Chain method for panchromatic colorings of hypergraphs

Margarita Akhmejanova** József Balogh ${ }^{\dagger}$

Abstract

We deal with an extremal problem concerning panchromatic colorings of hypergraphs. A vertex r-coloring of a hypergraph H is panchromatic if every edge meets every color. We prove that for every $r<\sqrt[3]{\frac{n}{100 \ln n}}$, every n-uniform hypergraph H with $|E(H)| \leq \frac{1}{20 r^{2}}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n-1}$ has a panchromatic coloring with r colors.

Keywords: panchromatic coloring, property B, proper coloring, uniform hypergraph.

1 Introduction and related work

We study colorings of uniform hypergraphs. Let us recall some definitions.
A vertex r-coloring of a hypergraph $H=(V, E)$ is a mapping from the vertex set V to a set of r colors. An r-coloring of H is panchromatic if each edge has at least one vertex of each color.

The first sufficient condition on the existence of a panchromatic coloring of a hypergraph was obtained in 1975 by Erdős and Lovász [8]. They proved that if every edge of an n-uniform hypergraph intersects at most

$$
\begin{equation*}
\frac{r^{n-1}}{4(r-1)^{n}} \tag{1}
\end{equation*}
$$

other edges then the hypergraph has a panchromatic coloring with r colors.
The next generalization of the problem was formulated in 2002 by Kostochka [11], who posed the following question: What is the minimum possible number of edges in an n-uniform hypergraph that does not admit a panchromatic coloring with r colors? He denoted this number by $p(n, r)$.

Following closely behind this problem is a related one: a hypergraph $H=(V, E)$ has property B if there is a coloring of V by 2 colors so that no edge $f \in E$ is monochromatic. Erdős and Hajnal [7] (1961) proposed to find the value $m(n)$ equal to the minimum possible number of edges in a n uniform hypergraph without property B. Erdős [6] (1963-1964) found bounds $\Omega\left(2^{n}\right) \leq m(n)=$ $O\left(2^{n} n^{2}\right)$ and Radhakrishnan and Srinivasan [13] (2000) proved $m(n) \geq \Omega\left(2^{n}(n / \ln n)^{1 / 2}\right)$. Clearly, $m(n)=p(n, 2)$.

[^0]We return to the panchromatic coloring. Kostochka [11] has found connections between $p(n, r)$ and minimum possible number of vertices in a k-partite graph with list chromatic number greater than r. Using results of Erdős, Rubin and Taylor [9] and also Alon's result [2] Kostochka [11] proved the existence of constants c_{1} and c_{2} that for every large n and fixed r :

$$
\begin{equation*}
\frac{e^{c_{1} \frac{n}{r}}}{r} \leq p(n, r) \leq r e^{c_{2} \frac{n}{r}} \tag{2}
\end{equation*}
$$

In 2010, bounds (2) were considerably improved in the paper of Shabanov [15]:

$$
\begin{gathered}
p(n, r) \geqslant \frac{\sqrt{21}-3}{4 r}\left(\frac{n}{(r-1)^{2} \ln n}\right)^{1 / 3}\left(\frac{r}{r-1}\right)^{n}, \quad \text { for all } r<n \\
p(n, r) \leqslant \frac{1}{r}\left(\frac{r}{r-1}\right)^{n} e(\ln r) \frac{n^{2}}{2(r-1)} \varphi_{1}, \quad \text { when } \quad r=o(\sqrt{n}) \\
p(n, r) \leqslant \frac{1}{r}\left(\frac{r}{r-1}\right)^{n} e(\ln r) n^{3 / 2} \varphi_{2}, \quad \text { when } n=o\left(r^{2}\right)
\end{gathered}
$$

where φ_{1}, φ_{2} some functions of n and $r(n)$, tending to one at $n \rightarrow \infty$.

In 2012, Rozovskaya and Shabanov [14] improved Shabanov's lower bound by proving that for $r<n /(2 \ln n)$

$$
\begin{equation*}
\frac{1}{2 r^{2}}\left(\frac{n}{\ln n}\right)^{1 / 2}\left(\frac{r}{r-1}\right)^{n} \leqslant p(n, r) \leqslant c_{2} n^{2}\left(\frac{r}{r-1}\right)^{n} \ln r . \tag{3}
\end{equation*}
$$

Further research was conducted by Cherkashin [3] in 2018. In his work, Cherkashin introduced the auxiliary value $p^{\prime}(n, r)$, which is numerically equal to the minimum number of edges in the class of n-uniform hypergraphs $H=(V, E)$, in which any subset of vertices $V^{\prime} \subset V$ with $\left|V^{\prime}\right| \geq$ $\left[\frac{r-1}{r}|V|\right]$ must contain an edge. Analyzing the value $p^{\prime}(n, r)$ and using Sidorenko's [16] estimates on the Turan numbers, Cherkashin proved that for $n \geq 2, r \geq 2$

$$
p(n, r) \leq c \frac{n^{2} \ln r}{r}\left(\frac{r}{r-1}\right)^{n}
$$

Cherkashin also proved that for $r \leq c \frac{n}{\ln n}$

$$
\begin{equation*}
p(n, r) \geq c \max \left(\frac{n^{1 / 4}}{r \sqrt{r}}, \frac{1}{\sqrt{n}}\right)\left(\frac{r}{r-1}\right)^{n} \tag{4}
\end{equation*}
$$

And repeating the ideas of Gebauer [10] Cherkashin constructed an example of a hypergraph that has few edges and does not admit a panchromatic coloring in r colors. The reader is referred to the survey [4] for the detailed history of panchromatic colorings.

It is thus natural to consider the local case. Formally, the degree of an edge A is the number of hyperedges intersecting A. Let $d(n, r)$ be the minimum possible value of the maximum edge
degree in an n-uniform hypergraph that does not admit panchromatic coloring with r colors. Then, the Erdôs and Lovász result (1) can be easily translated into following form:

$$
\begin{equation*}
d(n, r) \geq \frac{r^{n-1}}{4(r-1)^{n}} \tag{5}
\end{equation*}
$$

However, the bound (5) appeared not to be sharp. The restriction on $d(n, r)$ have been improved by Rozovskaya and Shabanov [14]. In their work they achieved that

$$
\begin{equation*}
d(n, r)>\frac{\sqrt{11}-3}{4 r(r-1)}\left(\frac{n}{\ln n}\right)^{1 / 2}\left(\frac{r}{r-1}\right)^{n}, \quad \text { when } r \leqslant n /(2 \ln n) \tag{6}
\end{equation*}
$$

2 Our results

The main result of our paper improves the estimate (3) as follows.
Theorem 1. Suppose $r \leq \sqrt[3]{\frac{n}{100 \ln n}}$. Then we have

$$
\begin{equation*}
p(n, r) \geq \frac{1}{20 r^{2}}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n} . \tag{7}
\end{equation*}
$$

Corollary 1. There is an absolute constant C so that for every $n>2$ and $\ln n<r<\sqrt[3]{\frac{n}{100 \ln n}}$

$$
p(n, r) \geq \frac{C n}{r^{2} \ln n} \cdot e^{\frac{n}{r}+\frac{n}{2 r^{2}}}
$$

We refine the bound (6) as follows.

Theorem 2. For every $2<r<\sqrt[3]{\frac{n}{100 \ln n}}$

$$
\begin{equation*}
d(n, r) \geq \frac{1}{40 r^{3}}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n} \tag{8}
\end{equation*}
$$

2.1 Methods

In the work, we propose a new idea based on the Pluhar ordered chain method [12]. In the case of panchromatic coloring, the resulting structure is no longer a real ordered chain, but rather an intricate "snake ball". Nevertheless, with the help of probabilistic analysis, we managed to obtain a strong lower bound.

The rest of this paper is organised as follows. The next section describes a coloring algorithm. Section 4 is devoted to the detailed analysis of the algorithm. In Section 5 we collect some inequalities that will be subsequently useful. The last two sections contain proofs of Theorems 1 and 2.

3 The coloring algorithm

We may and will assume that $r \geq 3$, because case $r=2$ corresponds to the case $m(n)$. Let $H=(V, E)$ be an n-uniform hypergraph with less than $\frac{1}{20 r^{2}}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n}$ edges and let $r<$ $\sqrt[3]{\frac{n}{100 \ln n}}$. We will show that H has a panchromatic coloring with r colors.

We define a special random order on the set V of vertices of hypergraph H using a mapping $\sigma: V \rightarrow[0,1]$, where $\sigma(v), v \in V$ - i.i.d. with uniform distribution on $[0,1]$. The value $\sigma(v)$ we will call the weight of the vertex v. Reorder the vertices so that $\sigma\left(v_{1}\right)<\ldots<\sigma\left(v_{|V|}\right)$. Put

$$
\begin{equation*}
p=\left(\frac{r-1}{r}\right) \frac{(r-1)^{2} \ln \left(\frac{n}{\ln n}\right)}{n} . \tag{9}
\end{equation*}
$$

We divide the unit interval $[0,1)$ into subintervals $\Delta_{1}, \delta_{1}, \Delta_{2}, \delta_{2}, \ldots, \Delta_{r}$ as on the Figure 1, i.e.

$$
\begin{aligned}
\Delta_{i} & =\left[(i-1)\left(\frac{1-p}{r}+\frac{p}{r-1}\right), i \cdot \frac{1-p}{r}+(i-1) \cdot \frac{p}{r-1}\right), i=1, \ldots, r \\
\delta_{i} & =\left[i \cdot \frac{1-p}{r}+(i-1) \cdot \frac{p}{r-1}, i\left(\frac{1-p}{r}+\frac{p}{r-1}\right)\right), i=1, \ldots, r-1
\end{aligned}
$$

The length of each large subinterval Δ_{i} is equal to $\frac{1-p}{r}$ and every small subinterval δ_{i} has length equal to $\frac{p}{r-1}$. Since $p<\frac{1}{100 r}$ under the given assumptions on r, we can see that the intervals $\Delta_{1}, \ldots, \Delta_{r}$ are each wider than the intervals $\delta_{1} \ldots, \delta_{r-1}$. A vertex v is said to belong to a subinterval $[c, d)$, if $\sigma(v) \in[c, d)$. We note that the same division of the segment $[0,1]$ has already been used by the first author for proving some bounds on proper colorings [1].

Figure 1: Partition of $[0,1)$ into $\Delta_{1}, \delta_{1}, \Delta_{2}, \delta_{2}, \ldots, \Delta_{5}$ when $r=5$.

We color the vertices of hypergraph H according to the following algorithm, which consists of two steps.

1. First, each $v \in \Delta_{i}$ is colored with color i for every $i \in[r]$.
2. Then, moving with the growth of σ, we color a vertex $v \in \delta_{i}$ with color i if there exists an edge $e, v \in e$ such that e does not have color i in the current coloring. Otherwise we color v with color $i+1$.

4 Analysis of the algorithm

4.1 Short edge

We say that an edge A is short if $A \cap\left(\Delta_{i} \cup \delta_{i}\right)=\emptyset$ or $A \cap\left(\Delta_{i+1} \cup \delta_{i}\right)=\emptyset$ for some $i \in[r-1]$. The probability of this event for fixed edge A and fixed i is at most $2\left(1-\left(\frac{1-p}{r}+\frac{p}{r-1}\right)\right)^{n}$. Summing up this upper bound over all edges and $i \in[r-1]^{n}$ we get

$$
\begin{gathered}
2(r-1)|E|\left(1-\left(\frac{1-p}{r}+\frac{p}{r-1}\right)\right)^{n} \leq \frac{2(r-1)}{20 r^{2}}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n} . \\
\cdot\left(\frac{r-1}{r}-\frac{p}{r(r-1)}\right)^{n} \leq \frac{1}{10 r}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(1-\frac{p}{(r-1)^{2}}\right)^{n} \leq \frac{1}{10 r} .
\end{gathered}
$$

Hence, we conclude that the expected number of short edges is less than $1 / 10 r$, hence with probability at least $1-1 / 10 r$ there is no short edge.

4.2 Snake ball

Suppose our algorithm fails to produce a panchromatic r-coloring and there is no short edges. Let A be an edge, which does not contain some color i.

Now we have two possibilities:

- $i<r$, in this situation edge A is disjoint from the interval $\Delta_{i} \cup \delta_{i}$, which means that A is short, a contradiction.
- $i=r$.

Figure 2: Edges A and B in a snake ball.
Edge A is not short, so $A \cap\left(\delta_{r-1} \cup \Delta_{r}\right) \neq \emptyset$. Since A does not contain color r we have $A \cap \Delta_{r}=\emptyset$. Denote v_{A} the last vertex of $A \cap \delta_{r-1}$. We note that v_{A} could receive color $r-1$ only if at the moment of coloring v_{A} there was an edge B without color $r-1$ and v_{A} was the first vertex of $B \cap \delta_{r-1}$. In this situation we say that the pair (A, B) is conflicting in δ_{r-1} and the vertex v_{A} is dangerous vertex in δ_{r-1}.

Again, edge B is not short and did not contain color $r-1$ at the moment of coloring v_{A}, so $B \cap\left(\delta_{r-2} \cup \Delta_{r-1}\right) \neq \emptyset$ and $B \cap \Delta_{r-1}=\emptyset$. For v_{B}, the last vertex of $B \cap \delta_{r-2}$, there exists an edge C, which at the moment of coloring v_{B} was without color $r-2$ and v_{B} was the first vertex of $C \cap \delta_{r-2}$. We get (B, C) is conflicting pair in δ_{r-2} and v_{B} is dangerous vertex in δ_{r-2}.

Repeating the above arguments, we obtain a construction called snake ball. It is an edge sequence $H^{\prime}=\left(C_{1}=A, C_{2}=B, \ldots, C_{r}\right)$ such that consecutive edges $\left(C_{i}, C_{i+1}\right)$ form conflicting pairs in δ_{r-i}.

Summarizing the above, we can say that

Claim 1. If for injective $\sigma: V \rightarrow[0 ; 1)$ there are neither snack balls nor short edges then Algorithm 1 produces a panchromatic r-coloring.

Lemma 1. Let $H^{\prime}=\left(C_{1}, \ldots, C_{r}\right)$ be an ordered r-tuple of edges in the hypergraph H. Then the probability of the event that H^{\prime} forms a snake ball and all the edges C_{1}, \ldots, C_{r} are not short does not exceed

$$
\left(\frac{p}{r-1}\right)^{r-1}\left(\frac{r-1}{r}\right)^{(n-2) r} \prod_{v \in H^{\prime}: s(v) \geq 2} \frac{\left(1-s(v) \frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{s(v)}} \prod_{i=1}^{r-1}\left|C_{i} \cap C_{i+1}\right|
$$

where $s(v)$ is the number of edges of H^{\prime} that contain vertex v.
Before we present the proof of this lemma, we introduce some facts and give the basic scheme of the proof. Note that if $v \in C_{i}$ then $\sigma(v) \notin \Delta_{r-i+1}$. Furthermore, for each v its weight $\sigma(v)$ belongs to the subintervals of total length at most

$$
\begin{equation*}
1-s(v) \frac{1-p}{r} \tag{10}
\end{equation*}
$$

The scheme of the proof is following:

- fix vertex $v_{j} \in C_{j} \cap C_{j+1}$ and its weight $\sigma\left(v_{j}\right)$ for all $j=1, \ldots, r-1$. Assuming that v_{j} is the dangerous vertex in δ_{r-j} calculate conditional probability given weights of dangerous vertices.
- sum up (integrate) the previous probability over all possible values of weights, using that $\sigma\left(v_{j}\right) \in \delta_{r-j}$, as this is needed for H^{\prime} to be a snake ball.
- Finally, sum over all choices of v_{1}, \ldots, v_{r-1}.

Proof. Fix dangerous vertex $v_{j} \in C_{j} \cap C_{j+1}$ for each $j=1, \ldots r-1$. Put $\left[\alpha_{j}, \beta_{j}\right)=\delta_{j}, \beta_{j}-\alpha_{j}=$ $p /(r-1)$ and $y_{j}=\beta_{r-j}-\sigma\left(v_{j}\right)$. Recall that $0 \leq y_{j} \leq p /(r-1)$.

Fix for a moment variables y_{1}, \ldots, y_{r-1}. Then, for $v \in C_{i}$ with $s(v)=1$ its weight $\sigma(v)$ belongs to the subinterval of total length at most

$$
1-\left(\frac{1-p}{r}+y_{i+1}+\frac{p}{r-1}-y_{i}\right) \quad \text { if } i \in[2, r-1]
$$

And similarly, $1-\left(\frac{1-p}{r}+y_{1}\right)$ for $i=1$ and $1-\left(\frac{1-p}{r}+\frac{p}{r-1}-y_{r-1}\right)$ for $i=r$.
Now we are ready to give an upper bound for the probability of the event that " H^{\prime} forms a snake ball", conditional on the value taken by y_{1}, \ldots, y_{r-1} :

$$
\begin{gather*}
\left(1-\left(\frac{1-p}{r}+y_{1}\right)\right)^{n-1} \cdot\left(1-\left(\frac{1-p}{r}+y_{2}+\frac{p}{r-1}-y_{1}\right)\right)^{n-2} \cdot \ldots \tag{11}\\
\cdot\left(1-\left(\frac{1-p}{r}+y_{r-1}+\frac{p}{r-1}-y_{r-2}\right)\right)^{n-2} \cdot\left(1-\left(\frac{1-p}{r}+\frac{p}{r-1}-y_{r-1}\right)\right)^{n-1} \cdot \tag{12}\\
\cdot \prod_{v \in H^{\prime}: s(v) \geq 2} \frac{\left(1-s(v) \frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{s(v)}} . \tag{13}
\end{gather*}
$$

Here we estimated as if all the rest of the vertices have $s(v)=1$ (factors (11) and factor (12)), and then using (10), edited for vertices with $s(v)>1$ by multiplying by $1-s(v) \frac{1-p}{r}$ and divided by $\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{s(v)}$. The factor $\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)$ is obviously no more than any factor for $s(v)=1$, so we get a correct upper bound.
Taking out factor $((r-1) / r)^{(n-2) r+2}$ in the above equation and using estimate $(1+y)^{s} \leq$ $\exp \{y s\}$, we get the following upper bound on product of (11) and (12):

$$
\begin{aligned}
& \left(\frac{r-1}{r}\right)^{r(n-2)+2} \exp \left(\frac{(n-1) p}{r-1}-\frac{(n-2) p}{r-1}-\frac{p}{(r-1)^{2}}-\frac{r y_{1}}{r-1}+\frac{r y_{r-1}}{r-1}\right) \leq \\
& \left(\frac{r-1}{r}\right)^{r(n-2)+2} \exp \left(\frac{p(r-2)}{(r-1)^{2}}+\frac{r y_{r-1}}{r-1}\right) \leq\left(\frac{r-1}{r}\right)^{r(n-2)+2} \exp \left(\frac{p(r-2)}{(r-1)^{2}}+\frac{r p}{(r-1)^{2}}\right)= \\
& \left(\frac{r-1}{r}\right)^{r(n-2)+2} \exp \left(\frac{2 p}{r-1}\right)<\left(\frac{r-1}{r}\right)^{r(n-2)} .
\end{aligned}
$$

To obtain the final estimate, we have to integrate over the weights $y_{1}, y_{2}, \ldots, y_{r-1}$ (factor $(p /(r-1))^{r-1}$) and sum up over all possible choices for the v_{1}, \ldots, v_{r-1} (factor $\left.\prod_{i=1}^{r-1}\left|C_{i} \cap C_{i+1}\right|\right)$.

5 Auxilary calculations

Under the assumptions of Theorem 1 we will formulate and prove three auxiliary lemmas needed to prove Theorem 1. In particular, in Lemma 2, we replace product of pairwise intersections on their sum $\sum_{i<j}\left|C_{i} \cap C_{j}\right|$ and in Lemma 4, we will use double-counting for estimating the sum $\sum_{i<j}\left|C_{i} \cap C_{j}\right|$, which can be large with n, by special bounded terms.

Lemma 2. Let $H^{\prime}=\left(C_{1}, \ldots, C_{r}\right)$ be an ordered r-tuple of edges in the hypergraph H. Then

$$
\begin{equation*}
\sum_{\pi \in S_{r}}\left|C_{i_{1}} \cap C_{i_{2}}\right|\left|C_{i_{2}} \cap C_{i_{3}}\right| \cdot \ldots \cdot\left|C_{i_{r-1}} \cap C_{i_{r}}\right| \leq\left(\frac{2 \sum_{i<j}\left|C_{i} \cap C_{j}\right|+r}{r}\right)^{r} \tag{14}
\end{equation*}
$$

where S_{r} denotes all permutations $\pi=\left(i_{1}, \ldots, i_{r}\right)$ of $(1,2, \ldots, r)$.

Proof. Denote the cardinality of the edge intersection $\left|C_{i} \cap C_{j}\right|$ by $x_{i, j}$. Then, we have to prove that

$$
\sum_{\pi \in S_{r}} x_{i_{1}, i_{2}} x_{i_{2}, i_{3}} \cdot \ldots \cdot x_{i_{r-1}, i_{r}} \leq\left(\frac{2 \sum_{i<j} x_{i, j}+r}{r}\right)^{r}
$$

First, we will show that

$$
\begin{equation*}
\sum_{\pi \in S_{r}} x_{i 1, i_{2}} x_{i_{2}, i_{3}} \cdot \ldots \cdot x_{i_{r-1}, i_{r}} \leq\left(x_{1,2}+\ldots+x_{1, r}+1\right) \cdot \ldots \cdot\left(x_{r, 1}+\ldots+x_{r, r-1}+1\right) \tag{15}
\end{equation*}
$$

Let us call $\left(x_{i, 1}+\ldots+x_{i, r}+1\right)$ from (15) the bracket number i. We define a mapping f between elements from the left-hand side of (15) and ordered sets that are obtained after performing the multiplication in (15).

Let $f: x_{i 1, i_{2}} x_{i_{2}, i_{3}} \ldots x_{i_{r-1}, i_{r}} \mapsto x_{1, t_{1}} x_{2, t_{2}} \ldots x_{r, t_{r}}$, where $x_{1, t_{1}} x_{2, t_{2}} \ldots x_{r, t_{r}}$ is the product of the following r elements: $x_{i_{r-1}, i_{r}}$ from the bracket number $i_{r-1}, x_{i_{r-2}, i_{r-1}}$ from the bracket number i_{r-2} and so forth, finally we take the factor 1 from the unused bracket. For example,
$x_{5,6} x_{6,1} x_{1,4} x_{4,3} x_{3,2}$ is mapped to $x_{1,4} \cdot 1 \cdot x_{3,2} \cdot x_{4,3} \cdot x_{5,6} \cdot x_{6,1}$.
We note that f is an injection. Indeed, for each $x_{1, t_{1}} x_{2, t_{2}} \ldots x_{r, t_{r}}$ there exists at most one sequence $x_{i 1, i 2} x_{i_{2}, i_{3}} \ldots x_{i_{r-1}, i_{r}}$, with $i_{1} \neq i_{2} \ldots \neq i_{r}$, such as $f\left(x_{i 1, i 2} x_{i_{2}, i_{3}} \ldots x_{i_{r-1}, i_{r}}\right)=x_{1, t_{1}} \ldots x_{r, t_{r}}$.
So, since f does not change the product and f is an injection we get that the right-hand side of (15) is not less than the left-hand side.

Finally, by the inequality on the arithmetic-geometric means and by $x_{i, j}=x_{j, i}$

$$
\left(x_{1,2}+\ldots+x_{1, r}+1\right) \cdot \ldots \cdot\left(x_{r, 1}+\ldots+x_{r, r-1}+1\right) \leq\left(\frac{2 \sum_{i<j} x_{i, j}+r}{r}\right)^{r}
$$

Lemma 3. For all $s \in\{2, \ldots, r-1\}$

$$
\begin{equation*}
\frac{\left(1-s \frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{s}} \leq e^{-\frac{s^{2}}{20 r^{2}}} \tag{16}
\end{equation*}
$$

Proof. First prove the case $s \geq 3$.

$$
\begin{equation*}
\frac{\left(1-\frac{s(1-p)}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{s}}=\frac{\left(1-\frac{s(1-p)}{r}\right)}{\left(1-\left(\frac{1-p}{r}\right)\right)^{s}\left(1-\frac{2 p r}{(r-1)(r-1+p)}\right)^{s}} \leq \frac{\left(1-\frac{s(1-p)}{r}\right)\left(1+\frac{1-p}{r-1+p}\right)^{s}}{\left(1-\frac{2 p r}{(r-1)^{2}}\right)^{s}} \tag{17}
\end{equation*}
$$

Now we deal with factors in (17) separetely:

$$
\begin{gathered}
\left(1+\frac{1-p}{r-1+p}\right)^{s} \leq\left(1+\frac{1-p}{r-1}\right)^{s}=\mid \text { Apply Taylor's formula with Lagrange Remainder } \mid= \\
1+\frac{s(1-p)}{r-1}+\frac{s(s-1)(1-p)^{2}}{2(r-1)^{2}}+\frac{s(s-1)(s-2)(1-p)^{3}\left(1+\theta \cdot \frac{1-p}{r-1}\right)^{s-3}}{6(r-1)^{3}} \leq
\end{gathered}
$$

bound $(s-1) /(r-1)$ by $s / r,(s-1)(s-2) /(r-1)^{2}$ by s^{2} / r^{2} and $(1+\theta /(r-1))^{s-3}$ by e.

$$
\leq 1+\frac{s(1-p)}{r-1}+\frac{s^{2}(1-p)}{2 r(r-1)}+\frac{s^{3}(1-p)^{2} e}{6 r^{2}(r-1)} .
$$

Hence, the numerator of (17) does not exceed

$$
\begin{gathered}
\left(1-\frac{s(1-p)}{r}\right)\left(1+\frac{s(1-p)}{r-1}+\frac{s^{2}(1-p)}{2 r(r-1)}+\frac{s^{3}(1-p)^{2}}{2 r^{2}(r-1)}\right)<1-\frac{s^{2}(1-p)}{r(r-1)}(1-p-1 / 2)+ \\
\frac{s(1-p)}{r(r-1)}=1-\frac{s^{2}(1-p)}{r(r-1)}(1 / 2-1 / s-p)<1-\frac{s^{2}(1 / 6-p)(1-p)}{r^{2}}<1-\frac{s^{2}}{7 r^{2}} \leq \exp \left\{-\frac{s^{2}}{7 r^{2}}\right\} .
\end{gathered}
$$

Using bounds $1 /(1-x)<1+2 x$ for $x<1 / 2$ and estimating $p r<1 / 100$, which follows from restrictions on r, we finally get

$$
\begin{gathered}
\frac{\left(1-s \frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2 p r}{r-1}\right)\right)^{s}} \leq \exp \left\{-\frac{s^{2}}{7 r^{2}}\right\}\left(1-\frac{2 p r}{(r-1)^{2}}\right)^{-s}<\exp \left\{-\frac{s^{2}}{7 r^{2}}\right\}\left(1+\frac{4 p r}{(r-1)^{2}}\right)^{s} \leq \\
\exp \left\{\frac{4 p r s}{(r-1)^{2}}-\frac{s^{2}}{7 r^{2}}\right\} \leq \exp \left\{\frac{s}{25(r-1)^{2}}-\frac{s^{2}}{7 r^{2}}\right\}<\exp \left\{\frac{4}{25 s} \cdot \frac{s^{2}}{r^{2}}-\frac{s^{2}}{7 r^{2}}\right\}<\exp \left\{-\frac{s^{2}}{20 r^{2}}\right\} .
\end{gathered}
$$

Consider the case $s=2$.

$$
\begin{aligned}
\frac{1-2(1-p) / r}{\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{2}} \leq & \frac{1-2(1-p) / r}{1-\frac{2(1-p)}{r}-\frac{4 p}{(r-1)}+\frac{1}{2 r^{2}}} \leq \frac{1-2(1-p) / r}{1-\frac{2(1-p)}{r}-\frac{1}{4 r^{2}}+\frac{1}{2 r^{2}}}=1-\frac{1 / 4 r^{2}}{1-2 \frac{1-p}{r}+\frac{1}{4 r^{2}}} \\
& \leq 1-1 / 4 r^{2} \leq \exp \left\{-1 / 4 r^{2}\right\}<\exp \left\{-1 / 5 r^{2}\right\}
\end{aligned}
$$

where we used that $4 p /(r-1)<8 p / r=8 p r / r^{2}<8 / 100 r^{2}<1 / 4 r^{2}$.

Lemma 4.

$$
\begin{equation*}
\left(\prod_{v \in H^{\prime}: s(v) \geq 2} \frac{\left(1-s(v) \frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{s(v)}}\right) \cdot \sum_{\sigma \in S_{r}}\left|C_{i_{1}} \cap C_{i_{2}}\right|\left|C_{i_{2}} \cap C_{i_{3}}\right| \cdot \ldots \cdot\left|C_{i_{r-1}} \cap C_{i_{r}}\right| \leq 20^{r} r^{2 r} e^{-r+1} \tag{18}
\end{equation*}
$$

Proof. By Lemmas 2 and 3 the left hand side of (18) does not exceed

$$
\exp \left\{-\sum_{v \in H^{\prime}: s(v) \geq 2} \frac{s^{2}(v)}{20 r^{2}}\right\}\left(\frac{2 \sum_{i<j}\left|C_{i} \cap C_{j}\right|+r}{r}\right)^{r}
$$

Now we will use the following double-counting: $\sum_{i<j}\left|C_{i} \cap C_{j}\right|$ is equal to $\sum_{v \in H^{\prime}: s(v) \geq 2}\binom{s(v)}{2}<$ $1 / 2 \sum_{v \in H^{\prime}: s(v) \geq 2} s^{2}(v)$. Hence,

$$
\begin{aligned}
& \exp \left\{-\sum_{v \in H^{\prime}: s(v) \geq 2} \frac{s^{2}(v)}{20 r^{2}}\right\}\left(\frac{2 \sum_{i<j}\left|C_{i} \cap C_{j}\right|+r}{r}\right)^{r} \leq \exp \left\{-\sum_{v \in H^{\prime}: s(v) \geq 2} \frac{s^{2}(v)}{20 r^{2}}\right\} \cdot r^{r} . \\
& \left(\frac{\sum_{v \in H^{\prime}: s(v) \geq 2} s^{2}(v)+r}{r^{2}}\right)^{r} \leq r^{r} e^{-t / 20}(t+1)^{r} \leq \frac{20^{r} r^{2 r}}{e^{r-1}}
\end{aligned}
$$

where we used $t=\sum_{v \in H^{\prime}: s(v) \geq 2} s^{2}(v) / r^{2}$ and observed that the expression $\left((t+1)^{r} e^{-t / 20}\right)$ is maximized when $t=20 r-1$.

6 Proof of Theorem 1

We want to show that there is a positive probability that no edge is short and no tuple of edges form a snake ball.

Denote \sum^{*} the sum over all r-sets $J \subseteq(1,2, \ldots,|E|), \sum^{o}$ the sum over all ordered r-tuples $\left(j_{1}, \ldots, j_{r}\right)$, with $\left\{j_{1}, \ldots, j_{r}\right\}$ forming such a J and $\sum_{\pi \in S_{r}}$ denote the sum over all permutations $\pi=\left(i_{1}, \ldots, i_{r}\right)$ of $(1,2, \ldots, r)$.

In Section 4.1 we already proved that the expected number of short edges does not exceed $1 /(10 r)$. The expected number of snake ball can be upper bounded as follows:
$\sum^{o} \mathbb{P}\left(\left(C_{j_{1}}, \ldots, C_{j_{r}}\right)\right.$ forms a snake ball $)=\sum^{*} \sum_{\pi \in S_{r}} \mathbb{P}\left(\left(C_{i_{1}}, \ldots, C_{i_{r}}\right)\right.$ forms a snake ball $)$.
On the other hand,

$$
\begin{aligned}
& \sum_{\pi \in S_{r}} \mathbb{P}\left(\left(C_{i_{1}}, \ldots, C_{i_{r}}\right) \text { forms a snake ball }\right) \\
& \leq \sum_{\pi \in S_{r}}\left(\frac{p}{r-1}\right)^{r-1}\left(\frac{r-1}{r}\right)^{(n-2) r} \prod_{v \in H^{\prime}: s(v) \geq 2} \frac{\left(1-s(v) \frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{s(v)}}\left|C_{i_{1}} \cap C_{i_{2}}\right| \ldots\left|C_{i_{r-1}} \cap C_{i_{r}}\right| \\
& =\left(\frac{p}{r-1}\right)^{r-1}\left(\frac{r-1}{r}\right)^{(n-2) r} \prod_{v \in H^{\prime}: s(v) \geq 2} \frac{\left(1-s(v) \frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2 p}{r-1}\right)\right)^{s(v)}} \sum_{\pi \in S_{r}}\left|C_{i_{1}} \cap C_{i_{2}}\right| \ldots\left|C_{i_{r-1}} \cap C_{i_{r}}\right| \\
& \leq\left(\frac{p}{r-1}\right)^{r-1}\left(\frac{r-1}{r}\right)^{(n-2) r} \frac{20^{r} r^{2 r}}{e^{r-1}} \leq\left(\frac{(r-1)^{2} \ln \left(\frac{n}{\ln n}\right)}{r n}\right)^{r-1} \cdot\left(\frac{r-1}{r}\right)^{(n-2) r} \cdot \frac{20^{r} r^{2 r}}{e^{r-1}},
\end{aligned}
$$

where for the first inequality we used Lemma 1 and for the second Lemma 4 and in the final
inequality we took p from 9. Finally,

$$
\begin{aligned}
& \sum_{\pi \in S_{r}}^{*} \sum_{P}\left(\left(C_{i_{1}}, \ldots, C_{i_{r}}\right) \text { forms a snake ball }\right) \leq \\
& \binom{|E|}{r} \cdot\left(\frac{(r-1)^{2} \ln \left(\frac{n}{\ln n}\right)}{r n}\right)^{r-1} \cdot\left(\frac{r-1}{r}\right)^{(n-2) r} \cdot \frac{20^{r} r^{2 r}}{e^{r-1}} \leq \\
& \frac{\left(\frac{1}{20 r^{2}}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n}\right)^{r}}{r!} \cdot\left(\frac{(r-1)^{2} \ln \left(\frac{n}{\ln n}\right)}{r n}\right)^{r-1} \cdot\left(\frac{r-1}{r}\right)^{(n-2) r} \cdot \frac{20^{r} r^{2 r}}{e^{r-1}} \leq \frac{1}{r}\left(\frac{r}{r-1}\right)^{2} .
\end{aligned}
$$

Since $1-\frac{1}{10 r}-\frac{1}{r}\left(\frac{r}{r-1}\right)^{2}>0$, with positive probability the Algorithm creates a panchromatic coloring with r colors, which proves Theorem 1.

Corollary 2. There is an absolute constant c so that for every $n>2$ and $\ln n<r<\sqrt[3]{\frac{n}{100 \ln n}}$

$$
p(n, r) \geq c \frac{n}{r^{2}(\ln n)} \cdot e^{\frac{n}{r}+\frac{n}{2 r^{2}}} .
$$

Proof. By applying Taylor's formula with Peano remainder, we obtain

$$
\left(1+\frac{1}{r-1}\right) e^{-\frac{1}{r}-\frac{1}{2 r^{2}}}=1+\frac{1}{3 r^{3}}+O\left(\frac{1}{r^{4}}\right)
$$

Thus, $\left(1+\frac{1}{r-1}\right)>e^{\frac{1}{r}+\frac{1}{2 r^{2}}}$. Finally, we use $\left(\frac{n}{\ln n}\right)^{-\frac{1}{r}}>\frac{1}{e}$ when $r>\ln n$ and Theorem 1 .

7 Local variant: proof of Theorem 2

A useful parameter of H is its maximal edge degree

$$
D:=D(H)=\max _{e \in E(H)}\left|\left\{e^{\prime} \in E(H): e \cap e^{\prime} \neq 0\right\}\right|
$$

We show that for $3<r<\sqrt[3]{\frac{n}{100 \ln n}}$ every n-uniform hypergraph with $D \leq \frac{1}{40 r^{3}}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n}$ has a panchromatic coloring with r colors, which implies Theorem 2.

Let us recall Lovász Local Lemma, which shows a useful sufficient condition for simultaneously avoiding a set $A_{1}, A_{2}, \ldots, A_{N}$ of "bad" events:

Lemma 5 (The Local Lemma; General Case, [8]). Let $A_{1}, A_{2}, \ldots, A_{n}$ be events in an arbitrary probability space. A directed graph $\bar{D}=(V, E)$ on the set of vertices $V=\{1,2, \ldots, n\}$ is a dependency digraph for the events A_{1}, \ldots, A_{n} if for each $i, 1 \leq i \leq n$, the event A_{i} is mutually independent of all the events $\left\{A_{j}:(i, j) \notin E\right\}$. Suppose that $\bar{D}=(V, E)$ is a dependency digraph
for the above events and suppose there are real numbers x_{1}, \ldots, x_{n} such that $0 \leq x_{i}<1$ and $\mathbb{P}\left[A_{i}\right] \leq x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)$ for all $1 \leq i \leq n$. Then

$$
\mathbb{P}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

In particular, with positive probability, no event A_{i} holds.
To prove Theorem 2 we will use the following generalization of Lemma 5.
Lemma 6. If all events have probability $\mathbb{P}\left(A_{i}\right) \leq \frac{1}{2}$, and for all i

$$
\begin{equation*}
\sum_{j:(i, j) \in E} \mathbb{P}\left(A_{j}\right) \leq \frac{1}{4} \tag{19}
\end{equation*}
$$

then there is a positive probability that no A_{i} holds.
For the sake of completeness, we give the proof of Lemma 6 here.
Proof. Put $x_{i}=2 \mathbb{P}\left(A_{i}\right)$. Then, for all i

$$
x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)=2 \mathbb{P}\left(A_{i}\right) \prod_{(i, j) \in E}\left(1-2 \mathbb{P}\left(A_{j}\right)\right) \geq \mathbb{P}\left(A_{i}\right)
$$

In our case the set of bad events has two types: short edges and snake balls. Let $\mathcal{Q}(C)$ be the event "edge C is short" and $\mathcal{W}\left(C_{1}, \ldots, C_{r}\right)$ be the event " $\left(C_{1}, \ldots, C_{r}\right)$ forms a snake ball and all the edges C_{1}, \ldots, C_{r} are not short". Note that $\mathcal{Q}(C)$ depends on at most on $D+1$ events $\mathcal{Q}\left(C^{\prime}\right)$ and at most on $2 r(D+1) D^{r-1}$ events $\mathcal{W}\left(C_{1}, \ldots, C_{r}\right)$. Similarly, $\mathcal{W}\left(C_{1}, \ldots, C_{r}\right)$ depends at most on $r(D+1)$ events $\mathcal{Q}\left(C^{\prime}\right)$ and at most on $2 r^{2}(D+1) D^{r-1}$ events $\mathcal{W}\left(C_{1}^{\prime}, \ldots, C_{r}^{\prime}\right)$. Hence, using bounds from Sections 4.1 and 6 we get the following upper bounds:

1. if $A_{i}=\mathcal{W}\left(C_{1}, \ldots, C_{r}\right):$

$$
\begin{gathered}
\sum_{j:(i, j) \in E} \mathbb{P}\left(A_{j}\right) \leq r(D+1) \cdot 2(r-1)\left(1-\left(\frac{1-p}{r}+\frac{p}{r-1}\right)\right)^{n}+ \\
+2 r^{2}(D+1) D^{r-1} \cdot\left(\frac{r-1}{r}\right)^{(n-2) r}\left(\frac{p}{r-1}\right)^{r-1} \frac{20^{r} r^{2 r}}{e^{r-1}}<\frac{2 r^{2}}{40 r^{3}}+\frac{2 r^{2}}{r 2^{r} e^{r-1}}<\frac{1}{4}
\end{gathered}
$$

2. if $A_{i}=\mathcal{Q}(C)$:

$$
\begin{aligned}
& \sum_{j:(i, j) \in E} \mathbb{P}\left(A_{j}\right) \leq(D+1) \cdot 2(r-1)\left(1-\left(\frac{1-p}{r}+\frac{p}{r-1}\right)\right)^{n}+ \\
& +2 r(D+1) D^{r-1} \cdot\left(\frac{r-1}{r}\right)^{(n-2) r}\left(\frac{p}{r-1}\right)^{r-1} \frac{20^{r} r^{2 r}}{e^{r-1}}<\frac{1}{4}
\end{aligned}
$$

In both cases inequality (19) holds, completing the proof of Theorem 2.

8 Acknowledgements

The work of the first was funded by RFBR, project number 20-31-70039 (Theorem 1) and the Council for the Support of Leading Scientific Schools of the President of the Russian Federation, grant no. N.Sh.-2540.2020.1 (Theorem 2). The first author is a Young Russian Mathematics award winner and would like to thank its sponsors and jury.

References

[1] M. Akhmejanova, D.A. Shabanov, "Equitable colorings of hypergraphs with few edges", Discrete Applied Mathematics, 276, 2020, 2-12.
[2] N. Alon, "Choice number of graphs: a probabilistic approach", Combin. Probab. Comput., 1:2, 1992, 107-114.
[3] D. Cherkashin, "A note on panchromatic colorings", Discrete Mathematics, 341:3, 2018, 652-657.
[4] Raigorodskii, A., Cherkashin, D, "Extremal problems in hypergraph colourings", Russian Mathematical Surveys, 75:1, 2020, 89-146.
[5] D. Cherkashin, J. Kozik, "A note on random greedy coloring of uniform hypergraphs", Random Struct. Alg., 47:3, 2015, 407-413.
[6] P. Erdős. "On a combinatorial problem, II. In J. Spencer, editor, Paul Erdős: The Art of Counting", MIT Press, 1973, 445-447.
[7] P. Erdős, A. Hajnal, "On a property of families of sets", Acta Math. Hung., 12:1, 1961, 87-123.
[8] P. Erdôs, L. Lovász, "Problems and results on 3-chromatic hypergraphs and some related questions", Infinite and Finite Sets, Coll Math Soc J Bolyai, 10, 1975, 609-627.
[9] P. Erdős, A. Rubin, H. Taylor, "Choosability in graphs", Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979) , Congr. Numer., 26, Utilitas Math. Publ., Winnipeg, Man., 1980, 125-157.
[10] H. Gebauer, "On the construction of 3-chromatic hypergraphs with few edges", Journal of Combinatorial Theory, Series A, 120:7, 2013, 1483-1490.
[11] A. Kostochka, "On a theorem of Erdős, Rubin, and Taylor on choosability of complete bipartite graphs", Electron. J. Combin., 9:1, 2002, 1-4.
[12] A. Pluhár, "Greedy colorings for uniform hypergraphs", Random Struct. Alg., 35:2, 2009, 216-221.
[13] J. Radhakrishnan, A. Srinivasan, "Improved bounds and algorithms for hypergraph two-coloring", Random Struct. Alg., 16:1, 2000, 4-32.
[14] A. Rozovskaya, D. Shabanov, "Extremal problems for panchromatic colourings of uniform hypergraphs", Discrete Math. Appl., 22:2, 2012, 185-206.
[15] D. Shabanov, "On a generalization of Rubin's theorem.", J. Graph Theory, 67:3, 2011, 226-234.
[16] A. Sidorenko, "What we know and what we do not know about Turan numbers", Graphs and Combinatorics, 11:2, 1995, 179-199.

[^0]: *Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures, Laboratory of Advanced Combinatorics and Network Applications, 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia. E-mail: mechmathrita@gmail.com;
 ${ }^{\dagger}$ Department of Mathematical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. E-mail: jobal@illinois.edu;

