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Abstract

Bi-objective optimization problems on matroids are in general intractable and
their corresponding decision problems are in general NP-hard. However, if one
of the objective functions is restricted to binary cost coefficients the problem
becomes efficiently solvable by an exhaustive swap algorithm. Binary cost co-
efficients often represent two categories and are thus a special case of ordinal
coefficients that are in general non-additive.

In this paper we consider ordinal objective functions with more than two
categories in the context of matroid optimization. We introduce several problem
variants that can be distinguished w.r.t. their respective optimization goals,
analyze their interrelations, and derive a polynomial time solution method that
is based on the repeated solution of matroid intersection problems. Numerical
tests on minimum spanning tree problems and on partition matroids confirm
the efficiency of the approach.

Keywords: matroid intersection, multi-objective combinatorial optimization,
ordinal weights, multi-objective minimum spanning tree

1. Introduction

Matroid optimization problems, especially the minimum spanning tree prob-
lem, are well investigated even for multi-objective optimization (cf. Ehrgott
(1996) for matroids and Ehrgott and Klamroth (1997), Hamacher and Ruhe
(1994), Chen et al. (2007), Arroyo et al. (2008), Davis-Moradkhan and Browne
(2008) among others for spanning trees). In this paper, we consider multi-
objective optimization problems where, in addition to one sum objective func-
tion, one or more ordinal objective functions are to be considered.
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Ordinal coefficients occur whenever there is no numerical value to reflect the
quality or cost of an element. Consider, for example, the minimum spanning tree
problem which allows to find connected networks with small overall connection
costs. In addition to the (non-negative integer-valued and additive) length of an
edge that directly represents the cost of, e.g., a telephone cable, the construction
may involve major work that affects road traffic or even public transportation
systems like tramways or trains. Roads that have already a cable canal allow for
a cheap and easy addition of another cable. But if it is necessary to build a new
cable canal under a street, this could lead to limitations of the traffic or even
affect public transportation systems. In this situation, it is useful to categorize
each possible connection as “easy to build” (good), “leads to little problems with
traffic jams” (medium), and “leads to major problems for public transportation”
(bad), for the time of construction. It is then hard to compare, for example,
a solution with two medium edges with a solution with one bad edge, since in
general these categories can not be translated into monetary values.

Ordinal weights and ordinal objective functions have been first introduced
in Schäfer et al. (2020) for shortest path problems. Motivated by applications
in civil security, edges are categorized, for example, as “secure”, “neutral”, or
“insecure”. Schäfer et al. (2020) introduce an ordinal preorder based on ordinal
weights, analyze the complexity of the problem, and suggest a polynomial time
labeling algorithm for its solution. Knapsack problems with ordinal weights
are analyzed in Schäfer et al. (2021). They consider a general vector dominance
and two lexicographic dominance concepts and suggest a dynamic programming
based solution strategy and efficient greedy methods, respectively. Moreover,
an outlook to multi-objective versions of ordinal problems is provided.

In this paper we extend this concept by considering multi-objective problems
that combine one “classical”, sum objective function with possibly several ad-
ditional ordinal objectives. We focus on multi-objective optimization problems
with ordinal weights on matroids and relate the multi-objective formulation to
a series of single-objective optimization problems on intersections of matroids.
The latter can be efficiently solved by an algorithm from Edmonds (2003). For
the special case of bi-objective problems and only two ordinal categories, we
compare this approach to the Exhaustive Swap Algorithm (ESA) presented in
Gorski et al. (2021) which is even more efficient due to the special problem
structure. In Section 2 we review some basic concepts of matroid theory and
multi-objective optimization.

The paper is organized as follows. In Section 2 we review the basic concepts
from matroid optimization and from multi-objective optimization. We particu-
larly focus on (partial) ordering relations for ordinal objective functions in the
light of state-of-the-art references. Ordinal matroid optimization problems with
only one ordinal objective function are discussed in Section 3. We show that
ordinal matroid optimization problems can be solved by a greedy strategy, due
to their special structure. Multi-objective matroid optimization problems with
one sum objective and one ordinal objective are introduced in Section 4. Their
relation to matroid intersection problems is analyzed in Section 5, yielding ef-
ficient polynomial time solution strategies for all considered problem variants.
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The algorithms are numerically tested and compared at randomly generated
instances of graphic matroids and of partition matroids in Section 6, and the
paper is concluded with a short outlook on future research topics in Section 7.

2. Preliminaries

Since we combine matroid theory and multi-objective combinatorial opti-
mization in this paper, this preliminaries section is divided into two parts. In
the first subsection we summarize some basic definitions and results of matroid
theory (for a self-contained introduction to matroid theory see, for example,
Oxley (2011); Schrijver (2002); Edmonds (1971); Schrijver (2017)). In the sec-
ond subsection we review basic concepts of multi-objective optimization with a
particular focus on dominance relations. For a general introduction into multi-
objective optimization see, e.g., Ehrgott (2005). A survey on multi-objective
combinatorial optimization is given in Ehrgott and Gandibleux (2000).

2.1. Matroid Theory

Let E be a finite set and let I ⊂ 2E be a subset of the power-set of E. The
tuple (E, I) is called a matroid if and only if the following three properties hold:

∅ ∈ I (1)

I ∈ I and J ⊆ I =⇒ J ∈ I (2)

I, J ∈ I : |I| < |J | =⇒ ∃j ∈ J \ I : I ∪ {j} ∈ I. (3)

The subsets I ∈ I are called independent sets while the subsets D ∈ 2E \ I
are called dependent sets. Moreover, if the tuple (E, I) satisfies at least the
conditions (1) and (2), then it is called an independence system.

Furthermore, all inclusion-wise maximal independent sets are called bases,
and all inclusion-wise minimal dependent sets are called circuits. In the follow-
ing, we write X := {B ∈ I : ∄I ∈ I : I ) B} for the set of all bases of a matroid.
All bases of a matroid have the same cardinality which is referred to as the rank
of the matroid, see, for example, Oxley (2011). An important characteristic of
matroids is the so-called basis exchange property:

∀B1, B2∈ X ∀b1∈B1 \B2 ∃ b2∈B2 \B1 : (B1 ∪ {b2}) \ {b1} ∈ X . (4)

The restriction of a matroid M = (E, I) to a subset S ⊆ E is defined as
M − S := (E \ S, IS) with IS = {I ∈ I : I ⊆ E \ S}. Another way to
manipulate a given matroid M is the contraction of M by an independent set
I ∈ I that is defined as M/I := (E \ I,K) with K = {K ⊆ E \ I : K ∪ I ∈ I}.

To simplify the notation we define the set operations S + e := S ∪ {e} and
S − f := S \ {f} for S ⊆ E and e, f ∈ E. Furthermore, let Sc := E \ S denote
the complement of S in E.

For an extensive list of examples of matroids we refer to Oxley (2011). The
following three matroids are frequently considered and will be used for illustra-
tions and numerical tests in this paper.

3



• graphic matroid: Let G = (V,E) be an undirected graph, then M =
(E, I) with I := {I ⊆ E : (V, I) contains no cycle} is a matroid.

• uniform matroid: Let E be a finite set and k ∈ N0, then M = (E, I)
with I := {I ⊆ E : |I| ≤ k} is a matroid.

• partition matroid: Let E = E1 ∪ E2 ∪ . . . ∪ Ek be the disjoint union
of k finite sets and let u1, . . . , uk ≥ 0 be non-negative integers. Then
M = (E, I) with I := {I ⊆ E : |I ∩Ei| ≤ ui ∀1 ≤ i ≤ k} is a matroid.

An important concept that will prove very useful in this paper is the intersec-
tion of two matroids. Consider two matroids M1 = (E, I1) and M2 = (E, I2)
over the same ground set E. Then the matroid intersection of M1 and M2 is
defined as the independence system M1 ∩M2 := (E, I1 ∩ I2).

It is important to note that a matroid intersection is not necessarily a ma-
troid itself. A counter example is given in Figure 1. Let G = (V,E1 ∪ E2) be a
graph with an edge set E = E1 ∪E2 that is partitioned into two subsets E1, E2

(e.g., green and red edges, respectively). Moreover, let M1 = (E, I1) be the
graphic matroid on G and let M2 = (E, I2) be a partition matroid with E1 :=
{[1, 2], [4, 5], [4, 6]} the set of all green edges, E2 := {[1, 3], [2, 3], [3, 4], [5, 6]} the
set of all red edges and I2 := {I ⊆ E : |I ∩ E1| ≤ 3, |I ∩ E2| ≤ 2}. Then the
set I := {[1, 3], [2, 3], [4, 5], [4, 6]} is an inclusion-wise maximal independent set
of M1 ∩ M2 since every additional edge e ∈ E \ I makes I ∪ {e} dependent
w.r.t. either M1 or M2. However, the set J := {[1, 2], [1, 3], [3, 4], [4, 5], [4, 6]}
is also a maximal independent set of M1 ∩M2 that has larger cardinality, i.e.,
|J | > |I|. Thus, M1 ∩M2 is not a matroid because all maximal independent
sets of a matroid must have the same cardinality. However, if at least one of
the intersected matroids is a uniform matroid then the intersection is again a
matroid, see Oxley (2011).
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Figure 1: The edges E = E1 ∪ E2 of the graph G = (V, E) in (a) are the ground-set of a
graphic matroid M1 and of a partition matroid M2 (where E1 is the set of all green-dotted
edges and E2 is the set of all red-solid edges). The independent set of edges I illustrated in
(b) is inclusion-wise maximal for M1∩M2, however, the alternative independent set J shown
in (c) has larger cardinality.

2.2. Multi-objective Optimization

In this article we consider three different concepts of efficiency for multi-
objective optimization. The first two are used for general, usually sum objec-
tive functions, while the last one is particularly defined for ordinal objective
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functions. Throughout this section we consider minimization problems with a
discrete feasible set X ⊂ 2E that is defined over a finite ground set E. How-
ever, all of the presented concepts can be defined analogously for maximization
problems.

Pareto Optimality. The Pareto concept of optimality (see again, e.g., Ehrgott
(2005)) is based on the component-wise order. Let y1, y2 ∈ Rp and define

y1 ≦ y2 :⇐⇒ y1i ≤ y2i , i = 1, . . . , p,

y1 6 y2 :⇐⇒ y1i ≤ y2i , i = 1, . . . , p and y1 6= y2,

y1 < y2 :⇐⇒ y1i < y2i , i = 1, . . . , p.

We say that y1 dominates y2 whenever y1 6 y2. Note that the binary relation ≦

is reflexive, transitive and antisymmetric and hence a partial order. The binary
relation 6 is irreflexive, transitive and asymmetric and hence defines a strict
partial order. Similarly, < defines a strict partial order.

This concept of dominance is typically used when comparing outcome vectors
of a multi-objective problem (MOP) that aims at minimizing a vector-valued
objective function w : X → Rp:

min w(x)
s. t. x ∈ X.

(MOP)

A feasible solution x̄ ∈ X is called efficient or Pareto-optimal for (MOP) if there
exists no x ∈ X with w(x) 6 w(x̄). Moreover, a feasible solution x̂ ∈ X is called
weakly efficient or weakly Pareto-optimal for (MOP) if there exists no x ∈ X
with w(x) < w(x̂). The set of all efficient solutions of a problem (MOP) is called
efficient set and denoted by Xeff . The image w(x̄) of an efficient solution x̄ is
called non-dominated outcome vector or non-dominated point. If w(x′) 6 w(x′′)
for two feasible solutions x′, x′′ ∈ X , then we say that x′ dominates x′′, in
accordance with the above concept of dominance in the objective space. The
image of the efficient set is called non-dominated set and denoted by Ynd :=
w(Xeff).

Lexicographic Optimality. The concept of lexicographic optimality assumes a
specific ordering among the components of the given (outcome) vectors, i.e.,
the first component is more important than the second, and so on. We refer
again to Ehrgott (2005) for a more general introduction. Let y1, y2 ∈ Rp. Then
y1 <lex y2, i. e., y1 lexicographically dominates y2, if there is an index k ∈
{1, . . . , p} such that y1k < y2k and y1i = y2i for all i ∈ {1, . . . , k−1}. Furthermore,
we write y1 ≦lex y2 if y1 <lex y2 or y1 = y2. Note that the lexicographic order
≦lex is a total order, i. e., it is reflexive, transitive and antisymmetric, and for
all y1, y2 ∈ Rp with y1 6= y2 either y1 ≦lex y2 or y2 ≦lex y1 holds. Consequently,
we call a solution x̄ ∈ X of (MOP) lexicographically optimal if w(x̄) ≦lex w(x)
for all x ∈ X . To distinguish lexicographic optimization from multi-objective
optimization in the Pareto sense we write lexmin (and lexmax in the case of
maximization problems, respectively).
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Figure 2: The edges of the graph in (a) are categorized w.r.t. two categories(green-dotted and
red-solid), c. f. Figure 1(a) above, while the edges of the same graph are categorized w.r.t.
three categories in (b) (green-dotted, orange-dashed, and red-solid).

Ordinal Optimality. Now assume that all solutions in the feasible setX have the
same cardinality, i. e. |x| = r for all x ∈ X . This is, for example, satisfied in the
case of a matroid optimization problem. Then an ordinal weight optimization
problem (OWOP) can be formulated as

min o(x)
s. t. x ∈ X.

(OWOP)

Intuitively, the ordinal objective function o assigns one out of K ordered cate-
gories to each element of the ground set E, and hence the ordinal objective of x
is given by an r-dimensional ordinal vector. For example, in the case K = 3 we
may think of good (green), medium (orange) and bad (red) elements, where we
prefer good over medium and medium over bad. Figure 2 shows two examples
of the ground set E of a graphic matroid. While the edges in Figure 2(a) are
assigned to only two categories (where green-dotted is better than red-solid),
Figure 2(b) shows an example with three categories (where green-dotted is bet-
ter than orange-dashed which is again better than red-solid).

Throughout this paper we assume that the components of the ordinal vectors
of feasible solutions are sorted in non-decreasing order w.r.t. the quality of the
respective categories, see Figure 3 for an illustration. This sorting will be useful
when comparing different solutions in the following.

More formally, let C = {η1, . . . , ηK} be an ordinal space consisting of K
ordered categories, and let o : E → C assign one ordinal category to each
element of the ground set E. Moreover, (by slightly abusing the notation) let
o : X → Cr be a function mapping each feasible solution to an r-dimensional
ordinal vector. We assume that category ηi with i ∈ {1, . . . ,K − 1} is strictly
preferred over all categories ηj with i < j, which is denoted by ηi ≺ ηj . Similarly,
we write ηi � ηj whenever i ≤ j. Moreover, the components of the objective
vector o(x) of a feasible solution x ∈ X are sorted in non-decreasing order,
which is denoted by o(x) := sort(o(x1), . . . , o(xr)). If we specify the vector o for
an explicit example we often write i instead of ηi for better readability.

In order to define meaningful optimality concepts for problem (OWOP), we
need to compare ordinal vectors in Cr. The following definition is based on the
concept first introduced in Schäfer et al. (2020) and Schäfer et al. (2021). Let
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y1, y2 ∈ Cr be two ordinal vectors. Then we write

y1 ≺
= y2 :⇐⇒ y1i � y2i , i = 1, . . . , r,

y1 4 y2 :⇐⇒ y1i � y2i , i = 1, . . . , r and y1 6= y2,

y1 ≺ y2 :⇐⇒ y1i ≺ y2i , i = 1, . . . , r.

When y1 = o(x1) and y2 = o(x2) are outcome vectors of problem (OWOP), then
their components are sorted in non-decreasing order. We use the same notation
in this case, and we say that y1 ordinally dominates y2 whenever y1 4 y2. Note
that what we consider here is a special case of the concept of ordinal dominance
introduced in Schäfer et al. (2020) who considered the more general case when
feasible solutions – and hence their outcome vectors – may differ w.r.t. their
number of elements. Schäfer et al. (2020) showed that in this more general
case, the binary relation ≺

= is a partial preorder on the set of sorted outcome
vectors of an ordinal optimization problem, i. e., it is reflexive and transitive. In
the special case when all feasible solutions have the same number of elements,
as considered in this paper, the binary relation ≺

= is also antisymmetric and
thus a partial order. See also Schäfer et al. (2021) for yet another perspective
on ordinal efficiency. Moreover, the binary relation 4 is a strict partial order
in our case, i. e., it is irreflexive, transitive and asymmetric. Thus, the concepts
of (weak) ordinal efficiency and (weak) ordinal dominance can be defined in a
similar way as for the case of Pareto optimality by replacing 6 with 4 and <
with ≺, respectively.

Combined Orderings. If an optimization problem has an objective function that
maps feasible solutions to outcome vectors on which several of the above or-
derings are combined – this may be the case when, for example, the first p
components of an outcome vector represent sum objective functions that are
ordered w.r.t. Pareto dominance, while the following r objective values repre-
sent ordinal values to which ordinal dominance is applied – then we say that a
solution x′ dominates a solution x′′, if all objective values of x′ are “at least as
good” w.r.t. all components with at least one strict inequality in the respective
ordering concept.

3. Ordinal Matroid Optimization

As a first step towards multi-objective ordinal optimization problems we in-
vestigate matroid optimization problems with only one ordinal objective func-
tion and show that such problems can be solved using a greedy algorithm. In
slight abuse of the standard notation, we will refer to the resulting problems
as “single-objective optimization problems”, even though their objective func-
tions are vector-valued. Similar results were obtained by Schäfer et al. (2020)
and Schäfer et al. (2021) for shortest path and knapsack problems, respectively,
however, for the case that a lexicographic optimization is employed on the or-
dinal outcome vectors. We show in the following that in the case of matroids,
ordinal optimality actually coincides with lexicographic optimality, and hence a
greedy algorithm always yields the ordinally non-dominated set in this case.
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3.1. Ordinal and Lexicographic Optimality and their Interrelation

Let a matroid M1 = (E, I1) with rank r be given and denote the set of its
bases by X1. As a first special case, consider the situation of only two categories,
i.e., K = 2. Wlog we set η1 = 0 (green) and η2 = 1 (red). It is easy to see that
in this case problem (OWOP) is equivalent to a matroid optimization problem
with a “classical” sum objective function with binary coefficients b : E → {0, 1}
where the cost of a basis B is the aggregated cost of all of its elements, i. e.
b(B) :=

∑

e∈B b(e). Indeed, a basisB1 ∈ X1 ordinally dominates a basisB2 ∈ X1

whenever the number of one-entries in o(B1) (i.e., red elements in B1) is smaller
than that in o(B2). This leads to a matroid problem with a binary objective
function (BMP)

min b(B)
s. t. B ∈ X1

(BMP)

as a particularly simple special case of problem (OWOP). When K > 2, i.e.,
when more than two ordinal categories have to be considered, a simple aggre-
gation of all categories into one single aggregated objective value is no longer
meaningful. However, we will discuss two related optimization problems that
are based on partial aggregation in the following. Towards this end, let problem
(OWOP) for the special case of matroid optimization be defined as a matroid
problem with ordinal costs, given by

min o(B)
s. t. B ∈ X1.

(MPO)

Now consider a feasible basis B ∈ X1. Then the information contained in the
objective vector o(B) ∈ Cr can equivalently be stored in an aggregated vector
c(B) ∈ ZK

≥ with components cj(B) := |{e ∈ B : o(e) = ηj}| for j = 1, . . . ,K
that count the number of elements in each category in B. Indeed, there is a
simple one-to-one correspondence between o(B) and c(B). We will refer to c
as a counting objective function in the following. This representation is often
advantageous since in general K, i. e., the number of categories, is constant
and much smaller than the dimension r, i. e., the number of elements in a
basis. Note that since all bases have the same number of elements we have
that

∑K

j=1 cj(B) = r, and hence all outcome vectors c(B), B ∈ X1, lie on the

same hyperplane in RK . Moreover, one of the components of c can be omitted
without loosing any information.

This reformulation suggests two related lexicographic optimization problems:
On the one hand, we may aim at lexicographically maximizing the number of
elements in the “good” categories, and on the other hand, we may want to
lexicographically minimize the number of elements in the “bad” categories. In
order to clearly distinguish between these two optimization goals, we introduce
two separate variants of the counting objective c denoted as cmax and cmin,
respectively.

Maximizing the Number of Good Elements. When aiming at the maximization
of the number of elements in good categories, we can apply a lexicographic
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maximization to the counting objective c. Thus, in this case we set cmax(B) :=
c(B) for B ∈ X1 with cmax

j (B) := |{e ∈ B : o(e) = ηj}| for j = 1, . . . ,K as
defined above, and formulate problem (MPCmax) as

lexmax cmax(B)
s. t. B ∈ X1.

(MPCmax)

Minimizing the Number of Bad Elements. In order to lexicographically mini-
mize the number of elements in bad categories, we first have to bring the cor-
responding entries of the counting objective c that represent the bad categories
into the leading positions (which are always considered first in lexicographic
optimization). We hence define cmin

j (B) := cK−j+1(B) for j = 1, . . . ,K and

for B ∈ X1, i. e., c
min
j (B) := |{e ∈ B : o(e) = ηK−j+1}|, and consider problem

(MPCmin) given by
lexmin cmin(B)
s. t. B ∈ X1.

(MPCmin)

Figure 3 shows an example of a graphic matroid with all of its feasible bases
and their respective objective vectors o, cmax and cmin, see also Example 6
below.

3.2. Interrelation Between (MPO), (MPCmin) and (MPCmax)

In general, the ordinally non-dominated set of problem (MPO) is different
from the sets of lexicographically optimal outcome vectors of the associated
formulations (MPCmin) and (MPCmax), respectively. This can be seen, for ex-
ample, at the cases of ordinal shortest path problems (see Schäfer et al. (2020))
and ordinal knapsack problems (see Schäfer et al. (2021)). In the special case of
matroids, however, these three concepts are closely related and their respective
efficient and non-dominated sets coincide.

Theorem 1. Let M1 = (E, I1) be a matroid, let X1 denote the set of bases
of M1, and let the functions o, cmin and cmax be given and defined as above.
Moreover, let B1, B2 ∈ X1 be two bases of M1. Then

(

o(B1) 4 o(B2)
)

⇒
(

cmin(B1) <lex cmin(B2) and cmax(B1) >lex cmax(B2)
)

,

i. e., if o(B1) ordinally dominates o(B2), then cmin(B1) lexicographically domi-
nates cmin(B2) and cmax(B1) lexicographically dominates cmax(B2).

Proof. We prove the result for cmin. The corresponding result for cmax follows
analogously, noting that (MPCmin) involves lexicographic minimization while
(MPCmax) involves lexicographic maximization.

Now let o(B1) 4 o(B2) and assume that cmin(B1) does not lexicographi-
cally dominate cmin(B2). First note that o(B1) 4 o(B2) implies o(B1) 6= o(B2)
and hence cmin(B1) 6= cmin(B2). Let τ := min{i : cmin

i (B1) 6= cmin
i (B2)} be

the smallest index where cmin(B1) and cmin(B2) differ. Since we assumed
that cmin(B1) does not lexicographically dominate cmin(B2), it follows that
cmin
τ (B1) > cmin

τ (B2). Thus, the vectors o(B1) and o(B2) are equal in the last

9



ℓ :=
∑τ−1

i=1 cmin
i (B1) =

∑τ−1
i=1 cmin

i (B2) components, i. e., oj(B1) = oj(B2) for all
j = K − ℓ+ 1, . . . ,K. Furthermore, it holds that oK−ℓ(B1) ≻ oK−ℓ(B2), which
contradicts the assumption that o(B1) ordinally dominates o(B2).

Note that while the proof of Theorem 1 relies on the fact that all feasible so-
lutions have the same number of elements (and hence all outcome vectors have
the same length), the matroid property is not used. Hence, Theorem 1 gen-
eralizes to all ordinal optimization problems with fixed length solutions. The
following Corollary 2, that also follows from the results in Schäfer et al. (2020),
is an immediate consequence of Theorem 1.

Corollary 2. The set of efficient bases of (MPO) is a superset of the set of
efficient bases of (MPCmin) and of (MPCmax).

Proof. Theorem 1 implies that the efficient set of (MPCmin) can not contain
any bases that are ordinally dominated w.r.t. o since this would imply that they
are also lexicographically dominated w.r.t. cmin. The same argument applies to
(MPCmax).

Remark 3. The reverse implication of Theorem 1 does not hold in general,
neither for cmin nor for cmax. As a counter example consider the bases B4 and
B6 from Figure 3. We have that cmin(B6) = cmax(B6) = (2, 1, 2), cmin(B4) =
cmax(B4) = (1, 3, 1), o(B6) = (1, 1, 2, 3, 3) and o(B4) = (1, 2, 2, 2, 3). Hence,
cmin(B4) lexicographically dominates cmin(B6) and cmax(B6) lexicographically
dominates cmax(B4), while o(B4) and o(B6) are ordinally incomparable.

We show in the following that in the case of matroids Corollary 2 can be
strengthened. Indeed, the following result shows that the respective ordinal
and lexicographic non-dominated sets are always equal and have cardinality
one. This can also be observed in Example 6 below, where all three problems
(MPO), (MPCmin) and (MPCmax) have the same efficient and non-dominated
sets.

The result can be briefly summarized as follows: Corollary 1 states that the
efficient set of (MPO) is a superset of that of (MPCmin) and (MPCmax). If
there were two non-dominated bases B1, B2 for (MPO) and only one of them,
say, basis B1, was optimal for problem (MPCmin), then the basis exchange
property would imply that basis B2 could be improved w.r.t. cmin by an appro-
priate swap operation. However, this would lead to a basis that also ordinally
dominates B2, contradicting the ordinal efficiency of B2. This leads to the
following result:

Theorem 4. Let M1 = (E, I1) be a matroid, let X1 6= ∅ be the set of bases
of M1, and let the functions o, cmin and cmax be given as defined above. Then
problems (MPO), (MPCmin) and (MPCmax) have the same efficient set, and
the corresponding non-dominated sets have cardinality one.

Proof. We show the equality of the efficient sets of (MPO) and (MPCmin). The
equality of the efficient sets of (MPO) and (MPCmax) follows analogously.
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First observe that the non-dominated set of problem (MPCmin) has cardi-
nality one since the lexicographical order is a total order. Moreover, Theorem 1
implies that every efficient solution of (MPCmin) is also efficient for (MPO).
Consequently, it is sufficient to show that all efficient solutions of (MPO) map to
a unique non-dominated outcome vector. We prove this result by contradiction.

Suppose, to the contrary, that there are two efficient bases B1 and B2 for
(MPO) with o(B1) 6= o(B2) and hence also cmin(B1) 6= cmin(B2). W.l.o.g.
assume that cmin(B1) lexicographically dominates cmin(B2).

Let e ∈ B2 \ B1 be chosen such that o(ê) � o(e) for all ê ∈ B2 \ B1, i.e.,
e is an element of highest category among all elements in B2 \ B1. Then the
basis exchange property (4) implies that there exists an element e′ ∈ B1 \ B2

such that B∗ := (B2 ∪ {e′}) \ {e} ∈ X1, and the choice of e and the fact
that cmin(B1) <lex cmin(B2) imply that o(e′) � o(e). Now, if o(e′) ≺ o(e),
then B∗ dominates B2 w.r.t. o, contradicting the assumption. Otherwise, i.e.,
if o(e′) = o(e), then B∗ has one more element in common with B1 than B2,
and iterating this procedure at most r times eventually yields a swap where
o(e′) ≺ o(e).

Corollary 5. The ordinally non-dominated set of (MPO) can be computed by
a greedy algorithm.

Proof. This follows immediately from Theorem 4 and the matroid properties,
see also Hamacher and Ruhe (1994).

Note that, while Theorem 4 states that the non-dominated sets of problems
(MPO), (MPCmin) and (MPCmax) have cardinality one, this does in general
not transfer to the respective efficient sets. Indeed, the size of the efficient
sets may grow exponentially with the problem size. As an example, consider
instances with exponentially growing feasible sets and assume that all elements
of E are in the same ordinal category. Then, all feasible solutions of a considered
problem are both ordinally and lexicographically efficient.

4. Multi-objective Matroid Optimization

We extend the settings of the previous section and consider multi-objective
matroid optimization problems (on a matroid M1 = (E, I1) with rank r and
set of bases X1) where we combine an ordinal objective with a sum objective
function with non-negative integer coefficients w : E → Z≥. The cost of a basis
B ∈ X1 w.r.t. this sum objective is given by w(B) :=

∑

e∈B w(e).

4.1. Multi-objective Ordinal and Lexicographic Optimality and their Interrela-
tion

If we add a sum objective function to the problems described in Section 3.1
above, we obtain the following four variants of bi- or multi-objective optimiza-
tion problems involving additive as well as ordinal objective coefficients:
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The bi-objective matroid problem with a binary objective function (BBMP)

min (w(B), b(B))
s. t. B ∈ X1,

(BBMP)

the multi-objective matroid problem with an ordinal objective function (MMPO)

min (w(B), o(B))
s. t. B ∈ X1,

(MMPO)

and two multi-objective matroid optimization problems with a counting objective
function (MMPCmax) and (MMPCmin)

min w(B)
lexmax cmax(B)
s. t. B ∈ X1

(MMPCmax)

min w(B)
lexmin cmin(B)
s. t. B ∈ X1.

(MMPCmin)

The problem (BBMP) is investigated in detail in Gorski (2010) and Gorski et al.
(2021), where an exhaustive swap algorithm is presented that determines a min-
imal complete representation of the non-dominated set (i. e., all non-dominated
points and one efficient solution for each of them) of (BBMP) in polynomial
time. This assumes that an oracle can determine in polynomial time if a given
subset I ⊆ E is independent or not. This is, e.g., the case for graphic matroids,
uniform matroids and partition matroids, see Gabow and Tarjan (1984).

The similarities and differences between the problems (MMPO), (MMPCmax)
and (MMPCmin) are illustrated at the following example of a graphic matroid:

Example 6. Consider the graphic matroid introduced in Figure 2(b). Its bases
are enumerated and illustrated with their weight functions w, o, cmin and cmax

in Figure 3. It is easy to see that, in accordance with Theorem 4, the unique
efficient solution w.r.t. all of the individual objective functions o, cmin and cmax

is the basis B9.
The corresponding multi-objective problems that additionally consider the

sum objective function w all have larger non-dominated sets in this example.
The respective non-dominated outcome vectors of the multi-objective problems
that combine w with the objective functions o, cmin and cmax, respectively, are
highlighted in Figure 3 by printing the latter components, i.e., o, cmin and cmax,
in bold. Note that the basis B1 is efficient in all three cases since it is the unique
minimizer of w.

4.2. Interrelation Between (MMPO), (MMPCmin) and (MMPCmax)

When moving from optimization problems with only one ordinal objective
function to multi-objective problems that additionally include a sum objective
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Figure 3: All bases of the graphic matroid introduced in Figure 2(b) together with the objective
values w, o, cmin and cmax, where we write 1 for green-dotted, 2 for orange-dashed, and 3 for
red-solid edges. When only considering the sum objective w, then B1 is optimal, and when
only considering the objective functions o, cmin or cmax, respectively, then B9 is the unique
efficient basis. For the problems (MMPO), (MMPCmin) and (MMPCmax) that combine w

with o, cmin and cmax, respectively, the non-dominated outcome vectors are indicated by
printing the partial objective vectors o, cmin and cmax in bold.
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w, as in the multi-objective problems (MMPO), (MMPCmin) and (MMPCmax),
the situation is much more complex than that described in Section 3.2 above.
Indeed, while Corollary 2 can be adapted to the new situation, Theorem 4 does
not transfer to the multi-objective case. A corresponding counter example will
be given below.

Theorem 7. The set of efficient bases of (MMPO) is a superset of the set of
efficient bases of (MMPCmin) and of (MMPCmax).

Proof. We prove the result for cmin. The corresponding result for cmax follows
analogously, noting that (MMPCmin) involves lexicographic minimization while
(MMPCmax) involves lexicographic maximization.

We prove this result by contradiction. Hence, let B̄ be an efficient basis
for (MMPCmin) but not for (MMPO). Then there exists a basis B∗ with
w(B∗) ≤ w(B̄), o(B∗) ≺

= o(B̄), and (w(B∗), o(B∗)) 6= (w(B̄), o(B̄)). First
note that o(B∗) ≺

= o(B̄) implies that cmin(B∗) ≦lex cmin(B̄), by Theorem 1.
We distinguish two cases: Either w(B∗) < w(B̄) and cmin(B∗) ≦lex cmin(B̄),
or w(B∗) = w(B̄) and cmin(B∗) <lex cmin(B̄). However, both cases are in
contradiction with the efficiency of B̄ for problem (MMPCmin).

However, as was to be expected, Theorem 4 does not generalize to the multi-
objective case as is shown by the following counter example:

Example 8. Consider again the graphic matroid introduced in Example 6 and
the set of all of its bases illustrated in Figure 3. The efficient bases for problem
(MMPO) are the bases B1, B2, B4, B5, B6, B7, B9, while the efficient bases for
the problem (MMPCmin) are given by B1, B2, B4, B5, B7, B9, and the efficient
bases for problem (MMPCmax) are given by B1, B2, B6, B7, B9. Hence, basis
B6 is efficient for (MMPO) but not for (MMPCmin), and the two bases B4 and
B5 are efficient for (MMPCmin) but not for (MMPCmax). Thus, Theorem 4
does not generalize to the multi-objective problems (MMPO), (MMPCmin) and
(MMPCmax).

One could conjecture from Example 6 that every efficient basis for (MMPO)
is efficient for at least for one of the problems (MMPCmin) or (MMPCmax).
However, this also does not hold in general as the following example shows.

Example 9. Consider the graphic matroid shown in Figure 4. We focus on all
bases B ∈ X1 that have an objective value of w(B) = 4 in the sum objective.
Note that these bases can only be dominated by other bases B̂ with w(B̂) ≤ w(B),
and hence we restrict our analysis on those bases in Figure 4. First observe
that all bases B ∈ X1 with w(B) = 4 map to one of the three possible outcome
vectors o(B) ∈ {(1, 1, 3, 3), (1, 2, 2, 3), (2, 2, 2, 2)}, which are all non-dominated
for (MMPO). Their corresponding counting vectors cmin are (2, 0, 2), (1, 2, 1)
and (0, 4, 0), where the last one is the only one that is lexicographically non-
dominated. For cmax the counting vectors are the same, but the first one is
lexicographically non-dominated. Consequently, the counting vector (2, 0, 2) is
neither lexicographically non-dominated for (MMPCmin) nor for (MMPCmax),
but it is non-dominated for (MMPO).
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Figure 4: All possible outcome vectors o(B) with w(B) ∈ {0, . . . , 4} for a graphic matroid with
non-negative integer-valued costs w and three categories (1:green-dotted, 2:orange-dashed and
3:red-solid).

5. Matroid Intersection for Ordinal Constraints

In the following we show that the three problems (MMPO), (MMPCmin)
and (MMPCmax) can be solved using a series of matroid intersection problems.
The approach is based on variants of ε-constraint scalarizations of problem
(MMPO) with appropriately selected optimization objective and constraints.
Furthermore, we show that matroid intersection problems can be used to solve
even problems with several ordinal objective functions and one sum objective.

5.1. Variants of ε-Constraint Scalarizations

We consider an equality-constrained scalarization of (MMPO) (where equal-
ity constraints are used rather than inequality constraints as is commonly the
case in ε-constraint scalarizations), given by

min w(B)
s. t. oi(B) = εi, i = 1, . . . , r

B ∈ X1

(5)

with right-hand side vector ε ∈ Cr. Intuitively, problem (5) specifies exactly
how many elements of each category must be chosen, and hence each feasible
basis B ∈ X1 of (5) maps to the same ordinal vector o(B). Depending on
the choice of ε, problem (5) may be infeasible (if there is no B ∈ X1 with
o(B) = ε), yield an efficient solution B∗ for (MMPO) (if there is no B ∈ X1

with w(B) = w(B∗) and o(B) 4 o(B∗)), or yield a dominated solution B̂ for
(MMPO) (if there is a B ∈ X1 with w(B) = w(B̂) and o(B) 4 o(B̂)). Note
that suitable choices for ε satisfy ε1 � · · · � εr since the components of o(B)
are always in non-decreasing order and hence problem (5) is certainly infeasible
otherwise. In the following, we denote all such suitable right-hand-side vectors
by Υ := {ε ∈ Cr : ε1 � · · · � εr}.
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Since problem (5) can be interpreted as a variant of the “classical” ε-constraint
scalarization in multi-objective optimization, see, e.g., Ehrgott (2005), the fol-
lowing result is not surprising and follows basically by the same arguments.

Theorem 10. The non-dominated set of problem (MMPO) can be determined
by solving problem (5) for all suitable right-hand side vectors ε ∈ Υ and filtering
out all dominated outcome vectors.

Proof. Let (w(B∗), o(B∗)) be a non-dominated outcome vector for (MMPO)
with pre-image B∗ ∈ X1. Then B∗ is optimal for problem (5) with ε := o(B∗) ∈
Υ. Thus, every non-dominated outcome vector of problem (MMPO) can be
determined by solving an appropriate scalarization (5). The non-dominated set
is then obtained by employing a dominance filtering to the set of all obtained
outcome vectors.

Now let a suitable constraint vector ε ∈ Υ be given, i.e., ε satisfies ε1 � · · · � εr.
Then we can define an associated suitable counting vector u ∈ ZK

≥ by setting
ui := |{j ∈ {1, . . . , r} : εj = ηi}| for all i = 1, . . . ,K, where, by definition, we

have that
∑K

i=1 ui = r. We denote by U := {u ∈ ZK
≥ :

∑K

i=1 ui = r} the set of
all suitable counting vectors.

Lemma 11. There is a one-to-one correspondence between suitable right-hand-
side vectors ε ∈ Υ and suitable counting vectors u ∈ U .

Proof. First consider the case that a suitable constraint vector ε ∈ Υ is given.
Then an associated suitable counting vector u ∈ U can be determined from ε
as described above, i.e., by setting ui := |{j ∈ {1, . . . , r} : εj = ηi}| for all
i = 1, . . . ,K. Conversely, if a suitable counting vector u ∈ U is given, then we
can determine associated suitable values for ε ∈ Υ by setting εj := ηi, where the

ordinal level i ∈ {1, . . . ,K} is chosen such that
∑i

l=1 ul ≤ j and
∑i−1

l=1 ul > j,
for all j = 1, . . . , r.

Lemma 11 implies that problem (5) can be equivalently written as

min w(B)
s. t. ci(B) = ui, i = 1, . . . ,K

B ∈ X1,
(6)

where the right-hand side vector u ∈ U is chosen as a suitable counting vector,
i.e., u ∈ ZK

≥ and
∑K

i=1 ui = r, and c is the counting objective introduced in

Section 3.1. Moreover, since
∑K

i=1 ci(B) = r =
∑K

i=1 ui for all feasible bases
B ∈ X1, the equality constraints in (6) can be replaced by inequality constraints
without changing the feasible set. Problem (6) is thus equivalent to the following
variant of ε-constraint scalarization that relates to problem (MMPCmin)

min w(B)
s. t. cmin

i (B) ≤ uK−i+1, i = 1, . . . ,K
B ∈ X1.

(7)
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Corollary 12. The non-dominated set of problem (MMPO) can be determined
by solving problem (6) (or problem (7)) for all suitable counting vectors u ∈
U , and filtering out all dominated outcome vectors. The non-dominated sets
of problems (MMPCmin) and (MMPCmax) can be obtained from this set by
further filtering out all lexicographically dominated outcome vectors.

Proof. The result follows immediately from Theorems 7 and 10, using the equiv-
alence of the formulations (5), (6) and (7).

We emphasize that problem (7) remains meaningful when a non-suitable count-

ing vector u ∈ ZK
≥ with

∑K

i=1 ui > r is used as right-hand-side vector. Indeed,
when considering a suitable counting vector u ∈ U and a non-suitable counting
vector û > u, then û yields a relaxation of problem (7) with u as the right-hand-
side vector. Nevertheless, the constraint B ∈ X1 guarantees that only bases of
M1 are returned, and hence

∑K

i=1 c
min
i (B) = r remains satisfied also in this

case. Moreover, using ū := (r, . . . , r) ∈ ZK
≥ yields a “complete” relaxation in the

sense that constraints cmin
i (B) ≤ ūK−i+1 = r, i = 1, . . . ,K, are satisfied for all

bases B ∈ X1 and hence redundant in this case.
Using the above results, the cardinality of the non-dominated set of problem

(MMPO) (and hence also of problems (MMPCmin) and (MMPCmax)) can be
bounded. Note that this is in analogy to the results obtained in Schäfer et al.
(2020) and Schäfer et al. (2021) for ordinal shortest path and ordinal knapsack
problems, respectively. Indeed, the number of equality-constraint scalarizations
(6) that need to be solved in order to guarantee that all non-dominated outcome
vectors of problem (MMPO) are found is polynomially bounded. This can be
seen from the fact that the number of suitable counting vectors u ∈ U , i.e., the
number ofK-dimensional non-negative integer vectors that satisfy

∑K

j=1 uj = r,

is given by
(

r+K−1
K−1

)

= O(rK−1) (assuming that K is constant), i. e., it is equal
to the number of multisets of cardinality K − 1 taken from a set of size r + 1.
This number is also known as occupancy number, see, e.g., Feller (1968). We
obtain the following result.

Theorem 13. The cardinality of the non-dominated set of problem (MMPO)
is bounded by O(rK−1), which is polynomial in r as long as K is constant.

5.2. Matroid Intersection

We focus on the ε-constraint scalarization-variant (7) in the following and
show that it can be equivalently formulated as a matroid intersection problem.
Towards this end, let an arbitrary but fixed, suitable counting vector u ∈ U be
given as right-hand-side vector in problem (7).

Now consider the partition E = E1 ∪ E2 ∪ . . . ∪ EK of the ground set E
of M1, where Ej := {e ∈ E : o(e) = ηj} for j = 1, . . . ,K, i.e., Ej contains
all elements from E that are in category ηj . Given this partition of E, let
M2(u) = (E, I2(u)) be an associated partition matroid with independent sets
given by I2(u) := {J ⊆ E : |J ∩ Ej | ≤ uj , 1 ≤ j ≤ K}. Then problem (7) can
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be solved using the matroid intersection problem

min w(I)
s. t. I ∈ I1 ∩ I2(u)

|I| = max{|J | : J ∈ I1 ∩ I2(u)}.
(8)

Note that the second constraint in (8) is needed since otherwise, B = ∅ would
always be optimal.

Theorem 14. Let u ∈ ZK
≥ be arbitrary but fixed. If problem (7) is feasible, then

problems (7) and (8) are equivalent. Moreover, if problem (7) is infeasible, then
every optimal solution B∗ of problem (8) satisfies |B∗| < r.

Proof. We first show that when problem (7) is feasible for the given suitable
counting vector u, then problems (7) and (8) have the same feasible sets. Indeed,
in this case there exists a basis B̂ ∈ X1 that satisfies c(B̂) ≦ u, and hence

Î := B̂ with |Î| = r is feasible for (8). This implies that all feasible solutions
of (8) have cardinality r and are thus bases of M1. In this situation, the
constraints cmin

i (B) ≤ uK−i+1, i = 1, . . . ,K (for (7)) and I ∈ I2(u) (for (8))
are equivalent. Since both problems also have the same objective function, they
are clearly equivalent in this case. If, however, problem (7) is infeasible for the
current choice of u, then the matroid intersection problem (8) is still feasible,
but returns an optimal solution B∗ with |B∗| < r. This situation can be easily
recognized.

The advantage of this reformulation is that the matroid intersection problem
(8) can be solved by the polynomial time matroid intersection algorithm (MI) of
Edmonds (1971). We refer to Schrijver (2017) for a proof of its correctness and
of its polynomial run time. Note that, while the matroid intersection algorithm
is originally formulated for maximization problems, it can also be applied to
problem (8) by multiplying all weights w(e) by −1, e ∈ E, and hence maxi-
mizing −w(e) rather than minimizing w(e) in (8). In our implementation we
use a variant of the Floyd-Warshall algorithm (see, e.g., Ahuja et al. (1993)) to
realize the required shortest path computations. Note that, alternatively, the
weights could be further transformed such that non-negative weight coefficients
are obtained. Then, the algorithm of Dijkstra could be applied for the relevant
distance computations, see Frank (1981) and Brezovec et al. (1986) for more
details.

Note that the cardinality constraint in the general formulation (8) of the
matroid intersection problem can be omitted if I1 is replaced by X1, i.e., the set
of all bases of the matroid M1. Hence, we can alternatively solve the problem

min w(B)
s. t. B ∈ X1 ∩ I2(u).

(9)

This is realized in Algorithm 1 by only considering optimal solutions of prob-
lem (8) that are actually bases of M1, see lines 4 and 5 in Algorithm 1 below.
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5.3. Algorithmic Consequences

Theorems 10 and 13 imply that all solutions of (MMPO) can be determined
by a polynomial number of matroid intersections applied on (8). The structure
of this procedure is given in Algorithm 1. Note that this algorithm can be easily
adapted to solve (MMPCmin) or (MMPCmax). Since the non-dominated set of
(MMPO) is a superset of the corresponding non-dominated sets of (MMPCmin)
and (MMPCmax), only a slight modification of the filtering step in line 6 is
necessary.

Algorithmus 1: Matroid Intersection for Ordinal Constraints
(MIOC(M1, w, o))

Input: Matroid M1 = (E, I1), sum objective function w and ordinal
objective function o

Output: Non-dominated set of problem (MMPO)
1 X := ∅
2 foreach u ∈ U do
3 Solve (8) with (MI) and save the obtained independent set I∗

4 if |I∗| = r then
5 Set X = X ∪ {I∗}

6 Filter the efficient independent sets of X w.r.t. (MMPO) and save the

corresponding outcome vectors in Y O
nd

7 return Y O
nd

It is possible to improve the performance of Algorithm 1 by reducing the
number of considered bounds u ∈ U , i.e., the number of solved matroid inter-
sections. This can be achieved by initially solving (8) with u = (r, ..., r) ∈ RK ,
which returns a weakly efficient basis B∗ (assuming X1 6= ∅) with the small-
est possible cost w∗. Consequently, only upper bounds u ∈ U such that
(uK , . . . , u1) ≤lex cmin(B∗) have to be considered. Thus, we modify lines 1–
2 in Algorithm 1 accordingly and obtain Algorithm 2.

Note that, in the worst case, this initialization yields no reduction of the
running time, since there might exists a basis B′ that minimizes w and for
which cmin(B′) = (r, 0, . . . , 0). However, in our numerical tests this procedure
often leads to a significant reduction of the number of iterations, as described in
Section 6. Note that the initial bound in Algorithm 2 is not a suitable counting
vector as defined in Section 5.1, i.e., u = (r, . . . , r) /∈ U . Since we consider
in the following often relaxations of suitable subproblems, we use the notation
Ū := {u ∈ ZK

≥ :
∑K

i=1 ui ≥ r, ui ≤ r, i = 1, . . . ,K} to denote the considered
upper bound set.

Based on the fact that the lexicographic order is a total order, Algorithm 2
can be further improved when applied on problem (MMPCmin). In this case,
the considered upper bound set can also be reduced during the course of the
algorithm. The initialization of the bound set U is analogous to Algorithm 2,
i. e., we solve the matroid intersection problem for u = (r, ..., r) ∈ RK . Let
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Algorithmus 2: Improved Initialization of Matroid Intersection for
Ordinal Constraints (MIOCO(M1, w, o))

Input: Matroid M1 = (E, I1), sum objective function w and ordinal
objective function o

Output: Non-dominated set of problem (MMPO)
1 u = (r, ..., r)
2 Solve (8) with (MI) and save the obtained basis B∗

3 Set X = {B∗}
4 foreach u ∈ {v ∈ U : (vK , . . . , v1) ≤lex cmin(B∗)} do
5 run lines 3–5 of Algorithm 1
6 Filter the efficient independent sets of X w.r.t. (MMPO) and save the

corresponding outcome vectors in Y O
nd

7 return Y O
nd

B∗ be the obtained weakly efficient basis of (MMPCmin) minimizing the sum
objective function w. Then, it is sufficient to solve subproblems with up-
per bounds u ∈ Ū such that (uK , . . . , u1) ≤lex cmin(B∗). Due to the lexi-
cographic order we can explicitly enumerate the new upper bounds u to be
considered as (uK , . . . , u1) ∈ {(cmin

1 (B∗) − 1, r, . . . , r), (cmin
1 (B∗), cmin

2 (B∗) −
1, r, . . . , r), . . . , (cmin

1 (B∗), . . . , cmin
K−2(B

∗), cmin
K−1(B

∗) − 1, r)} such that u > 0.
These upper bounds are added to the list Ū of open subproblems and sorted
in lexicographically increasing order. Whenever a new candidate for an effi-
cient basis is found, we update the list of open subproblems Ū and re-sort it.
In Algorithm 3 this procedure is repeated until Ū = ∅. To simplify the nota-
tion we slightly abuse the notation and consider Ū to be a sorted list, referring
by Ū [1] to the first element of this list. Note that an analogous solution al-
gorithm can be formulated for the corresponding lexicographic maximization
problem (MMPCmax).

5.4. Problems with Several Ordinal Objective Functions

Problem (MMPO) can be generalized by considering p ≥ 2 objective func-
tions with ordinal weights. This can be illustrated at a graph whose edges are
classified w.r.t. two types of categories, for example, colors (e.g., green, orange,
red) and letters (e.g., A, B). Then every edge is in exactly one of the following
categories: green-A, green-B, orange-A, orange-B, red-A or red-B. These com-
binations of categories are a-priori not completely ordered, since, in general,
neither green-B is preferred over red-A, nor red-A is preferred over green-B.
However, such problems can be considered in the context of combined orderings
as introduced in Section 2.2.

Multi-objective matroid problems with one sum objective function and sev-
eral ordinal objective functions can be handled analogously to multi-objective
matroid problems with one ordinal objective function (MMPO). Without going
much into detail, we shortly describe the formulation of an associated weighted
matroid intersection problem that generalizes problem (8).
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Algorithmus 3: Matroid Intersection for Ordinal Constraints for
(MMPCmin) (MIOCCmin(M1, w, o))

Input: Matroid M1 = (E, I1), sum objective function w and an
ordinal objective function o

Output: Non-dominated set of problem (MMPCmin)

1 Ū := {u ∈ ZK
≥ :

∑K

i=1 ui ≥ r}, u = (r, ..., r) ∈ ZK
≥

2 Solve (8) with (MI) and save the obtained basis B∗

3 Set X = {B∗}
4 Ū := {u ∈ Ū : (uK , . . . , u1) ≤lex cmin(B∗)}, sort U in lexicographically

increasing order
5 while Ū 6= ∅
6 u := Ū [1] // pop lexicographically smallest bound

7 Ū := Ū [2, . . . , end]
8 Solve (8) with (MI) and save the obtained independent set I∗

9 if |I∗| = r then
10 Set X = X ∪ {I∗}
11 Ū := {u ∈ Ū : (uK , . . . , u1) ≤lex cmin(I∗)}, sort U in

lexicographically increasing order

12 Filter the efficient independent sets of X with respect to the problem

(MMPCmin) and save the corresponding outcome vectors in Y Cmin

nd

13 return Y Cmin

nd

Let p denote the number of ordinal objective functions oi, i = 1, . . . , p, let
Ki denote the number of categories for the i-th ordinal objective, and let ηij ∈ C
denote the j-th category of the i-th ordinal objective, j = 1, . . . ,Ki, where ηij ≺
ηik whenever j < k. Then we can define a partition matroid M3 (generalizing

M2) by partitioning the ground set E =
⋃p

i=1

⋃Ki

j=1 Eij , where Eij := {e ∈

E : oi(e) = ηij} for i = 1, . . . , p and j = 1, . . . ,Ki. The set of independent
sets of M3 is given by I3 := {J ⊆ E : |J ∩ Eij | ≤ uij , 1 ≤ i ≤ p and j ∈
{1, . . . ,Ki}}, where uij denotes the number of elements that are allowed in
category ηij in the ordinal objective oi. Note that again 0 ≤ uij ≤ r for all i =
1, . . . , p and j ∈ {1, . . . ,Ki}, and that

∑

j∈{1,...,Ki}
uij = r for all i = 1, . . . , p.

Therefore, it is possible to solve this problem by solving all relevant weighted
matroid intersection problems (8) (with M2 replaced by M3) and filtering out
all dominated outcome vectors w.r.t. the combined ordering relation. In this

case, the number of calls of problems (8) is bounded by O(p · rK̃−1), where r
still denotes the rank of the matroid M1 and K̃ = max{Ki : i = 1, . . . , p}. If
p and Ki are fixed, i = 1, . . . , p, then the number of scalarized subproblems is
polynomially bounded in the input size. Moreover, in this case every weighted
matroid intersection problem can be solved in polynomial time, if we assume
that an oracle can determine in polynomial time if a given subset I ⊆ E is
independent or not.
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6. Numerical Results

The Exhaustive Swap Algorithm suggested in Gorski et al. (2021) as well as
the three versions of the Matroid Intersection Algorithm for Ordinal Constraints
(Algorithms 1, 2 and 3 with the algorithm of Floyd-Warshall) were implemented
and numerically tested. As test instances, we consider graphic matroids and
partition matroids for M1, where in the latter case the groundset is partitioned
into three subsets. All computations were done on a computer with an Intel(R)
Core(TM) i7-7500U CPU 2.70GHz processor and 8GB RAM. The algorithms
were implemented and run in MATLAB, Version R2019b.

In the first experiment we compare the two types of algorithms on a graphic
matroid with one sum objective function and one binary objective function. The
instances were generated based on random connected undirected graphs G =
(V,E) with n nodes and m edges using the implementation of Schnepper et al.
(2021). The weight coefficients w of the sum objective are randomly chosen in-
teger values in {1, . . . , 2m}, and the values of the binary objective b are random
binary values. In both cases we used a uniform distribution. We solved the
obtained instances of problem (BBMP) by the Exhaustive Swap Algorithm and
by Algorithm 2.

The numerical results can be found in Table 1. In the first two columns the
instance size is given by the number of nodes and edges (n,m) and the average
number of non-dominated outcome vectors |Ynd| over 100 random instances.
The results show clearly that the average running of Algorithm 2 increases much
faster with the instance size compared to the Exhaustive Swap Algorithm.

This result is not surprising, because the exhaustive swap algorithm uti-
lizes the specific problem structure, in particular the connectedness of the non-
dominated set, as proven in Gorski et al. (2021). Nevertheless, the number of
problems that are solved with Algorithm 2 (iter) is quite close to the number of
non-dominated outcome vectors (Ynd), which indicates that only few redundant
problems were solved.

The strength of all three matroid intersection algorithms for ordinal con-
straints is that they can be applied to a broader class of problems than the
exhaustive swap algorithm, which is restricted to two ordinal categories. In the
following tests we used again randomly generated graphs G = (V,E) with n
nodes and m edges with objective function coefficients w and o. The entries
of w and o were generated randomly with uniform distribution in {1, . . . , 2m}
and in {1, . . . ,K} for w and o, respectively, were K ∈ {3, 4, 5}. The results
for K = 3, 4, 5 can be found in Tables 2, 3 and 4, respectively. We observe
that the number of solutions found for the different problems is quite similar
for small problem sizes, but for larger instances and more categories the num-
ber of non-dominated points is much smaller for the lexicographic models as
compared to the ordinal approach. The running time depends obviously on the
instance size. However, the effect of an increasing number of edges m is rather
limited. A significant influence can be seen by the number of nodes n, which
determines the rank of the matroid. Furthermore, the number of categories K
has an important effect on the running time.
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Instanze Size MIOCO ESA

(n,m) |Ynd| iter [s] [s]

(7, 10) 2.39 3.26 0.08 0.03
(7, 15) 3.32 3.84 0.16 0.03
(7, 20) 3.87 3.97 0.24 0.03
(10, 20) 4.36 5.13 0.54 0.04
(10, 30) 5.17 5.44 0.97 0.05
(10, 40) 5.46 5.53 1.38 0.05
(15, 30) 6.05 6.94 2.43 0.05
(15, 60) 7.77 7.95 6.93 0.07
(15, 100) 7.90 7.99 12.57 0.07
(20, 40) 7.58 8.58 7.36 0.07
(20, 100) 10.49 10.60 30.26 0.10
(20, 180) 10.35 10.39 59.36 0.11

Table 1: Average computation time in seconds to solve 100 instances of problem (BBMP)
on a graphic matroid with the Exhaustive Swap Algorithm (ESA) and with Algorithm 2
(MIOCO).

As expected, reducing the number of considered upper bound vectors u for
problem (MMPO) generally leads to fewer iterations. On average, only little
more than half of the iterations are needed in this case. Nevertheless, note
that in worst case this strategy may not lead to an improvement. In the case
of the lexicographic variant (MMPCmin) the potential reduction is much more
significant. Indeed, the required computation time is drastically reduced in this
case, especially for large K. For example, for K = 5 we have a reduction of the
running time by a factor of around 20 in all cases with n = 10.

We get similar results when testing with partition matroids rather than
graphic matroids. Here, we consider a ground set of n objects and restrict the
analysis to partitions of the ground set into three subsets. The upper bounds
on the number of elements from each subset are selected such that every basis
consists of n

2 elements, and the problem is feasible. After defining an instance
of a partition matroid M1 in this way, the objective functions are generated.
Each object has an associated weight between 1 and 10 · n and is assigned to
one of K categories, where K ∈ {3, 4, 5}. The results for K = 3, 4, 5 can be
found in Tables 5, 6 and 7, respectively. Again, the improved choice of u leads
to significantly better running times. Moreover, the running time increases with
the number of elements n and the number of categories K.

Note that further speed-ups can be expected by parallel implementations of
the matroid intersection algorithms.

7. Conclusion

In this paper we consider single- and multi-objective matroid optimization
problems that combine “classical” sum objective functions with one or several
ordinal objective functions. Besides the concept of ordinal optimality, we con-
sider two variants of lexicographic optimization that lexicographically maximize
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Instance Size MIOC MIOCO MIOCCmin

(n,m) |Y O

nd
| |Y

Cmin

nd
| |Y Cmax

nd
| iter [s] iter [s] iter [s]

(7, 10) 3.90 3.65 3.75 28 0.48 17.10 0.31 6.30 0.16
(7, 15) 7.30 6.05 6.40 28 1.02 18.55 0.77 9.75 0.45
(7, 20) 6.20 5.40 5.65 28 1.67 14.45 0.87 8.00 0.56
(10, 20) 9.10 7.65 7.85 55 5.03 32.50 2.87 12.55 1.47
(10, 30) 12.55 9.60 11.35 55 9.63 32.80 5.67 13.60 2.61
(10, 40) 15.90 11.75 12.95 55 13.56 31.90 8.00 15.25 3.94
(15, 30) 15.20 11.60 11.40 120 36.16 70.40 21.00 18.60 6.43
(15, 60) 27.20 18.40 20.65 120 101.30 69.00 58.97 24.30 21.07
(15, 100) 27.90 18.20 22.65 120 184.26 66.95 105.23 23.10 36.19
(20, 40) 20.95 14.65 15.40 210 158.48 113.85 85.85 23.95 20.53
(20, 100) 38.45 24.55 27.00 210 578.96 101.00 282.43 30.95 87.42
(20, 180) 46.55 27.20 33.45 210 1 162.27 115.35 648.08 33.70 190.49

Table 2: Numerical results for a graphic matroid and K = 3 categories. For every problem
size 20 instances were solved to obtain average results.

Instance Size MIOC MIOCO MIOCCmin

(n,m) |Y O

nd
| |Y

Cmin

nd
| |Y Cmax

nd
| iter [s] iter [s] iter [s]

(7, 10) 4.15 3.70 3.70 84 1.34 44.45 0.73 9.00 0.25
(7, 15) 7.50 5.85 6.25 84 2.83 43.85 1.61 12.10 0.56
(7, 20) 10.50 7.85 8.10 84 4.44 52.05 2.88 14.80 1.93
(10, 20) 12.15 8.65 8.60 220 18.15 120.25 9.38 18.75 2.01
(10, 30) 20.60 12.40 14.80 220 36.78 132.95 22.01 23.85 4.46
(10, 40) 23.70 14.35 17.35 220 53.79 118.00 28.27 23.90 5.95
(15, 30) 29.05 16.80 17.55 680 191.27 395.75 107.14 37.15 12.84
(15, 60) 56.00 24.95 34.10 680 560.72 350.15 291.72 42.40 35.97
(15, 100) 63.60 28.00 38.70 680 1 042.33 377.45 597.78 44.15 69.33
(20, 40) 44.80 21.80 23.50 1 540 1 073.17 708.20 502.36 43.80 37.32

Table 3: Numerical results for a graphic matroid and K = 4 categories. For every problem
size 20 instances were solved to obtain average results.

Instance Size MIOC MIOCO MIOCCmin

(n,m) |Y O

nd
| |Y

Cmin

nd
| |Y Cmax

nd
| iter [s] iter [s] iter [s]

(7, 10) 4.20 3.85 3.85 210 3.10 106.75 1.57 10.95 0.27
(7, 15) 10.75 7.55 8.10 210 6.65 121.75 3.88 18.05 0.81
(7, 20) 14.90 10.00 11.25 210 10.56 124.30 6.14 20.35 1.36
(10, 20) 22.85 11.75 12.65 715 57.29 429.80 33.25 30.30 3.19
(10, 30) 24.70 14.55 15.95 715 114.37 396.00 62.16 32.00 5.57
(10, 40) 30.10 15.65 19.80 715 175.93 410.75 98.27 32.80 8.22

Table 4: Numerical results for a graphic matroid and K = 5 categories. For every problem
size 20 instances were solved to obtain average results.
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Instance Size MIOC MIOCO MIOCCmin

n |Y O

nd
| |Y

Cmin

nd
| |Y Cmax

nd
| iter [s] iter [s] iter [s]

10 2.55 2.50 2.50 21 0.23 11.20 0.10 4.60 0.08
20 4.75 4.40 4.45 66 3.26 35.45 1.83 8.40 0.63
30 9.90 8.00 8.40 136 20.26 76.50 11.43 13.45 2.68
40 16.85 12.55 12.75 231 81.26 127.25 45.14 20.40 8.92
50 24.05 17.60 15.90 351 229.91 201.90 131.29 26.30 21.43
60 34.00 21.10 21.75 496 552.54 284.20 318.62 32.80 46.41
70 39.70 24.50 25.40 666 1 177.52 375.90 662.34 37.30 83.06

Table 5: Numerical results for a partition matroid with three subsets and K = 3 categories.
For every problem size 20 instances were solved to obtain average results.

Instance Size MIOC MIOCO MIOCCmin

n |Y O

nd
| |Y

Cmin

nd
| |Y Cmax

nd
| iter [s] iter [s] iter [s]

10 2.55 2.45 2.40 56 0.41 31.10 0.23 6.15 0.10
20 7.10 5.80 5.85 286 12.60 173.90 7.43 14.05 0.94
30 15.15 9.75 10.05 816 117.69 451.70 62.22 22.85 4.33
40 40.40 20.95 21.25 1 771 594.17 967.80 317.36 42.25 18.51
50 44.90 22.50 22.20 3 276 2 081.56 1 946.25 1 191.88 49.70 41.17

Table 6: Numerical results for a partition matroid with three subsets and K = 4 categories.
For every problem size 20 instances were solved to obtain average results.

Instance Size MIOC MIOCO MIOCCmin

n |Y O

nd
| |Y

Cmin

nd
| |Y Cmax

nd
| iter [s] iter [s] iter [s]

10 3.65 3.15 3.25 126 0.84 71.55 0.47 8.20 0.14
20 10.65 8.20 7.75 1 001 43.34 539.15 22.62 23.20 1.67
30 28.25 15.35 16.35 3 876 534.59 2 293.50 308.62 41.50 7.83

Table 7: Numerical results for a partition matroid with three subsets and K = 5 categories.
For every problem size 20 instances were solved to obtain average results.
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the number of “good” elements or minimize the number of “bad” elements, re-
spectively. In the case of (single-objective) ordinal optimization, we show that
these concepts are actually equivalent for matroids, and that optimal solutions
can be found by a simple and efficient greedy strategy. In the multi-objective
setting, we use variants of ε-constraint scalarizations to obtain a polynomial
number of matroid intersection problems, from which the non-dominated sets
of the respective problems can be derived by simple filtering operations. This
yields an overall polynomial-time algorithm for multi-objective ordinal matroid
optimization problems. Numerical tests on graphic matroids and on partition
matroids validate the efficiency of this approach.

Future research should focus on a further analysis of the similarities and
differences between multi-objective optimization problems with classical sum
objectives and with ordinal objectives. Moreover, alternative (partial) orderings
may be considered and analyzed in the light of different scalarization techniques.
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