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Chain method for panchromatic colorings of hypergraphs

Margarita Akhmejanova’  Jézsef Balogh!

Abstract. We deal with an extremal problem concerning panchromatic colorings of hypergraphs.
A vertex r-coloring of a hypergraph H is panchromatic if every edge meets every color. We prove

r=1 e
that for every r < {/7zi—, every n-uniform hypergraph H with |E(H)| < 7= () © (5) '
has a panchromatic coloring with r colors.
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1 Introduction and related work

We study colorings of uniform hypergraphs. Let us recall some definitions.

A wvertex r-coloring of a hypergraph H = (V, F) is a mapping from the vertex set V' to a set of
r colors. An r-coloring of H is panchromatic if each edge has at least one vertex of each color.

The first sufficient condition on the existence of a panchromatic coloring of a hypergraph was
obtained in 1975 by Erdgs and Lovasz [8]. They proved that if every edge of an n-uniform
hypergraph intersects at most

rn—l

e

other edges then the hypergraph has a panchromatic coloring with 7 colors.

(1)

The next generalization of the problem was formulated in 2002 by Kostochka [11], who posed the
following question: What is the minimum possible number of edges in an n-uniform hypergraph
that does not admit a panchromatic coloring with r colors? He denoted this number by p(n, r).

Following closely behind this problem is a related one: a hypergraph H = (V, E') has property B
if there is a coloring of V' by 2 colors so that no edge f € E is monochromatic. Erdés and Hajnal
[7] (1961) proposed to find the value m(n) equal to the minimum possible number of edges in a n-
uniform hypergraph without property B. Erdés [6] (1963-1964) found bounds Q (2") < m(n) =
O (2"n?) and Radhakrishnan and Srinivasan [13] (2000) proved m(n) > € (2"(n/Inn)'/?).
Clearly, m(n) = p(n, 2).
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We return to the panchromatic coloring. Kostochka [11] has found connections between p(n, r)
and minimum possible number of vertices in a k-partite graph with list chromatic number
greater than r. Using results of Erdés, Rubin and Taylor [9] and also Alon’s result [2] Kostochka
[11] proved the existence of constants ¢; and ¢, that for every large n and fixed r:

n
el

< p(n,r) < rer. (2)
,

In 2010, bounds (2) were considerably improved in the paper of Shabanov [15]:
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p(n,r) < % (7‘ — 1) e(lnr)ﬁgpl, when 1 = o(y/n),

1 n
p(n,r) < = < r 1) e(Inr)n®2p,,  when n=o (r?),
r —

where 1, 2 some functions of n and r(n), tending to one at n — co.

In 2012, Rozovskaya and Shabanov [14] improved Shabanov’s lower bound by proving that for

r<n/(2lnn)
1 n 1/2 r n r n
— < < o2 |
2r2 (lnn) (7" _ 1) <p(n,r) < con (r — 1) Inr (3)

Further research was conducted by Cherkashin [3] in 2018. In his work, Cherkashin introduced
the auxiliary value p’ (n,r), which is numerically equal to the minimum number of edges in the
class of n-uniform hypergraphs H = (V| E), in which any subset of vertices V' C Vwith |V'| >
[%H/H must contain an edge. Analyzing the value p'(n, r) and using Sidorenko’s [16] estimates
on the Turan numbers, Cherkashin proved that for n > 2,7 > 2

nzlnr( r )n
p(n,r) <c )

r r—1

Cherkashin also proved that for r < ¢

p(nr) > cmax @; %) (/”Tl)n ()

And repeating the ideas of Gebauer [10] Cherkashin constructed an example of a hypergraph
that has few edges and does not admit a panchromatic coloring in r colors. The reader is
referred to the survey [4] for the detailed history of panchromatic colorings.

It is thus natural to consider the local case. Formally, the degree of an edge A is the number
of hyperedges intersecting A. Let d(n,r) be the minimum possible value of the maximum edge



degree in an n-uniform hypergraph that does not admit panchromatic coloring with r colors.
Then, the Erdés and Lovész result (1) can be easily translated into following form:

n—1

d(n,r) > TEEET (5)

However, the bound (5) appeared not to be sharp. The restriction on d(n, ) have been improved
by Rozovskaya and Shabanov [14]. In their work they achieved that

\/1_—3<n>1/2( r

>
Ar(r —1) \lnn r—1

d(n,r) ) ,  whenr <n/(2lnn). (6)

2  Our results

The main result of our paper improves the estimate (3) as follows.

Theorem 1. Suppose r < {/1557- Then we have

oz ()™ () g

Corollary 1. There is an absolute constant C' so that for everyn > 2 and Inn <r < /1561

Cn

n n
. e7+2r§ .
r2lnn

p(n,r) >
We refine the bound (6) as follows.

Theorem 2. For every 2 <r < /—"—

1001Inn

2.1 Methods

In the work, we propose a new idea based on the Pluhar ordered chain method [12]. In the case
of panchromatic coloring, the resulting structure is no longer a real ordered chain, but rather
an intricate "snake ball". Nevertheless, with the help of probabilistic analysis, we managed to
obtain a strong lower bound.

The rest of this paper is organised as follows. The next section describes a coloring algorithm.
Section 4 is devoted to the detailed analysis of the algorithm. In Section 5 we collect some
inequalities that will be subsequently useful. The last two sections contain proofs of Theorems 1
and 2.



3 The coloring algorithm

We may and will assume that r > 3, because case r = 2 corresponds to the case m(n). Let

r=1 n
H = (V, E) be an n-uniform hypergraph with less than - ( L ) v (L) edges and let r <

2072 \Inn r—1

¢/ 1000 We will show that H has a panchromatic coloring with r colors.

We define a special random order on the set V' of vertices of hypergraph H using a mapping
o:V —[0,1], where o(v),v € V —i.i.d. with uniform distribution on [0, 1]. The value o(v) we
will call the weight of the vertex v. Reorder the vertices so that o(v,) < ... < o(vy). Put

- (r—l) (7"—1)2111(&)‘ 9)

r n

We divide the unit interval [0, 1) into subintervals Ay, d;, Ag, da, ..., A, as on the Figure 1, i.e.

Ai:{(@'_n(l_pju b ),i-l_p—i—(z’—l)- b ),z:1,...,7~;

T r—1 r r—1

1-— 1-—

T r—1 T r—1

The length of each large subinterval A; is equal to % and every small subinterval §; has
length equal to -#+. Since p < ﬁ under the given assumptions on r, we can see that the
intervals Aq,..., A, are each wider than the intervals d;...,d,_1. A vertex v is said to belong
to a subinterval [c,d), if o(v) € [¢,d). We note that the same division of the segment [0, 1] has

already been used by the first author for proving some bounds on proper colorings [1].

e
e
—
|
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Figure 1: Partition of [0, 1) into Ay, d1, Ag, da, ..., A5 when r = 5.

We color the vertices of hypergraph H according to the following algorithm, which consists of
two steps.

1. First, each v € A; is colored with color i for every i € [r].

2. Then, moving with the growth of o, we color a vertex v € §; with color 7 if there exists
an edge e,v € e such that e does not have color ¢ in the current coloring. Otherwise we
color v with color ¢ + 1.



4 Analysis of the algorithm

4.1 Short edge

We say that an edge A is short if AN(A;U0;) =0 or AN(A;11U6;) =0 for some i € [r—1]. The
probability of this event for fixed edge A and fixed 7 is at most 2 (1 — (% + 7%A))n Summing
up this upper bound over all edges and ¢ € [r — 1]" we get

- (1- (2 2)) < Ut )7 ()
' (771 B T(rp— 1))” = 1_(1)r (%) - (1 - (7«—]';1)2)71 1_(1)7"

Hence, we conclude that the expected number of short edges is less than 1/107, hence with
probability at least 1 — 1/10r there is no short edge.

IN

4.2 Snake ball

Suppose our algorithm fails to produce a panchromatic r-coloring and there is no short edges.
Let A be an edge, which does not contain some color 7.

Now we have two possibilities:

e | < 7, in this situation edge A is disjoint from the interval A; U J;, which means that A is
short, a contradiction.

Figure 2: Edges A and B in a snake ball.

Edge A is not short, so AN(d,_1UA,) # ). Since A does not contain color r we have ANA, = 0.
Denote v, the last vertex of AN d,_;. We note that v4 could receive color » — 1 only if at the
moment of coloring v4 there was an edge B without color » — 1 and v, was the first vertex of
BN d,_1. In this situation we say that the pair (A, B) is conflicting in §,_1 and the vertex va
is dangerous vertex in 0,_1.

Again, edge B is not short and did not contain color r — 1 at the moment of coloring v4, so
BN (6,2 UA,_1)# 0 and BN A,_; = 0. For vg, the last vertex of BN 4§, 5 , there exists an
edge (', which at the moment of coloring v was without color r — 2 and v was the first vertex
of C'Né,_y. We get (B, C) is conflicting pair in d,_» and vp is dangerous vertezx in 6, 5.
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Repeating the above arguments, we obtain a construction called snake ball. It is an edge
sequence H' = (Cy = A,Cy = B, ..., ;) such that consecutive edges (C;, C;11) form conflicting
pairs in 6,_;.

Summarizing the above, we can say that

Claim 1. If for injective o : V — [0;1) there are neither snack balls nor short edges then
Algorithm 1 produces a panchromatic r-coloring.

Lemma 1. Let H' = (C4,...,C,) be an ordered r-tuple of edges in the hypergraph H. Then the
probability of the event that H' forms a snake ball and all the edges C4y,...,C, are not short
does not exceed

r—1 (n—2)r 1—p i
p r—1 (1 — s(v) = )
(T - 1> < T > H 1-p 2 ))s(v) lel ‘Cz N Ci-i—l’,

vettawz2 (1= (52 + 75

where s(v) is the number of edges of H' that contain vertez v.

Before we present the proof of this lemma, we introduce some facts and give the basic scheme
of the proof. Note that if v € C; then o(v) ¢ A,_;+1. Furthermore, for each v its weight o(v)
belongs to the subintervals of total length at most

1—p

1 —s(v) .

(10)

The scheme of the proof is following:

o fix vertex v; € C; N Cj4q and its weight o(v;) for all j =1,...,r — 1. Assuming that v, is
the dangerous vertex in d,_; calculate conditional probability given weights of dangerous
vertices.

e sum up (integrate) the previous probability over all possible values of weights, using that
o(v;) € §,_;, as this is needed for H' to be a snake ball.

e Finally, sum over all choices of vy, ..., v,_1.

Proof. Fix dangerous vertex v; € C;NCj4q for each j=1,...r—1. Put oy, 5;) =6;, B —a; =
p/(r —1) and y; = B,—; — o(v;). Recall that 0 < y; <p/(r —1).

Fix for a moment variables 4, ..., y,_1. Then, for v € C; with s(v) = 1 its weight o(v) belongs
to the subinterval of total length at most

1 —
1—(—p+yi+1+i—yi> it ie2r—1].
T r—1

And similarly, 1 — (% + yl) fori=1and 1— (% + 5 - yT,l) for i =r.

Now we are ready to give an upper bound for the probability of the event that “H’ forms a
snake ball”, conditional on the value taken by y1,...,y,_1:



r T r—
1_p » n—2 1_p p n—1
Nl —+Ya+——— =Y 1= +—— =Y : (12)
T r—1 T r—1

eraza (1= (52 4+ 29))"

Here we estimated as if all the rest of the vertices have s(v) =1 (factors (11) and factor (12)),
and then using (10), edited for vertices with s(v) > 1 by multiplying by 1 — s(v)*=2 and divided
by (1 — (% + 7,2_—7’1))8(”) . The factor (1 — (1%]” + %’1)) is obviously no more than any factor
for s(v) =1, so we get a correct upper bound.

Taking out factor ((r —1)/r)" 2"*? in the above equation and using estimate (1 + y)* <

exp{ys}, we get the following upper bound on product of (11) and (12):

(r—l)““)” ((n—l)p (n—2p  p ry: ryr1)<

r r—1  r—1 _(r—1)2_r—1+r—1

() () < () (S ) -

(7" . 1)r(n2)+2 < 2p ) (T _ 1)7‘(712)
exp| —— | < :
r r—1 r

To obtain the final estimate, we have to integrate over the weights y;,vs,...,y—1 (factor
(p/(r —1))"") and sum up over all possible choices for the vy, ..., v,_; (factor [[/—] |CsNCyp1]).

O

5 Auxilary calculations

Under the assumptions of Theorem 1 we will formulate and prove three auxiliary lemmas needed
to prove Theorem 1. In particular, in Lemma 2, we replace product of pairwise intersections on
their sum », _;|C; N C;] and in Lemma 4, we will use double-counting for estimating the sum
ZKj |C; N C}|, which can be large with n, by special bounded terms.

Lemma 2. Let H = (C4,...,C,) be an ordered r-tuple of edges in the hypergraph H. Then

2 . Cl ﬂC +r "
Z |Cilmoi2||0’i2moi3| ""'|Cin1mOir| < ( ZK]l j| ) ) (14)
TESy r
where S, denotes all permutations ™ = (iy,...,4,) of (1,2,...,r).



Proof. Denote the cardinality of the edge intersection |C; N C;| by z; ;. Then, we have to prove
that

T
2 i Tt
E LiyigTinsig * -+ * Tip_qin = " :

7T€S7‘

First, we will show that

Z T41,i2%545,45 * - -+ * Tip_q iy S (.CL’LQ + ...+ L1 + 1) ot (xr,l + ...+ Tyr—1 + 1) (15)
ﬂ'GSr

Let us call (x;1+...4+2;,+1) from (15) the bracket number i. We define a mapping f between
elements from the left-hand side of (15) and ordered sets that are obtained after performing
the multiplication in (15).

Let f: @iioTiyiy - Tip 14, = T14,T2t - - - Tpt,, WheTe Ty Toy, ... Try, is the product of the
following r elements: x; ;. from the bracket number 4,_;, ;. _,; , from the bracket number
1,_o and so forth, finally we take the factor 1 from the unused bracket. For example,

T5,6L6,101,424,3732 1S mapped to T14 * 1- X322 43" T56 " Te,1-

We note that f is an injection. Indeed, for each z1 4, 22y, . . . 2,4, there exists at most one sequence
L431,i2%49 i3 « « « Lip_q iy with 11 7é 12 ... 7é Ty, such as f(wil,i2xi27i3 .. 'xir—lyir) =14y - Lrt,-

So, since f does not change the product and f is an injection we get that the right-hand side
of (15) is not less than the left-hand side.

Finally, by the inequality on the arithmetic-geometric means and by z; ; = x;;

23 i mig Y’
($1’2+“'+x1’r+1)."'.($r,l+---+xr,r—l+1)S( <]7ﬂ J ) .
([
Lemma 3. For all s € {2,...,r — 1}
(1-s52) 2
-y =" (16)

Proof. First prove the case s > 3.

(1) () (1-72) (14 258)
= < )
20 @) (- ) (o)

(r—1+p)



Now we deal with factors in (17) separetely:

r—1+p -1
s(l—p)  sls=1(1—p?* sls—D(s=2)(A-pP+6- 5"
r—1 212 6(r —1)° <
bound (s —1)/(r — 1) by s/r, (s — 1)(s — 2)/(r — 1)* bys*/r* and (1 +8/(r — 1))*° by e.
s(=p) | 1=p) 80 e
r—1 2r( —1)  6r2(r—1)

1-—- * 1—p\°
(1 + —p) < <1 + _p) = |Apply Taylor’s formula with Lagrange Remainder|—=
r

1+

<1+

Hence, the numerator of (17) does not exceed
s(1—p) sd—p)  $?1-p)  $A-p)? s*(1—p)
1——= 1 l——F1—-—p—-1/2
( r )( - r—1 +2r(r—1)+2r2(r—1) = r(r—l)( p=1/2)+

s(1—p) - 32(1 —p) 32(1/6 —p)(1—p) 2 2
oD~ e 02— sp <1 . <1_ﬁgeXp{_7}_

Using bounds 1/(1 — z) < 1+ 2z for x < 1/2 and estimating pr < 1/100, which follows from
restrictions on r, we finally get

iy <o) () <ee{ ) () s

o 4prs 52 <e S 52 < ex 4 s? 52 < ox 52
XpR ——5 — —— XP ———= — —— C— = .
Plo—n2 72 =P e -1 72 Plass 2~ 72 P1 202

Consider the case s = 2.

1-20=p)/r _ 1—-2(1—p)/r __1=20-p)/r L 1/4r2

(= () T - gty 1B g 12

<1—1/4r* < exp{—1/4r*} < exp{—1/5r%},

where we used that 4p/(r — 1) < 8p/r = 8pr/r* < 8/100r? < 1/4r2. O
Lemma 4.
(1 —s(v )1 2 —r+1
11 r Y G, NCL|IC, N Ciy -+ |Ch, NG| < 207777 e
1- D
verrays2 (1= (52 + m) =

(18)

Proof. By Lemmas 2 and 3 the left hand side of (18) does not exceed

exp | —

Z s2(v) (2Zi<j |ICiNCy| + r)r‘

2072 T
vEH":5(v)>2



Now we will use the following double-counting: >, . |C; N Cj| is equal t0 37,y ()50 (5(2”)) <
1/2% emrswy2 S 2(v). Hence,

521) 222. .|Oiﬂ0‘|+7’ " 527) .
opf— ¥ 2O (PLalONOIT 0 s SR

2
vEH":s(v)>2 " vEH":s(v)>2 20r
. 32 v)+r " T .27
] (Z’UEH .s(v)222 ( ) S Treit/QO(t 4 1)7“ S 20 Tl ’
r er—

where we used ¢ = Y, 52 57(v)/r? and observed that the expression ((¢+ 1)7e™/*) is
maximized when ¢t = 20r — 1. O

6 Proof of Theorem 1

We want to show that there is a positive probability that no edge is short and no tuple of edges
form a snake ball.

Denote Y.* the sum over all r-sets J C (1,2,...,|E|), >.° the sum over all ordered r-tuples
(Jis -5 Jr)s With {j1,..., j,} forming such a J and ) _¢ denote the sum over all permutations

= (i1,...,%) of (1,2,...,7).

In Section 4.1 we already proved that the expected number of short edges does not exceed
1/(10r). The expected number of snake ball can be upper bounded as follows:

Z P((Cj,...,C;,) forms a snake ball) Z Z P((Cy,, ..., C;.) forms a snake ball) .

7T€Sr

On the other hand,
Z P((Cyy,...,C;.) forms a snake ball )

TESy

S (%y—l (r;1)(”—2)7’ 1 (1 1—5( V)5 ))) C N Cul.. | NG|

TESy vEH:5(v)>2 (1 - ( r + _pl

r—1 (n—2)r 117
D r—1 (1—3 -
-(-4) (&) I TP CARCLLY

vEH:s(v)>2 (1 - ( =P + r— 1 WGSr

(> A N 200 _ ((r=1)’In(z) ’"‘1 r—1\""2" 20y
—\r—1 r er-1 — rn r er—1 7

where for the first inequality we used Lemma 1 and for the second Lemma 4 and in the final

AS]
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inequality we took p from 9. Finally,

Z Z P((Cyy, ..., C;,.) forms a snake ball) <

TESy

EN (=D N =1\ 20
r 20 r er-1 —
)T D)) - D)\ = 1) 2007 _1( Y

il rn r er~t —r\r—1) °

Since 1 — % — % (Ti—l)2 > 0, with positive probability the Algorithm creates a panchromatic

coloring with 7 colors, which proves Theorem 1.

Corollary 2. There is an absolute constant ¢ so that for everyn > 2 and Inn <r < /15t

n
et

n_
272

Proof. By applying Taylor’s formula with Peano remainder, we obtain

1 1 1 1
1 T3 =14 — 40
<+7’—1>e ’ +3T3+ (7‘)

1

Thus, (1 + ﬁ) > ertaz, Finally, we use (#)_; > % when r > Inn and Theorem 1. O

7 Local variant: proof of Theorem 2
A useful parameter of H is its maximal edge degree

D := D(H) = max |{e € E(H):enée #0}.

ecE(H

We show that for 3 <r < {/1551— every n-uniform hypergraph with D < ;7 (L) " (L)n

has a panchromatic coloring Wlth r colors, which implies Theorem 2.

Let us recall Lovész Local Lemma, which shows a useful sufficient condition for simultaneously
avoiding a set Ay, Ay, ..., Ay of “bad” events:

Lemma 5 (The Local Lemma; General Case, [8]). Let Ay, As, ..., A, be events in an arbitrary
probability space. A directed graph D = (V,E) on the set of vertices V. = {1,2,...,n} is a
dependency digraph for the events Ay, ..., A, if for each i, 1 <1 <n, the event A; is mutually
independent of all the events {A; : (i,7) ¢ E}. Suppose that D = (V, E) is a dependency digraph

11



for the above events and suppose there are real numbers xy,...,x, such that 0 < x; < 1 and
PIA] < [[ijjem (1 — ;) for all 1 <i<n. Then

> [ -=).

i=1

n

AT

=1

P

In particular, with positive probability, no event A; holds.

To prove Theorem 2 we will use the following generalization of Lemma 5.

Lemma 6. If all events have probability P (A;) < %, and for all i

1
> P < (19)

j:(i,5)EE
then there is a positive probability that no A; holds.
For the sake of completeness, we give the proof of Lemma 6 here.

Proof. Put x; = 2P (A;). Then, for all ¢

v [ A—=z)=2P(A) J] (1-2P4))>P(A).

(i,7)eE (i,9)EF
O

In our case the set of bad events has two types: short edges and snake balls. Let Q(C') be the
event “edge C' is short” and W(CY},...,C,) be the event “(Cy,...,C,) forms a snake ball and
all the edges C1,...,C, are not short”. Note that Q(C') depends on at most on D + 1 events
Q(C") and at most on 2r(D + 1)D"! events W(CY, ..., C,). Similarly, W(C, ..., C,) depends
at most on (D +1) events Q(C”) and at most on 2r*(D+1)D" ! events W(C}, ..., C’). Hence,
using bounds from Sections 4.1 and 6 we get the following upper bounds:

1. if A, =W(Cy,...,C,)

s a2 )

j:(i,5)ER
— 1\ U |
22(D+1)D - (1 < <-.
+2ri(D + 1) < r ) (r— 1) er—! 4073 * r2rer—t 4
2. if A, = Q(C):

= s (50 1)

J:(i.5)€E

(n—=2)r r—1 T .21
r—1 P 20"r 1
2r(D +1)D" 1. < -.
+2r(D +1) ( . ) <T_1> |

In both cases inequality (19) holds, completing the proof of Theorem 2.

12
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