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Abstract

In this paper, we study the existence of perfect state transfer and pretty good
state transfer in vertex complemented coronas. We prove that perfect state transfer
in vertex complemented coronas is extremely rare. In contrast, we give sufficient
conditions for vertex complemented coronas to have pretty good state transfer.
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1 Introduction

Let G be a graph with adjacency matrix AG. The transition matrix [19] of G with respect

to AG is defined by

HAG
(t) = exp(−itAG) =

∞
∑

k=0

(−i)kAk
Gt

k

k!
, t ∈ R, i =

√
−1.

Let HAG
(t)u,v denote the (u, v)-entry of HAG

(t), where u, v ∈ V (G). If u and v are distinct

vertices in G and there is a time τ such that

|HAG
(τ)u,v| = 1,

then we say that perfect state transfer (PST for short) from u to v occurs at time τ [5].

In particular, if |HAG
(τ)u,u| = 1, then we say that G is periodic relative to the vertex u
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Figure 1: An example of the vertex complemented corona

at time τ or u is a periodic vertex of G at time τ [20]. If every vertex of G is periodic at

the same time τ , then G is called a periodic graph with the period τ [20].

It is known [5] that PST is very important in quantum computing and quantum

information processing. However, determining all graphs that admit PST is substantially

difficult. In 2012, Godsil [22, Corollary 6.2] showed that there are at most finitely many

connected graphs with a given maximum valency where PST occurs. Thus, Godsil posed

to study a relaxation of PST, pretty good state transfer (PGST for short) [21]. A graph

G is said to have PGST from vertex u to vertex v [21] if for each ε > 0, there exists a

time τ such that

| HAG
(τ)u,v |≥ 1− ε.

Up until now, many graphs have been proved to have or not have PST as well as PGST,

including trees [5,15,18,23], Cayley graphs [3,4,7–10,25,29,30,32,35,36], distance regular

graphs [16] and some graph operations such as NEPS [11,12,25,31,33,38], coronas [1] and

joins [2]. For more information, we refer the reader to [13, 14, 21, 22, 39, 40].

In this paper, we investigate the existence of PST and PGST in a new graph operation,

the so-called vertex complemented corona, whose definition is given in Definition 1.

Definition 1. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and let
−→
H =

(H1, H2, . . . , Hn) be an n-tuple of graphs. The vertex complemented corona G◦̃−→H is formed

by taking the disjoint union of G and H1, . . . , Hn with each Hi corresponding to the vertex

vi, and then joining every vertex in Hi to every vertex in V (G) \ {vi} for i = 1, 2, . . . , n.

Figure 1 depicts the vertex complemented corona P3◦̃
−→
H with

−→
H = (P2, P1, P2), where

Pn denotes the path on n vertices.

In our work, we first compute eigenvalues and eigenprojectors of vertex complemented

coronas. Then, we prove that PST in vertex complemented coronas is extremely rare by

verifying there is no periodic vertex in vertex complemented coronas. In contrast, we give

some sufficient conditions for vertex complemented coronas to have PGST.

2 Preliminaries

In this section, we list some basic results and notations, which will be useful for our paper.
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Lemma 2.1. (see [37]) Let M1, M2, M3 and M4 be respectively p × p, p × q, q × p and

q × q matrices with M1 and M4 invertible. Then

det

(

M1 M2

M3 M4

)

= det(M4) · det(M1 −M2M
−1
4 M3)

= det(M1) · det(M4 −M3M
−1
1 M2),

where M1−M2M
−1
4 M3 and M4−M3M

−1
1 M2 are called the Schur complements of M4 and

M1, respectively.

The M-coronal ΓM(x) of an n × n matrix M [17, 27] is defined to be the sum of the

entries of the matrix (xIn −M)−1, that is,

ΓM(x) = j⊤n (xIn −M)−1jn,

where jn denotes the column vector of size n with all entries equal to one, and j⊤n denotes

the transpose of jn.

Lemma 2.2. (see [17, Proposition 2]) If M is an n× n matrix with each row sum equal to

a constant t, then

ΓM(x) =
n

x− t
.

Lemma 2.3. (see [26, Corollary 2.3]) Let α be a real number, A an n × n real matrix, In
the identity matrix of size n, and Jn the n× n matrix with all entries equal to one. Then

det(xIn −A− αJn) = (1− αΓA(x)) det(xIn − A).

We will need the Kronecker’s Approximation Theorem to study the existence of PGST

in vertex complemented coronas.

Theorem 2.4. (see [24, Theorem 442]) Let 1, λ1, λ2, . . . , λm be linearly independent over

Q. Let α1, α2, . . . , αm be arbitrary real numbers, and let ε be a positive real number. Then

there exist integers l and q1, q2, . . . , qm such that

| lλk − αk − qk |< ε, (2.1)

for each k = 1, 2, . . . , m.

For brevity, whenever we have an inequality of the form |α − β| < ε for arbitrarily

small ε, we will write instead α ≈ β and omit the explicit dependence on ε. For example,

(2.1) will be represented as lλk − qk ≈ αk.

When we study the PGST in vertex complemented coronas, the following result will

be used to verify whether a set of numbers are linearly independent over the rational

numbers.

Theorem 2.5. (see [34, Theorem 1a]) Let p1, p2, . . . , pk be distinct positive primes. Then

the set

{

n

√

p
m(1)
1 · · · pm(k)

k : 0 ≤ m(i) < n, 1 ≤ i ≤ k

}

is linearly independent over the set

of rational numbers Q.

3



When n = 2, Theorem 2.5 immediately implies the following result.

Corollary 2.6. The set
{√

∆ : ∆ is a square-free integer
}

is linearly independent over the

set of rational numbers Q.

Let G be a graph with adjacency matrix AG. The eigenvalues of AG are called the

eigenvalues of G. We use SpecG to denote the set of all distinct eigenvalues of G. Suppose

that λ0 > λ1 > · · · > λp are all distinct eigenvalues of G and
{

x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
rj

}

is an

orthonormal basis of the eigenspace associated with λj with multiplicity sj, j = 0, 1, . . . , p.

Let xH denote the conjugate transpose of a column vector x. Then, for each eigenvalue

λj of G, define

Eλj
=

rj
∑

i=1

x
(j)
i

(

x
(j)
i

)H

,

which is usually called the eigenprojector (or orthogonal projector onto an eigenspace)

corresponding to λj of G. Note that
∑p

j=0Eλj
= I (the identity matrix). Then

AG = AG

p
∑

j=0

Eλj
=

p
∑

j=0

rj
∑

i=1

AGx
(j)
i

(

x
(j)
i

)H

=

p
∑

j=0

rj
∑

i=1

λjx
(j)
i

(

x
(j)
i

)H

=

p
∑

j=0

λjEλj
, (2.2)

which is called the spectral decomposition of AG with respect to the distinct eigenvalues (see

“Spectral Theorem for Diagonalizable Matrices” in [28, Page 517]). Note that E2
λj

= Eλj

and Eλj
Eλh

= 0 for j 6= h, where 0 denotes the zero matrix. So, by (2.2), we have

HAG
(t) =

∑

k≥0

(−i)kAk
Gt

k

k!
=
∑

k≥0

(−i)k

(

p
∑

j=0

λk
jEλj

)

tk

k!
=

p
∑

j=0

exp(−itλj)Eλj
. (2.3)

The eigenvalue support of a vertex u in G, denoted by suppG(u), is the set of all

eigenvalues λ of G such that Eλeu 6= 0, where eu is the characteristic vector corresponding

to u. Two vertices u and v are strongly cospectral if Eλeu = ±Eλev for each eigenvalue λ

of G.

In the following, we state some useful results about PST and periodicity.

Lemma 2.7. (see [20, Lemma 2.1]) If G has PST between vertices u and v at time t, then

G is periodic at u at time 2t.

Lemma 2.8. (see [22, Theorem 6.1]) A graph G is periodic at vertex u if and only if either:

(a) all eigenvalues in suppG(u) are integers; or

(b) there are square-free integer ∆ and integer a so that each eigenvalue λ in suppG(u)

is of the form λ = 1
2

(

a+ bλ
√
∆
)

, for some integer bλ.

Coutinho gave a necessary and sufficient condition for a graph to have PST.
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Lemma 2.9. (see [13, Theorem 2.4.4]) Let G be a graph and let u, v be two distinct vertices

of G. Then there exists PST between u and v at time t if and only if all of the following

conditions hold:

(a) Vertices u and v are strongly cospectral.

(b) There are integers a and ∆, where ∆ is square-free, so that for each eigenvalue λ

in suppG(u):

(i) λ = 1
2

(

a+ bλ
√
∆
)

, for some integer bλ.

(ii) e⊤uEλ(G)ev is positive if and only if (ρ(G)− λ)/g
√
∆ is even, where

g := gcd

({

ρ(G)− λ√
∆

: λ ∈ suppG(u)

})

,

and ρ(G) denotes the largest eigenvalue of G.

Moreover, if the above conditions hold, then there is a minimum time of PST between u

and v given by t0 :=
π

g
√
∆
.

3 Eigenvalues and eigenprojectors of vertex complemented

coronas

Before presenting the main results of this section, we first give some frequently used

notations as follows.

Notations. Recall that jm denotes the column vector of size m with all entries equal

to one, and let Jm×n denotes the m×n matrix with all entries equal to one. In particular,

if m = n, we simply write Jm×m by Jm. Let e
n
i denotes the unit vector of size n with the

i-th entry equal to 1. If the size n of eni can be easily read from the context, then we can

omit the superscript and write eni as ei for simplicity. Let ∗⊤ denotes the transpose of ∗,
where ∗ may be a vector or a matrix.

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and let
−→
H = (H1, H2, . . . , Hn)

be an n-tuple of graphs. Formally, the vertex set of vertex complemented corona G◦̃−→H
can be labeled as follows:

V (G◦̃−→H ) = {(v, 0) : v ∈ V (G)} ∪
n
⋃

j=1

{(vj , w) : vj ∈ V (G), w ∈ V (Hj)} ,

and the adjacency relation

(vi, w) ∼ (vj , w
′) ⇐⇒











w = w′ = 0 and vi ∼ vj in G, or

vi = vj and w ∼ w′ in Hl, or

vi 6= vj and just one of w and w′ is 0.
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If G is a regular connected graph and
−→
H = (H1, H2, . . . , Hn) is an n-tuple of regular

graphs with |V (Hi)| = m ≥ 1 for i = 1, 2, . . . , n, then we compute the eigenvalues of G◦̃−→H
in the following theorem.

Theorem 3.1. Let G be an r-regular connected graph with n ≥ 2 vertices and let
−→
H =

(H1, H2, . . . , Hn) be an n-tuple of k-regular graphs with |V (Hi)| = m ≥ 1, i = 1, 2, . . . , n.

Suppose that G has eigenvalues r = λ0 > λ1 > · · · > λp with multiplicities 1 =

s0, s1, . . . , sp. Then the eigenvalues of G◦̃−→H are

(a) k with multiplicity

(

n
∑

i=1

sik

)

− n, where sik denotes the multiplicity of eigenvalue k

of Hi;

(b) µ with multiplicity
n
∑

i=1

siµ, where µ is an eigenvalue of Hi with multiplicity siµ, which

covers all eigenvalues of Hi except for µ = k, for i = 1, 2, . . . , n;

(c) 1
2

(

λj + k ±
√

(λj − k)2 + 4m
)

with multiplicity sj, for j = 1, 2, . . . , p;

(d) 1
2

(

r + k ±
√

(r − k)2 + 4m(n− 1)2
)

with multiplicity 1.

Proof. Define M = Jn − In. The adjacency matrix of G◦̃−→H is given by

A
G◦̃−→H =





AG M ⊗ j⊤m

M⊤ ⊗ jm
n
∑

i=1

(

eni (e
n
i )

⊤ ⊗AHi

)



 , (3.1)

where ⊗ means the Kronecker product. By Lemma 2.1, the characteristic polynomial of

A
G◦̃−→H is

det(xIn+nm − A
G◦̃−→H ) = det





xIn −AG −M ⊗ j⊤m

−M⊤ ⊗ jm
n
∑

i=1

(

eni (e
n
i )

⊤ ⊗ (xIm − AHi
)
)





= det(N) det(S).

where

N =
n
∑

i=1

(

eni (e
n
i )

⊤ ⊗ (xIm − AHi
)
)

,

and

S = xIn − AG − (M ⊗ j⊤m)N
−1(M⊤ ⊗ jm).

By Lemma 2.2, we have

(M ⊗ j⊤m)N
−1(M⊤ ⊗ jm) =

m

x− k
MM⊤ =

m

x− k
(In + (n− 2)Jn).
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Then by Lemmas 2.2 and 2.3, we have

det(S) = det

((

x− m

x− k

)

In − AG − m(n− 2)

x− k
Jn

)

=

(

1− m(n− 2)

x− k
ΓAG

(

x− m

x− k

))

· det
((

x− m

x− k

)

In −AG

)

= (x− k)−n

(

1− m(n− 2)

x− k
· n

x− m
x−k

− r

)

· det ((x(x− k)−m) In − (x− k)AG)

= (x− k)−n · (x− r)(x− k)−m−mn(n− 2)

(x− r)(x− k)−m
·

p
∏

j=0

(x(x− k)−m− (x− k)λj)
sj

= (x− k)−n ·
(

(x− r)(x− k)−m(n− 1)2
)

·
p
∏

j=1

(x2 − (k + λj)x−m+ kλj)
sj .

Note that

det(N) =

n
∏

i=1

det(xIm − AHi
).

Therefore, the required result follows from det(xIn+nm −A
G◦̃−→H ) = det(N) det(S).

This completes the proof. ✷

Next, by Theorem 3.1, we compute the eigenprojectors of G◦̃−→H , where G and
−→
H are

as in Theorem 3.1.

Theorem 3.2. Let G and
−→
H be as in Theorem 3.1. Then the eigenprojectors of G◦̃−→H are

stated as follows:

(a) µ is an eigenvalue of G◦̃−→H with the eigenprojector

Eµ =





0 0

0
n
∑

l=1

(

enl (e
n
l )

⊤)⊗
(

Eµ(Hl)− δµ,k · 1
m
Jm

)



 , (3.2)

where Eµ(Hl) denotes the eigenprojector corresponding to the eigenvalue µ of Hl

with the assumption that Eµ(Hl) = 0 if µ is not an eigenvalue of Hl, and δµ,k is a

function satisfying that

δµ,k =

{

1, µ = k,

0, µ 6= k.

Note that the case of µ = k occurs if and only if Hl is disconnected.

(b) For each eigenvalue λ 6= r of G, λ± = 1
2

(

λ+ k ±
√

(λ− k)2 + 4m
)

are eigenvalues

of G◦̃−→H with the eigenprojectors

Eλ±
=

(λ± − k)2

(λ± − k)2 +m

(

Eλ(G) − 1
λ±−k

Eλ(G)⊗ j⊤m
− 1

λ±−k
(Eλ(G))⊤ ⊗ jm

1
(λ±−k)2

Eλ(G)⊗ Jm

)

, (3.3)
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where M = Jn−In and Eλ(G) denotes the eigenprojector corresponding to eigenvalue

λ of G.

(c) r± = 1
2

(

r + k ±
√

(r − k)2 + 4m(n− 1)2
)

are eigenvalues of G◦̃−→H with the eigen-

projectors

Er± =
(r± − k)2

(r± − k)2 +m(n− 1)2





Er(G) n−1
r±−k

Er(G)⊗ j⊤m

n−1
r±−k

(Er(G))⊤ ⊗ jm
(n−1)2

(r±−k)2
Er(G)⊗ Jm



 .

(3.4)

Therefore, the spectral decomposition of A
G◦̃−→H is given by

A
G◦̃−→H =





∑

λ∈SpecG

∑

±
λ±Eλ±



+
∑

µ

µEµ, (3.5)

where µ covers all eigenvalues of Hl, l = 1, 2, . . . , n.

Proof. The proofs of (a)–(c) consist of Claims 1–3.

Claim 1. X, Y± and Z± defined below are eigenvectors of A
G◦̃−→H corresponding to eigen-

values µ, λ± and r±, respectively.

Proof of Claim 1. Let Hl be a graph in
−→
H . Note that k is always an eigenvalue of Hl with

an eigenvector jm. Note also that Ek(Hl) =
1
m
Jm if and only if Hl is connected. Suppose

that x⊥jm is an eigenvector of AHl
corresponding to the eigenvalue µ of Hl (Here, µ may

be equal to k, and the case of µ = k occurs if and only if Hl is disconnected). Define

X :=

(

0n×1

enl ⊗ x

)

,

where 0s×t denotes the s× t matrix with all entries equal to 0. Notice that the adjacency

matrix A
G◦̃−→H is given in (3.1). Then, we have

A
G◦̃−→HX = µX. (3.6)

Thus, X is an eigenvector of A
G◦̃−→H with the eigenvalue µ.

Suppose that y ⊥ jn is a unit eigenvector of AG corresponding to the eigenvalue λ 6= r.

Define

Y± :=

(

y

− 1
λ±−k

y ⊗ jm

)

.

Note that My = M⊤y = −y, and keep in mind that y can be regarded as y ⊗ 1. Then

if λ 6= r, by (3.1), we have

A
G◦̃−→HY± =





AG M ⊗ j⊤m

M⊤ ⊗ jm
n
∑

i=1

(

eni (e
n
i )

⊤ ⊗ AHi

)





(

y

− 1
λ±−k

y ⊗ jm

)
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=

(

λy− 1
λ±−k

(My)⊗ j⊤mjm

(M⊤y)⊗ jm − k
λ±−k

y ⊗ jm

)

=

(

λy + m
λ±−k

y

− λ±

λ±−k
y ⊗ jm

)

= λ±Y±.

Thus, Y± are eigenvectors of A
G◦̃−→H with eigenvalues λ±.

Let z = 1√
n
jn. Note that AGz = rz. Define

Z± :=

(

z

n−1
r±−k

z⊗ jm

)

.

Note that Mz = M⊤z = (n− 1)z, and keeping in mind that z can be regarded as z⊗ 1,

by (3.1), we have

A
G◦̃−→HZ± =

(

rz+ n−1
r±−k

(Mz)⊗ j⊤mjm

(M⊤z)⊗ jm + k(n−1)
r±−k

z⊗ jm

)

=





rz+ m(n−1)2

r±−k
z

r±(n−1)
r±−k

z⊗ jm





= r±Z±.

Thus, Z± are eigenvectors of A
G◦̃−→H with eigenvalues r±.

Claim 2. All X’s, Y±’s and Z±’s are orthogonal eigenvectors of A
G◦̃−→H .

Proof of Claim 2. Recall that x⊥jm, y⊥jn and z = 1√
n
jn. Then one can easily verify that

X⊥Y±, X⊥Z± and Y±⊥Z±.

Consider X =

(

0n×1

enl ⊗ x

)

and X′ =

(

0n×1

enl ⊗ x′

)

, where x and x′ are orthogonal

eigenvectors in Hl. Clearly, X⊥X′.

Consider Y± =

(

y

− 1
λ±−k

y ⊗ jm

)

and Y′
± =

(

y′

− 1
λ′
±
−k

y′ ⊗ jm

)

, where y and y′

are unit orthogonal eigenvectors of AG corresponding to λ 6= r and λ′ 6= r (Here, λ and

λ′ may be equal). Note that y ⊥ jn, y
′ ⊥ jn and y ⊥ y′. Thus,

(Y±)
⊤Y′

± = y⊤y′ +
y⊤y′ ⊗ j⊤mjm

(λ± − k)(λ′
± − k)

= 0,

that is, Y±⊥Y′
±.

Consider Y+ and Y−. Recall that y⊥jn. Note that

(λ+ − k)(λ− − k) = −m.

9



Thus,

Y+Y− = y⊤y +
y⊤y ⊗ j⊤mjm

(λ+ − k)(λ− − k)
= 1− m

m
= 0,

that is, Y+⊥Y−.

Consider Z+ and Z−. Recall that z = 1√
n
jn. Note that

(r+ − k)(r− − k) = −m(n− 1)2.

Thus,

Z+Z− = z⊤z+
(n− 1)2z⊤z⊗ j⊤mjm
(r+ − k)(r− − k)

= 1− m(n− 1)2

m(n− 1)2
= 0,

that is, Z+⊥Z−.

Claim 3. (3.2), (3.3) and (3.4) are eigenprojectors of A
G◦̃−→H corresponding to eigenvalues

µ, λ± and r±, respectively.

Proof of Claim 3. By (3.6), one can easily verify that (3.2) is the eigenprojector corre-

sponding to the eigenvalue µ.

Suppose that
{

y(1),y(2), . . . ,y(s)
}

is a unit orthonormal basis of the eigenspace of G

corresponding to the eigenvalue λ 6= r. Set

Y
(i)
± :=

(

y(i)

− 1
λ±−k

y(i) ⊗ jm

)

.

Then
∥

∥

∥
Y

(i)
±

∥

∥

∥

2

= 1 +
m

(λ± − k)2
.

Let Eλ(G) =
s
∑

i=1

(

y(i)
) (

y(i)
)⊤

be the eigenprojector of G corresponding to the eigenvalue

λ 6= r. Then eigenprojectors of A
G◦̃−→H corresponding to λ± are given as follows:

Eλ±
(G◦̃−→H )

=
(λ± − k)2

(λ± − k)2 +m
·

s
∑

i=1

Y
(i)
±

(

Y
(i)
±

)⊤

=
(λ± − k)2

(λ± − k)2 +m

(

Eλ(G) − 1
λ±−k

Eλ(G)⊗ j⊤m
− 1

λ±−k
(Eλ(G))⊤ ⊗ jm

1
(λ±−k)2

Eλ(G)⊗ Jm

)

,

yielding (3.3).

Since

‖Z±‖2 = 1 +
m(n− 1)2

(r± − k)2
.

10



Then eigenprojectors of A
G◦̃−→H corresponding to r± are given as follows:

Er±(G◦̃−→H )

=
(r± − k)2

(r± − k)2 +m(n− 1)2
Z± (Z±)

⊤

=
(r± − k)2

(r± − k)2 +m(n− 1)2





Er(G) n−1
r±−k

Er(G)⊗ j⊤m

n−1
r±−k

(Er(G))⊤ ⊗ jm
(n−1)2

(r±−k)2
Er(G)⊗ Jm



 ,

yielding (3.4).

At last, it is easy to verify that (3.5) is the spectral decomposition of A
G◦̃−→H .

This completes the proof. ✷

4 State transfers in vertex complemented coronas

4.1 PST in vertex complemented coronas

In this section, we prove that PST in vertex complemented coronas is extremely rare. In

order to prove such a result, Lemma 2.7 implies that we just need to verify there is no

periodic vertex in vertex complemented coronas.

Lemma 4.1. Let G and
−→
H be as in Theorem 3.1. If (v, w) is a periodic vertex of G◦̃−→H ,

then (v, 0) a periodic vertex of G◦̃−→H .

Proof. By Theorem 3.2, the eigenvalue support of (v, 0) is contained in the eigenvalue

support of (v, w). ✷

Next we show a necessary and sufficient condition for periodicity in vertex comple-

mented coronas.

Lemma 4.2. Let G and
−→
H be as in Theorem 3.1, and let λ± with λ 6= r and r± be as in

Theorem 3.2.

(a) If r 6= k, then (v, 0) is a periodic vertex of G◦̃−→H if and only if for each eigenvalue

λ ∈ suppG(v) \ {r}, all λ − k,
√

(λ− k)2 + 4m and
√

(r − k)2 + 4m(n− 1)2 are

integers.

(b) If r = k, then (v, 0) is a periodic vertex of G◦̃−→H if and only if there exists a positive

square-free integer ∆ such that for each eigenvalue λ ∈ suppG(v) \ {r}, all λ − k,
√

(λ− k)2 + 4m and
√

4m(n− 1)2 are integer multiples of
√
∆. Moreover, if this

holds, then ∆ | m.

Proof. By Theorem 3.2, the eigenvalue support of (v, 0) is given by supp
G◦̃−→H ((v, 0)) =

{λ± : λ ∈ suppG(v)}. Moreover, r± are always in supp
G◦̃−→H ((v, 0)).
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(a) For the sufficiency, for each eigenvalue λ ∈ suppG(v)\{r}, all λ−k,
√

(λ− k)2 + 4m

and
√

(r − k)2 + 4m(n− 1)2 are integers. Clearly, λ± ∈ supp
G◦̃−→H ((v, 0)) and r± are

integers. By Lemma 2.8, (v, 0) is a periodic vertex.

For the necessity, by Lemma 2.8, we consider the following two cases.

Case 1. All eigenvalues in supp
G◦̃−→H ((v, 0)) are integers. In this case, λ−k = λ++λ−−

2k (λ 6= r),
√

(λ− k)2 + 4m = λ+ − λ− (λ 6= r) and
√

(r − k)2 + 4m(n− 1)2 = r+ − r−
are integers.

Case 2. There are integer a and square-free integer ∆ ≥ 2 such that each eigen-

value λ± ∈ supp
G◦̃−→H ((v, 0)) is of the form λ± = 1

2
(a + bλ±

√
∆), where bλ±

are integers

corresponding to eigenvalues λ±. Recall that (λ+ − k)(λ− − k) = −m for λ 6= r and

(r+ − k)(r− − k) = −m(n− 1)2. Then, in this case, we have

−m =
1

4

(

(a− 2k)2 + bλ+
bλ−

∆
)

+
1

4
(a− 2k)(bλ+

+ bλ−
)
√
∆,

and

−m(n− 1)2 =
1

4

(

(a− 2k)2 + br+br−∆
)

+
1

4
(a− 2k)(br+ + br−)

√
∆.

Note that
√
∆ is irrational. Then we have a − 2k = 0 or bλ+

+ bλ−
= 0 for each λ ∈

suppG(v).

Case 2.1. bλ+
+ bλ−

= 0 for each λ ∈ suppG(v). In this case, we have a = λ+ + λ− =

λ+ k and a = r+ + r− = r + k. Thus, suppG(v) = {r}, that is, |suppG(v)| = 1. This is a

contradiction to that G is a connected graph with n ≥ 2 vertices.

Case 2.2. a− 2k = 0. This implies that λ± = k + 1
2
bλ±

√
∆. Hence, for λ = r,

1

2
(br+ + br−)

√
∆ = (r+ − k) + (r− − k) = r − k,

Clearly, one side of the above equation is integer and the other side is irrational, this is a

contradiction.

(b) For the sufficiency, if there exists a positive square-free integer ∆ such that for

each eigenvalue λ ∈ suppG(v) \ {r}, all of the following conditions hold:

λ− k = eλ
√
∆,

√

(λ− k)2 + 4m = fλ
√
∆ and

√

4m(n− 1)2 = fr
√
∆,

where eλ and fλ are integers corresponding to λ, then

λ± =
1

2

(

2k + (eλ ± fλ)
√
∆
)

(λ 6= r) and r± =
1

2

(

2k ± fr
√
∆
)

.

By Lemma 2.8, (v, 0) is a periodic vertex of G◦̃−→H .

For the necessity, by Lemma 2.8, we consider the following two cases.

Case 1. All eigenvalues in supp
G◦̃−→H ((v, 0)) are integers. In this case, λ − k = λ+ +

λ− − 2k (λ 6= r),
√

(λ− k)2 + 4m = λ+ − λ− (λ 6= r) and
√

4m(n− 1)2 = r+ − r− are

integers.
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Case 2. There are integer a and square-free integer ∆ ≥ 2 such that each eigenvalue

λ± ∈ supp
G◦̃−→H ((v, 0)) is of the form λ± = 1

2
(a + bλ±

√
∆), where bλ±

are integers corre-

sponding to eigenvalues λ±. Similar to the proof of Case 2 of (a), we have a− 2k = 0 or

bλ+
+ bλ−

= 0 for each λ ∈ suppG(v). If bλ+
+ bλ−

= 0 for each λ ∈ suppG(v), similar to

the proof of Case 2.1 of (a), we also obtain a contradiction to that G is a connected graph

with n ≥ 2 vertices. If a− 2k = 0, then we have λ± = k + 1
2
bλ±

√
∆. Hence,

1

2
(bλ+

+ bλ−
)
√
∆ = (λ+ − k) + (λ− − k) = λ− k for λ 6= r,

1

2
(bλ+

− bλ−
)
√
∆ = λ+ − λ− =

√

(λ− k)2 + 4m for λ 6= r,

and

1

2
(br+ − br−)

√
∆ = r+ − r− =

√

4m(n− 1)2.

The above three equations imply that λ − k for λ 6= r,
√

(λ− k)2 + 4m for λ 6= r and
√

4m(n− 1)2 are of the form x
√
∆/2, where x ∈ Z. Note that their squares are rational

algebraic integers. Thus, their squares must be integers. Therefore, λ − k for λ 6= r,
√

(λ− k)2 + 4m for λ 6= r and
√

4m(n− 1)2 are integer multiples of
√
∆.

The condition
√

4m(n− 1)2 is an integer multiple of
√
∆ implies that ∆ | m immedi-

ately. ✷

By Lemma 4.2, we have the following result.

Corollary 4.3. Let G and
−→
H be as in Theorem 3.1. If (v, 0) is a periodic vertex of G◦̃−→H ,

then

m ≥ |λ− k|+ 1 for λ ∈ suppG(v) \ {r},
and

m(n− 1)2 ≥ |r − k|+ 1.

Proof. Case 1. r 6= k. If (v, 0) is a periodic vertex of G◦̃−→H , then by Lemma 4.2

(a), for each eigenvalue λ ∈ suppG(v) \ {r}, all (λ − k)2, (r − k)2, (λ − k)2 + 4m and

(r−k)2+4m(n−1)2 are squares. Since 4m and 4m(n−1)2 are even, (λ−k)2 and(λ−k)2+4m

have the same parity. Similarly, (r− k)2 and (r− k)2 + 4m(n− 1)2 have the same parity.

Hence,

4m ≥ (|λ− k|+ 2)2 − |λ− k|2 = 4 (|λ− k|+ 1) for λ ∈ suppG(v) \ {r},

and

4m(n− 1)2 ≥ (|r − k|+ 2)2 − (|r − k|)2 = 4 (|r − k|+ 1) .

The required result is obtained by simplifying the above inequalities immediately.

Case 2. r = k. If (v, 0) is a periodic vertex of G◦̃−→H , then by Lemma 4.2 (b), there

exists a positive square-free integer ∆ such that for each eigenvalue λ ∈ suppG(v) \ {r},
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both (λ−k)2/∆ and ((λ− k)2 + 4m) /∆ are squares. Recall that (r−k)2 and (λ−k)2+4m

have the same parity and ∆ | m. Hence,

4m

∆
≥
( |λ− k|√

∆
+ 2

)2

−
( |λ− k|√

∆

)2

= 4

( |λ− k|√
∆

+ 1

)

for λ ∈ suppG(v) \ {r}.

Since ∆ ≥ 1, we have

m ≥ |λ− k|
√
∆+∆ ≥ |λ− k|+ 1 for λ ∈ suppG(v) \ {r}.

Furthermore, m(n− 1)2 ≥ 1 and then the second inequality holds.

This completes the proof. ✷

As an application of Corollary 4.3, we prove that there is no PST in vertex comple-

mented corona G◦̃−→H , where G is an r-regular connected graph,
−→
H = (Km, Km, . . . , Km)

and Km denotes a complete graph on m vertices. For the sake of simplicity, such a graph

will be denoted by G◦̃Km.

Corollary 4.4. Let G be as in Theorem 3.1. Then every vertex of G◦̃Km is not periodic.

Moreover, G◦̃Km has no PST.

Proof. Suppose that the vertex (v, 0) is a periodic vertex of G◦̃Km, where v is a vertex of

G. We claim that there exists a negative eigenvalue in the eigenvalue support of v in G.

Otherwise, assume that every eigenvalue in suppG(v) is non-negative. Then Eλ(G)ev = 0

for each negative eigenvalue λ ∈ SpecG. Note that

e⊤v AGev =
∑

λ∈SpecG

λe⊤v Eλ(G)ev = 0.

Then e⊤v Eλ(G)ev = 0 for each positive eigenvalue λ ∈ SpecG. Note that Er(G) = 1
n
Jn

and thus e⊤v Er(G)ev = 1
n
6= 0, a contradiction. Hence, there exists a negative eigenvalue

λ < 0 in suppG(v). Then, λ− (m− 1) < 0. By Corollary 4.3, we have

m ≥| λ− (m− 1) | +1 = −λ+ (m− 1) + 1 > m,

a contradiction. Therefore, (v, 0) is not a periodic vertex of G◦̃Km. By Lemma 4.1, we

conclude that every vertex of G◦̃Km is not periodic. Moreover, by Lemma 2.7, G◦̃Km has

no PST. ✷

By Lemma 2.7, we know that periodicity is a necessary condition for a graph to have

PST. In the following, we give a sufficient condition for a vertex complemented corona to

not be periodic.

Theorem 4.5. Let G and
−→
H be as in Theorem 3.1, and let v be a vertex of G.

(a) If there are two distinct eigenvalues λ, µ ∈ suppG(v) \ {r} such that

|λ− k| − |µ− k| ∈
{√

∆, 2
√
∆
}

(4.1)

for some square-free integer ∆, then (v, w) is not a periodic vertex of G◦̃−→H , for all

w ∈ V (Hi) ∪ {0}.
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(b) If there is an eigenvalue κ ∈ suppG(v) \ {r} such that

∣

∣|r − k| − (n− 1)|κ− k|
∣

∣ ∈
{√

∆, 2
√
∆
}

(4.2)

for some square-free integer ∆, then (v, w) is not a periodic vertex of G◦̃−→H , for all

w ∈ V (Hi) ∪ {0}.

Proof. (a) By Lemma 4.1, we just need to show that (v, 0) is not a periodic vertex of

G◦̃−→H . By contradiction, suppose that (v, 0) is a periodic vertex. By Lemma 4.2, there

exists a square-free integer ∆ ≥ 1 such that for each eigenvalue λ ∈ suppG(v) \ {r}, both
λ− k and

√

(λ− k)2 + 4m are integer multiples of
√
∆. Define

δ :=
1√
∆

min
{∣

∣|λ1 − k| − |λ2 − k|
∣

∣ : λ1, λ2 ∈ suppG(v) \ {r}
}

.

Assume that λ and µ are two eigenvalues achieving the above minimum. Define

nλ :=
|λ− k|√

∆
, and nµ :=

|µ− k|√
∆

,

and suppose that δ = nλ − nµ. It is already noted in the beginning of the proof that

n2
λ + 4m/∆ and n2

µ + 4m/∆ are squares. Define

p :=

√

n2
µ +

4m

∆
, and q :=

√

n2
λ +

4m

∆
.

Then

q + p > nλ + nµ = 2nµ + δ, and q2 − p2 = (2nµ + δ)δ,

which implies q−p < δ. By (4.1), we have δ = 1, 2. If δ = 1, then q−p < 1, which cannot

occur. If δ = 2, then q − p < 2, which contradicts that p and q have the same parity.

(b) Similar to the proof of (a), suppose that (v, 0) is a periodic vertex. Consider the

following two cases.

Case 1. r 6= k. Define

σ := min
{∣

∣|r − k| − (n− 1)|κ− k|
∣

∣ : κ ∈ suppG(v) \ {r}
}

.

Assume that θ is an eigenvalue achieving the above minimum. Define

nr := |r − k|, and nθ := |θ − k|,

and suppose that σ := |nr − (n− 1)nθ|. By Lemma 4.2, n2
θ +4m and n2

r +4m(n− 1)2 are

squares. Let

s :=
√

n2
θ + 4m, and t :=

√

n2
r + 4m(n− 1)2.

Then

(n− 1)s+ t > (n− 1)nθ + nr, and |t2 − ((n− 1)s)2| = ((n− 1)nθ + nr)σ,
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which implies |t−(n−1)s| < σ. By (4.2), we have σ = 1, 2. If σ = 1, then |t−(n−1)s| < 1,

which cannot occur. If σ = 2, then |t−(n−1)s| < 2, which contradicts that t and (n−1)s

have the same parity.

Case 2. r = k. Note that
√

4m(n− 1)2 is an integer multiple of
√
∆. Define

σ :=
1√
∆

min
{∣

∣(n− 1)|κ− k|
∣

∣ : κ ∈ suppG(v) \ {r}
}

.

Assume that θ is an eigenvalue achieving the above minimum. Define

nθ :=
|θ − k|√

∆
,

and suppose that σ := (n− 1)nθ. By Lemma 4.2, n2
θ + 4m/∆ is a square. Let

s :=

√

n2
θ +

4m

∆
, and t :=

√

4m(n− 1)2

∆
.

Then

(n− 1)s+ t > σ, and |t2 − ((n− 1)s)2| = σ2,

which implies |t−(n−1)s| < σ. By (4.2), we have σ = 1, 2. If σ = 1, then |t−(n−1)s| < 1,

which cannot occur. If σ = 2, then |t−(n−1)s| < 2, which contradicts that t and (n−1)s

have the same parity.

This completes the proof. ✷

Corollary 4.6. Let G and
−→
H be as in Theorem 3.1, and let v be a vertex of G.

(a) If there are two distinct eigenvalues λ, µ ∈ suppG(v) \ {r} such that

0 < |λ− k| − |µ− k| < 3, (4.3)

then (v, w) is not periodic in G◦̃−→H , for all w ∈ V (Hi) ∪ {0}.

(b) If there is an eigenvalue κ ∈ suppG(v) \ {r} such that

0 <
∣

∣|r − k| − (n− 1)|κ− k|
∣

∣ < 3, (4.4)

then (v, w) is not periodic in G◦̃−→H , for all w ∈ V (Hi) ∪ {0}.

Proof. (a) By contradiction, suppose that (v, 0) is a periodic vertex. By Lemma 4.2,

there exists a square-free integer ∆ ≥ 1 such that both λ − k and µ − k are integer

multiples of
√
∆. By (4.3), we have

|λ− k| − |µ− k| ∈
{√

1,
√
2,
√
3, 2

√
1,
√
5,
√
6,
√
7, 2

√
2
}

.

This contradicts to Theorem 4.5 (a).
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(b) By contradiction, suppose that (v, 0) is a periodic vertex. Consider the following

two cases.

Case 1. r 6= k. By Lemma 4.2 (a), both κ − k and r − k are integers. By (4.4), we

have
∣

∣|r − k| − (n− 1)|κ− k|
∣

∣ ∈
{√

1, 2
√
1
}

.

This contradicts to Theorem 4.5 (b).

Case 2. r = k. By Lemma 4.2 (b), κ − k is an integer multiples
√
∆. By (4.4), we

have
∣

∣(n− 1)|κ− k|
∣

∣ ∈
{√

1,
√
2,
√
3, 2

√
1,
√
5,
√
6,
√
7, 2

√
2
}

.

This also contradicts Theorem 4.5 (b). ✷

Example 1. Let G be the d-dimensional cube with d ≥ 2. Then the set of all distinct

eigenvalues of G is SpecG = {d − 2l : 0 ≤ l ≤ d} [6, Theorem 9.2.1]. Note that G is a

distance-regular graph. Then SpecG is contained in the eigenvalue support of every vertex

of G [13, Page 41]. In particular, 2 − d and −d are always eigenvalues of G. Therefore,

for an arbitrarily k,

0 < | − d− k| − |2− d− k| < 3,

which satisfies the condition of the Corollary 4.6 (a). Hence, for an arbitrary k-regular

graph H , every vertex of G◦̃H is not periodic. Moreover, by Lemma 2.7, G◦̃H has no

PST.

4.2 PGST in vertex complemented coronas

In this section, we prove that vertex complemented coronas have PGST. Before proceed-

ing, we give the following result.

Theorem 4.7. Let G and
−→
H be as in Theorem 3.1, and let u and v be two distinct

vertices of G. For each eigenvalue λ 6= r of G, define Λλ =
√

(λ− k)2 + 4m and

Λr =
√

(r − k)2 + 4m(n− 1)2. Then

e(u,0)e
−itA

G◦̃
−→
He(v,0) =

∑

λ∈SpecG\{r}
e−it(λ+k)/2

(

cos

(

Λλt

2

)

− i
λ− k

Λλ
sin

(

Λλt

2

))

e⊤uEλ(G)ev

+ e−it(r+k)/2

(

cos

(

Λrt

2

)

− i
r − k

Λr
sin

(

Λrt

2

))

e⊤uEr(G)ev.

Proof. Recall that λ± = 1
2
(λ+ k ± Λλ) for λ 6= r and r± = 1

2
(r + k ± Λr). By Theorem

3.2 and Equation (2.3), we have

e⊤(u,0)e
−itA

G◦̃
−→
He(v,0) =

∑

λ∈SpecG\{r}
e−itλ+k

2 e⊤uEλ(G)ev

(

∑

±
e∓it

Λλ
2

(λ± − k)2

(λ± − k)2 +m

)
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+ e−it r+k
2 e⊤uEr(G)ev

(

∑

±
e∓itΛr

2
(r± − k)2

(r± − k)2 +m(n− 1)2

)

. (4.5)

By Maple, we have

∑

±
e∓it

Λλ
2

(λ± − k)2

(λ± − k)2 +m
= cos

(

Λλt

2

)

− i
λ− k

Λλ

sin

(

Λλt

2

)

, (4.6)

and

∑

±
e∓itΛr

2
(r± − k)2

(r± − k)2 +m(n− 1)2
= cos

(

Λrt

2

)

− i
r − k

Λr
sin

(

Λrt

2

)

. (4.7)

Plugging (4.6) and (4.7) into (4.5), we obtain the required result. ✷

Let G be a regular connected graph. From Corollary 4.4, we know that G◦̃Km has no

PST. In contrast, we use Theorem 4.7 to prove that G◦̃K1 has PGST.

Theorem 4.8. Let G be an r-regular connected graph with n ≥ 2 vertices and let u, v be

two distinct vertices of G. If there exists PST from u to v at time t = π/g, for some

positive integer g, 0 /∈ suppG(u) and r2 + 4(n − 1)2 is not a perfect square, then there

exists PGST from (u, 0) to (v, 0) in G◦̃K1.

Proof. Note that there exists PST from u to v at time t = π/g in G, for some integer

g. According to the last sentence of Lemma 2.9, we have ∆ = 1, that is, all eigenvalues

in suppG(u) are integers. Note that r is always in suppG(u). For each eigenvalue λ ∈
suppG(u) \ {r}, let cλ be the square-free part of λ2 + 4. Then

Λλ =
√
λ2 + 4 = sλ

√
cλ

for some integer sλ. Note that 0 /∈ suppG(u). Then Λλ is irrational and cλ > 1 for each

λ ∈ suppG(u) \ {r}.
Notice that r2 + 4(n − 1)2 is not a perfect square. Then Λr =

√

r2 + 4(n− 1)2 is

irrational. Let cr be the square-free part of r2 + 4(n − 1)2. Then Λr = sr
√
cr for some

integer sr.

By Corollary 2.6,

{√cλ : λ ∈ suppG(u)} ∪ {1}

is linearly independent over Q. By Theorem 2.4, there exist integers l, qλ such that

l
√
cλ − qλ ≈ −

√
cλ
2g

for λ ∈ suppG(u). (4.8)

Multiplying both sides of (4.8) by 4sλ, we have

(

4l +
2

g

)

Λλ ≈ 4qλsλ for λ ∈ suppG(u).
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In particular,
(

4l +
2

g

)

Λr ≈ 4qrsr.

Hence, let T = (4l + 2/g)π, we have cos(ΛλT/2) ≈ 1 for λ ∈ suppG(u). By Theorem 4.7,

e(u,0)e
−iTAG◦̃K1e(v,0) =

∑

λ∈SpecG\{r}
e−iTλ/2

(

cos

(

ΛλT

2

)

− i
λ

Λλ
sin

(

ΛλT

2

))

e⊤uEλ(G)ev

+ e−iTr/2

(

cos

(

ΛrT

2

)

− i
r

Λr

sin

(

ΛrT

2

))

e⊤uEr(G)ev

≈
∑

λ∈SpecG

e−i(2π)lλe−iλπ/ge⊤uEλ(G)ev

=e⊤u e
−i(π/g)AGev.

Note that G has PST from u to v at time π/g. Then |e⊤u e−i(π/g)AGev| = 1. Therefore,

|e(u,0)e−iTAG◦̃K1e(v,0)| ≈ 1, that is, there exists PGST from (u, 0) to (v, 0) in G◦̃K1. ✷

Example 2. Let G be the double coset graph of binary Golay code [6, Page 415]. By

Corollary 4.4, G◦̃K1 has no PST. Let u, v be two distinct vertices of G, the set of all

distinct eigenvalues of G is SpecG = {23, 9, 7, 1,−1,−7,−9,−23} and G has PST from

u to v at time π/2 [16, Page 122]. Note that 0 /∈ suppG(u) and the number of vertices

n = 4096. Then 232 + 4(4096 − 1)2 = 67076629 is not a perfect square. So by Theorem

4.8, there exists PGST from (u, 0) to (v, 0) in G◦̃K1.

In Theorem 4.8, 0 is restricted in the eigenvalue support of u. However, if 0 ∈ suppG(u),

we need a stronger condition to get PGST in G◦̃K1.

Theorem 4.9. Let G be an r-regular connected graph with n ≥ 2 vertices and let u, v be

two distinct vertices of G. If G has PST from u to v at time t = π/2, 0 ∈ suppG(u)

and r2 + 4(n− 1)2 is not a perfect square, then there exists PGST from (u, 0) to (v, 0) in

G◦̃K1.

Proof. Note that there exists PST from u to v at time t = π/2 in G. By Lemma 2.9, all

eigenvalues in suppG(u) are integers. Note that r is always in suppG(u). Then for each

eigenvalue λ ∈ suppG(u) \ {r}, let cλ be the square-free part of λ2 + 4. Then

Λλ =
√
λ2 + 4 = sλ

√
cλ

for some integer sλ. Note that Λλ is irrational and cλ > 1 for each λ ∈ suppG(u) \ {0, r}
and cλ = 1 if and only if λ = 0.

Notice that r2 + 4(n − 1)2 is not a perfect square. Then Λr =
√

r2 + 4(n− 1)2 is

irrational. Let cr be the square-free part of r2 + 4(n − 1)2. Then Λr = sr
√
cr for some

integer sr.

By Corollary 2.6,

{√cλ : λ ∈ suppG(u) \ {0}} ∪ {1}
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is linearly independent over Q. By Theorem 2.4, there exist integers l, qλ such that

l
√
cλ − qλ ≈ −

√
cλ
4

+
1

2sλ
for λ ∈ suppG(u) \ {0}. (4.9)

Multiplying both sides of (4.9) by 4sλ, we have

(4l + 1)Λλ ≈ 4qλsλ + 2 for λ ∈ suppG(u) \ {0}.

Hence, let T = (4l + 1)π, we have cos(Λ0T/2) = −1 and cos(ΛλT/2) ≈ −1 for λ ∈
suppG(u) \ {0}. By Theorem 4.7,

e(u,0)e
−iTAG◦̃K1e(v,0) =

∑

λ∈SpecG\{r}
e−iTλ/2

(

cos

(

ΛλT

2

)

− i
λ

Λλ
sin

(

ΛλT

2

))

e⊤uEλ(G)ev

+ e−iTr/2

(

cos

(

ΛrT

2

)

− i
r

Λr

sin

(

ΛrT

2

))

e⊤uEr(G)ev

≈−
∑

λ∈SpecG

e−i(2π)lλe−iλπ/2e⊤uEλ(G)ev

=− e⊤u e
−i(π/2)AGev.

Note that G has PST from u to v at time π/2. Then |e⊤u e−i(π/2)AGev| = 1. Therefore,

|e(u,0)e−iTAG◦̃K1e(v,0)| ≈ 1, that is, there is PGST between (u, 0) and (v, 0) in G◦̃K1. ✷

Example 3. Let G be the coset graph of the shortened binary Golay code [6, Page 416]

and let u, v be two distinct vertices of G. The set of all distinct eigenvalues of G is

SpecG = {22, 8, 6, 0,−2,−8,−10} and G has PST from u to v at time π/2 [16, Page 122].

Note that G is a distance-regular graph. Then SpecG is contained in the eigenvalue

support of every vertex of G [13, Page 41], that is, 0 ∈ suppG(u). Since the number of

vertices n = 2048, then 222 + 4(2048 − 1)2 = 16761320 is not a perfect square. So by

Theorem 4.9, there exists PGST from (u, 0) to (v, 0) in G◦̃K1.
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