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Abstract

The anti-forcing number of a perfect matching M of a graph G is the minimum

number of edges of G whose deletion results in a subgraph with a unique perfect

matching M , denoted by af(G,M). When G is a plane bipartite graph, Lei et

al. established a minimax result: For any perfect matching M of G, af(G,M)

equals the maximum number of M -alternating cycles of G where any two either are

disjoint or intersect only at edges in M ; For a hexagonal system, the maximum anti-

forcing number equals the fries number. In this paper we show that for every perfect

matching M of a hexagonal system H with the maximum anti-forcing number or

minus one, af(H,M) equals the number of M -alternating hexagons of H. Further

we show that a hexagonal system H has a triphenylene as nice subgraph if and

only af(H,M) always equals the number of M -alternating hexagons of H for every

perfect matching M of H.

Keywords: Hexagonal system; Perfect matching; Anti-forcing number; Fries num-

ber; Triphenylene.

1 Introduction

All graphs considered in this paper are finite and simple connected graphs. Let G be

a graph with vertex set V (G) and edge set E(G). A perfect matching M of G is a set

of edges of G such that each vertex of G is incident with exactly one edge in M . This

graph-theoretical concept coincides with a Kekulé structure of chemical molecules.

In 1987, Randić and Klein [14] proposed the innate degree of freedom of a Kekulé

structure, i.e. the minimum number of double bonds which simultaneously belong to

the given Kekulé structure and to no other one. This notion has arisen in the study of
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†Corresponding author.
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finding resonance structures of a given molecule in chemistry. Later, it is named “forcing

number” by Harary et al. [13].

A forcing set S for a perfect matching M of a graph G is a subset of M which is

not contained in other perfect matchings of G. The forcing number of M is the smallest

cardinality over all forcing sets of M , denoted by f(G,M). The maximum forcing number

of G is the maximum value of forcing numbers of all perfect matchings of G, denoted by

F (G). For further information on this topic, we refer the reader to a survey [4] and other

references [2, 3, 10, 18, 20, 32, 27].

Let M be a perfect matching of a graph G. A cycle (resp. a path P ) C of G is

M-alternating if the edges of C (resp. P ) appear alternately in M and E(G)\M . It was

revealed [2, 20] that a subset S ⊆M is a forcing set of M if and only if S contains at least

one edge of each M -alternating cycle of G. This implies a simple inequality f(G,M) ≥
c(G,M), where c(G,M) denotes the maximum number of disjoint M -alternating cycles

in G. In the case where G is a plane bipartite graph, Pachter and Kim [18] observed that

these two numbers are always equal to each other.

Theorem 1.1. [18] Let G be a plane bipartite graph with a perfect matching M . Then

f(G,M) = c(G,M).

A more general result on bipartite graphs due to B. Guenin and R. Thomas is given

as follows; see [11, Corollary 5.8].

Theorem 1.2. [11] Let G be a bipartite graph, and let M be a perfect matching in G.

Then G has no matching minor isomorphic to K3,3 or the Heawood graph if and only if

f(G′,M ′) = c(G′,M ′) for every subgraph G′ of G such that M ′ = M ∩E(G′) is a perfect

matching in G′.

In 2007, the anti-forcing number of a graph was introduced by Vukičević and Trinajstić

[25] as the smallest number of edges whose removal results in a subgraph with a unique

perfect matching. In an early paper, Li [17] proposed a forcing single edge (i.e. anti-forcing

edge) of a graph, which belongs to all but one perfect matching. For other researches on

this topic, see Refs [4, 7, 26, 29].

More recently, by an analogous manner as the forcing number, Klein and Rosenfeld

[15] and Lei et al. [16] independently defined the anti-forcing number of a single perfect

matching in a graph. Let M be a perfect matching of a graph G. A subset S ⊆ E(G)\M
is called an anti-forcing set of M if G−S has a unique perfect matching M , where G−S

denotes the graph obtained from G by deleting all edges in S. The following lemma shows

an equivalent condition.

Lemma 1.3. [16] Let G be a graph and M be a perfect matching of G. A subset S of

E(G)\M is an anti-forcing set of M if and only if S contains at least one edge of every

M-alternating cycle.
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The minimum cardinality of anti-forcing sets of M is called the anti-forcing number of

M , denoted by af(G,M). From these concepts, we can see that the anti-forcing number

of a graph G is just the minimum value of anti-forcing numbers of all perfect matchings of

G. The maximum anti-forcing number of G is the maximum value of anti-forcing numbers

of all perfect matchings of G, denoted by Af(G). Two sharp upper bounds on maximum

anti-forcing number and anti-forcing spectrum of a graph, we may refer to recent refs.

[9, 23, 8].

Given a graph G with a perfect matching M , two M -alternating cycles of G are said

to be compatible if they either are disjoint or intersect only at edges in M . A set A of

pairwise compatible M -alternating cycles of G is called a compatible M-alternating set.

Let c′(G,M) denote the maximum cardinality of compatible M -alternating sets of G. We

also have af(G,M) ≥ c′(G,M). For plane bipartite graphs G, Lei et al. [16] established

the equality.

Theorem 1.4. [16] Let G be a plane bipartite graph with a perfect matching of M . Then

af(G,M) = c′(G,M).

A hexagonal system (or benzenoid) is a 2-connected finite plane graph such that every

interior face is bounded by a regular hexagon of side length one [21]. It can also be formed

by a cycle with its interior in the infinite hexagonal lattice on the plane (graphene) [6].

A hexagonal system with a perfect matching is regarded as a molecular graph (carbon-

skeleton) of a benzenoid hydrocarbon. Hence these kinds of graphs are called benzenoid

systems and have been extensively investigated; We may refer to a detailed review [19]

due to Randić.

Recently it was known [28, 16] that maximum forcing number and anti-forcing number

of a hexagonal system are equal to the famous Clar number and Fries number respectively,

which can measure the stability of polycyclic benzenoid hydrocarbons [1, 5, 12]. The same

results hold for (4,6)-fullerene graphs [22].

Let H be a hexagonal system with a perfect matching. A subgraph H0 of H is called

nice if H −V (H0) has a perfect matching. A set of disjoint hexagons of H is called sextet

pattern if they form a nice subgraph of H. The size of a maximum resonant set of H is

the Clar number of H, denoted by Cl(H).

Theorem 1.5. [28] Let H be a hexagonal system with a perfect matching. Then F (H) =

Cl(H).

Xu et al. [28] obtained the theorem by using Zheng and Chen’s result [34] that if

H − K has at least two different perfect matchings for a resonant set K of H, then

Cl(H) ≥ |K| + 1. By rising this bound by one, the present authors obtained a stronger

result.

Theorem 1.6. [35] Let H be a hexagonal system with a perfect matching. For every

perfect matching M of H with forcing number F (H), H has F (H) disjoint M-alternating

hexagons.
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However, Theorem 1.6 does not necessarily hold for perfect matchings of H with the

forcing number F (H)−1. For example, the Coronene (see Figure 1(a)) has the maximum

forcing number 3. For the specific perfect matching of Coronene marked by the bold lines,

it has forcing number two, but it has only one alternating hexagon.

Figure 1: (a) Coronene, and (b) Triphenylene.

For a hexagonal system H with a perfect matching M , let fr(H,M) denote the number

of all M -alternating hexagons in H. The maximum value of fr(H,M) over all perfect

matchings M is just the Fries number of H, denoted by Fr(H). Since all M -alternating

hexagons of H are compatible, Theorem 1.4 implies af(H,M) = c′(H,M) ≥ fr(H,M).

The second equality does not hold in general. For example, the bold lines of Triphenylene

in Figure 1(b) constitute a perfect matching with anti-forcing number two, whereas it has

only one alternating hexagon. However, Lei et al. [16] obtained the following result by

finding a perfect matching M with the equality.

Theorem 1.7. [16] Let H be a hexagonal system with a perfect matching. Then

Af(H) = Fr(H).

In this article, we show that af(H,M) = fr(H,M) always holds for every perfect

matching M of a hexagonal system H with the maximum anti-forcing number or minus

one.

Theorem 1.8. Let H be a hexagonal system with a perfect matching. Then for every

perfect matching M of H with anti-forcing number Af(H) or Af(H)− 1, we have

af(H,M) = fr(H,M). (1)

To prove this main result, in Section 2 we introduce some auxiliary terms relevant

to our studies and give a crucial lemma that states that for a non-crossing compatible

M -alternating set of H with two members whose interiors have a containment relation,

the maximum anti-forcing number of H is larger than the cardinality by at least two.

In Section 3, by using this lemma we obtain a stronger result: for any perfect matching

M of H whose anti-forcing number reaches the maximum value or minus one, any two

members in any given maximum non-crossing compatible M -alternating set of H have

disjoint interiors and any member bounds a linear hexagonal chain, then give a proof of

Theorem 1.8. In Section 4 we give a complete characterization to hexagonal systems H

that always have Eq. (1) for each perfect matching M of H by forbidding a triphenylene

as nice subgraph.
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2 A crucial lemma

In what follows, we assume that all hexagonal systems are embedded in the plane such

that some edges parallel to each other are vertical except for Figure 8. A peak (resp.

valley) of a hexagonal system is a vertex whose neighbors are below (resp. above) it. For

convenience, the vertices of a hexagonal system are colored with white and black such

that any two adjacent vertices receive different colors, and the peaks are colored black.

Let G be a plane bipartite graph with a perfect matching M , and let A be a compatible

M -alternating set of G. Two cycles inA are said to be non-crossing if their interiors either

are disjoint or have a containment relation. Further, we say A is non-crossing if any two

cycles in A are non-crossing. The following useful lemma was described in the first claim

of the proof of [16, Theorem 3.1].

Lemma 2.1. [16] Let H be a hexagonal system with a perfect matching M . Then for any

compatible M-alternating set A of H, H has a non-crossing compatible M-alternating set

A′ with |A′| = |A|.

We now state a crucial lemma as follows.

Lemma 2.2. For a hexagonal system H with a perfect matching M0, let A0 be a non-

crossing compatible M0-alternating set of H. Suppose A0 has a pair of members so that

their interiors have a containment relation. Then Af(H) ≥ |A0|+ 2.

In order to prove this lemma, we need some further terminology. Let M be a perfect

matching of H. An edge of H is called an M -double edge if it belongs to M , and an

M -single edge otherwise. M -double edges are often indicated by bold or double edges

in figures. An M -alternating cycle C of H is said to be proper (resp. improper) if each

M -double edge in C goes from white end to black end (resp. from black end to white end)

along the clockwise direction of C. The boundary of the infinite face of H is called the

boundary of H, denoted by ∂(H). An edge on the boundary of H is a boundary edge. A

hexagon of H is called an external hexagon if it contains a boundary edge, and an internal

hexagon otherwise.

A hexagonal system H is cata-condensed if all vertices of H lie on ∂(H). A hexagon

of a cata-condensed hexagonal system is a branch if it has three adjacent hexagons. For

example, the graph showed in Figure 1(b) is a cata-condensed hexagonal system with

exactly one branch. A cata-condensed hexagonal system without branch is a hexagonal

chain. In particular, it is a linear chain if the centers of all hexagons lie on a straight

line. A maximal linear chain of a hexagonal chain is called a segment.

The symmetric difference of finite sets A1 and A2 is defined as A1 ⊕ A2 := (A1 ∪
A2)\(A1 ∩ A2). This operation can be defined among many finite sets in a natural way

and is associative and commutative. If C is an M -alternating cycle of H, then M ⊕ C is

also a perfect matching of H and C is an (M ⊕ C)-alternating cycle of H, where C may

be regarded as its edge-set.
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For a cycle C of a hexagonal system H, let I[C] denote the subgraph of H formed by

C together with its interior, and let h(C) be the number of hexagons in I[C].

Proof of Lemma 2.2. By the assumption, we can choose a perfect matching M of

H and a non-crossing compatible M -alternating set A of H so that the following three

conditions hold.

(i) |A| = |A0|,
(ii) A has a pair of members so that their interiors have a containment relation,

(iii) h(A) :=
∑

C∈A h(C) is as small as possible subject to (i) and (ii).

Since A is non-crossing, we have that for any two cycles in A their interiors either

are disjoint or one contains the other one. Hence the cycles in A form a poset according

to the containment relation of their interiors. Since each M -alternating cycle has an

M -alternating hexagon in its interior (cf. [32]), we immediately have the following claim.

Claim 1. Every minimal member of A is a hexagon.

By the choice of A, we can see that A has at least one non-hexagon member. Let C be

a minimal non-hexagon member of A. Then C is an M -alternating cycle whose interior

contains only minimal members of A. By Claim 1 C contains at least one hexagon as a

member of A in its interior. Set H ′ := I[C]. So it follows that H ′ is not a linear hexagonal

chain.

Claim 2. For any M -alternating hexagon h in H ′, either h ∈ A or at least one of the

three M -double edges of h does not belong to C.

Proof. If h belongs to A, then the claim holds. If not, suppose to the contrary that the

three M -double edges of h belong to C. Then M ⊕ h is a perfect matching of H, and all

(one to three) components of C⊕h are (M ⊕h)-alternating cycles. We can see that every

minimal member of A in H ′ is disjoint with h. By the choice of C, C⊕h has a component

as a cycle C ′ which is not a hexagon and contains a minimal member of A in its interior.

Since each vertex of H has degree 2 or 3, each M -double edge of H is contained in at most

two cycles of A. This implies that A\{C} has at most one member intersecting h. If such

a member exists, denote it by C ′′ and let A′ := (A ∪ {h,C ′}) − {C,C ′′}; otherwise, let

A′ := (A∪{C ′})−{C}. Then A′ is a compatible (M ⊕h)-alternating set of H satisfying

Conditions (i) and (ii). But h(A′) < h(A), contradicting the choice for A. Hence Claim

2 holds.

Now we focus our attention on hexagonal system H ′ with the boundary C as some

preliminaries. Without loss of generality, suppose that C is a proper M -alternating cycle

(for the other case, analogous arguments are implemented on right-top and right-bottom

corners of H ′).

We apply an approach and notion appeared in Ref. [35]. Along the boundary C of

H ′, we will find two substructures of H ′ in its left-top corner and left-bottom corner as

Figures 3 and 4 respectively as follows.
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A b-chain of hexagonal system H ′ is a maximal horizontal linear chain consisting of the

consecutive external hexagons when traversing (counter)clockwise the boundary ∂(H ′).

A b-chain is called high (resp. low) if all hexagons adjacent to it are below (resp. above)

it. For example, in Figure 2 (taken from [35]), D0, D1, D2, G1, G2, . . . , G9, G
′
1, D5, D6 and

D7 are b-chains. In particular, D0, D1, D2 and G1 are high b-chains, while G′1, D5 and

D6 are low b-chains. But G2, G3, . . . , G9 and D7 are neither high nor low b-chains.

Figure 2: Various b-chains of a hexagonal system, taken from [35].

Given a high b-chain and a low b-chain of H ′, they are distinct, otherwise H ′ itself

is a linear chain, contradicting the choice of C. When traversing the b-chains along the

boundary ∂(H ′) counterclockwise from the high b-chain to the low b-chain, let G1 be the

last high b-chain and let G′1 be the first low b-chain after G1. Then the b-chains between

G1 and G′1 descend monotonously.

From high b-chain G1 we have a sequence of consecutive b-chains G1, G2, . . . , Gm,

m ≥ 1, with the following properties: (1) for each 1 ≤ i < m, Gi+1 is next to Gi, and

the left end-hexagon of Gi+1 lies on the lower left side of Gi, (2) either Gm is just the low

b-chain G′1 or Gm+1 is a b-chain next to Gm such that Gm+1 has no hexagon lying on the

lower left side of Gm. Let G be the subgraph of H ′ consisting of b-chains G1, G2, . . . , Gm−1

and the hexagons of Gm lying on the lower left side of Gm−1. Then G is a ladder-shape

hexagonal chain.

Similarly, from low b-chain G′1 we have a sequence of consecutive b-chains G′1, G
′
2, . . . , G

′
s,

s ≥ 1, with the following properties: (1) for each 1 ≤ j < s, G′j+1 is next to G′j, and

the left end hexagon of G′j+1 lies on the upper left side of G′j, (2) either G′s is just the

high b-chain G1 or G′s+1 is next to the b-chain G′s such that G′s+1 has no hexagon ly-

ing on the upper left side of G′s. Let G′ be the subgraph of H ′ consisting of b-chains

G′1, G
′
2, . . . , G

′
s−1 and the hexagons of G′s lying on the higher left side of G′s−1. So G′ is an

inverted ladder-shaped hexagonal chain.

For example, given a high b-chain D1 and a low b-chain D5 in Figure 2, we can get
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two required hexagonal chains G = G1 ∪G2 ∪G3 ∪G4 and G′ = G9 ∪G′1. The following

claim is obvious.

Claim 3. Either G and G′ are disjoint or they intersect only in the b-chain Gm = G′s.

To analyze the substructure G of H ′, we label some edges of G as follows (see Figure

3): let e1,1 be the slant M -double edge of the right end hexagon of G1 which belongs to C

and contains a peak of H ′. Neither A nor A′ is contained in H ′. Denote by ei,j, 1 ≤ i ≤ m

and 1 ≤ j ≤ n(i), the j-th edge of Gi that is parallel to e1,1 and on the boundary C of

H ′, and denote the specific edges in G1 and Gm by a, a′ and e0, e
′
0 respectively.

'

2
S

'

4
S

'

6
S

1
g2

g

Figure 3: Hexagonal chain G on the left-top corner of H ′ (bold edges are M -double edges,

m = 5, n(1)=3, n(2)=1, n(3)=3, n(4)=2, n(5)=2 and A,A′ /∈ H ′) and the corresponding broken

line segment L1.

Since the boundary C of H ′ is a proper M -alternating cycle, all the edges e0, e
′
0, ei,j,

1 ≤ i ≤ m, 1 ≤ j ≤ n(i), are M -double edges. In order to simplify our discussions,

we draw a ladder-shape broken line segment L1 = P0P1 · · ·Pq+1(q ≥ 1) (see Figure 3)

satisfying: (1) L1 only passes through hexagons of G, (2) the endpoints P0 and Pq+1 are

the midpoints of the edges a and a′ respectively, (3) L1 passes through the centers of all

hexagons of G, and (4) each Pi (1 ≤ i ≤ q) is a turning point, which is the center of a

hexagon Si of G. Then each line segment PiPi+1 (0 ≤ i ≤ q) is orthogonal to an edge

direction, and Pi+1 (0 ≤ i ≤ q) lies on the lower left side or the left side of Pi according

as i is even or odd.

Similarly we treat substructure G′ of H ′ as follows (see Figure 4). Let fk,`, 1 ≤ k ≤ s

and 1 ≤ ` ≤ t(k), and f0, f
′
0, b, b

′ be a series of boundary edges on this structure as

indicated in Figure 4. Neither hexagon B nor hexagon B′ is contained in H ′. Since the

boundary of H ′ is a proper M -alternating cycle, we can see that all the edges f0, f
′
0, fk,`,

1 ≤ k ≤ s and 1 ≤ ` ≤ t(k), are M -double edges.
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2
L

2
L

Figure 4: Hexagonal chain G′ on the left-bottom corner of H ′ (bold edges are M -double edges,

s = 4, t(1)=3, t(2)=1, t(3)=3, t(4)=1 and B,B′ /∈ H ′) and the corresponding broken line

segment L2.

Like L1, we also draw a ladder-shape broken line segment L2 = Q0Q1 · · ·Qr+1(r ≥ 1)

as indicated in Figure 4 so that L2 only passes through hexagons of G′ and each turning

point Qi (1 ≤ i ≤ r) is the center of a hexagon Ti of G′. It is obvious that both Li,

i = 1, 2, have an odd number of turning points. By Claim 3, we immediately obtain the

following claim.

Claim 4. Either the broken line segments L1 and L2 are disjoint or the last segment

PqPq+1 of L1 is identical to the last segment QrQr+1 of L2.

Since the boundary of H ′ is a proper M -alternating cycle, we have that all the edges

of H intersected by Li, i = 1, 2, are M -single edges. We now have the following claim.

Claim 5. (a) The boundary of G (resp. G′) is a proper M -alternating cycle, and

(b) n(1) = 1 or 2 (resp. t(1) = 1 or 2), and m ≥ 2 (resp. s ≥ 2).

Proof. We only consider G (the other case is almost the same). Let Z1 be the path

induced by those vertices of G which are just upon L1. Let Z2 be the path induced by

those vertices of G which are just below L1. Since the boundary C of H ′ is a proper

M -alternating cycle, Z1 is an M -alternating path with two end edges in M .

To prove statement (a), it suffices to show that Z2 is also an M -alternating path with

two end edges in M . Let w1(= e′0), w2, . . . , w`2 be all parallel edges of G below PqPq+1

and let h1(= e0), h2, . . . , h`1 be all vertical edges of G on the right of P0P1 (see Figure 5).

Note that all the edges intersected by L1 are M -single edges. It follows from {e0, e′0} ⊆M

that h1, h2, . . . , h`1 (resp. w1, w2, . . . , w`2) are forced by e0 (resp. e′0) in turn to belong to

M .

If q = 1, Z2 is an M -alternating path with two end edges in M . Let q ≥ 3. For each

even i, 2 ≤ i ≤ q − 1, let e′′i be the slant edge of Si in Z2. Let ei and e′i be the two edges

of Z2 adjacent to e′′i (see Figure 5(a)). Clearly, ei is parallel to e0, and e′i is parallel to

e′0. We assert that e′′i /∈ M . Otherwise, e′′i ∈ M , and e′′i does not lie on the boundary C

of H ′ since C is a proper M -alternating cycle. So H ′ has a hexagon S ′i containing ei, e
′
i

and e′′i . Let C ′ := C ⊕ Si and let A′ := (A∪ {C ′})−{C} (see Figure 5(b)). Then A′ is a
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compatible M -alternating set of H satisfying conditions (i) and (ii). But h(A′) = h(A)−1,

contradicting the choice of A. So the assertion is true. Note that all the edges intersected

by L1 are M -single edges. We have {e0, e′0, e2, e′2, . . . , eq−1, e′q−1} ⊆ M . So it follows that

Z2 is an M -alternating path with two end edges in M (see Figure 3). Hence statement

(a) holds.

'
e

0

0
e

2
w

3
w

2
h

Figure 5: Illustration for Claim 5 in the proof of Lemma 2.2.

Next we prove statement (b). Suppose to the contrary that n(1) ≥ 3. Let S1,1 and

S1,2 be the first and second hexagons of high b-chain G1 from right to left. Then P1 is

the center of S1,1 = S1. For i = 1, 2, let gi be the edge of S1,i parallel to a and below

L1 (see Figure 3). By statement (a), we have g1, g2 ∈ M . Therefore, S1 is a proper

M -alternating hexagon, but not in A. By Claim 2, g1 /∈ C. Since the boundary C of H ′

is an M -alternating cycle, g1 has no end-vertices in C. This implies that S1 has three

consecutively adjacent hexagons in H ′. We can see that none of members of A except C

intersect S1. Let M ′ := M ⊕ S1 and A′ := (A ∪ {C ⊕ S1})− {C}. Then M ′ is a perfect

matching of H, and A′ is a compatible M ′-alternating set satisfying conditions (i) and

(ii). But h(A′) < h(A), contradicting the choice for A. Hence n(1) = 1 or 2.

Suppose to the contrary that m = 1. By statement (a), we can see that g1 ∈ M and

g1 is an edge of S1. We have that S1 is a proper M -alternating hexagon, but not in A. By

analogous arguments as above, we arrive in a similar contradiction no matter n(1) = 1 or

2. Hence m ≥ 2 and statement (b) holds.

Claim 5 implies that for all odd integers i and j, Si (1 ≤ i ≤ q) and Tj (1 ≤ j ≤ r)

are proper M -alternating hexagons, and the other hexagons of G and G′ are not M -

alternating.

For each even i, 2 ≤ i ≤ q−1, let S ′i denote the hexagon (in the hexagonal lattice, but

not necessarily contained in H) adjacent to Si and below L1 (see Figure 3). Similarly, for

each even j, 2 ≤ j ≤ r − 1, let T ′j denote the hexagon adjacent to Tj and above L2 (see

Figure 4).

By the above discussions to H ′, we now go back to the discussion to H and will get our

result. We now get a new perfect matching M ′ of H from M by rotating all M -alternating
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hexagons of G and G′ as follows (see Figure 6),

M ′ := M ⊕ S1 ⊕ S3 ⊕ · · · ⊕ Sq ⊕ T1 ⊕ T3 ⊕ · · · ⊕ Tr.

Let B be the set of M ′-alternating hexagons in G∪G′ and let B′ = {S ′2, S ′4, . . . , S ′q−1}
∪ {T ′2, T ′4, . . . , T ′r−1}. Then B ⊇ {S1, S3, . . . , Sq, T1, T3, . . . , Tr}. We can have the following

system of cycles of H,

A′ := (A ∪ B) \ (B′ ∪ {C}).

'
e

0

0
e

2
w

3
w

2
h

1
T

2
T

3
T

4
T

'

4
T

'

2
T

2
L

'
e

0

0
e

1
T

2
T

3
T

4
T

'

4
T

'

2
T

2
L

1
L

1
L

Figure 6: Illustration for Claim 6: The gray hexagons form G ∪G′, and perfect matchings M

and M ′ of H have restrictions on G ∪G′ as left and right respectively.

Claim 6. A′ is an M ′-alternating compatible set and |A′| ≥ |A|+ 2.

Proof. Given any member C ′ in A′. Then C ′ ∈ A or B. First we want to show that C ′

is an M ′-alternating cycle. If C ′ does not intersect anyone of S1, S3, . . . , Sq, T1, T3, . . . , Tr,

then C ′ ∈ A and C ′ is both M - and M ′-alternating cycle. If C ′ = Si or Tj for odd

1 ≤ i ≤ q and odd 1 ≤ j ≤ r, then C ′ ∈ B and C ′ is both M - and M ′-alternating

cycle. The remaining case is that C ′ intersects some Si or Tj for odd 1 ≤ i ≤ q and odd

1 ≤ j ≤ r, say the former Si, but C ′ 6= Si. We assert that C ′ ∈ B, which implies that C ′

is an M ′-alternating hexagon. Suppose to the contrary that C ′ ∈ A \ B. Then C ′ is an

M -alternating cycle. If I[C ′] ⊂ H ′ = I[C], then C ′ is an M -alternating hexagon not in G

since each member of A lying in the interior of C is a hexagon. So C ′ = S ′i−1 for i ≥ 3

or C ′ = S ′i+1 for i ≤ q − 2, a contradiction. Otherwise, C ′ lies outside C since C and C ′

are non-crossing. Since C and C ′ are compatible M -alternating cycles, C ′ passes through

only either the right vertical edge e0 of S1 for n(1) ≥ 2 or e′0 of Sq for n(m) = 1 and G

and G′ being disjoint. In such either case, three M -double edges of S1 or Sq belong to C,

contradicting Claim 2, so the assertion holds.

Next we show that A′ is an M ′-alternating compatible set. For the members of

A′ lying in the interior of C, they are M ′-alternating hexagons and thus compatible.
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For the members C ′ of A′ lying in the exterior of C, C ′ is disjoint with everyone of

S1, S3, . . . , Sq, T1, T3, . . . , Tr. Otherwise, C ′ ∈ B by the above assertion, contradicting

that C ′ lies on the exterior of C. So such members C ′ are M -alternating cycles in A and

compatible. Suppose that C ′ intersects some member h of A′ inside C. By the Jordan

Curve Theorem we know that C ′ ∩ h ⊂ C. That is, each edge of C ′ ∩ h belong to C.

Since M and M ′ have the same restriction on C ′ ∩ h and C ′ and C are compatible M -

alternating cycles, each edge of C ′∩h belong to M , thus to M ′, so C ′ and h are compatible

M ′-alternating cycles.

Finally we show the remaining inequality. For each odd i with 1 ≤ i ≤ q − 2, the

hexagons between Si and Si+2 in G are not M -alternating, but at least one and at most

two of them are M ′-alternating hexagons, which correspond to S ′i+1. Similarly for each

odd j with 1 ≤ i ≤ r− 2, the hexagons between Ti and Ti+2 in G′ are not M -alternating,

but at least one and at most two of them are M ′-alternating hexagons, which correspond

to T ′i+1. Next we consider the end segments of hexagonal chains G and G′. If n(1) ≥ 2,

then S1 is the right end-hexagon of G1, and S1 /∈ A since S1 and C are not compatible

M -alternating cycles. But, S1 ∈ B. Otherwise, G1 is a single hexagon other than S1,

the upper end segment of G has a unique M -hexagon and two M ′-alternating hexagons,

S1 and its neighbor. Similarly we have that the last row Gm of G has more members of

B than A by at least one. In analogous arguments as above we also have that the first

segment and last row of G′ each has more members of A than B by at least one. Note

that if both last rows of G and G′ are identical, then their extra members together count

one, and C is moved out A. So we have that |A′| ≥ |A|+ 2.

By Theorem 1.3 and Claim 6, we have Af(H) ≥ af(H,M ′) = c′(H,M ′) ≥ |A′| ≥
|A| + 2 = |A0| + 2, that is, Af(H) ≥ |A0| + 2. Now the entire proof of the lemma is

complete. �

3 Minimax results for large anti-forcing numbers

We can describe a minimax result stronger than Theorem 1.8 as follows.

Theorem 3.1. For a hexagonal system H, let M be a perfect matching of H with

af(H,M) = Af(H) or Af(H) − 1, and let A be a maximum non-crossing compatible

M-alternating set of H. Then (1) any two members in A have disjoint interiors, and (2)

for any C ∈ A, I[C] is a linear chain.

From Statement (1) of Theorem 3.1, which is implied by Lemma 2.2, we immediately

obtain our main result.

Proof of Theorem 1.8. Let A be a maximum non-crossing compatible M -alternating

set of H. Then by Theorem 1.4 and Lemma 2.1, we have af(H,M) = |A|. By Theorem

3.1(1), we know that for any two cycles in A their interiors are disjoint. It was shown in
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[33] that for each C ∈ A, H has an M -alternating hexagon h in I[C]. All such cycles C

in A are replaced with M -alternating hexagons h of I[C] to get a set K of M -alternating

hexagons with |K| = |A|. So we have fr(H,M) ≥ |K| = af(H,M). On the other hand,

af(H,M) ≥ fr(H,M) since K is also a compatible M -alternating set. Both inequalities

imply the result. �

In order to prove Theorem 3.1(2), the characterization for hexagonal systems H with

af(H) = 1 due to Li [17] are presented here. It is clear that H has an anti-forcing edge

if and only if af(H) = 1.

1
h

3
h

2
h

Figure 7: Truncated parallelograms H(6, 6, 5, 4) and H(6, 6, 6, 6): anti-forcing edges are marked.

For integers n1 ≥ n2 ≥ . . . ≥ nk, k ≥ 1, let H(n1, n2, . . . , nk) be a hexagonal system

with k horizontal rows of n1 ≥ n2 ≥ . . . ≥ nk hexagons and first hexagon of each row

being immediately below and to the right of the first one in the previous row, and we call

it truncated parallelogram [6]; For example, see Figure 7. In particular, H(r, r, . . . , r) with

k ≥ 2 is parallelogram, both H(1, 1, . . . , 1) with k ≥ 1 and H(r) with r ≥ 1 are linear

chains.

Theorem 3.2. [17] Let H be a hexagonal system. Then af(H) = 1 if and only if H is a

truncated parallelogram.

Proof of Theorem 3.1. (1) By Theorem 1.4 and Lemma 2.1, we have af(H,M) = |A|.
Suppose to the contrary that statement (1) does not hold. Then by Lemma 2.2 we have

Af(H) ≥ |A|+ 2 = af(H,M) + 2 ≥ Af(H) + 1, a contradiction. So statement (1) holds.

(2) Let n := af(H,M) = |A| and let A =: {C1, C2, . . . , Cn}. Choose an anti-forcing

set S of M with |S| = n. Let Si := S ∩ E(Ci), i = 1, 2, . . . , n. By Lemma 1.3 we

have Si 6= ∅ for each i. Since A is a compatible M -alternating set, Si ∩ Sj = ∅ for any

1 ≤ i < j ≤ n. So we can assume that S := {e1, e2, . . . , en} with ei ∈ E(Ci) for all

1 ≤ i ≤ n. For any 1 ≤ i ≤ n, since Ci is an M -alternating cycle of H, the restriction Mi

of M on I[Ci] is a perfect matching of I[Ci]. By Theorem 3.1(1), we can see that only

edge ei of S lies in I[Ci], 1 ≤ i ≤ n. So all Mi-alternating cycles in I[Ci] pass through edge

ei, 1 ≤ i ≤ n. By Lemma 1.3, we have that {ei} is an anti-forcing set of Mi, 1 ≤ i ≤ n.

That is, ei is an anti-forcing edge of I[Ci]. By Theorem 3.2, each I[Ci] is a truncated

parallelogram.

If some I[Ci] is not a linear chain, i.e. I[Ci] has at least two rows and at least two

columns of hexagons, then I[Ci] has a unique perfect matching Mi not containing edge ei
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(see Figure 7 (left)). Let h1 be the hexagon of I[Ci] with edge ei, and let h2 and h3 be the

two hexagons of I[C] adjacent to h1 in the first column and the first row respectively. It

was pointed out in [17] that h1 is only M1-alternating hexagon in I[C1]. So M ′ := M ⊕h1

is a perfect matching of H, and h1, h2 and h3 are M ′-alternating hexagons. We can

see that A′ := A ∪ {h1, h2, h3} − {C} is a compatible M ′-alternating set of H. Hence

Af(H) ≥ af(H,M ′) ≥ |A′| = |A|+ 2 ≥ Af(H) + 1, a contradiction. Hence each I[Ci] is

a linear chain and statement (2) holds. 2

4 Minimax result for all perfect matchings

It is natural to ask whether Theorem 1.8 holds for all perfect matchings M of a hexagonal

system H. A counterexample can show that the minimax relation does not necessarily

hold for a perfect matching of a hexagonal system H with the third maximum anti-forcing

number Af(H)− 2.

Figure 8: A hexagonal system Rn with a perfect matching M .

Let Rn be a hexagonal system with 2n + 4 hexagons and a perfect matching M as

shown in Figure 8 (the edges in M are indicated by double edges). Then Rn contains one

triphenylene whose central hexagon is denoted h. Let M ′ = M ⊕h. Then all hexagons of

Rn are M ′-alternating. So the Fries number of Rn is the number of hexagons in Rn (see

also [13]). By Theorem 1.7, we have Af(Rn) = Af(Rn,M
′) = Fr(Rn) = 2n + 4.

However we can confirm that af(Rn,M) = Af(H) − 2 > fr(H,M). By counting

M -alternating hexagons in Rn, we have that fr(H,M) = 2n + 1. On the other hand,

we can find a compatible M -alternating set of size 2n + 2. So af(Rn,M) ≥ 2n + 2 >

fr(H,M). By a direct check or Theorem 1.8, we have af(Rn,M) ≤ Af(Rn) − 2. So

af(Rn,M) = Af(H)− 2.

We can see that the above counterexample contains a triphenylene as nice subgraph.

In fact we can give a characterization for a hexagonal system H to have the mini-max

relation af(H,M) = fr(H,M) by forbidding triphenylene as nice subgraph (see Theorem

4.3).

To the end we present some concepts and known results. Let H be a hexagonal system

with a perfect matching. Let r(H) and k(H) be the numbers of sextet patterns and Kekulé

structures of H respectively.
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Theorem 4.1 ([30, 24]). Let H be a hexagonal system with a perfect matching. Then

r(H) ≤ k(H), and the following statements are equivalent.

(i) r(H) = k(H),

(ii) H has a coronene as a nice subgraph, and

(iii) H has two disjoint cycles R and C so that R lies in the interior of C and R ∪ C is

a nice subgraph of G.

Figure 9: A hexagonal system with a unique M -alternating hexagon for a perfect matching

M marked by double lines.

Let H be a hexagonal system with a hexagon h. Draw three rays OA,OB and OC

from the center O of h so that they pass through the centers of three disjoint edges of h

respectively, which divide the plane into three areas AOB,BOC and COA. Such three

regional coordinate system is denoted by O − ABC. Zhang et al. [31] ever gave the

following fact.

Lemma 4.2. A hexagonal system H has a perfect matching M with a uniqueM-alternating

hexagon h if and only if it has the coordinate system O − ABC so that O is the center

of h,rays OA,OB and OC do not intersect edges in M and all edges of M in anyone of

areas AOB,BOC and COA are parallel to each other.

Theorem 4.3. Let H be a hexagonal system with a perfect matching. Then H has

no triphenylenes as nice subgraph if and only if for each perfect matching M of H,

af(H,M) = fr(H,M).

Proof. We first prove the sufficiency. Suppose to the contrary that H contains a tripheny-

lene as a nice subgraph. Let M ′ be a perfect matching of the triphenylene as shown in Fig-

ure 1(b). Because the triphenylene is a nice subgraph of H, M ′ can be extended to a per-

fect matching M of H. So M ′ ⊆M . Let C be the boundary of the triphenylene. It is easy

to see that C is an M -alternating cycle of H and C is compatible with each M -alternating

hexagon of H. By Theorem 1.4, we have af(H,M) ≥ fr(H,M) + 1 > fr(H,M), a con-

tradiction. Hence the sufficiency holds.
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We now prove the necessity. Suppose to the contrary that H has a perfect matching

M0 so that af(H,M0) > fries(H,M0). Let A be a maximum non-crossing compatible

M0-alternating set of H. By Theorem 1.4 and Lemma 2.1 we have af(H,M0) = |A| and

there are two cycles in A so that their interiors have a containment relation; Otherwise,

since there is an M0-alternating hexagon in the interior of each M0-alternating cycle [33],

H has at least af(H,M0) M0-alternating hexagons, that is, af(H,M0) ≤ fr(H,M0), a

contradiction. So we can select two cycles C1 and C2 in H to meet the following conditions:

(i) I[C1] ⊆ I[C2],

(ii) H has a perfect matching M so that C1 and C2 are compatible M -alternating

cycles, and

(iii) h(C1) +h(C2) is as small as possible subject to Conditions (i) and (ii) (recall that

h(Ci) is the number of hexagons inside Ci).

If I[C2] has an M -alternating hexagon h which is disjoint with C2, then h ∪ C2 is a

nice subgraph of H. By Theorem 4.1, H contains a coronene as a nice subgraph. So H

also contains triphenylene as a nice subgraph.

From now on suppose that all the M -alternating hexagons in I[C2] intersect C2. Ob-

viously, if C2 is a proper (resp. improper) M -alternating cycle, then each of the M -

alternating hexagons in I[C2] is also proper (resp. improper). Without loss of gener-

ality, suppose that the C2 and M -alternating hexagons in I[C2] are proper. Take an

M -alternating hexagon h inside C1. Since C1 and C2 are compatible M -alternating, h is

compatible with C2. We can show the following fact.

Claim. h is the only M -alternating hexagon in I[C2].

Proof. Suppose to the contrary that h′ is an M -alternating hexagon of I[C2] different

from h. Then h′ and h are disjoint because any two proper M -alternating hexagons do

not intersect. Let M ′ := M ⊕ h′ and C ′2 := C2 ⊕ h′. Then M ′ is a perfect matching

of H, and each component of C2 ⊕ h′ is an M ′-alternating cycle. Take a component C ′2
of C2 ⊕ h′ so that h lies inside C ′2. Then h and C ′2 are also compatible M ′-alternating

cycles. It is clear that the cycles C ′2 and h satisfy the above conditions (i) and (ii). But

h(C ′2) + 1 < h(C2) + h(C1), a contradiction with the minimality of h(C2) + h(C1).

Note that the restriction of M on I[C2] is a perfect matching of I[C2]. From the Claim

and Lemma 4.2, from center O of h we establish coordinate system O − ABC so that

OA,OB and OC do not pass through M -edges in I[C2], and all M -double edges of I[C2]

in anyone of areas AOB,BOC and COA are parallel to each other (see Figure 9). Because

h and C2 are two compatible M -alternating cycles, every M -single edge of h is not on

C2. This shows that h has three adjacent hexagons h1, h2, and h3 in I[C2] which intersect

OA,OB, and OC respectively. Further, hexagons h, h1, h2 and h3 form a triphenylene

whose boundary is M -alternating cycle. So the triphenylene is a nice subgraph of H, a

contradiction. So af(H,M0) = fr(H,M0) and the necessity holds.
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condensed benzenoids, J. Math. Chem. 43 (2008) 719–726.

[27] Y. Wu, D. Ye, C.-Q. Zhang, Uniquely forced perfect matching and unique 3-edge-coloring

Discrete Appl. Math, 215 (2016) 203–207.

[28] L. Xu, H. Bian, F. Zhang, Maximum forcing number of hexagonal systems, MATCH Com-

mun. Math. Comput. Chem. 70 (2013) 493–500.

[29] Q. Zhang, H. Bian, E. Vumar, On the anti-Kekulé and anti-forcing number of cata-
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