
ar
X

iv
:2

10
7.

10
22

9v
1 

 [
m

at
h.

C
O

] 
 2

1 
Ju

l 2
02

1

The Turán Number of the Triangular Pyramid of 3-Layers

Debarun Ghosh1,2 Ervin Győri1,2 Addisu Paulos1,2
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Abstract

The Turán number of a graph H , denoted by ex(n,H), is the maximum number of edges in
an n-vertex graph that does not have H as a subgraph. Let TPk be the triangular pyramid of
k-layers. In this paper, we determine that ex(n, TP3) =

1

4
n2 + n+ o(n) and pose a conjecture

for ex(n, TP4).

1 Introduction

The Turán number of a graph H, denoted by ex(n,H), is the maximum number of edges in an
n-vertex graph that does not contain H as a subgraph. Let EX(n,H) denote the set of extremal
graphs, i.e. the set of all n-vertex, H-free graph G such that e(G) = ex(n,H).

A systematic study of such type problems started after Turán found and characterized EX(n,Kr+1).
The case r = 2 was solved by Mantel in 1907.

Theorem 1. [6] The maximum number of edges in an n-vertex triangle-free graph is
⌊

n2

4

⌋

. Fur-

thermore, the only triangle-free graph with
⌊

n2

4

⌋

edges is the complete bipartite graph K⌊n

2
⌋⌈n

2
⌉.

The Turán graph, Tr(n), is an n-vertex complete r-partite graph whose parts have as equal as
possible sizes. Precisely speaking, the graph has (n mod r) parts of size ⌈n/r⌉ and r − (n mod r)
parts of size ⌊n/r⌋. Denote e(Tr(n)) by tr(n). Turán proved the following fundamental result in
the study of extremal graph theory:

Theorem 2. [8] For an n-vertex Kr+1-free graph G,

e(G) ≤ tr(n),

and equality holds if and only if G is the Turán graph Tr(n), i.e.,
ex(n,Kr+1) = tr(n) and EX(n,Kr+1) = Tr(n).
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In 1966, Erdős, Stone, and Simonovits determined the asymptotic value of ex(n,H), where H
is a non-bipartite graph.

Theorem 3. [2, 3] Let F be a non-bipartite graph. Then

ex(n,H) =

(

1−
1

χ(H)− 1

)(

n

2

)

+ o(n2),

where χ(H) denotes the chromatic number of H.

Definition 1. The Triangular Pyramid with k layers, denoted by TPk, is defined as follows: Draw
k + 1 paths in layers such that the first layer is a 1-vertex path, the second layer is a 2-vertex
path,. . . , and the (k + 1)st layer is a (k + 1)-vertex path. Label the vertices from left to right of
the ith layer’s path as xi1, x

i
2, . . . , x

i
i, where i ∈ {1, 2, 3, . . . , k + 1}. The vertex set of the graph

TPk is the set of all vertices of the (k + 1) paths. The edge set contains all the edges of the paths.
Additionally, for any two consecutive (i− 1)th and ith layer, xi−1

r xir and xi−1
r xir+1 are in E(TPk),

where i ∈ {1, 2, . . . , k + 1} and 1 ≤ r ≤ i− 1 (see Figure 1).

TP3

x11

x21 x22

x31
x32

x33

x41 x42 x42
x44

TP5

Figure 1: Triangular Pyramids with 3 and 5 layers respectively.

For k ≥ 1, the chromatic number of TPk is 3. Hence by Theorem 3, we have ex(n, TPk) =
n2

4 + o(n2). Yet, it remains interesting to determine the exact value of ex(n, TPk). The graph TP1

is a triangle and by Mantel’s Theorem, ex(n, TP1) =
⌊

n2

4

⌋

. The graph TP2 denotes the flattened

tetrahedron. Liu [5] determined ex(n, TP2) for sufficiently large values of n. Later, C. Xiao, G.
O.H. Katona, J. Xiao, and O. Zamora [7] determined ex(n, TP2) for small values of n.

Theorem 4. [7] The maximum number of edges in an n-vertex TP2-free graph (n 6= 5) is,

ex(n, TP2) =















⌊

n2

4

⌋

+
⌊n

2

⌋

, n 6≡ 2 (mod 4),

n2

4
+

n

2
− 1, n ≡ 2 (mod 4).

In this paper, we study the Turán number for TP3, i.e. the Triangular Pyramid with three
layers.
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Theorem 5. The maximum number of edges in an n-vertex TP3-free graph is,

ex(n, TP3) =
1

4
n2 + n+ o(n).

It can be checked that the constructions given in Figure 2, 3 and 4 are TP3-free graphs containing
1
4n

2 + n + 1, 1
4n

2 + n + 3
4 and 1

4n
2 + n edges respectively. Thus, the bound in Theorem 8 is best

possible in terms of the linear terms, for infinitely many n.

2 Notations

All the graphs we consider in this paper are simple and finite. Let G be a graph. We denote the
set of vertices and edges of G by V (G) and E(G) respectively. The number of edges and vertices is
denoted by e(G) and v(G) respectively. We denote the degree of a vertex v by d(v), the minimum
degree in graph G by δ(G), and the neighborhood of v by N(v) respectively. Let H be a subgraph
of G and v be a vertex in H. We denote the set of vertices that are adjacent to v in H by NH(v).
Let x1, x2, . . . , xk be k vertices in H. The set of vertices in H which are adjacent to all these k
vertices, x1, x2, . . . , xk, is denoted by N∗

H(x1, x2, . . . , xk). For brevity, we may omit the subscript
in the notation whenever the graph we are dealing with is clear. Let A and B be subsets V (G),
then the number of edges between them is denoted by e(A,B). We denote the cycle of length 6 (or
simply a 6 vertex cycle) by C6 or 6-cycle. A 7-wheel, denoted by W7, is a 7-vertex graph containing
a C6 and a vertex that is adjacent to all vertices of the cycle.

n
2 + 1

n
2 − 1

Figure 2: Extremal construction when n is even and n ≡ 2(mod 10).

3 Proof of Theorem 5

We will be using the following classical stability result of Erdős and Simonovits.

Theorem 6. [4] Let k ≥ 2 and suppose that H is a graph with χ(H) = k + 1. If G is an H-free
graph with e(G) ≥ tk(n) − o(n2), then G can be formed from Tk(n) by adding and deleting o(n2)
edges.

Since χ(TP3) = 3, the above theorem can be restated as follows.
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n+1
2

n−1
2

Figure 3: Extremal construction when n is odd and n ≡ 1(mod 10).

Figure 4: Extremal construction when n is divisible by 6.

Theorem 7. For every γ > 0, there exists an ǫ > 0 and n0(γ) such that for every n-vertex,

n > n0(γ), and TP3-free graph G such that e(G) ≥ n2

4 − ǫn2, we have

|E(G)∆E(T2(n))|≤ γn2.

We will prove the following version of Theorem 5.

Theorem 8. For δ > 0 and n ≥ 5n0(δ)
2δ , the maximum number of edges in an n-vertex TP3-free

graph is ex(n, TP3) ≤
n2

4 + (1 + δ)n.

Given a δ, we define the following functions of δ. The n0(δ) in Theorem 8 is coming from the
Theorem 7 and let β(δ) ≥ δ

9296 . Whereas γ(δ) satisfies the inequalities β3 + 512βγ2 < 16β(β +

1)(2β + 1)γ and δ
1328 ×

1

2
−3β

3 < γ. For brevity of the paper, we do not calculate these functions
preciously.

For technical reasons, we start by proving the following weaker version of Theorem 8.

Lemma 1. Let G is a TP3-free graph on n, n ≥ 10 vertices. Then e(G) ≤ n2

4 + 7
2n.
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Proof. The maximum number of edges in 7-wheel free graph on n vertices is ex(n,W7) = ⌊n
2

4 + n
2 + 1⌋

[1], which is less than or equal n2

4 + 7
2n. So, we may assume that G contains a 7-wheel. We claim

that each edge in G is contained in at least 8 triangles. Suppose not and there is an edge xy ∈ E(G)
such that |N(x, y)|≤ 7. In this case, the number of edges that are incident to either x or y is at
most n+ 6. By the induction hypothesis,

e(G) ≤ e(G − {x, y}) + (n+ 6) ≤
(n− 2)2

4
+

7

2
(n− 2) + (n+ 6) =

n2

4
+

7

2
n.

One can check that the statement also holds for small n.
Now consider a 7-wheel in G with 6-cycle x1x2x3x4x5x6x1 and center y. For any edge xixj in

the 6-cycle, it can be easily seen that there are at least 3 vertices in V (G)\{x1, x2, . . . , x6, y} which
are adjacent to both xi and xj . Therefore by the Pigeonhole principle, we can find three distinct
vertices, say y1, y2 and y3 which are in N∗(x1, x2), N

∗(x3, x4), and N∗(x5, x6) respectively. This is
a contradiction as G does not contain a TP3.

Lemma 2. Let δ > 0 be given. Let G be an n-vertex, n ≥ 5n0(γ)
2δ with e(G) > n2

4 + (1 + δ)n edges.
Then either G contains a TP3 or G contains a subgraph G0 on n0 vertices such that e(G0) >
n2

0

4 + (1 + δ)n0 with d(x) >
⌊

n0

2 + 1
⌋

, for all x ∈ V (G0) and any two adjacent vertices are incident
to at least n0 + 2 common vertices (so each edge is contained in at least three triangles).

Proof. Define a subgraph H of G as good if e(H) > v(H)2

4 + (1 + δ)v(H) with

d(x) >

⌊

v(H)

2
+ 1

⌋

, (1)

for all x ∈ V (H) and any two adjacent vertices are incident to at least v(H) + 2 edges.
If every vertex in G satisfies the property (1) (i.e., G itself is good), then the lemma holds.
Otherwise, we delete the vertex in G if it doesn’t satisfy the degree condition in (1) or along

with one of its neighbors, they have fewer than V (G) + 2 edges incident to it. We repeat this step,
say m times, till we get a subgraph H, satisfying the property (1).

We claim the following:

Claim 1. e(H) ≥ (n−m)2

4 + (1 + δ)(n −m) + δm.

Proof. Suppose not and e(H) < (n−m)2

4 + (1 + δ)(n −m) + δm. We distinguish the following four
cases based on the parity of n and m to complete the proof.

Case 1: n is odd

The sequence of the number of edges we delete form G in each steps when m is even and m is odd
are respectively

(

n+ 1

2
,
n+ 1

2
,
n− 1

2
,
n+ 1

2
, . . . ,

n−m+ 3

2
,
n−m+ 3

2

)

and
(

n+ 1

2
,
n+ 1

2
,
n− 1

2
,
n+ 1

2
, . . . ,

n−m+ 4

2
,
n−m+ 4

2
,
n−m+ 2

2

)

.
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It can be checked that the number of edges be deleted after m steps are respectively m
4 (2n−m+4)

and (m−1)
4 (2n −m+ 5) + n−m+2

2 = mn
2 − m2

4 +m− 1
4 . Thus, when m is even,

e(G) ≤ E(H) +
m

4
(2n−m+ 4) <

(

(n−m)2

4
+ (1 + δ)(n −m) + δm

)

+
m

4
(2n−m+ 4)

=
n2

4
+ (1 + δ)n,

which is a contradiction. When m is odd, we have

e(G) ≤ E(H) +
m

4
(2n−m+ 4) <

(

(n−m)2

4
+ (1 + δ)(n −m) + δm

)

−
m2

4
+

mn

2
+m−

1

4

=
n2

4
+ (1 + δ)n −

1

4
,

which is again a contradiction.

Case 2: n is even

The sequence of the number of edges deleted in m steps from G, when m is odd and m is even, are
respectively

(

n+ 2

2
,
n

2
,
n

2
, . . . ,

n−m+ 3

2
,
n−m+ 3

2

)

and
(

n+ 2

2
,
n

2
,
n

2
, . . . ,

n−m+ 4

2
,
n−m+ 4

2
,
n−m+ 2

2

)

.

Again it can be checked that the number of edges deleted afterm steps are respectively m−1
4 (2n−

m+ 3) + n+2
2 = −m2

4 + mn
2 +m+ 1

4 and m−2
4 (2n−m+ 4) + n+2

2 + n−m+2
2 = mn

2 − m2

4 +m. When
m is even, we have

e(G) ≤ E(H) +
m

4
(2n−m+ 4) <

(

(n−m)2

4
+ (1 + δ)(n −m) + δm

)

−
m2

4
+

mn

2
+m+

1

4

=
n2

4
+ (1 + δ)n +

1

4
.

Clearly, e(G) ≤ n2

4 +(1+δ)n. Otherwise, we get an integer between n2

4 +(1+δ)n and n2

4 +(1+δ)n+ 1
4 ,

which is not true. This contradicts the fact that e(G) > n2

4 + (1 + δ)n.
When m is odd, we have

e(G) ≤ E(H) +
m

4
(2n −m+ 4) <

(

(n−m)2

4
+ (1 + δ)(n −m) + δm

)

−
m2

4
+

mn

2
+m

=
n2

4
+ (1 + δ)n,

which is again a contradiction.
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If H contains a TP3, we are immediately done. Hence consider H is TP3-free. By the previous

lemma, e(H) ≤ (n−m)2

4 + 7
2(n−m). Thus,

(n−m)2

4
+ (1 + δ)(n −m) + δm ≤

(n−m)2

4
+

7

2
(n−m).

Hence,

m ≤
2.5− δ

2.5
n.

This implies n−m ≥ 2δn
5 . The condition, n ≥ 5n0(γ)

2δ implies n−m ≥ n0(γ) and thus we found
the good subgraph H of G.

Remark 1. For the rest of the write-up, we always work on this “good” subgraph and to simplify
notations we denote it by G.

Definition 2. We call a 7-wheel in a graph G with the 6-cycle, say x1x2x3x4x5x6x1, and center
y, as a sparse 7-wheel, if xixi+2 /∈ E(G) for all i ∈ {1, 2 . . . , 6} (see Figure 5).

x1 x2

x3x6

x4x5

y

Figure 5: A sparse 7-wheel, the doted red edges are not in G.

Lemma 3. Let δ > 0 and G be a graph on n vertices containing a sparse 7-wheel and e(G) ≥
n2

4 + (1 + δ)n, then G contains a TP3.

Proof. Suppose e(G) > n2

4 + (1 + δ)n. Then by Lemma 2, G contains a good subgraph H. That
means,

d(x) >

{

v(H)
2 + 1, 2 | v(H),

v(H)+1
2 , 2 ∤ v(H).

(2)

For all x ∈ V (H) and any two adjacent vertices that are incident to at least v(H) + 2 edges( and
so every edge is contained in at least three triangles). Note G is a good subgraph.

Let a sparse 7-wheel in G be with center y and 6-cycle x1x2x3x4x5x1 as shown in Figure 5.
Since G is good, for each xixi+1, i ∈ {1, 2, . . . , 6}, |N(xi, xi+1)|≥ 3. Moreover, for each xixi+1,
i ∈ {1, 2, . . . , 6}, all the remaining four vertices of the cycle are not in N(xi, xi+1). Indeed, without
loss of generality consider the edge x1x2. x3 and x4 are not in N(x1, x2), since G the wheel is
sparse and hence they are not in N(x1) and N(x2) respectively. With similar argument x6 and
x5 are not in N(x1, x2). Therefore, there exist at least two vertices in V (G)\{x1, x2, . . . , x6, y},
which are in N(xi, xi+1). Take the matching x1x2, x3x4 and x5x6. If there are three distinct

7



vertices in V (G)\{x1, x2, . . . , x6, y}, which are in N(x1, x2)∪N(x3, x4)∪N(x5, x6), then TP3 in G.
Indeed, suppose not. Let z1, z2 and z3 be vertices in V (G)\{x1, x2, . . . , x6, y} such that {a, b, c} ⊂
N(x1, x2) ∪N(x3, x4) ∪N(x5, x6). From the property that G is contains no TP3 and |N(x1, x2)|,
N |(x3, x4)| and |N(x5, x6)| are at least 3, then each of the sets N(x1, x2), N(x3, x4) and N(x5, x6)
must contain at least two of the vertices in {z1, z2, z3}. By the Hall’s Theorem, we get distinct
pairing of z1, z2, z3 andN(x1, x2), N(x3, x4) andN(x5, x6) such that zi ∈ N(xj , xk), i ∈ {1, 2, 3} and
(j, k) ∈ {(1, 2), (3, 4), (5, 6)}, which is a contradiction to the fact that G does not contain TP3. Now
we may assume that there are only two distinct vertices, say v1 and v2 in V (G)\{x1, x2, . . . , x6, y},
such that N(x1, x2, . . . , x6) = {v, v1, v2}(see Figure 6).

x1 x2

x3x6

x4x5

y

A B

v1

v2

Figure 6: Structure of the subgraph of G with 2 common neighbors for each vertices on the cycle
of the good wheel.

We prove the lemma for the case when n is odd. With a similar argument, one can also solve
the n is even case.

Let A and B be sets of vertices in V (G)\{x1, . . . , x6, y, v1, v2} which are adjacent to x1 and x2
respectively (see Figure 6). Obviously, A ∩ B = ∅. Otherwise, the graph contains a TP3. Thus,
either |A|≤ n−9

2 or |B|≤ n−9
2 .

Without loss of generality suppose |A|≤ n−9
2 . If |A|≤ n−11

2 , then d(x1) ≤ |A|+6 = n−11
2 + 6 =

n+1
2 , which is a contradiction.
So assume |A|= n−9

2 . In this case, we also have that |B|= n−9
2 . We need the following claim to

complete proof of the lemma.

Claim 2. Each vertex in A is adjacent to at least one other vertex in A .

Proof. Suppose not and let x be a vertex in A which is adjacent with no other vertex in A. The
vertex is not adjacent to x2 and x6, otherwise, G contains a TP3.

If x is adjacent to x4, then x is not adjacent to both x3 and x5 too. Otherwise, the graph
contains a TP3. In this case, the vertex x is possibly adjacent to y, v1, v2 and vertices in B. Thus
considering the vertex x1 which is already adjacent with x, we get d(x) ≤ n−9

2 + 5 = n+1
2 . This is

a contradiction to the fact that G is good.
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Let x be adjacent with x3. Then x can not be adjacent to x4. If x5 is not adjacent to x, then
d(x) ≤ n−9

2 +5 = n+1
2 , which is a contradiction. So, let x5 be adjacent to x. If x is not adjacent to

one of the vertices in {y, v1, v2}, then d(x) ≤ n−9
2 + 5 = n+1

2 , which is a contradiction. Otherwise,
consider the 7-wheel, with the 6-cycle x5yx3v1x1v2x5 (see the bold green cycle in Figure 7) and
center x . Consider the matching x5y, x3v1 and x1v2. We can take the vertices x4, x2 and x6
respectively, which are common neighbors of end vertices of the matching. Thus we get a TP3, in
G, which is a contradiction to the fact that G is TP3-free.

x1 x2

x3x6

x4x5

y

x

A

v1

v2

Figure 7: A graph containing TP3.

With the same argument, one can verify that the minimum degree of each vertex in B is at
least 1 in B.

Now we finish the proof of Case 1 of the lemma. Consider the edge x5x6 and let A′ and B′

be the set of vertices in V (G)\{x1, . . . , x6, y, v1, v2} which are adjacent to x5 and x6 respectively.
For the same reason given above, |A′|= |B′|= n−9

2 . Clearly A′ ∩ B′ = ∅. Since A ∩ B′ = ∅ and
A′ ∩B′ = ∅, then |B′ ∩B|= |A ∩A′|= n−9

2 .
Let x ∈ A∩A′. Suppose x is adjacent to y. We can take the 7-wheel, with 6-cycle xx1x2x3x4x5x

and center y. By Claim 2, there is a vertex z in A which is adjacent to x. Since this vertex is
adjacent with x1, then taking the matching xx1, x2x3 and x4x5 with common neighbors z, v1 and
v2 respectively, we show the graph contains a TP3. Therefore, in this case, x cannot be adjacent
to y.

Let t ∈ B ∩ B′. In this case, t can not be adjacent with y. Suppose not. We can take the
7-wheel, with 6-cycle tx2x3x4x5x6t and center y. By Claim 2, t is adjacent with a vertex r in B.
So taking the matching tx2, x3x4 and x5x6 with common neighbors r, v1 and v2 respectively, we
show that G contains a TP3. Hence, a contradiction.

Thus we found that y is a vertex in G with constant degree, which is a contradiction to the fact
that G is a good graph.
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Lemma 4. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ , and then e(G) ≥ n2

4 + (1 + δ)n. Let
A and B a be partition of V (G) with size as equal as possible and with maximum e(A,B). If A
contains (similarly B contains) a vertex, say x, such that dA(x) ≥ βn, then G contains a TP3.

Proof. Without loss of generality, suppose there exists vertex x ∈ A such that dA(x) ≥ βn. Obvi-

ously e(G) > n2

4 − ǫn2, for any ǫ > 0. Thus by the stability theorem, |E(G)∆E(Tn,2)|≤ γn2.
Let Ax be the graph induced by the vertices NA(x) ∪ {x} in A. Hence, we have e(Ax) ≤ γn2,

which results in
∑

y∈V (Ax)

dAx
(y) ≤ 2γn2. The average degree of Ax is

d̄(Ax) ≤

∑

y∈V (Ax)

dAx
(y)

v(Ax)
≤

2γn2

βn
=

2γn

β
.

Let X be the set of vertices in Ax with degree at least 4γn
β . It can be checked that the size of X

is at most βn
2 . Let Y = V (Ax)−X. Thus, |Y |≥ βn

2 and for each y ∈ Y , dY (y) ≤
4γn
β . Now we can

color G[Y ] with 4γn
β colors. The average size of the color class in G[Y ] is at least (βn)/2

(4γn)/(β) =
β2

8γ ≥ 3.

Thus we obtained at least n
3

(

β
2 − 8γ

β

)

induced K1,3’s in Ax(see Figure 8.)

Notice that the graph induced by B, denoted by GB , contains at most γn2 edges. The average
degree is d̄(GB) ≤ 2γn. With the same argument as given above, we can keep an overwhelming
majority of vertices in B whose degree is at most 4γn. Indeed, deleting vertices in B whose degree
is at least 4γn, we are left with at least n

4 vertices. Let Z be the set of vertices remaining in B
after deleting the vertices. We color G[Z] with 4γn colors. The average size of the color class in

G[Z] is at least n/2
4γn . This implies that we can find at least 1

3

(

n
4 − 2× 4γn

)

= n
3

(

1
4 − 8γ

)

induced
triples in GB (see Figure 8.)

A

BZ

Y

Figure 8: A sparse 7-wheel.

If for each pair of induced K1,3 and induced triples obtained in A and B respectively, there is

a missing edge, then the number of missed edges is at least n
3

(

β
2 − 8γ

β

)

× n
3

(

1
4 − 8γ

)

. However if
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this is greater than γn2, it is a contradiction. Hence we need the following in-equation to be true:

n

3

(

β

2
−

8γ

β

)

×
n

3

(

1

4
− 8γ

)

< γn2. (3)

It follows from the definition of β and γ. Thus there must be an induced K1,3 in A, which is joined
completely to an induced triple of vertices in B. Therefore, we get a sparse 7-wheel. Therefore, G
contains a TP3 by Lemma 3.

Corollary 1. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ , and e(G) > n2

4 + (1 + δ)n. Let A
and B be a partition of V (G) with size as equal as possible and with maximum e(A,B). If A or B
has a spider graph as a subgraph, then G contains TP3 as a subgraph.

Proof. Let S denote the spider graph as denoted in Figure 9. Without loss of generality, Suppose
S ⊆ G[A].

x

w1

w2

v1

v2

u1

u2

Figure 9: A spider graph with three legs and one joint.

We consider 4-vertex subsets of S, namely {x, u1, u2, v1}, {x, v1, v2, w1} and {x,w1, w2, u1}. Note
that, if we can find 3 distinct vertices in B such that, one of them is connected to all the vertices
in the above subsets, we immediately find a TP3. Without loss of generality, assume that the 4-set
{x, u1, u2, v1} does not have a common vertex in B. In other words, for every vertex y ∈ B, y
is not adjacent to at least one of the vertices in {x, u1, u2, v1}. Note that, the average degree of
vertices in {x, u1, u2, v1} is 3n

8 . So there exists a vertex z ∈ {x, u1, u2, v1}, such that dB(z) ≤
3n
8 .

The minimum degree of the vertices in G is at least n
2 , thus dA(z) ≥

n
8 .

So we have this large degree vertex in A and are done by the Lemma 4.

Claim 3. Given a graph Gk on k vertices, with 2k edges. We can find an independent set of
vertices with size 3k

55 .

Proof. Say we delete vertices with degrees greater than 10. Denote the remaining graph with G′.
The number of vertices deleted is denoted by l. The sum of the degrees is at least 10l. Thus the
number of edges deleted is at least 5l. We already know the number of edges in the graph is 2k,
hence l ≤ 2k

5 . Then in G′, every vertex has degree at most 10. Start by choosing an arbitrary
vertex x ∈ G′, delete its neighbors, and continue choosing another vertex in the graph G′ \N(x).
With this recursive procedure, we can get an independent set of size 3k

55 .

Claim 4. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ . Let A and B a be partition of V (G)

with size as equal as possible and with maximum e(A,B). Let e(A) ≥ n
2 +δn

2 , then the total number
of triples of vertices we can find such that they are in K1,3’s or induced k1,3’s (which are a subgraph
of a huge star, with center vertex having degree at-least 84) is at-least δn

664 .
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Proof. The degree sum of vertices in A is greater than or equal to 2(n2 +δn
2 ). Hence we have vertices

that have degree at least 2.
Let v be a vertex in A such that dA(v) = ∆. Let Av be the graph induced by the vertices

{v} ∪NA(v). Note, Av doesn’t contain the spider graph as a subgraph. We consider the following
cases:
Case 1: ∆ ≤ 83.

Let x1, x2 and x3 be in N(v). The vertices v, x1, x2 and x3 form a K1,3. On deletion of these 4
vertices, we have deleted at most 332 edges. Note that 332 is negligible compared to the number
of extra edges in A, which was δn

2 . Hence the number of K1,3’s we can find is at least δn
664 .

Case 2: ∆ > 84.
Denote the vertices in N(v) with xi. Note that we do not have 3 independent edges going out of

GA(v) from xi’s, as we have a spider-free graph. Let x1, x2, and x3 be vertices degree greater than
2. Then by Halls Theorem, we immediately get a matching and 3 independent edges going from the
set GA(v) to A \GA(v). Thus we have at-most 2 vertices in the set {xi}, who have degree greater
than 2. Thus the number of edges incident to GA(v) is at most 2(∆ − 1) + 2(∆ − 2) + 2∆ ≤ 6∆.

By the previous lemma, in the graph induced by the set of vertices xi, we can find an independent
set of size at least 3∆

55 . Hence we can find at least ∆
55 triples such that it forms an induced K1,3

with v being the center. The number of K1,3’s we can find is at least δn
660 .

We want to prove ex(n, TP3) ≤ 1
4n

2 + (1 + δ)n. Assume that there is a TP3-free graph that

has more than 1
4n

2 + (1 + δ)n edges. Then one of the bi-partitions has to have more than n
2 + δn

2
edges. In the next lemma, we show that this is not possible.

Lemma 5. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ . Let A and B be partition of V (G)

with size as equal as possible and with maximum e(A,B). Assume that, neither A nor B contains
a spider graph as a subgraph and the maximum degree of vertices inside each of the class is βn.
Say e(A) ≥ n

2 + δn
2 , then G contains a TP3.

Proof. By the previous lemma, we have the total number of triples either in K1,3’s or inducedK1,3’s
(which are a subgraph of a star, with the center vertex of degree at least 84) is δn

664 . Let us consider
two cases:

Case 1: Half of the triples lie in disjoint K1,3’s.

Consider a vertex x ∈ B. We know that the maximum degree on x inside B is less than equal to
βn. So x has at most βn non-neighbors in A. Thus are at-least δn

1328 − βn triples in disjoint K1,3,
such that all four of the vertices in the K1,3 are adjacent to x. Consider three independent edges
in B, namely y1z1, y2z2 and y3z3. For each of these 6 vertices, we can find at least δn

1328 −βn triples
in disjoint K1,3, such that the vertices of the K1,3 are joined completely to the given vertex. Then
each of the vertices yi (similarly zi) is completely connected to all the vertices of at least 6

7 triples
of disjoint K1,3 in A. In other words, we need the following in-equation to be true.

δn

1328
− βn ≥

6

7
×

δn

1328
. (4)

This holds by the definition of β. Thus by the Pigeon-hole principle, we have a common triple, such
that these 3 independent edges are connected to it completely. Denote the vertices of this triple
as x1, x2 and x3. The vertices x1, y1, x2y2 and x3y3 along with x form a 7-wheel. The triangles
x1y1z1, x2y2z2, and x3y3z3 sitting on the 7-wheel form a TP3.

12



Case 2: Half of the triples lie in induced K1,3’s.

Let the number of induced K1,3’s in each of these stars be ki. Note that, summing ki over all the
vertices in A which have degree at least 84, is at least δn

1328 . Consider the center of one such star
in A, say x. The maximum degree of x in A is less than equal to βn. Hence x can have at most
βn non-neighbors in B. Delete these vertices in B and denote the graph remaining with B′. We
know that ∆(B′) ≤ βn. Hence we can color it with βn colors and each color class is of size at most
1
2β − 1. Hence we can choose

n

2
−3βn

3 independent triples. Each of these triples must have a missing
edge to the root vertices in the K1,3 chosen in A, otherwise, we are done. Hence the number of

missing edges is equal to k1 ×
n

2
−3βn

3 . Summing this over vertices in A with degree at least 25, we

get δn
1328 ×

n

2
−3βn

3 . This can’t be bigger than the possible number of missing edges γn2. This gives
us the following in-equation

δn

1328
×

n
2 − 3βn

3
< γn2, (5)

which holds by definition. Hence we find a sparse 7-wheel and we are done.

4 Concluding remarks and conjectures

Following the two constructions given in Figure 2 and Figure 3, we pose the following conjecture
concerning ex(n, TP3).

Conjecture 1.

ex(n, TP3) ≤

{

1
4n

2 + n+ 1, if n is even,
1
4n

2 + n+ 3
4 , otherwise.

We also pose the following conjecture related to ex(n, TP4).

Conjecture 2. For n sufficiently large, ex(n, TP4) =
n2

4 +Θ(n4/3).

To show the lower bound, we consider an n-vertex graph G obtained from a complete bipartite
graph with color classes as equal as possible and adding a bipartite C6-free graph with cn4/3 edges
in one of the color classes. Thus, e(G) ≥ n2

4 +O(n4/3). The only thing we need to show is G does
not contain a TP4. We need the following claim to show that.

Claim 5. Every 2-coloring of the TP4 such that color 1 is independent, contains either a C3 or a
C6 in color 2.

Proof. Consider a 2-coloring c of a TP4 such that color 1 is independent. We want to show that
there is either a C3 or a C6 in color 2. Suppose there is no such C3. Then one of the vertices of
the triangle x1x2x3 (see Figure 10) is in color 2. Without loss of generality, let the color of x1 be
1. Since c is a 2-coloring with the property that color 1 is independent, then all the 6 neighboring
vertices of x1 must be of color 2. Therefore, we obtain a C6 with color 2 and this completes the
proof.

The following lemma is a consequence of Claim 5 and hence the lower bound of Conjecture 2
holds.

13



x2

x1 x3

Figure 10: TP4.

Lemma 6. Let G be a graph obtained from a complete bipartite graph Kn

2
,n
2

(with color class 1
and 2) and a bipartite, C6-free graph to the color class 2. Then G is a TP4-free graph.
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