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Abstract

We extend the Grundy number and the ochromatic number, parameters on graph colorings, to digraph
colorings, we call them digrundy number and diochromatic number , respectively. First, we prove that for
every digraph the diochromatic number equals the digrundy number (as it happen for graphs). Then,
we prove the interpolation property and the Nordhaus-Gaddum relations for the digrundy number,
and improve the Nordhaus-Gaddum relations for the dichromatic and diachromatic numbers bounded
previously by the authors in [Electron. J. Combin. 25 (2018) no. 3, Paper # 3.51, 17 pp.]

Keywords. First-Fit number, acyclic coloring, complete coloring, directed graph, Nordhaus-Gaddum in-
equalities.

1 Introduction

It is common that classical results or problems on graph theory provide us interesting questions on digraph
theory. An interesting question is what is the natural generalization of the chromatic number in the class
of digraphs. In 1982 Neumann-Lara introduced the concept of dichromatic number as a generalization of
the chromatic number to the class of digraphs. Specifically, in [1, 2, 14, 15, 16, 19] the authors study the
dichromatic number in order to extend results on the chromatic number of graphs to the class of digraphs.
Furthermore, as an anecdote, M. Skoviera∗, after a talk about the diachromatic number in a conference,
said: “It looks that dichromatic number is the correct generalization for the chromatic number”, confirming
the intuitiveness of the dichromatic number as a generalization of the chromatic number.

We consider finite digraphs, without loops and symmetric arcs are permitted. A (vertex) coloring of a
digraph D is acyclic if the induced subgraph of each chromatic class is acyclic, i.e., it only admits no directed
cycles. The dichromatic number dc(D) of D is the smallest k such that D has an acyclic coloring with k colors
[20]. This parameter is a generalization of the chromatic number for graphs, see [4, 9, 15, 16, 17, 18, 21, 22]
for old and new results about dichromatic number. For a detailed introduction to digraphs we refer to [5].
A coloring of a digraph D is complete if for every pair (i, j) of different colors there is at least one arc (u, v)
such that u is colored i and v is colored j [8]. Note that any acyclic coloring of D with dc(D) colors is a
complete coloring. The diachromatic number dac(D) of a digraph D is the largest number of colors for which
there exists an acyclic and complete coloring of D. Hence, the dichromatic and diachromatic numbers of a
digraph D are, respectively, the smallest and the largest number of colors in a complete acyclic coloring of
D, see [3].
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Let D be a digraph of order n whose vertices are listed in some specified order. In a greedy coloring of
D, the vertices are successively colored with positive integers according to an algorithm that assigns to the
vertex under consideration the smallest available color. Hence, if the vertices of D are listed in the order
v1, v2, . . . , vn, then the resulting greedy coloring ς assigns the color 1 to v1, that is, ς(v1) = 1. If v1 and v2 are
not a 2-cycle, then assign ς(v2) = 1, else ς(v2) = 2. In general, suppose that the first j vertices v1, v2, . . . , vj ,
where 1 ≤ j < n, in the sequence have been colored with the colors 1, . . . , t− 1. Let {Vi}t−1i=1 be the set
of chromatic classes. Consider the vertex vj+1, if there exists a chromatic class Vi, with the smallest i, for
which Vi ∪ {vj+1} is acyclic, then ς(vj+1) = i, else ς(vj+1) = t. When the algorithm ends, the vertices of D
have been assigned colors from the set [k] : = {1, 2, . . . , k} for some positive integer k. Note that any greedy
coloring is a complete coloring. The digrundy number dG(D) is the largest number of colors in a greedy
coloring, see [3].

In this paper, we explore the analogue parameter to the Grundy number for digraphs which we call the
digrundy number (we recall that the Grundy number Γ is also known as the First-Fit number χFF ). The
paper is organized as follows: In Section 2 we prove the interpolation theorem for digrundy number and
give a characterization of digrundy number and in Section 3 we prove the inequalities called the Nordhaus-
Gaddum relations for digrundy number and we improve those relations for dichromatic and diachromatic
numbers.

2 The digrundy and diochromatic numbers

Since the digrundy number dG(D) is the largest number of colors in a greedy coloring, it follows that:

dc(D) ≤ dG(D) ≤ dac(D).

A digrundy coloring of a graph D is an acyclic coloring of D having the property that for every two colors
i and j with i < j, every vertex colored j has a neighbor colored i. It is not hard to see that a coloring ς of
a digraph D is a digrundy coloring of D if and only if ς is a greedy coloring of D. Therefore, for each vertex
v in the chromatic class j and each chromatic class Vi, with i < j, N+(v)∩Vi 6= ∅ and N−(v)∩Vi 6= ∅ then,

dG(D) ≤ min{∆+(D),∆−(D)}+ 1.

Moreover, we have the following remark.

Lemma 1. For each digraph D, there exists an ordering φ of the vertices of D such that the digrundy
coloring attains the dichromatic number of D.

Proof. Let D be a digraph and consider an acyclic coloring ϕ : V (D) → [dc(D)]. Consider an ordering of
V (G) which respects the order of the chromatic classes. Recall that the ordering in each chromatic class is
irrelevant since each class is acyclic. If ϕ is not greedy, then let i be the greatest integer such that ϕ is a
greedy coloring restricted to V1 ∪ V2 ∪ · · · ∪ Vi. Denote by ϕi the greedy coloring of V1 ∪ V2 ∪ · · · ∪ Vi. Let
ϕi+1 : V1∪V2∪· · ·∪Vi+1 → [i+1] be the acyclic coloring such that ϕi+1(u) = ϕi(u) for u ∈ V1∪V2∪· · ·∪Vi
and ϕi+1 recolors the vertices of Vi+1, respecting the order in Vi+1, using the greedy coloring. The coloring
ϕ is an optimal coloring of D, thus, when we recolor the vertices of Vi+1, there must be some vertex of color
i+ 1 and since Vi+1 is acyclic, ϕi+1 uses exactly i+ 1 colors. Applying this process to each chromatic class
Vj , with j > i we obtain a greedy coloring of D using dc(D) colors.

In [3], the authors proved the interpolation theorem for diachromatic number of a digraph D, that is, for
every k such that dc(D) ≤ k ≤ dac(D) there exists an acyclic and complete coloring of D using k colors. In
this section, we prove the interpolation theorem for digrundy number. The version for graphs was proved in
[7], for further information see [6].

Theorem 2. For a digraph D and an integer k with dc(D) ≤ k ≤ dG(D), there is a digrundy coloring of D
using k colors.
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Proof. Let ς be a digrundy coloring of D using the set of colors [dG(D)], let φ be the corresponding vertex
ordering and let V1, V2, . . . , VdG(D) be the color classes of ς, where Vi consists of the vertices colored i by
ς for i ∈ [dG(D)]. For each integer i with 1 ≤ i ≤ dG(D) + 1, let ai be the smallest number of colors in
an acyclic coloring of D which coincides with ς for each vertex belonging to V1 ∪ V2 ∪ · · · ∪ Vi−1. Observe
that adG(D)+1 = dG(D). Furthermore, for each integer i with 1 ≤ i ≤ dG(D), let Di be the subgraph of D
induced by Vi ∪Vi+1 ∪ · · · ∪VdG(D). Suppose that a1 = dc(D). Since each vertex x in Vi ∪Vi+1 ∪ · · · ∪VdG(D)

is in at least one directed cycle with the others vertices in each of the color classes V1, V2, . . . , Vi−1, it follows
that in every coloring of D that coincides with ς on V1 ∪ V2 ∪ · · · ∪ Vi−1, none of the colors 1, 2, . . . , i− 1 can
be used for a vertex of Di and so

ai = (i− 1) + dc(Di). (1)

Since Di+1 is a subgraph of Di, it follows that dc(Di+1) ≤ dc(Di). Furthermore, a coloring of Di using
dc(Di) can be obtained from a coloring of Di+1 using dc(Di+1) by assigning all of the vertices in Vi the same
color but one that is different from the colors used in the coloring of Di+1 using dc(Di+1). Thus

dc(Di)− 1 ≤ dc(Di+1) ≤ dc(Di). (2)

By Equations (1) and (2),

ai = (i− 1) + dc(Di) = i+ (dc(Di)− 1) ≤ i+ dc(Di+1)

≤ i+ dc(Di) = 1 + (i− 1) + dc(Di) = 1 + ai.

Therefore, ai ≤ i+ dc(Di+1) ≤ 1 + ai. Since ai+1 = i+ dc(Di+1), it follows that

ai ≤ ai+1 ≤ 1 + ai.

On the other hand, a1 = dc(D) and adG(D)+1 = dG(D). Thus, for each integer k with dc(D) ≤ k ≤ dG(D),
there is an integer i with 1 ≤ i ≤ dG(D) + 1 such that ai = k. By Lemma 1, we may assume that
dc(D) < k < dG(D). Thus there exists a coloring ς ′ of D using k colors such that ς ′ coincides with ς for
each vertex belonging to V1 ∪ V2 ∪ · · · ∪ Vi−1.

By Lemma 1, let φ′′ be a vertex ordering such that φ and φ′′ coincides for v ∈ V1 ∪ V2 ∪ · · · ∪ Vi−1 and
such that when we apply the greedy algorithm on Di, we obtain dc(Di) colors.

Let ς ′′ be the greedy coloring with respect to φ′′. Suppose that ς ′′ is an coloring of D using l colors.
Then ς ′′ is a digrundy coloring of D using l colors such that ς ′′ coincides with ς ′ and ς on all of the vertices
in V1 ∪ V2 ∪ · · · ∪ Vi−1 and ς ′′ assigns to each vertex of D a color not greater than the color assigned to the
vertex by ς ′. Therefore, l ≤ k. On the other hand, by the definition of ai, the coloring ς ′′ cannot use less
than k = ai colors, which implies that l = k and so ς ′′ is digrundy coloring of D using k colors.

In 1982 G. Simmons [24] introduced a new type of coloring of a graph G based on orderings of the vertices
of G, which is similar to but not identical to greedy colorings of G. We extend this definition to digraphs
using acyclic colorings.

Let φ : v1, v2, . . . , vn be an ordering of the vertices of a digraph D. An acyclic coloring ς : V (D) → N of
D is a parsimonious φ-coloring of D if the vertices of D are colored in the order φ, beginning with ς(v1) = 1,
such that each vertex vi+1 (1 ≤ i ≤ n− 1) must be assigned a color that has been used to color one or more
of the vertices v1, v2, . . . , vi if possible. If vi+1 can be assigned more than one color, then a color must be
selected that results in using the fewest number of colors needed to color D. If vi+1 form a directed cycle
to every currently chromatic class, then ς(vi+1) is defined as the smallest positive integer not yet used. The
parsimonious φ-coloring number dcφ(D) of D is the minimum number of colors in a parsimonious φ-coloring
of D. The maximum value of dcφ(D) over all orderings φ of the vertices of D is the ordered dichromatic
number or, more simply, the diochromatic number of D, which is denoted by dco(D).

P. Erdős, W. Hare, S. Hedetniemi, and R. Laskar [10] showed that the ochromatic number of every graph
always equals its Grundy number. This is also true for these generalizations for digraphs.

Theorem 3. For every digraph D, dG(D) = dco(D).
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Proof. In order to show that dco(D) ≤ dG(D), let φ : v1, v2, . . . , vn be an ordering of the vertices of D such
that dcφ(D) = dco(D). Consider the parsimonious coloring using dco(D) colors, obtained using a greedy
coloring, that is, whenever there is a choice of a color for a vertex, the smallest possible color is chosen.
Suppose that this results in an coloring using l colors of D. Then dcφ(D) ≤ l. Furthermore, this coloring
using l colors is a Grundy coloring using l colors. Therefore, dG(D) ≥ l and so

dco(D) = dcφ(D) ≤ l ≤ dG(D),

producing the desired inequality.
We show that dco(D) ≥ dG(D). Let dG(D) = k. Consider a Grundy coloring of the vertices of D, using

the colors 1, 2, . . . , k, and let V1, V2, . . . , Vk denote the chromatic classes (1 ≤ i ≤ k). Let φ : v1, v2, . . . , vn
be any ordering of D in which the vertices of V1 are listed first in some order, the vertices of V2 are listed
next in some order, and so on until finally listing the vertices of Vk in some order. We now compute dcφ(D).
Assign v1 the color 1. Since V1 is acyclic, every vertex in φ that belongs to V1 is not in a monochromatic
directed cycle using only vertices of V1, therefore every vertex in V1 must be colored 1 as well. Assume, for
an integer r with 1 ≤ r < k, that the parsimonious coloring has assigned the color i to every vertex in Vi
for 1 ≤ i ≤ r. Now, consider the vertices in φ that belong to Vr+1. Let va be the first vertex appearing in φ
that belongs to Vr+1. Since va is in a directed cycle for each Vi for every i with 1 ≤ i ≤ r, it follows that va
cannot be colored any of the colors 1, 2, . . . , r. Hence, the new color r+ 1 is assigned to va. Now if vb is any
vertex belonging to Vr+1 such that b > a, then vb cannot be colored any of the colors 1, 2, . . . , r since vb is
in a directed cycle for each Vi for 1 ≤ i ≤ r. However, since vb is not in a directed cycle for Vr+1, it follows
that vb must be colored r + 1. By mathematical induction, dcφ(D) = k. Thus, dco(D) ≥ dG(D), and the
result follows.

3 On the Nordhaus-Gaddum relations

The Nordhaus-Gaddum inequality [23] states that for every graph G of order n

χ(G) + χ(Gc) ≤ n+ 1.

These relations were extended to the pseudoachromatic numbers [13] getting that for every graph G of order
n

α(G) + χ(Gc) ≤ n+ 1 and α(G) + α(Gc) ≤ ψ(G) + ψ(Gc) ≤
⌈

4n

3

⌉
.

And for the Grundy number [11] for every graph G of order n ≥ 10

Γ(G) + Γ(Gc) ≤
⌊

5n+ 2

4

⌋
.

For digraphs, there exists the following results [3].
If D is a digraph of order n, then

dc(D) + dc(Dc) ≤
⌈

4n

3

⌉
and dac(D) + dac(Dc) ≤

⌈
3n

2

⌉
. (3)

In this section, we improve the upper bounds of Equation 3 and we prove a similar result for the digrundy
number.

Theorem 4. If D is a digraph of order n, then dc(D) + dc(Dc) ≤ n+ 1.

Proof. The proof is by induction on n. The case of D = K1 is trivial. Suppose that for each digraph F
of order at most n − 1 ≥ 1, dc(F ) + dc(F c) ≤ n. Let D be a digraph of order n and let x ∈ V (D). Take

4



an acyclic and complete coloring using k colors of D − x for k = dc(D − x). Therefore, dc(D) is at most
dc(D − x) + 1. Similarly, dc(Dc) ≤ dc(Dc − x) + 1. Hence, by induction hypothesis,

dc(D) + dc(Dc)− 2 ≤ dc(D − x) + dc(Dc − x) ≤ n

and dc(D) + dc(Dc) ≤ n+ 2.
Supose that dc(D) < dc(D − x) + 1 or dc(Dc) < dc(Dc − x) + 1, then

dc(D) + dc(Dc) ≤ n+ 1.

Assume that dc(D) = dc(D − x) + 1 and dc(Dc) = dc(Dc − x) + 1, which means that for each chromatic
class X of D and Dc, X ∪ {x} contains a cycle. Then 2dc(D) ≤ dD(x) = d+D(x) + d−D(x) and 2dc(Dc) ≤
dDc(x) = d+Dc(x) + d−Dc(x) then

2dc(D) + 2dc(Dc) ≤ dD(x) + dDc(x) = 2(n− 1)

and the result follows.

Theorem 5. If D is a digraph of order n, then

dac(D) + dac(Dc) ≤
⌈

4n

3

⌉
.

Proof. Let dac(D) + dac(Dc) = x. Without loss of generality, x2 ≤ dac(D), that is, dac(D) = x
2 + δ for some

0 ≤ δ ≤ x
2 . Let ω denote the maximum order of a complete subdigraph (a complete symmetric digraph) in

D. Since the set of singular chromatic classes induces a complete subdigraph in D it follows that

dac(D) =
x

2
+ δ ≤ ω +

n− ω
2

thus x+ 2δ ≤ 2ω + n− ω and x− n+ 2δ ≤ ω.
On the other hand, dac(Dc) ≤ n− ω + 1 because each complete subdigraph of D is an independent set

of vertices in Dc. Hence
dac(Dc) ≤ n+ 1− x+ n− 2δ = 2n+ 1− x− 2δ,

x = dac(D) + dac(Dc) ≤ x

2
+ δ + 2n+ 1− x− 2δ = −x

2
− δ + 2n+ 1

and 3x
2 ≤ 2n+ 1− δ. Finally, dac(D) + dac(Dc) ≤

⌊
4n+2

3

⌋
and the result follows.

Finally, we prove the Nordhaus-Gaddum for the digrundy number.

Theorem 6. If D is a digraph of order n, then

dG(D) + dG(Dc) ≤


n+ 1

n+ 2

12⌊
5n+2

4

⌋
if n ≤ 4;

if n ≤ 8;

if n = 9;

if n ≥ 10.

Proof. Let A = {A1, . . . , Ap} and B = {B1, . . . , Bq} be optimal ordered vertex partitions of D and Dc for a
digrundy coloring, respectively. Suppose that A has a1 sets of order one, a2 sets of order two and a3 sets of
order at least three. Similarly, B has b1 sets of order one, b2 sets of order two and b3 sets of order at least
three. From the assumption, dG(D) = a1 + a2 + a3, dG(Dc) = b1 + b2 + b3 and the definitions of ai and bi
we have a1 + 2a2 + 3a3 ≤ n and b1 + 2b2 + 3b3 ≤ n. We can write

a1 + 2a2 + 3a3 + εa = n (4)

5



and
b1 + 2b2 + 3b3 + εb = n, (5)

where εa, εb ≥ 0 are the excess.
Consider the sets of order one of A and B. We may suppose (eventually reorder) that they come last

in the orderings. Since K and L contains the singular classes of D and Dc respectively, where K = {v ∈
Ai : |Ai| = 1} spans a complete subdigraph in D and L = {v ∈ Bj ∈ B : |Bj | = 1} spans an independent
set in D, thus |K ∩ L| ≤ 1. If |K ∩ L| = 1, then dG(D) + dG(Dc) ≤ n + 1 because if {x} = K ∩ L, then
2(|A|−1) ≤ d+D(x)+d−D(x) and 2(|B|−1) ≤ d+Dc(x)+d−Dc(x) and dG(D)+dG(Dc) ≤ |A|+|B| ≤ n+1 < 5n+5

4 .
Assume K ∩ L = ∅, we prove that dG(D) + dG(Dc) ≤ |A|+ |B| ≤ n+ 1 < 5n+5

4 . Let α2 and α3 be the
number of sets in A contained in L with 2- and at least 3-elements respectively, α = α2 + α3, and define
similarly β2 and β3 for B. Since L (respectively K) is an independent set in D (respectively in Dc), it follows
that

α, β ≤ 1.

Classify the 2-element sets into three groups. There are a2,t of them meeting L in exactly t elements. Define
b2,t analogously (i.e., the number of 2-sets of B meeting K in t vertices). We have

a2,2 = α2, a2 = a2,0 + a2,1 + a2,2, b2,2 = β2, b2 = b2,0 + b2,1 + b2,2.

All but α parts of A have points outside L, and at least a2,0 of them have two or more. We get that
|A| −α+ a2,0 ≤ n− |L|. Again, write this (and its analogue for B, |B| − β + b2,0 ≤ n− |K|) in the following
form:

a1 + a2 + a3 + a2,0 + b1 = n+ α− εα (6)

b1 + b2 + b3 + b2,0 + a1 = n+ β − εβ (7)

Consider an a2,1 two-element A-set, say {v, v′}, that intersect L in exactly one vertex, say v ∈ L and
v′ 6∈ L. Denote the set of these vertices v ∈ L by L1, and the set of vertices v′ 6∈ L by S. Similarly,
K1 : = {u ∈ K : ∃u′ 6∈ K such that {u, u′} ∈ B}, and T : = {u′ 6∈ K : ∃u ∈ K such that {u, u′} ∈ B}. We
have

|S| = a2,1, S ∩ (K ∪ L) = ∅, |T | = b2,1, T ∩ (K ∪ L) = ∅.

Claim 7. |S ∩ T | ≤ 1.

Proof. The sets of order one of an optimal ordered partition can be taken such that they have the greatest
color labels, otherwise, we can reorder them in such a way.

Assume, on the contrary, that x1, x2 ∈ S ∩ T . This means that there are u1, u2 ∈ L such that the
two-element parts {u1, x1} and {u2, x2} belong to A, and there are v1, v2 ∈ K such that {v1, x1} and
{v2, x2} belong to B. By definition we already know the status of the pairs, namely v1v2, v2v1 ∈ F (D) and
u1u2, u2u1 /∈ F (D). Let <A denote position of the elements in the ordering A. By symmetry (between
{u1, x1} and {u2, x2}), we may suppose that the order of these classes of the partition A is

{u1, x1} <A {u2, x2} <A {v1} <A {v2}.

Then {u1, x1} and u2 implies x1u2, u2x1 ∈ F (D), i.e., x1u2, u2x1 /∈ F (Dc). Therefore, {v1, x1} and u2
implies v1u2, u2v1 ∈ F (Dc) since {v1, x1} <B {u2}, see Figure 1 a).

Note that, {u2, x2} and v1 implies x2v1, v1x2 ∈ F (D), i.e., x2v1, v1x2 /∈ F (Dc). This implies that
{v1, x1} <B {v2, x2}, otherwise, v1 violate the greedy requirement of the partition B. Then, {v1, x1} and
v2 implies x1v2, v2x1 ∈ F (Dc) and {v1, x1} and x2 implies x1x2, x2x1 ∈ F (Dc), i.e., x1v2, v2x1 /∈ F (D) and
x1x2, x2x1 /∈ F (D), see Figure 1 b).

Finally, {u1, x1} and x2 implies x2u1, u1x2 ∈ F (D), i.e., x2u1, u1x2 /∈ F (Dc). On one hand, {u1, x1}
and v2 implies v2u1, u1v2 ∈ F (D). On the other hand, {v2, x2} and u1 implies v2u1, u1v2 ∈ F (Dc) which is
impossible, and the lemma follows, see Figure 1 c).
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Figure 1: Proof of Claim 7. Digons are represented with edges and dashed edges represent edges in the
complement.

Claim 7 shows that the sets K, L, S, T are almost disjoint. Let γ = |S ∩ T | and denote by n − εγ the
order of the union of these four sets. By Claim 7, γ ≤ 1. We obtain

|L ∪K|+ |S ∪ T | = a1 + b1 + a2,1 + b2,1 − γ = n− εγ . (8)

Adding the five equalities (4)-(8) and denoting ε = εa + εb + εα + εβ + εγ we get

4(a1 + a2 + a3 + b1 + b2 + b3) = 5n+ (α+ β + γ) + (α2 + β2)− ε = 5n+ s

That is, when K ∩ L = ∅ we have that dG(D) + dG(Dc) ≤ 5n+s
4 for some integer s. Since α, β, γ ≤ 1 it

follows that s ≤ 5.
In both cases, K ∩ L 6= ∅ and K ∩ L = ∅, dG(D) + dG(Dc) ≤ 5n+s

4 for some s ≤ 5. The following claim
is essential in order to prove that s ≤ 4.

Claim 8. If α = 1 then

(1) there is no class B ∈ B with B ⊂ S;

(2) there is no class B ∈ B, B ⊂ S ∪K with |B ∩ S| = |B| − 1;

(3) there is no class Ai ∈ A, Ai ⊂ L ∪ T with |Ai ∩ T | = 1.

(4) γ = 0.

Proof. Indeed, α = 1 gives an Aj ⊆ L belonging to A. The first two statements are based on the fact
that D[S,Aj ] is a complete bipartite digraph. Let w ∈ Aj , y ∈ S. Then there is a u ∈ L such that
{y, u} ∈ A. Since L is independent, the greedy requirement between u and Aj implies that u (and its class
{y, u}) precedes Aj in A. Then there arcs between w and the class {y, u}, it should be wy and yw, and thus
D[S,Aj ] is a complete bipartite digraph.

In order to prove (1) suppose, for a contradiction, that B ⊂ S for B ∈ B. Take any element w ∈ Aj . This
implies w ∈ L which by the definition of L gives {w} ∈ B, too, and thus there must be a non-arc between w
and B, a contradiction.

To prove (2) suppose, on the contrary, that B ∈ B, B ⊆ K ∪ S, and B ∩K = {v}. Since {w} ∈ B for all
w ∈ Aj , there is a non-arc from w to B, therefore vw and wv are arcs. Consider {v} ∈ A and Aj . There
should be arcs vw1w2v, w1, w2 ∈ Aj , a contradiction.
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To prove (3) suppose Ai ∩ T = {x} and (Ai \ {x}) ⊆ L. Notice that i < j otherwise u ∈ Ai ∩ L would
violate the greedy requirement between u and Aj in A. Then there is a digon from w ∈ Aj to x. By
definition of T there is a v ∈ K such that {v, x} ∈ B. Consider {w} and {v, x} in B, vw,wv ∈ F (Dc) follows
(for every w ∈ Aj). Then the greedy requirement on D is violated between the classs Aj and {v} ∈ A.

Note that (4) is a particular case of (3).

Similar to Claim 8, if β = 1, then γ = 0. Conversely, γ = 1 implies α = β = 0, hence s ≤ 1 and we are
done. From now on, we suppose that γ = 0, that is, |S∩T | = 0, and then s ≤ 4 and dG(D)+dG(Dc) ≤ 5n+4

4 .
In the sequel, we will prove that for n ≥ 10, s ≤ 2 and in this case we have that dG(D)+dG(Dc) ≤ 5n+2

4 .
Since s ≤ 2(α+ β)− ε, if α+ β ≤ 1 or ε ≥ 2 it follows that s ≤ 2.
Assume that α = β = 1 and ε ≤ 1. In this case there exists a class A′ ∈ A, A′ ⊆ L (naturally, it is

disjoint from L1), and there exists a class B′ ∈ B, B′ ⊆ K (and B′ ∩K1 = ∅). We claim that there is no
class A ∈ A contained in L ∪ T , other than A′. Claim 8 implies that such a class A intersects both L and
T in at least two vertices. If such an A exists then εa ≥ 1 in Equation (4). Also, A should be counted twice
on the left-hand-side of Equation (6), implying εα ≥ 1. Contradicting ε ≤ 1. Similarly, there is no second
B-class in K ∪ S.

Let W = V (D) \ (K ∪ L ∪ S ∪ T ), |W | = εγ . Consider the case W = ∅. Then there is no A-class
covering the points of T , so T should be empty. Similarly, S = ∅ follows. Then V (D) = K ∪ I, hence
dG(D) + dG(Dc) ≤ n+ 2 and we are done.

Let W 6= ∅, since ε ≤ 1 it follows that |W | = 1 and εa = εb = εα = εβ = 0. Let A′′ be the A-class
covering W . There are no more A-classs in T ∪ (L \L1)∪W so |A| = |K|+ |S|+ 2. Similarly, W ∈ B′′ ∈ B
and |B| = |L|+ |T |+ 2 giving dG(D) + dG(Dc) ≤ n+ 3. Since n+ 3 ≤ (5n+ 2)/4 we are done for n ≥ 10.

To finish, let n ≤ 9. For these cases dG(D) + dG(Dc) ≤ 5n+4
4 , implies dG(D) + dG(Dc) ≤ n + 3. We

claim that if dG(D) + dG(Dc) = n+ 3 then n = 9. To prove the previous take the addition of the following
seven pairwise disjoint sets:

n ≥ |A′|+ |B′|+ |A′′ \ E|+ |K1|+ |B′′ \ E|+ |L1|+ |E|.

Here |A′| ≥ 2, |B′| ≥ 2, |E| = 1. It is easy to see that |A′′ \ E|+ |K1| ≥ 2 and |B′′ \ E|+ |L1| ≥ 2. Indeed,
K1 = ∅ implies T = ∅ and A′′ ⊆ L ∪ E. Since E /∈ S we get |A′′| ≥ 3.
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[9] P. Erdős, J. Gimbel, and D. Kratsch. Some extremal results in cochromatic and dichromatic theory. J.
Graph Theory, 15(6):579–585, 1991.
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