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Abstract. We deal with an extremal problem concerning panchromatic colorings of hypergraphs.
A vertex r-coloring of a hypergraphH is panchromatic if every edge meets every color. We prove
that for every r < 3

√
n

100 lnn
, every n-uniform hypergraphH with |E(H)| ≤ 1

20r2

(
n

lnn

) r−1
r
(

r
r−1

)n−1
has a panchromatic coloring with r colors.

Keywords: panchromatic coloring, property B, proper coloring, uniform hypergraph.

1 Introduction and related work
We study colorings of uniform hypergraphs. Let us recall some definitions.

A vertex r-coloring of a hypergraph H = (V,E) is a mapping from the vertex set V to a set of
r colors. An r-coloring of H is panchromatic if each edge has at least one vertex of each color.

The first sufficient condition on the existence of a panchromatic coloring of a hypergraph was
obtained in 1975 by Erdős and Lovász [8]. They proved that if every edge of an n-uniform
hypergraph intersects at most

rn−1

4(r − 1)n
(1)

other edges then the hypergraph has a panchromatic coloring with r colors.

The next generalization of the problem was formulated in 2002 by Kostochka [11], who posed the
following question: What is the minimum possible number of edges in an n-uniform hypergraph
that does not admit a panchromatic coloring with r colors? He denoted this number by p(n, r).

Following closely behind this problem is a related one: a hypergraph H = (V,E) has property B
if there is a coloring of V by 2 colors so that no edge f ∈E is monochromatic. Erdős and Hajnal
[7] (1961) proposed to find the valuem(n) equal to the minimum possible number of edges in a n-
uniform hypergraph without property B. Erdős [6] (1963–1964) found bounds Ω (2n) ≤m(n) =
O (2nn2) and Radhakrishnan and Srinivasan [13] (2000) proved m(n) ≥ Ω

(
2n(n/ lnn)1/2

)
.

Clearly, m(n) = p(n, 2).
∗Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures,

Laboratory of Advanced Combinatorics and Network Applications, 141700, Institutskiy per. 9, Dolgoprudny,
Moscow Region, Russia. E-mail: mechmathrita@gmail.com;

†Department of Mathematical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA. E-mail: jobal@illinois.edu;

1

ar
X

iv
:2

00
8.

03
82

7v
3 

 [
m

at
h.

C
O

] 
 2

3 
Se

p 
20

21



We return to the panchromatic coloring. Kostochka [11] has found connections between p(n, r)
and minimum possible number of vertices in a k-partite graph with list chromatic number
greater than r. Using results of Erdős, Rubin and Taylor [9] and also Alon’s result [2] Kostochka
[11] proved the existence of constants c1 and c2 that for every large n and fixed r:

ec1
n
r

r
≤ p(n, r) ≤ rec2

n
r . (2)

In 2010, bounds (2) were considerably improved in the paper of Shabanov [15]:

p(n, r) >

√
21− 3

4r

(
n

(r − 1)2 lnn

)1/3(
r

r − 1

)n
, for all r < n,

p(n, r) 6
1

r

(
r

r − 1

)n
e(ln r)

n2

2(r − 1)
ϕ1, when r = o(

√
n),

p(n, r) 6
1

r

(
r

r − 1

)n
e(ln r)n3/2ϕ2, when n = o

(
r2
)
,

where ϕ1, ϕ2 some functions of n and r(n), tending to one at n→∞.

In 2012, Rozovskaya and Shabanov [14] improved Shabanov’s lower bound by proving that for
r < n/(2 lnn)

1

2r2

( n

lnn

)1/2( r

r − 1

)n
6 p(n, r) 6 c2n

2

(
r

r − 1

)n
ln r. (3)

Further research was conducted by Cherkashin [3] in 2018. In his work, Cherkashin introduced
the auxiliary value p′(n, r), which is numerically equal to the minimum number of edges in the
class of n-uniform hypergraphs H = (V,E), in which any subset of vertices V ′ ⊂ V with |V ′| ≥[
r−1
r
|V |
]
must contain an edge. Analyzing the value p′(n, r) and using Sidorenko’s [16] estimates

on the Turan numbers, Cherkashin proved that for n ≥ 2, r ≥ 2

p(n, r) ≤ c
n2 ln r

r

(
r

r − 1

)n
.

Cherkashin also proved that for r ≤ c n
lnn

p(n, r) ≥ cmax

(
n1/4

r
√
r
,

1√
n

)(
r

r − 1

)n
. (4)

And repeating the ideas of Gebauer [10] Cherkashin constructed an example of a hypergraph
that has few edges and does not admit a panchromatic coloring in r colors. The reader is
referred to the survey [4] for the detailed history of panchromatic colorings.

It is thus natural to consider the local case. Formally, the degree of an edge A is the number
of hyperedges intersecting A. Let d(n, r) be the minimum possible value of the maximum edge
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degree in an n-uniform hypergraph that does not admit panchromatic coloring with r colors.
Then, the Erdős and Lovász result (1) can be easily translated into following form:

d(n, r) ≥ rn−1

4(r − 1)n
. (5)

However, the bound (5) appeared not to be sharp. The restriction on d(n, r) have been improved
by Rozovskaya and Shabanov [14]. In their work they achieved that

d(n, r) >

√
11− 3

4r(r − 1)

( n

lnn

)1/2( r

r − 1

)n
, when r 6 n/(2 lnn). (6)

2 Our results
The main result of our paper improves the estimate (3) as follows.

Theorem 1. Suppose r ≤ 3
√

n
100 lnn

. Then we have

p(n, r) ≥ 1

20r2

( n

lnn

) r−1
r

(
r

r − 1

)n
. (7)

Corollary 1. There is an absolute constant C so that for every n > 2 and lnn < r < 3
√

n
100 lnn

p(n, r) ≥ Cn

r2 lnn
· e

n
r
+ n

2r2 .

We refine the bound (6) as follows.

Theorem 2. For every 2 < r < 3
√

n
100 lnn

d(n, r) ≥ 1

40r3

( n

lnn

) r−1
r

(
r

r − 1

)n
. (8)

2.1 Methods

In the work, we propose a new idea based on the Pluhar ordered chain method [12]. In the case
of panchromatic coloring, the resulting structure is no longer a real ordered chain, but rather
an intricate "snake ball". Nevertheless, with the help of probabilistic analysis, we managed to
obtain a strong lower bound.

The rest of this paper is organised as follows. The next section describes a coloring algorithm.
Section 4 is devoted to the detailed analysis of the algorithm. In Section 5 we collect some
inequalities that will be subsequently useful. The last two sections contain proofs of Theorems 1
and 2.
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3 The coloring algorithm
We may and will assume that r ≥ 3, because case r = 2 corresponds to the case m(n). Let
H = (V,E) be an n-uniform hypergraph with less than 1

20r2

(
n

lnn

) r−1
r
(

r
r−1

)n edges and let r <
3
√

n
100 lnn

. We will show that H has a panchromatic coloring with r colors.

We define a special random order on the set V of vertices of hypergraph H using a mapping
σ : V → [0, 1], where σ(v), v ∈ V – i.i.d. with uniform distribution on [0, 1]. The value σ(v) we
will call the weight of the vertex v. Reorder the vertices so that σ(v1) < . . . < σ(v|V |). Put

p =

(
r − 1

r

)
(r − 1)2 ln( n

lnn
)

n
. (9)

We divide the unit interval [0, 1) into subintervals ∆1, δ1,∆2, δ2, . . . ,∆r as on the Figure 1, i.e.

∆i =

[
(i− 1)

(
1− p
r

+
p

r − 1

)
, i · 1− p

r
+ (i− 1) · p

r − 1

)
, i = 1, . . . , r;

δi =

[
i · 1− p

r
+ (i− 1) · p

r − 1
, i

(
1− p
r

+
p

r − 1

))
, i = 1, . . . , r − 1.

The length of each large subinterval ∆i is equal to 1−p
r

and every small subinterval δi has
length equal to p

r−1 . Since p <
1

100r
under the given assumptions on r, we can see that the

intervals ∆1, . . . ,∆r are each wider than the intervals δ1 . . . , δr−1. A vertex v is said to belong
to a subinterval [c, d), if σ(v) ∈ [c, d). We note that the same division of the segment [0, 1] has
already been used by the first author for proving some bounds on proper colorings [1].

Figure 1: Partition of [0, 1) into ∆1, δ1,∆2, δ2, . . . ,∆5 when r = 5.

We color the vertices of hypergraph H according to the following algorithm, which consists of
two steps.

1. First, each v ∈ ∆i is colored with color i for every i ∈ [r].

2. Then, moving with the growth of σ, we color a vertex v ∈ δi with color i if there exists
an edge e, v ∈ e such that e does not have color i in the current coloring. Otherwise we
color v with color i+ 1.
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4 Analysis of the algorithm

4.1 Short edge

We say that an edge A is short if A∩(∆i∪δi) = ∅ or A∩(∆i+1∪δi) = ∅ for some i ∈ [r−1]. The
probability of this event for fixed edge A and fixed i is at most 2

(
1−

(
1−p
r

+ p
r−1

))n. Summing
up this upper bound over all edges and i ∈ [r − 1]n we get

2(r − 1)|E|
(

1−
(

1− p
r

+
p

r − 1

))n
≤ 2(r − 1)

20r2

( n

lnn

) r−1
r

(
r

r − 1

)n
·

·
(
r − 1

r
− p

r(r − 1)

)n
≤ 1

10r

( n

lnn

) r−1
r

(
1− p

(r − 1)2

)n
≤ 1

10r
.

Hence, we conclude that the expected number of short edges is less than 1/10r, hence with
probability at least 1− 1/10r there is no short edge.

4.2 Snake ball

Suppose our algorithm fails to produce a panchromatic r-coloring and there is no short edges.
Let A be an edge, which does not contain some color i.

Now we have two possibilities:

• i < r, in this situation edge A is disjoint from the interval ∆i ∪ δi, which means that A is
short, a contradiction.

• i = r.

Figure 2: Edges A and B in a snake ball.

Edge A is not short, so A∩(δr−1∪∆r) 6= ∅. Since A does not contain color r we have A∩∆r = ∅.
Denote vA the last vertex of A ∩ δr−1. We note that vA could receive color r − 1 only if at the
moment of coloring vA there was an edge B without color r − 1 and vA was the first vertex of
B ∩ δr−1. In this situation we say that the pair (A,B) is conflicting in δr−1 and the vertex vA
is dangerous vertex in δr−1.

Again, edge B is not short and did not contain color r − 1 at the moment of coloring vA, so
B ∩ (δr−2 ∪∆r−1) 6= ∅ and B ∩∆r−1 = ∅. For vB, the last vertex of B ∩ δr−2 , there exists an
edge C, which at the moment of coloring vB was without color r−2 and vB was the first vertex
of C ∩ δr−2. We get (B,C) is conflicting pair in δr−2 and vB is dangerous vertex in δr−2.
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Repeating the above arguments, we obtain a construction called snake ball. It is an edge
sequence H ′ = (C1 = A,C2 = B, ..., Cr) such that consecutive edges (Ci, Ci+1) form conflicting
pairs in δr−i.

Summarizing the above, we can say that

Claim 1. If for injective σ : V → [0; 1) there are neither snack balls nor short edges then
Algorithm 1 produces a panchromatic r-coloring.

Lemma 1. Let H ′ = (C1, . . . , Cr) be an ordered r-tuple of edges in the hypergraph H. Then the
probability of the event that H ′ forms a snake ball and all the edges C1, . . . , Cr are not short
does not exceed(

p

r − 1

)r−1(
r − 1

r

)(n−2)r ∏
v∈H′:s(v)≥2

(
1− s(v)1−p

r

)(
1−

(
1−p
r

+ 2p
r−1

))s(v) r−1∏
i=1

|Ci ∩ Ci+1|,

where s(v) is the number of edges of H ′ that contain vertex v.

Before we present the proof of this lemma, we introduce some facts and give the basic scheme
of the proof. Note that if v ∈ Ci then σ(v) /∈ ∆r−i+1. Furthermore, for each v its weight σ(v)
belongs to the subintervals of total length at most

1− s(v)
1− p
r

. (10)

The scheme of the proof is following:

• fix vertex vj ∈ Cj ∩Cj+1 and its weight σ(vj) for all j = 1, . . . , r− 1. Assuming that vj is
the dangerous vertex in δr−j calculate conditional probability given weights of dangerous
vertices.

• sum up (integrate) the previous probability over all possible values of weights, using that
σ(vj) ∈ δr−j, as this is needed for H ′ to be a snake ball.

• Finally, sum over all choices of v1, . . . , vr−1.

Proof. Fix dangerous vertex vj ∈ Cj ∩Cj+1 for each j = 1, . . . r− 1. Put [αj, βj) = δj, βj −αj =
p/(r − 1) and yj = βr−j − σ(vj). Recall that 0 ≤ yj ≤ p/(r − 1).

Fix for a moment variables y1, . . . , yr−1. Then, for v ∈ Ci with s(v) = 1 its weight σ(v) belongs
to the subinterval of total length at most

1−
(

1− p
r

+ yi+1 +
p

r − 1
− yi

)
if i ∈ [2, r − 1].

And similarly, 1−
(
1−p
r

+ y1
)
for i = 1 and 1−

(
1−p
r

+ p
r−1 − yr−1

)
for i = r.

Now we are ready to give an upper bound for the probability of the event that “H ′ forms a
snake ball”, conditional on the value taken by y1, . . . , yr−1:
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(
1−

(
1− p
r

+ y1

))n−1
·
(

1−
(

1− p
r

+ y2 +
p

r − 1
− y1

))n−2
· . . . · (11)

·
(

1−
(

1− p
r

+ yr−1 +
p

r − 1
− yr−2

))n−2
·
(

1−
(

1− p
r

+
p

r − 1
− yr−1

))n−1
· (12)

·
∏

v∈H′:s(v)≥2

(
1− s(v)1−p

r

)(
1−

(
1−p
r

+ 2p
r−1

))s(v) . (13)

Here we estimated as if all the rest of the vertices have s(v) = 1 (factors (11) and factor (12)),
and then using (10), edited for vertices with s(v) > 1 by multiplying by 1−s(v)1−p

r
and divided

by
(
1−

(
1−p
r

+ 2p
r−1

))s(v)
. The factor

(
1−

(
1−p
r

+ 2p
r−1

))
is obviously no more than any factor

for s(v) = 1, so we get a correct upper bound.

Taking out factor ((r − 1)/r)(n−2)r+2 in the above equation and using estimate (1 + y)s ≤
exp{ys}, we get the following upper bound on product of (11) and (12):(

r − 1

r

)r(n−2)+2

exp

(
(n− 1)p

r − 1
− (n− 2)p

r − 1
− p

(r − 1)2
− ry1
r − 1

+
ryr−1
r − 1

)
≤(

r − 1

r

)r(n−2)+2

exp

(
p(r − 2)

(r − 1)2
+
ryr−1
r − 1

)
≤
(
r − 1

r

)r(n−2)+2

exp

(
p(r − 2)

(r − 1)2
+

rp

(r − 1)2

)
=(

r − 1

r

)r(n−2)+2

exp

(
2p

r − 1

)
<

(
r − 1

r

)r(n−2)
.

To obtain the final estimate, we have to integrate over the weights y1, y2, . . . , yr−1 (factor
(p/(r − 1))r−1) and sum up over all possible choices for the v1, ..., vr−1 (factor

∏r−1
i=1 |Ci∩Ci+1|).

2

5 Auxilary calculations
Under the assumptions of Theorem 1 we will formulate and prove three auxiliary lemmas needed
to prove Theorem 1. In particular, in Lemma 2, we replace product of pairwise intersections on
their sum

∑
i<j |Ci ∩ Cj| and in Lemma 4, we will use double-counting for estimating the sum∑

i<j |Ci ∩ Cj|, which can be large with n, by special bounded terms.

Lemma 2. Let H ′ = (C1, . . . , Cr) be an ordered r-tuple of edges in the hypergraph H. Then

∑
π∈Sr

|Ci1 ∩ Ci2||Ci2 ∩ Ci3| · . . . · |Cir−1 ∩ Cir | ≤
(

2
∑

i<j |Ci ∩ Cj|+ r

r

)r
, (14)

where Sr denotes all permutations π = (i1, . . . , ir) of (1, 2, . . . , r).
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Proof. Denote the cardinality of the edge intersection |Ci ∩Cj| by xi,j. Then, we have to prove
that

∑
π∈Sr

xi1,i2xi2,i3 · . . . · xir−1,ir ≤
(

2
∑

i<j xi,j + r

r

)r
.

First, we will show that∑
π∈Sr

xi1,i2xi2,i3 · . . . · xir−1,ir ≤ (x1,2 + . . .+ x1,r + 1) · . . . · (xr,1 + . . .+ xr,r−1 + 1). (15)

Let us call (xi,1 + . . .+xi,r +1) from (15) the bracket number i. We define a mapping f between
elements from the left-hand side of (15) and ordered sets that are obtained after performing
the multiplication in (15).

Let f : xi1,i2xi2,i3 . . . xir−1,ir 7→ x1,t1x2,t2 . . . xr,tr , where x1,t1x2,t2 . . . xr,tr is the product of the
following r elements: xir−1,ir from the bracket number ir−1, xir−2,ir−1 from the bracket number
ir−2 and so forth, finally we take the factor 1 from the unused bracket. For example,

x5,6x6,1x1,4x4,3x3,2 is mapped to x1,4 · 1 · x3,2 · x4,3 · x5,6 · x6,1.

We note that f is an injection. Indeed, for each x1,t1x2,t2 . . . xr,tr there exists at most one sequence
xi1,i2xi2,i3 . . . xir−1,ir , with i1 6= i2 . . . 6= ir, such as f(xi1,i2xi2,i3 . . . xir−1,ir) = x1,t1 . . . xr,tr .

So, since f does not change the product and f is an injection we get that the right-hand side
of (15) is not less than the left-hand side.

Finally, by the inequality on the arithmetic-geometric means and by xi,j = xj,i

(x1,2 + . . .+ x1,r + 1) · . . . · (xr,1 + . . .+ xr,r−1 + 1) ≤
(

2
∑

i<j xi,j + r

r

)r
.

2

Lemma 3. For all s ∈ {2, . . . , r − 1}(
1− s1−p

r

)(
1−

(
1−p
r

+ 2p
r−1

))s ≤ e−
s2

20r2 . (16)

Proof. First prove the case s ≥ 3.(
1− s(1−p)

r

)
(
1−

(
1−p
r

+ 2p
r−1

))s =

(
1− s(1−p)

r

)
(
1−

(
1−p
r

))s (
1− 2pr

(r−1)(r−1+p)

)s ≤
(

1− s(1−p)
r

)(
1 + 1−p

r−1+p

)s
(

1− 2pr
(r−1)2

)s . (17)

8



Now we deal with factors in (17) separetely:(
1 +

1− p
r − 1 + p

)s
≤
(

1 +
1− p
r − 1

)s
= |Apply Taylor’s formula with Lagrange Remainder|=

1 +
s(1− p)
r − 1

+
s(s− 1)(1− p)2

2(r − 1)2
+
s(s− 1)(s− 2)(1− p)3(1 + θ · 1−p

r−1)s−3

6(r − 1)3
≤

bound (s− 1)/(r − 1) by s/r, (s− 1)(s− 2)/(r − 1)2 bys2/r2 and (1 + θ/(r − 1))s−3 by e.

≤ 1 +
s(1− p)
r − 1

+
s2(1− p)
2r(r − 1)

+
s3(1− p)2e
6r2(r − 1)

.

Hence, the numerator of (17) does not exceed(
1− s(1− p)

r

)(
1 +

s(1− p)
r − 1

+
s2(1− p)
2r(r − 1)

+
s3(1− p)2

2r2(r − 1)

)
< 1− s2(1− p)

r(r − 1)
(1− p− 1/2) +

s(1− p)
r(r − 1)

= 1− s2(1− p)
r(r − 1)

(1/2− 1/s− p) < 1− s2(1/6− p)(1− p)
r2

< 1− s2

7r2
≤ exp

{
− s2

7r2

}
.

Using bounds 1/(1 − x) < 1 + 2x for x < 1/2 and estimating pr < 1/100, which follows from
restrictions on r, we finally get(

1− s1−p
r

)(
1−

(
1−p
r

+ 2pr
r−1

))s ≤ exp

{
− s2

7r2

}(
1− 2pr

(r − 1)2

)−s
< exp

{
− s2

7r2

}(
1 +

4pr

(r − 1)2

)s
≤

exp

{
4prs

(r − 1)2
− s2

7r2

}
≤ exp

{
s

25(r − 1)2
− s2

7r2

}
< exp

{
4

25s
· s

2

r2
− s2

7r2

}
< exp

{
− s2

20r2

}
.

Consider the case s = 2.

1− 2(1− p)/r(
1−

(
1−p
r

+ 2p
r−1

))2 ≤ 1− 2(1− p)/r
1− 2(1−p)

r
− 4p

(r−1) + 1
2r2

≤ 1− 2(1− p)/r
1− 2(1−p)

r
− 1

4r2
+ 1

2r2

= 1− 1/4r2

1− 21−p
r

+ 1
4r2

≤ 1− 1/4r2 ≤ exp{−1/4r2} < exp{−1/5r2},

where we used that 4p/(r − 1) < 8p/r = 8pr/r2 < 8/100r2 < 1/4r2. 2

Lemma 4. ∏
v∈H′:s(v)≥2

(
1− s(v)1−p

r

)(
1−

(
1−p
r

+ 2p
r−1

))s(v)
 ·∑

σ∈Sr

|Ci1 ∩ Ci2 ||Ci2 ∩ Ci3 | · . . . · |Cir−1 ∩ Cir | ≤ 20rr2re−r+1

(18)

Proof. By Lemmas 2 and 3 the left hand side of (18) does not exceed

exp

− ∑
v∈H′:s(v)≥2

s2(v)

20r2


(

2
∑

i<j |Ci ∩ Cj|+ r

r

)r
.

9



Now we will use the following double-counting:
∑

i<j |Ci ∩ Cj| is equal to
∑

v∈H′:s(v)≥2
(
s(v)
2

)
<

1/2
∑

v∈H′:s(v)≥2 s
2(v). Hence,

exp

− ∑
v∈H′:s(v)≥2

s2(v)

20r2


(

2
∑

i<j |Ci ∩ Cj|+ r

r

)r
≤ exp

− ∑
v∈H′:s(v)≥2

s2(v)

20r2

 · rr·
·

(∑
v∈H′:s(v)≥2 s

2(v) + r

r2

)r

≤ rre−t/20(t+ 1)r ≤ 20rr2r

er−1
,

where we used t =
∑

v∈H′:s(v)≥2 s
2(v)/r2 and observed that the expression

(
(t+ 1)re−t/20

)
is

maximized when t = 20r − 1. 2

6 Proof of Theorem 1
We want to show that there is a positive probability that no edge is short and no tuple of edges
form a snake ball.

Denote
∑∗ the sum over all r-sets J ⊆ (1, 2, . . . , |E|),

∑o the sum over all ordered r-tuples
(j1, . . . , jr), with {j1, . . . , jr} forming such a J and

∑
π∈Sr

denote the sum over all permutations
π = (i1, . . . , ir) of (1, 2, . . . , r).

In Section 4.1 we already proved that the expected number of short edges does not exceed
1/(10r). The expected number of snake ball can be upper bounded as follows:

o∑
P ((Cj1 , ..., Cjr) forms a snake ball) =

∗∑ ∑
π∈Sr

P ((Ci1 , ..., Cir) forms a snake ball) .

On the other hand,∑
π∈Sr

P ((Ci1 , ..., Cir) forms a snake ball )

≤
∑
π∈Sr

(
p

r − 1

)r−1(
r − 1

r

)(n−2)r ∏
v∈H′:s(v)≥2

(
1− s(v)1−p

r

)(
1−

(
1−p
r

+ 2p
r−1

))s(v) |Ci1 ∩ Ci2| . . . |Cir−1 ∩ Cir |

=

(
p

r − 1

)r−1(
r − 1

r

)(n−2)r ∏
v∈H′:s(v)≥2

(
1− s(v)1−p

r

)(
1−

(
1−p
r

+ 2p
r−1

))s(v) ∑
π∈Sr

|Ci1 ∩ Ci2| . . . |Cir−1 ∩ Cir |

≤
(

p

r − 1

)r−1(
r − 1

r

)(n−2)r
20rr2r

er−1
≤
(

(r − 1)2 ln( n
lnn

)

rn

)r−1
·
(
r − 1

r

)(n−2)r

· 20rr2r

er−1
,

where for the first inequality we used Lemma 1 and for the second Lemma 4 and in the final
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inequality we took p from 9. Finally,

∗∑ ∑
π∈Sr

P ((Ci1 , ..., Cir) forms a snake ball) ≤

(
|E|
r

)
·
(

(r − 1)2 ln( n
lnn

)

rn

)r−1
·
(
r − 1

r

)(n−2)r

· 20rr2r

er−1
≤(

1
20r2

(
n

lnn

) r−1
r
(

r
r−1

)n)r
r!

·
(

(r − 1)2 ln( n
lnn

)

rn

)r−1
·
(
r − 1

r

)(n−2)r

· 20rr2r

er−1
≤ 1

r

(
r

r − 1

)2

.

Since 1 − 1
10r
− 1

r

(
r
r−1

)2
> 0, with positive probability the Algorithm creates a panchromatic

coloring with r colors, which proves Theorem 1.

Corollary 2. There is an absolute constant c so that for every n > 2 and lnn < r < 3
√

n
100 lnn

p(n, r) ≥ c
n

r2(lnn)
· e

n
r
+ n

2r2 .

Proof. By applying Taylor’s formula with Peano remainder, we obtain(
1 +

1

r − 1

)
e−

1
r
− 1

2r2 = 1 +
1

3r3
+O

(
1

r4

)
.

Thus,
(
1 + 1

r−1

)
> e

1
r
+ 1

2r2 . Finally, we use
(
n

lnn

)− 1
r > 1

e
when r > lnn and Theorem 1. 2

7 Local variant: proof of Theorem 2
A useful parameter of H is its maximal edge degree

D := D(H) = max
e∈E(H)

|{e′ ∈ E(H) : e ∩ e′ 6= 0}| .

We show that for 3 < r < 3
√

n
100 lnn

every n-uniform hypergraph with D ≤ 1
40r3

(
n

lnn

) r−1
r
(

r
r−1

)n
has a panchromatic coloring with r colors, which implies Theorem 2.

Let us recall Lovász Local Lemma, which shows a useful sufficient condition for simultaneously
avoiding a set A1, A2, . . . , AN of “bad” events:

Lemma 5 (The Local Lemma; General Case, [8]). Let A1, A2, . . . , An be events in an arbitrary
probability space. A directed graph D = (V,E) on the set of vertices V = {1, 2, . . . , n} is a
dependency digraph for the events A1, . . . , An if for each i, 1 ≤ i ≤ n, the event Ai is mutually
independent of all the events {Aj : (i, j) /∈ E}. Suppose that D = (V,E) is a dependency digraph

11



for the above events and suppose there are real numbers x1, . . . , xn such that 0 ≤ xi < 1 and
P [Ai] ≤ xi

∏
(i,j)∈E (1− xj) for all 1 ≤ i ≤ n. Then

P

[
n∧
i=1

Ai

]
≥

n∏
i=1

(1− xi) .

In particular, with positive probability, no event Ai holds.

To prove Theorem 2 we will use the following generalization of Lemma 5.

Lemma 6. If all events have probability P (Ai) ≤ 1
2
, and for all i∑

j:(i,j)∈E

P (Aj) ≤
1

4
, (19)

then there is a positive probability that no Ai holds.

For the sake of completeness, we give the proof of Lemma 6 here.

Proof. Put xi = 2P (Ai) . Then, for all i

xi
∏

(i,j)∈E

(1− xj) = 2P (Ai)
∏

(i,j)∈E

(1− 2P(Aj)) ≥ P (Ai) .

2

In our case the set of bad events has two types: short edges and snake balls. Let Q(C) be the
event “edge C is short” and W(C1, . . . , Cr) be the event “(C1, . . . , Cr) forms a snake ball and
all the edges C1, . . . , Cr are not short”. Note that Q(C) depends on at most on D + 1 events
Q(C ′) and at most on 2r(D+ 1)Dr−1 events W(C1, . . . , Cr). Similarly, W(C1, . . . , Cr) depends
at most on r(D+1) events Q(C ′) and at most on 2r2(D+1)Dr−1 eventsW(C ′1, . . . , C

′
r). Hence,

using bounds from Sections 4.1 and 6 we get the following upper bounds:

1. if Ai =W(C1, . . . , Cr) :∑
j:(i,j)∈E

P(Aj) ≤ r(D + 1) · 2(r − 1)

(
1−

(
1− p
r

+
p

r − 1

))n
+

+2r2(D + 1)Dr−1 ·
(
r − 1

r

)(n−2)r (
p

r − 1

)r−1
20rr2r

er−1
<

2r2

40r3
+

2r2

r2rer−1
<

1

4
.

2. if Ai = Q(C) : ∑
j:(i,j)∈E

P(Aj) ≤ (D + 1) · 2(r − 1)

(
1−

(
1− p
r

+
p

r − 1

))n
+

+ 2r(D + 1)Dr−1 ·
(
r − 1

r

)(n−2)r (
p

r − 1

)r−1
20rr2r

er−1
<

1

4
.

In both cases inequality (19) holds, completing the proof of Theorem 2.
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