = 6, then there

must be a permutation of the vertex set of D, say vivsvsvy, such that

Clv1v) = Clvavs) = Clvsva) = Clogm) = a,
C(v1va) = C(vavs) = C(v3vs) = C(vavr) = b,
Cluoivs) = ¢, Clugwr) = d,
C(vavy) = e, C(vgv2) = f,

where a, b, ¢, d, e, f are pairwise distinct colors.

Proof. Since f(?g) =5, ¢(D) = 6 and D contains no rainbow triangles, we have d*(v) > 2
for each vertex v € V(D). If there is a vertex v € V(D) such that d*(v) > 3, then by
Lemma [Il we have ¢(D) < 5, a contradiction. So we have d*(v) = 2 for every vertex
v € V(D). Thus for each v € V(D), D — v belongs to Gs.

By the structure of Gs, we know that for each color i the arc-colored digraph D’
must be connected (otherwise, we recolor a component of D’ by a new color, then the
obtained arc-colored complete digraph has f (?4) colors but contains no rainbow triangles,
a contradiction) and belong to one of the following four types.

Type 1: an arc;
Type 2: a directed path of length 2;
Type 3: a directed path of length 3;
Type 4: a directed cycle of length 4.
Let X; = {i € C(D) : D' belongs to Type j} and x; = |X,| for j = 1,2,3,4. Then



we have

(

x1+ 22+ 23+ 24 = (D)

x1 + 2z + 323 + 4wy = a(D)

4
To + 223 +4xy = 2 (3) (the number of directed triangles in D)

xz; € Nfor j =1,2,3,4.

By these equations, we get x1 = 4,29 = x3 = 0 and x4 = 2. Without loss of generality,
let X7 ={1,2,3,4}, X4 = {5,6} and let uxyzu be the directed cycle of length 4 colored
by 5. If C(zu) € X1, then C(yx),C(uz) ¢ X (otherwise, yruy or zuzx is a rainbow
triangle). This forces C(yx) = C(uz) = 6. Note that D° is a directed cycle of length
4. We have C(zu) = 6 € X4. This contradicts to the assumption that C(zu) € Xj.

Thus C(zu) ¢ Xy. This forces C(zu) = 6. By the symmetry of the cycle uxyzu, we get

C(zu) = C(uz) = O(zy) = C(yx) = 6. For each color i = 1,2,3,4, D' is an arc. O
Let D be an arc-colored complete digraph of order n > 5 with vertex set {vy,va, ..., v}
Let
. n, . n
R = {U2i71U2j|’L == 1,2,. ey [§-|,j = 1,2, ey LEJ}

Color the arcs in R with pairwise distinct colors and color the remaining arcs with a same
new color. Then ¢(D) = {"Tfj + 1 and D contains no rainbow triangles. So f(?n) >
LTZ—QJ + 2 for n > 5.

Case 3. n =5.

n2

For n =5, if ¢(D) > | "] +2 = 8 but D contains no rainbow triangles, then for every
vertex v € V (D), the complete digraph D — v contains no rainbow triangles either. Since
f(?4) =7, we have ¢(D —v) = ¢(D) — d*(v) < 6. So for every vertex v € V(D), we have
d*(v) > 2. On the other hand, by Lemma [2, there must be a vertex v € V(D) such that
d*(v) < [§] = 2. So there exists a vertex v € V(D) such that d*(v) = 2. Let D' = D — v,
then D’ is an arc-colored ?4 without rainbow triangles and ¢(D’) = 6. By Claim [l we
can assume that V(D') = {u,z,y, z} and

(




Let C*(v) = {7,8}. Without loss of generality, we can assume that C'(vu) = 7. Considering
the triangle vuzv, we have C'(zv) # 8. If C(vz) = 8, then considering the triangles vuzv
and vzzv, we have C'(zv) € {6,7}({3,8}, a contradiction. So C(vx) # 8. Similarly, we

have
8 ¢ {C(vy)} U{C(yv)} U{C(vz)} U{C(2v)}.

So C'(uv) = 8. By similar analysis, we have

7 ¢ {C(va)} U{C(xv)} U{C(vy)} U{C(yv)} U{C(v2)} U{C(20)}.

Considering the triangles vuzrv and vyuv, we have C(zv) = 5 and C(vy) = 2. But now

xvyz is a rainbow triangle, a contradiction. Thus, we have f(?5) = L”TQJ +2=28.
Case 4. n > 6.

Suppose Theorem [l is true for ?n,l, now we consider ?n, n > 6. Let D be an
arc-colored complete digraph of order n > 6. If ¢(D) > L’Z—2J + 2 but D contains no
rainbow triangles, then for every vertex v € V (D), the digraph D — v contains no rainbow
triangles either. Thus, we have ¢(D — v) = ¢(D) — d*(v) < L%J + 1. So for every

vertex v € V (D), we have
n2 n—1)2
d*(v) > LZJ +2-— (L%J + 1)

n .
5 4+ 1, niseven;

n+1
2 )
On the other hand, by Lemma [ there must be a vertex v € V(D) such that d*(v) < |5,

n 1s odd.

a contradiction. So we have f(?n) = {"TQJ + 2 for n > 5.

The proof is complete. O
Proof of Theorem 2l Let D € G3. Since the two arc-disjoint directed triangles A; and
Ay are not rainbow, we have ¢(A1) < 2 and ¢(Az) < 2. Thus 4 = ¢(D) < ¢(A1)+c(Ag) <
4, the equality holds if and only if ¢(A1) = ¢(A2) =2 and C(A1) (N C(Ag) = 0.

We have already characterized G4 by Claim [l in Theorem [I1

Let D € Gs. Then ¢(D) = f(?5) —1=8-1=7 1If d°(v) = 1 for a vertex
v € V(D), then we have ¢(D —v) = 6. By Claim [Il in Theorem [, we can assume that



V(D —v) ={u,z,y, 2} and

C(uz) = C(zy) = C(yz) = C(zu) =5,
C(uz) = C(zy) = C(yz) = C(au) = 6,
Cluy) =1, Cyu) =2,
C(zz) =3, C(zz)=4.

Without loss of generality, we can assume that C(vu) =7 € C*(v). Considering triangles
vuzv, vuyv and vuzv, we have C(zxv) = 5 or 7, C(yv) = 1 or 7 and C(zv) = 6 or
7. Considering triangles vzzv and vzyv, we have C(vz) € {4,5,7}({1,6,7}, and hence
C(vz) = 7 = C(zv) = C(yv). Considering triangles vxzv and vzxyv, we have C(vz) €
{5,7}N{3,6,7}, and hence C(vz) =7 = C(zv). Considering triangles vyzv and vyzv, we
have C(vy) € {5,7}({6,7}, and hence C(vy) = 7. Finally, considering triangles uvxu
and wvyu, we have C'(uv) € {6,7} ({2, 7}, and hence C(uv) = 7. Thus, all arcs incident
to v are colored by 7 and D belongs to Type I.

Now let us consider the case that d®*(v) > 2 for each vertex v € V(D). Let
X={ielCD):Cuw)=iandie C*(u)NC*v)},
Y={ieC(D):iecC*w)and i ¢ C*(u) if u # v},

Z={ieC(D):i¢gC*w) for any v € V(D)}.
Let z,y and z be the cardinality of X,Y and Z, respectively. Then we have

r+y+z=c(D)
2r 4y = Z d*(v).

veV (D)

Recall that ¢(D) = 7 and d*(v) > 2 for each vertex v € V(D). We have

r+y+z=7
2z +y > 10.
Thus x> z+3 > 3.
Let H be an arc-colored spanning subdigraph of D with the arcs that are assigned
colors in X. Then a(H) > x > 3. Since each directed path wvw in H implies a rainbow

triangle uvwu, there is no directed path of length 2 in H. Let H be the underlying graph
of H.

Case 1. Z = 0.

10



If uv,ab € A(H) for four distinct vertices u, v, a, b, then without loss of generality, we
can assume that C'(va) = 1. Since vauv and abva are not rainbow triangles, it is easy to
see that C(au) = C'(bv) = 1. Thus 1 € Z. This contradicts that Z = ). Thus there exists
a vertex u such that each arc in H is incident to u and hence d*(u) > x.

Let uv be an arc such that C(uv) € X. Let {a,b,c} = V(D)\{u,v}. Since D contains
no rainbow triangles and Z = (), we can assume that C(va) = C(au) = 1, C(vb) =
C(bu) = 2 and C(vc) = C(cu) = 3. This implies that {1,2,3} C Y and y > 3. Now we
have z,y > 3 and x +y = 7. Thus either x =3,y =4 or x =4,y = 3.

Ife=3y=4,then 10=22+y =3 cypyq &°(v) +d°(u) = 11, a contradiction.

Ife=4y=3 then 11 =22 +y =3 cypyfu &°(v) +d°(u) = 12, a contradiction.

Case 2. ¢ > 5.

If H contains a cycle uvu, namely, C'(uv),C(vu) € X, where v # u, then it is easy to
see that none of the arcs in H appears between {u,v} and V(D)\{u,v}. Let {a,b,c} =
V(D)\{u,v}. Then either the triangle abca or the triangle cbac contains two arcs of H.
In both cases, we get a rainbow triangle. So H contains no two oppositely oriented arcs.
Moreover, there is no odd cycle in H (otherwise, there must be a directed path of length
2 in H, a contradiction.)

Note that a(H) > x > 5. The graph H must contain a cycle, which has to be of
length 4, say ajbjasbea;. Let {u} = V(D)\{a1,a2,b1,b2}. Since there is no directed path
of length 2 in H, we can assume that a1by, a1be, asbi, asbs € A(H) and all the other arcs
in D[ay,az,b1,be] are not contained in H. Assume that C(ajaz) = 1. Then 1 € Y U Z.
Consider triangles ajasbia; and ajasboa;. We get C(biay) = C(bgay) = 1. Consider
baaibiby and byaibab;. We get C'(bibe) = C(beby) = 1. By similar analyzing process, we
finally see that all the arcs in A(D — w)\A(H) are of color 1. Recall that a(H) > 5. By
the symmetry, we can assume that w« is either incident to aq or by in H.

If w is incident to b; in H, then the situation has to be ub; € H (since H contains no
path of length 2). Now consider triangles ubjaju, ubibou and ubjasu. We get C(aju) =
C(bau) = C(agu) = 1. Consider triangles uabou and uasbou. We get C(ua;y) = C(uag) =
1. Again, consider the triangle ua;bju. We get C(bju) = 1. Now ¢(D — uby) = 6. Since
¢(D) = 7, there holds C'(ubg) & C(D — uby). Thus uby € A(H). If u is incident to a; in
H, then by a similar analyzing process, we can obtain that aju,asu € A(H) and all the
other arcs incident to u are of color 1.

In summary, H is an orientation of K»3 with partite sets A and B such that |A| =

2,|B| = 3 and all the arcs are from A to B or from B to A. The remaining arcs in D are
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all colored by a same new color. So D belongs to Type II.
Case 3. z>1 and z < 4.

Recall that x > z+3 >4 and z+y+2=7. We have x =4, y =2 and z = 1. Note
that

10=2z+y= Y d(v)>2+5=10.
veV (D)

So d*(v) = 2 for each vertex v € V(D). Now we assert that d®(v) > dy(v). If each color
in C*(v) N X is only assigned to one arc in D, then there is nothing to prove. If there is a
color in C*(v) N X assigned to more than two arcs, then by the definition of X, we know
that these arcs must be two oppositely oriented arcs, say vw and wv. Recolor vw by a new
color. Then the obtained arc-colored complete digraph D’ satisfies that ¢(D’) = f (?5)
but D’ contains no rainbow triangles, a contradiction. So we have d*(v) > d4(v) for each
vertex v € V(D). Thus the maximum degree of H is at most 2.

If H contains a path of length 3, then without loss of generality, we can assume that
wows is a path with wv,wv,ws € A(H). Let C(vu) = 1, C(vw) = ¢ and let p be the
vertex in D different from u, v, w and s. Since D contains no rainbow triangles, we obtain
that C'(vw) = C(su) = C(vs) = C(sw) = 1 and C(wu) = C(sv) = c. It is easy to observe
that 1,¢ € Z. Since z = 1, we have ¢ = 1 and Z = {1}. Consider triangles uvpu, wvpw
and wspw. We get C'(vp) = C(pu) = C(pw) = C(sp) = a. If a € C*(p), then considering

triangles upwu, pvsp, wpuw and vpsv, we can get

{C(up)} U{C(pv)} U{C(wp)} U{C(ps)} < {1,a}.

Thus, we have d*(p) = 1, a contradiction. So a ¢ C*(p) and hence a = 1. If C(up) =2 €
C*(p), then considering triangles vupv and sups, we can get C(pv), C(ps) € {1,2}. Since
d*(p) = 2, we have C(wp) # 2 and C(wp) € C*(p). Let C(wp) = 3. Consider triangles
wpvw and wpsw. We can get C(pv),C(ps) € {1,3}. So C(pv) = C(ps) = 1. But now
{2,3,C(uv),C(wv),C(ws)} C X. This contradicts that = 4. Thus C(up) ¢ C*(p). By
similar analyzing process, we can see that C'(pv), C(wp), C(ps) ¢ C*(p). This implies that
C*(p) = 0, a contradiction.

If the longest path in H is of length 1, then the arcs of H form two vertex-disjoint cycles
of length 2, say A(H) = {uv,vu,pq,qp}. Since z = 1, it is easy to check that all the arcs
between {u,v} and {p, ¢} has a same color, namely, the unique color in Z. Let Y = {1, 2}
and V(D)\{u,v,p,q} = {w}. Then there holds C*(w) = {1,2}. Since D contains no
rainbow triangles, we have C'(uw) = C(wv), C(vw) = C(wu),C(pw) = C(wg), C(qw) =
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C(wp). By the symmetry, we can assume that C(uw) = C(wv) = 1. Consider triangles
uwpu, uwqu, pwvp and quwvg. We can see that the color 2 does not appear between w and
{p,q}. This forces C'(vw) = C(wu) = 2 and all the arcs between w and {p, ¢} are colored
by the unique color in Z. So D belongs to Type III.

The remaining case is that His composed of a path of length 2 and a cycle of length
2. Let V(D) = {u,v,w,p,q} and A(H) = {uv,wv,pq,qp}. Assume that C(vp) = a and
C(pv) = b. Then it is easy to check that each arcs between {u,v,w} and {p,q} are of
color a or b, and a,b € Z. This forces a = b (since z = 1). Now the arcs vu, uw, wu, vw
are the only possible arcs that are assigned the colors in Y. Thus ¢(D[v, u,w]) = 4 and
each color in D[v,u,w] does not appears on A(D)\A(D|v,u,w]). So D[v,u,w| € G3 and
D belongs to Type III.

Let D € Gg. Since D contains no rainbow triangles, we have ¢(D —v) < 7, so d*(v) > 3
for every v € V(D). On the other hand, by Lemma [2 there is a vertex v € V(D) such
that d°(v) < [ 5] = 3. So there is a vertex v € V(D) such that d*(v) = 3 and ¢(D —v) = 7.
Since D — v contains no rainbow triangles, by the above arguments, D — v € G5 and thus

belongs to one of the three types of digraphs.
Case 1. D — v belongs to Type 1.
Let V(D) = {u,v,w,x,y, z}, We can assume that

Cuy) =1, C(yu)=2, C(zz)=3, C(zx)=4,
C(ux) = C(zy) = C(yz) = C(zu) = 5,
C(uz) = C(zy) = C(yzx) = C(zu) = 6,

C(wzx) = C(wy) = C(wz) = C(wu) = C(uw) = C(zw) = C(yw) = C(zw) = 1.

Since d*(v) = 3, by Lemma [I, we can assume that CN~(v)(C*(v) = 0. Let C*(v) =
{8,9,10} and C(vz) = 8. Considering the triangle vzwv, we have C'(wv) = 7. But now

d*(w) < 2, a contradiction.
Case 2. D — v belongs to Type III.

Let V(D) = {v,a1,a2,b1,be,b3}. We can assume that C(ajaz) = 1, C(aza;) = 2
and C({a1,as},{b1,b2,b3}) = {3}. Since d*(v) = 3, by Lemma [Il we can assume that
CN~(v)(C*(v) = 0. Then there must be a vertex b; such that C(vb;) € C*(v). Without
loss of generality, we can assume that C(vb;) = 8 € C*(v). Considering triangles vbyajv

and vbiagv, we have C(ajv) = C(agv) = 3. Considering the triangle ajvasa;, we have
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C(vag) € {2,3}. Since C(ai1b;) = 3, we can see that 3 ¢ C®(az) and d*(a2) < 2, a

contradiction.
Case 3. D — v belongs to Type II.
Let V(D) = {v,a1,a2,b1,ba,b3}. We can assume that

C’(albl) = 1, C(albg) = 2, C(albg) = 3,
Clazby) =4, Clagb2) =5, C(azbs)) =6,

and the remaining arcs of D — v are all colored by 7.
Case 3.1. CNT(v)NC%(v) = 0.

Since d*(v) = 3, there must be a vertex b; such that C(bjv) € C*(v). Without loss
of generality, we can assume that C(bjv) = 8 € C*(v). Considering triangles va;bjv and
vagbiv, we have C(vaj) = 1 and C(vag) = 4. Considering triangles ajbova; and asbovas,
we have C(bgv) € {1,2} ({4, 5}, a contradiction.

Case 3.2. CN~(v)(C*(v) = 0.

Let C%(v) = {8,9,10}. If C(vay) = 8, then considering triangles va;bjv and vajbov,

we have C(byv) = 1 and C(bev) = 2. Considering triangles asbjvas and asbovas, we have

C(vaz) € {1,4} N{2,5}, a contradiction. So C(va;) # 8. Similarly we can prove that

({Cvar)} U{C(vaz)}) () C*(v) = 0.

Thus C*(v) C {C(vby),C(vb2),C(vb3)}. Without loss of generality, we can assume that
C(vby) =8, C(vb2) =9 and C(vb3) = 10. Considering the triangle set

{vbiuv|u € {ay,az,b2,b3}} U{vbgblv},
we have
C({uv]u S {al, ag, by, b, bg}}) = {7}

Considering triangles va1bi1v, vaibov, vasbiv and vasbov, we have

C(var) € {1, 7} {2, 7} = {7} and C(vas) € {4,7}(){5,7} = {7}.

Let v = a3. Then we can see that the spanning subdigraph H of D with A(H) = {a;b;|i =
1,2,3;5 = 1,2,3} is rainbow and all the remaining arcs are colored by a same new color
7. So the theorem is true for 3 <n <6.

Let D € G,, n > 7. Suppose the theorem is true for ?n_l. Now we consider ?n,

n>"T.
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It D= ?n contains no rainbow triangles and ¢(D) = L"TQJ + 1, then ¢(D —v) <
L%J + 1 and d°(v) > [§] for every v € V(D). On the other hand, by Lemma [
there is a vertex v € V(D) such that d*(v) < |§]. So there is a vertex v € V(D) such
that d*(v) = [§] and ¢(D —v) = L%j + 1. By induction hypothesis, the vertex set
of D — v can be partitioned into two subsets {aq,as, ... ,aLnT—IJ} and {by,bo,... ,b"nT—l"I}
such that the spanning subdigraph H of D with A(H) = {a;b;li = 1,2,..., %5t ];j =
L2, . [22T) (or A(H) = {bja;|i = 1,2,..., %5t ];5 = 1,2,...,[252]}) is rainbow and
all arcs in A(D)\ A(H) are colored by a same new color ¢. By symmetry, we only discuss

the case A(H) = {asbjli = 1,2,..., |22 ;5 =1,2,...,[252]}. If nis odd, then we divide

the rest of the proof into two cases.
Case 1. CN*(v) [ C*(v) = 0.

If there is a vertex b; such that C(bjv) € C*(v). Without loss of generality, we
can assume that C(bjv) € C*®(v). Considering triangles vaibjv and vagbiv, we have
C(vay) = C(a1by) and C(vag) = C(azb1). Considering triangles a1byva; and asbovas, we
have

C(bav) € {C(arbr), Clarba)} [ {C(azbr), Cazba)}.
But A(H) = {a;b;li =1,2,...,[%52];5 =1,2,...,[%52]} is rainbow, a contradiction. So
C(bjv) ¢ C3(v), for j = 1,2,...,[%L]. Thus C*(v) C {C(alv),...,C(aLanlJv)}. Since
d*(v) = [2] = [252], we can see that C*(v) = {C(alv),...,C(aLnT_lJv)}. Considering
the triangle set
{vuarv|u € V(D) \ {v,a1}} U{valagv},
we have

C({vulu € V(D) \ {v}}) = {c}.

Considering triangles vaibjv and vagb,v, for j =1,2,..., [”7711, we have

C(bjv) € {Clarby), e} [ {Clazby), c} = {c}.

Let v = b(%y Then we can see that the spanning subdigraph H of D with A(H) =
{aibjli=1,2,...,|5]);5 =1,2,...,[5]} is rainbow and all the remaining arcs are colored

by a same new color c.
Case 2. CN~(v)(C*(v) = 0.

By similar analysis, we can see that the spanning subdigraph H of D with A(H) =
{aibjli=1,2,...,[51];4 =1,2,..., 5]} is rainbow and all the remaining arcs are colored

by a same new color ¢, where v = arny.
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If n is even, then by similar analysis we can see that the spanning subdigraph H of
D with A(H) = {a;bjli =1,2,...,[5];5 =1,2,...,[§]} is rainbow and all the remaining
arcs are colored by a same new color ¢, where v = ajn|.

The proof is complete. O
Proof of Theorem [3l. Suppose the contrary. Let D be a counterexample with the

smallest number of vertices, and then with the smallest number of arcs.
Claim 1. D contains two arcs uv and xy with a same color, where xy # vu.

Proof. Recall that the maximum number of arcs among all digraphs of order n without

directed triangles is {"—;j (see [18]). If ¢(D) > {"—;j +1, then D contains a rainbow triangle,

a contradiction. So ¢(D) < L%QJ Thus, we have

—4
n2 n2 n2 %+2>0, n is even;
aD) - [z -1+ [ +2-2 0 =4 4
%—i—2>07 n is odd.

So a(D) > L"—;J Namely, D contains a directed triangle A and at least two arcs of A are
colored by a same color. Note that two arcs of a triangle can only have one common end.

So D contains two arcs wv and xy with a same color, where xy # vu. O

Claim 2.

a(D) + ¢(D) = nn—1)+ %] +3, n=234;

n(n—l)—i—L";J—i-Q, n>5.
Proof. By Claim[] let a; and ag be two arcs with a same color. Then a(D—a;) = a(D)—1
and ¢(D —ay) = ¢(D). If

a(D) + ¢(D) > n(n—1)+ 2] +4, n=34

n(n—1)+ %] +3, n>5,
then

n(n—1)+ L%QJ +3, n=34
a(D —ay) +c¢(D —ay) >

n(n—1) + {"TQJ +2, n>5.
Note that D — aq contains no rainbow triangles either. Thus D — a1 is a counterexample

with fewer arcs, a contradiction. ]
Claim 3. For every v € V(D), we have
2(n —1)+ 5 +1, n is even;
d(v) +d*(v) > 2(n—1)+ 251 +1, nisodd and n # 5;

10, n=5.
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Proof. Note that a(D —v) = a(D) — d(v) and ¢(D —v) = ¢(D) — d*(v). If

2(n — 1)+ 3, n is even;

_|_
d(v) +d°(v) < S 2(n — 1) + 251

, mnisodd and n # b;
9, n =2>5,

then
a(D —v) 4+ c¢(D —v) =a(D) + ¢(D) — (d(v) + d*(v))

(n—1)(n—2)+ L—(nll)Qj +3, n=4,5;
>

m-Dm-2)+ "L 42 n>6.
Note that D — v does not contain a rainbow triangle. Thus D — v is a counterexample

with fewer vertices, a contradiction. ]
Claim 4. }© cy(p)d°(v) < 2¢(D) — 1.

Proof. Let ¢ be an arbitrary color in C(D). Note that each color ¢ can only be saturated by
at most two vertices. So >~y (p)y d*(v) < 2¢(D). Moreover, ¢ is saturated by exactly two
vertices if and only if ¢ appears on only one arc or on a pair of arcs between two vertices. By
Claim [ D contains two arcs uv and xy with a same color, where xy # vu. Thus, at least

one color cannot be saturated by exactly two vertices. So 3,y (p)d*(v) < 2¢(D)—1. O

By Claims R4l we can get that if n > 6 is even, then

2n(n—1)+ %2 +n < Z (d(v) + d°(v)) <2a(D)+2¢(D)—1=2n(n—1)+ %2 +3. (1)
veV (D)

This implies that n < 3, a contradiction.

If n > 7 is odd, then

2n(n —1) + nin 1)

(n—1)(n+1)

=2 -1
n(n )+ 5

+ 3.
(2)
This implies that n < 5, a contradiction. So it suffices to consider the cases n = 3,4, 5.
For n = 3, since a(D) 4 ¢(D) = 11 and a(D) < 6, we have ¢(D) > 5 = {";J +1. So D
contains a rainbow triangle, a contradiction.
For n = 4, we have a(D) + ¢(D) > 19. If a(D) = 12, then D = ?4 and ¢(D) > 7.
By Theorem [l D contains a rainbow triangle, a contradiction. If a(D) < 10, then

(D) >9= L%J + 1. We know that D contains a rainbow triangle, a contradiction. The
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only case left is that a(D) = 11 = a(?z;) — 1 and ¢(D) = 8. Let u be a vertex in D such
that D —u = ? Since f(? ) =5, we have d*(u) > 4. Let V(D —u) = {x,y,z}. Then
there must exist two vertices in V(D —u) (say = and y) such that ¢(uz) and c¢(yu) are two

distinct colors in C¥(u). This implies that uzyu is a rainbow triangle, a contradiction.

Lemma 3. Let D be an arc-colored digraph of order 3. If a(D) + ¢(D) = 10 and D

contains no rainbow triangle, then D = ?3.

Proof. Since D contains no rainbow triangle, we have ¢(D) < L%J =4 and a(D) > 6. So

(D) =4, a(D) = 6 and D= K 3. 0

Lemma 4. Let D be an arc-colored digraph of order 4. If a(D) + ¢(D) = 18 and D

contains no rainbow triangle, then D = ?4.

Proof. For every v € V(D), since D — v contains no rainbow triangles, we have a(D —v)+
¢(D — v) <10 and hence d(v) + d*(v) > 8. If d(v) + d*(v) > 9 for every v € V (D), then
36 < > (d(v)+d°(v)) < 2a(D) + 2¢(D) — 1 = 35, (3)
veV (D)
a contradiction. So there is a vertex v € V(D) such that d(v) + d*(v) = 8. Let V(D) =
{v,z,y, 2z} and d(v)+d®(v) = 8. Then a(D—v)+c(D—v) = 10. By Lemmaf3 D—v = ?3,
and thus D — v € G3. Furthermore, by Theorem 2] we know that the color sets of the
two directed triangles in D — v is disjoint. Let C(D —v) = {1,2,3,4}. If D 2 ?4, then
d(v) <5 and d*(v) > 3. Let {5,6,7} C C*(v). If there exist two vertices in V(D —v) (say
x and y) such that c(vz) and c(yv) are two distinct colors in C*(v), then we have vryv
is a rainbow triangle, a contradiction. So we can assume that C'(vx) = 5,C(vy) = 6 and
C(vz) = 7. If yv € A(D), then consider triangles vryv and vzyv. We get C(zy) = C(yv)
and C(zy) = C(yv). Thus C(zy) = C(zy). This contradicts the structure of D — v € Gs.
So we have yv ¢ A(D). Similarly, we can get zv, zv € A(D). Thus d(v) = d*(v) = 3. This
contradicts that d(v) + d*(v) = 8. O

For n = 5, we have a(D) + ¢(D) > 28. For each integer p, let X, = {u € V(D) :
a(D —u) + ¢(D — u) = p} and let x, = |Xp|. Since D contains no rainbow triangle,
a(D —u) 4+ ¢(D — u) < 18 for each vertex u € V(D). So we have

> a,=5. (4)
p<18

Let Y; ={u:i € C(D —u)} for each i € C(D) and let y; = |Y;|. Since each color appears
in at least 3 induced subdigraphs of order 4, we have y; > 3. Note that D has 5 induced
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subdigraphs of order 4, every arc of D belongs to exactly 3 of such induced subdigraphs

and every color i € C'(D) belongs to exactly y; of them. So we have

> prp=3a(D)+ > yi=3a(D)+3c(D)+ Y (y;—3) =84+ Y  (yi—3). (5)

p<18 ieC(D) ieC(D) ieC(D)
By (&) — 16 x (4) we can get
Z (yi —3) < 2m15 + 217 — 4.
i€C(D)

Case 1. x15 = 0.

In this case, since 17 < 5, we have 0 < 37, (py (3 — 3) < 1. This means that either
y; = 3 for all i € C'(D) or there is only one color j such that y; = 4.
If y; = 3 for all i € C(D), then every triangle in D must be a rainbow triangle. This

implies that D contains no directed triangles. So a(D) < L%J = 12. Thus
28 < a(D) + ¢(D) < 2a(D) < 24,

a contradiction. If there is only one color j such that y; = 4. Then let u be the only
vertex in D such that j &€ C(D — u). Then D — u contains no directed triangle. Thus
a(D —u) +¢(D —u) < 2a(D—u) < QL%J = 16. So d*(u) + d(u) > 12. Note that
d*(u) + d(u) < 2d(u) — a(D?) + 1. So

a(D7) < 2d(u) — 11. (6)

On the other hand, let D" be an arc-colored digraph such that V(D') = V(D) and
A(D") = (A(D)\A(D?)) U{e}. Here e is an arc from D7. Then we have 28 — a(D’) +1 =
a(D")+¢(D") <2a(D') < QL%J Thus

a(D?) > 5. (7)

Combine (@) and (7). We have d(u) > 8. Note that d(u) < 8. We have d(u) = 8, a(D’) =5
and there must be a vertex v € V(D — u) such that C(uv) = C(vu) = j. Let D” be an
arc-colored digraph such that V(D”) = V(D) and A(D") = (A(D)\A(D?)) U {uv,vu}.
Then each triangle in D” must be a rainbow triangle. So D” contains no triangles. We
have

52

a(D) —a(D') +2 = a(D") < | 2.

Thus a(D) < 15. So ¢(D) > 13 = L%j + 1, which implies that D contains a rainbow

triangle, a contradiction.
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Case 2. 113 > 1.

In this case, there is a vertex u € V(D) such that a(D — u) + ¢(D — u) = 18 and
d(u) + d*(u) > 10. By Lemma [ we can see that D — u = ?4 and D —u € Gy. If
D= ?5, then we obtain a rainbow triangle by Theorem [I a contradiction. So d(u) < 7
and d*(u) > 3. By Lemma [l we can assume that CN~(u) N C*(u) = (. Then d*(u) < 4.
Let the two monochromatic cycles in D — u are zyzwz and wzyzrw with colors a and S,
respectively. Assume that C'(uz), C(uy) and C(uz) are three distinct colors in C*(u). If
yu € A(D), then consider triangles uzyu and uzyu, we get « = C(yu) = 3, a contradiction.
So yu ¢ A(D). Similarly, we can get zu ¢ A(D), zu ¢ A(D), wu ¢ A(D). So d(u) < 4,
and thus d(u) 4+ d*(u) < 8, a contradiction.

The proof is complete. O

To prove Theorem [, we need the following famous theorem of Moon [17]:

Theorem 5 (Moon’s theorem). Let T' be a strongly connected tournament on n > 3
vertices. Then each vertex of T is contained in a cycle of length k for all k € [3,n]. In

particular, a tournament is hamiltonian if and only if it is strongly connected.

Proof of Theorem M. By induction on n. For n = 3, since D is strongly connected, we

can see that D is a directed triangle. If ¢(D) > @

—n+3 = 3, then all arcs of D have
distinct colors. So D is a rainbow triangle.

Suppose that every arc-colored strongly connected tournament D’ of order n — 1 with
(D) > W —(n—1)+3 contains a rainbow triangle for n > 4. Now we consider an
arc-colored strongly connected tournament D of order n. Since D is strongly connected,
by Moon’s theorem, D contains a directed (n — 1)-cycle C. Let v be the vertex not in
C. Then D — v contains a hamiltonian cycle C. Thus, D — v is strongly connected. If

c(D) > @ —n+3 and D contains no rainbow triangles, then D —v contains no rainbow

(n—1)(n—2)
2

ds(v)zw—n+3—<w—(n—l)+2> =n—1.

triangles either, and hence ¢(D —v) < —(n—1) 4+ 2. So we have

2 2

This implies that CN(v) () C(D — v) = ) and every two different arcs incident to v have
distinct colors. Since D is strongly connected, there exists an arc from N (v) to N~ (v).
Assume that wu € A(D), where w € NT(v) and v € N~ (v), then vwuv is a directed
triangle. Since wu € A(D — v) and vw, uv are two different arcs incident to v, we can see
that vwuwv is a rainbow triangle, a contradiction.

The proof is complete. O
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3

Concluding remarks

By Lemmas B and [ in Theorem Bl we proved that for n = 3, 4, if a(D) + ¢(D) =

a(?n) + f(?n) — 1 and D contains no rainbow triangles, then D = ?n We conjecture

that this is true for all n > 5.

Conjecture 1. Let D be an arc-colored digraph of order n > 5 without containing rainbow

triangles. If a(D) + ¢(D) =n(n—1) + LZ—QJ + 1, then D ?n
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