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Abstract

Bi-objective optimization problems on matroids are in general intractable and
their corresponding decision problems are in general NP-hard. However, if one
of the objective functions is restricted to binary cost coefficients the problem
becomes efficiently solvable by an exhaustive swap algorithm. Binary cost co-
efficients often represent two categories and are thus a special case of ordinal
coefficients that are in general non-additive.

In this paper we consider ordinal objective functions with more than two
categories in the context of matroid optimization. We introduce several problem
variants that can be distinguished w.r.t. their respective optimization goals,
analyze their interrelations, and derive a polynomial time solution method that
is based on the repeated solution of matroid intersection problems. Numerical
tests on minimum spanning tree problems and on partition matroids confirm
the efficiency of the approach.

Keywords: matroid intersection, multi-objective combinatorial optimization,
ordinal weights, multi-objective minimum spanning tree

1. Introduction

Matroid optimization problems, especially the minimum spanning tree prob-
lem, are well investigated even for multi-objective optimization (cf. Ehrgott
(1996) for matroids and Ehrgott and Klamroth (1997), Hamacher and Ruhe
(1994), Chen et al. (2007), Arroyo et al. (2008), Davis-Moradkhan and Browne
(2008) among others for spanning trees). In this paper, we consider multi-
objective optimization problems where, in addition to one sum objective func-
tion, one or more ordinal objective functions are to be considered.
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Ordinal coefficients occur whenever there is no numerical value to reflect the
quality or cost of an element. Consider, for example, the minimum spanning tree
problem which allows to find connected networks with small overall connection
costs. In addition to the (non-negative integer-valued and additive) length of an
edge that directly represents the cost of, e.g., a telephone cable, the construction
may involve major work that affects road traffic or even public transportation
systems like tramways or trains. Roads that have already a cable canal allow for
a cheap and easy addition of another cable. But if it is necessary to build a new
cable canal under a street, this could lead to limitations of the traffic or even
affect public transportation systems. In this situation, it is useful to categorize
each possible connection as “easy to build” (good), “leads to little problems with
traffic jams” (medium), and “leads to major problems for public transportation”
(bad), for the time of construction. It is then hard to compare, for example,
a solution with two medium edges with a solution with one bad edge, since in
general these categories can not be translated into monetary values.

Ordinal weights and ordinal objective functions have been first introduced
in Schéfer et al. (2020) for shortest path problems. Motivated by applications
in civil security, edges are categorized, for example, as “secure”, “neutral”, or
“insecure”. Schéfer et al. (2020) introduce an ordinal preorder based on ordinal
weights, analyze the complexity of the problem, and suggest a polynomial time
labeling algorithm for its solution. Knapsack problems with ordinal weights
are analyzed in Schéifer et al. (2021). They consider a general vector dominance
and two lexicographic dominance concepts and suggest a dynamic programming
based solution strategy and efficient greedy methods, respectively. Moreover,
an outlook to multi-objective versions of ordinal problems is provided.

In this paper we extend this concept by considering multi-objective problems
that combine one “classical”, sum objective function with possibly several ad-
ditional ordinal objectives. We focus on multi-objective optimization problems
with ordinal weights on matroids and relate the multi-objective formulation to
a series of single-objective optimization problems on intersections of matroids.
The latter can be efficiently solved by an algorithm from Edmonds (2003). For
the special case of bi-objective problems and only two ordinal categories, we
compare this approach to the Ezhaustive Swap Algorithm (ESA) presented in
Gorski et al. (2021) which is even more efficient due to the special problem
structure. In Section 2 we review some basic concepts of matroid theory and
multi-objective optimization.

The paper is organized as follows. In Section 2 we review the basic concepts
from matroid optimization and from multi-objective optimization. We particu-
larly focus on (partial) ordering relations for ordinal objective functions in the
light of state-of-the-art references. Ordinal matroid optimization problems with
only one ordinal objective function are discussed in Section 3. We show that
ordinal matroid optimization problems can be solved by a greedy strategy, due
to their special structure. Multi-objective matroid optimization problems with
one sum objective and one ordinal objective are introduced in Section 4. Their
relation to matroid intersection problems is analyzed in Section 5, yielding ef-
ficient polynomial time solution strategies for all considered problem variants.



The algorithms are numerically tested and compared at randomly generated
instances of graphic matroids and of partition matroids in Section 6, and the
paper is concluded with a short outlook on future research topics in Section 7.

2. Preliminaries

Since we combine matroid theory and multi-objective combinatorial opti-
mization in this paper, this preliminaries section is divided into two parts. In
the first subsection we summarize some basic definitions and results of matroid
theory (for a self-contained introduction to matroid theory see, for example,
Oxley (2011); Schrijver (2002); Edmonds (1971); Schrijver (2017)). In the sec-
ond subsection we review basic concepts of multi-objective optimization with a
particular focus on dominance relations. For a general introduction into multi-
objective optimization see, e.g., Ehrgott (2005). A survey on multi-objective
combinatorial optimization is given in Ehrgott and Gandibleux (2000).

2.1. Matroid Theory

Let E be a finite set and let Z C 2F be a subset of the power-set of E. The
tuple (F,Z) is called a matroid if and only if the following three properties hold:

ez (1)
IeTandJCI — JeI (2)
LJeZ:|I|<|J| = FjeJ\I:TUu{j}el. (3)

The subsets I € T are called independent sets while the subsets D € 28\ T
are called dependent sets. Moreover, if the tuple (FE,Z) satisfies at least the
conditions (1) and (2), then it is called an independence system.

Furthermore, all inclusion-wise maximal independent sets are called bases,
and all inclusion-wise minimal dependent sets are called circuits. In the follow-
ing, we write X :== {B € Z: I € Z: I 2 B} for the set of all bases of a matroid.
All bases of a matroid have the same cardinality which is referred to as the rank
of the matroid, see, for example, Oxley (2011). An important characteristic of
matroids is the so-called basis exchange property:

VBi,Be X VbleBl\Bz HbQEBg\Bli (BlU{bQ})\{bl}EX (4)

The restriction of a matroid M = (E,Z) to a subset S C E is defined as
M-8 = (E\STIs) withZg = {I € Z : I C E\ S}. Another way to
manipulate a given matroid M is the contraction of M by an independent set
I € 7 that is defined as M/I = (E\I,K) with C={K C E\I: KUI € T}.

To simplify the notation we define the set operations S + e := S U {e} and
S—f=8\{f}for SCFE and e, f € E. Furthermore, let S¢:= E\ S denote
the complement of S in E.

For an extensive list of examples of matroids we refer to Oxley (2011). The
following three matroids are frequently considered and will be used for illustra-
tions and numerical tests in this paper.



e graphic matroid: Let G = (V, E) be an undirected graph, then M =
(E,T) with T := {I C E: (V,I) contains no cycle} is a matroid.

e uniform matroid: Let E be a finite set and k € Ny, then M = (E,7)
with Z .= {I C E: |I| < k} is a matroid.

e partition matroid: Let £ = F; U Fs U ... U E} be the disjoint union
of k finite sets and let uy,...,ur > 0 be non-negative integers. Then
M=(E,I)withZ ={I CE: |INE;| <u; V1 <4<k} is a matroid.

An important concept that will prove very useful in this paper is the intersec-
tion of two matroids. Consider two matroids My = (E,Z;) and M = (E,Z)
over the same ground set E. Then the matroid intersection of My and My is
defined as the independence system M; N My = (E, 77 N1s).

It is important to note that a matroid intersection is not necessarily a ma-
troid itself. A counter example is given in Figure 1. Let G = (V, Ey U E») be a
graph with an edge set £ = F; U E5 that is partitioned into two subsets E1, F»
(e.g., green and red edges, respectively). Moreover, let My = (E,Z;) be the
graphic matroid on G and let My = (E,Z3) be a partition matroid with Eq :=
{[1,2],[4,5], 4, 6]} the set of all green edges, F3 := {[1,3],[2,3],[3,4], [5,6]} the
set of all red edges and Zp == {I C E: |I N E;| < 3, |[I N Ey| < 2}. Then the
set I := {[1,3],[2,3],[4,5],[4,6]} is an inclusion-wise maximal independent set
of M1 N My since every additional edge e € E \ I makes I U {e} dependent
w.r.t. either My or Ms. However, the set J = {[1,2],[1,3],[3,4], 4, 5], 4, 6]}
is also a maximal independent set of My N M that has larger cardinality, i.e.,
|J| > |I]. Thus, M; N My is not a matroid because all maximal independent
sets of a matroid must have the same cardinality. However, if at least one of
the intersected matroids is a uniform matroid then the intersection is again a
matroid, see Oxley (2011).

©
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Figure 1: The edges E = E; U E3 of the graph G = (V, E) in (a) are the ground-set of a
graphic matroid M and of a partition matroid Ma (where E; is the set of all green-dotted
edges and Fs is the set of all red-solid edges). The independent set of edges I illustrated in
(b) is inclusion-wise maximal for M1 N Mz, however, the alternative independent set J shown
in (c) has larger cardinality.

(b)

2.2. Multi-objective Optimization

In this article we consider three different concepts of efficiency for multi-
objective optimization. The first two are used for general, usually sum objec-
tive functions, while the last one is particularly defined for ordinal objective



functions. Throughout this section we consider minimization problems with a
discrete feasible set X C 2% that is defined over a finite ground set £. How-
ever, all of the presented concepts can be defined analogously for maximization
problems.

Pareto Optimality. The Pareto concept of optimality (see again, e.g., Ehrgott
(2005)) is based on the component-wise order. Let y',4y* € R? and define

y' <y =yl <yl i=1,...,p,

y' <yP =yl <y, i=1..,p and y' # P

Yyt <y? = yl1 <yi2, 1=1,...,p.
We say that y! dominates y? whenever y* < y2. Note that the binary relation <
is reflexive, transitive and antisymmetric and hence a partial order. The binary
relation < is irreflexive, transitive and asymmetric and hence defines a strict
partial order. Similarly, < defines a strict partial order.

This concept of dominance is typically used when comparing outcome vectors

of a multi-objective problem (MOP) that aims at minimizing a vector-valued
objective function w: X — RP:

min  w(x)

s.t. zeX. (MOP)

A feasible solution Z € X is called efficient or Pareto-optimal for (MOP) if there
exists no z € X with w(x) < w(Z). Moreover, a feasible solution & € X is called
weakly efficient or weakly Pareto-optimal for (MOP) if there exists no x € X
with w(x) < w(Z). The set of all efficient solutions of a problem (MOP) is called
efficient set and denoted by X.g. The image w(Z) of an efficient solution Z is
called non-dominated outcome vector or non-dominated point. If w(z’) < w(z”)
for two feasible solutions z’,2"” € X, then we say that =’ dominates z”, in
accordance with the above concept of dominance in the objective space. The
image of the efficient set is called non-dominated set and denoted by Yyq =
w(XCff).

Lexicographic Optimality. The concept of lexicographic optimality assumes a
specific ordering among the components of the given (outcome) vectors, i.e.,
the first component is more important than the second, and so on. We refer
again to Ehrgott (2005) for a more general introduction. Let y*, y?> € RP. Then
y' <iex Y%, i.e., y' lexicographically dominates y?, if there is an index k €
{1,...,p} such that y} < y? and y} = y? for alli € {1,...,k—1}. Furthermore,
we write y! Sjex y2 if y! <jex y? or y' = y?. Note that the lexicographic order
Slex 18 a total order, i.e., it is reflexive, transitive and antisymmetric, and for
all yt, y? € RP with y! # y? either y* <oy y? or y? Zjex ' holds. Consequently,
we call a solution Z € X of (MOP) lexicographically optimal if w(Z) Sjex w(z)
for all z € X. To distinguish lexicographic optimization from multi-objective
optimization in the Pareto sense we write lexmin (and lexmax in the case of

maximization problems, respectively).



Figure 2: The edges of the graph in (a) are categorized w.r.t. two categories(green-dotted and
red-solid), c.f. Figure 1(a) above, while the edges of the same graph are categorized w.r.t.
three categories in (b) (green-dotted, orange-dashed, and red-solid).

Ordinal Optimality. Now assume that all solutions in the feasible set X have the
same cardinality, i.e. |z| = r for all z € X. This is, for example, satisfied in the
case of a matroid optimization problem. Then an ordinal weight optimization
problem (OWOP) can be formulated as

min  o(x)

s.t. zeX. (OWOP)

Intuitively, the ordinal objective function o assigns one out of K ordered cate-
gories to each element of the ground set E, and hence the ordinal objective of x
is given by an r-dimensional ordinal vector. For example, in the case K = 3 we
may think of good (green), medium (orange) and bad (red) elements, where we
prefer good over medium and medium over bad. Figure 2 shows two examples
of the ground set F of a graphic matroid. While the edges in Figure 2(a) are
assigned to only two categories (where green-dotted is better than red-solid),
Figure 2(b) shows an example with three categories (where green-dotted is bet-
ter than orange-dashed which is again better than red-solid).

Throughout this paper we assume that the components of the ordinal vectors
of feasible solutions are sorted in non-decreasing order w.r.t. the quality of the
respective categories, see Figure 3 for an illustration. This sorting will be useful
when comparing different solutions in the following.

More formally, let C = {n1,...,7x} be an ordinal space consisting of K
ordered categories, and let o : E — C assign one ordinal category to each
element of the ground set E. Moreover, (by slightly abusing the notation) let
0: X — C" be a function mapping each feasible solution to an r-dimensional
ordinal vector. We assume that category n; with ¢ € {1,..., K — 1} is strictly
preferred over all categories n; with ¢ < j, which is denoted by n; < n;. Similarly,
we write 1; < n; whenever ¢ < j. Moreover, the components of the objective
vector o(x) of a feasible solution x € X are sorted in non-decreasing order,
which is denoted by o(z) := sort(o(z1),...,0(z,)). If we specify the vector o for
an explicit example we often write ¢ instead of 7; for better readability.

In order to define meaningful optimality concepts for problem (OWOP), we
need to compare ordinal vectors in C". The following definition is based on the
concept first introduced in Schéifer et al. (2020) and Schéfer et al. (2021). Let



y!, 7% € C" be two ordinal vectors. Then we write
y1§y2:<:>yl-ljyi2, 1=1,...,7
vty =yl =y2 i=1,...,r and y' # 97,
y1<y2:<:>yi1<yi2, 1=1,...,7

When y! = o(z!) and y* = o(x?) are outcome vectors of problem (OWOP), then
their components are sorted in non-decreasing order. We use the same notation
in this case, and we say that y' ordinally dominates y*> whenever y' < y2. Note
that what we consider here is a special case of the concept of ordinal dominance
introduced in Schéfer et al. (2020) who considered the more general case when
feasible solutions — and hence their outcome vectors — may differ w.r.t. their
number of elements. Schéfer et al. (2020) showed that in this more general
case, the binary relation =X is a partial preorder on the set of sorted outcome
vectors of an ordinal optimization problem, i.e., it is reflexive and transitive. In
the special case when all feasible solutions have the same number of elements,
as considered in this paper, the binary relation X is also antisymmetric and
thus a partial order. See also Schéfer et al. (2021) for yet another perspective
on ordinal efficiency. Moreover, the binary relation < is a strict partial order
in our case, i.e., it is irreflexive, transitive and asymmetric. Thus, the concepts
of (weak) ordinal efficiency and (weak) ordinal dominance can be defined in a
similar way as for the case of Pareto optimality by replacing < with < and <
with <, respectively.

Combined Orderings. If an optimization problem has an objective function that
maps feasible solutions to outcome vectors on which several of the above or-
derings are combined — this may be the case when, for example, the first p
components of an outcome vector represent sum objective functions that are
ordered w.r.t. Pareto dominance, while the following r objective values repre-
sent ordinal values to which ordinal dominance is applied — then we say that a
solution =’ dominates a solution z”, if all objective values of 2’ are “at least as
good” w.r.t. all components with at least one strict inequality in the respective
ordering concept.

3. Ordinal Matroid Optimization

As a first step towards multi-objective ordinal optimization problems we in-
vestigate matroid optimization problems with only one ordinal objective func-
tion and show that such problems can be solved using a greedy algorithm. In
slight abuse of the standard notation, we will refer to the resulting problems
as “single-objective optimization problems”, even though their objective func-
tions are vector-valued. Similar results were obtained by Schéfer et al. (2020)
and Schifer et al. (2021) for shortest path and knapsack problems, respectively,
however, for the case that a lexicographic optimization is employed on the or-
dinal outcome vectors. We show in the following that in the case of matroids,
ordinal optimality actually coincides with lexicographic optimality, and hence a
greedy algorithm always yields the ordinally non-dominated set in this case.



8.1. Ordinal and Lexicographic Optimality and their Interrelation

Let a matroid My = (E,Z;) with rank  be given and denote the set of its
bases by X1. As a first special case, consider the situation of only two categories,
ie.,, K =2. Wlog we set 1 = 0 (green) and 72 = 1 (red). It is easy to see that
in this case problem (OWOP) is equivalent to a matroid optimization problem
with a “classical” sum objective function with binary coefficients b : E — {0,1}
where the cost of a basis B is the aggregated cost of all of its elements, i.e.
b(B) =) .cpb(e). Indeed, abasis By € &} ordinally dominates a basis By € X}
whenever the number of one-entries in o(By) (i.e., red elements in By) is smaller
than that in o(Bg). This leads to a matroid problem with a binary objective
function (BMP)

min b(B)

st Bex (BMP)

as a particularly simple special case of problem (OWOP). When K > 2, i.e.,
when more than two ordinal categories have to be considered, a simple aggre-
gation of all categories into one single aggregated objective value is no longer
meaningful. However, we will discuss two related optimization problems that
are based on partial aggregation in the following. Towards this end, let problem
(OWOP) for the special case of matroid optimization be defined as a matroid
problem with ordinal costs, given by

min o(B)

s.t. BeA. (MPO)

Now consider a feasible basis B € X;. Then the information contained in the
objective vector o(B) € C" can equivalently be stored in an aggregated vector
¢(B) € ZX with components ¢;(B) == |{e € B: o(e) = n;}| for j = 1,...,K
that count the number of elements in each category in B. Indeed, there is a
simple one-to-one correspondence between o(B) and ¢(B). We will refer to ¢
as a counting objective function in the following. This representation is often
advantageous since in general K, i.e., the number of categories, is constant
and much smaller than the dimension r, i.e., the number of elements in a
basis. Note that since all bases have the same number of elements we have
that Zfil ¢;(B) = r, and hence all outcome vectors ¢(B), B € Xy, lie on the
same hyperplane in R¥. Moreover, one of the components of ¢ can be omitted
without loosing any information.

This reformulation suggests two related lexicographic optimization problems:
On the one hand, we may aim at lexicographically maximizing the number of
elements in the “good” categories, and on the other hand, we may want to
lexicographically minimize the number of elements in the “bad” categories. In
order to clearly distinguish between these two optimization goals, we introduce
two separate variants of the counting objective ¢ denoted as ¢™** and c™i",
respectively.

Mazximizing the Number of Good Elements. When aiming at the maximization
of the number of elements in good categories, we can apply a lexicographic



mazximization to the counting objective ¢. Thus, in this case we set ¢™**(B) =
¢(B) for B € X1 with ¢*(B) = [{e € B:o(e) = n;}| for j = 1,..., K as
defined above, and formulate problem (MPCmax) as

lexmax ¢™**(B)

s. t. B e AX;. (MPCmaX)

Minimizing the Number of Bad Elements. In order to lexicographically mini-
mize the number of elements in bad categories, we first have to bring the cor-
responding entries of the counting objective ¢ that represent the bad categories
into the leading positions (which are always considered first in lexicographic
optimization). We hence define ¢f"(B) = cx—j11(B) for j = 1,..., K and
for B € Ay, i.e, c;-nin(B) = |{e € B: o(e) = nx—;+1}|, and consider problem
(MPCmin) given by

lexmin ¢™?(B)

st Bedx, (MPCrmin)

Figure 3 shows an example of a graphic matroid with all of its feasible bases
and their respective objective vectors o, ¢™** and ¢™m, see also Example 6
below.

3.2. Interrelation Between (MPO), (MPCmin) and (MPCmax)

In general, the ordinally non-dominated set of problem (MPO) is different
from the sets of lexicographically optimal outcome vectors of the associated
formulations (MPCmin) and (MPCmax), respectively. This can be seen, for ex-
ample, at the cases of ordinal shortest path problems (see Schéfer et al. (2020))
and ordinal knapsack problems (see Schifer et al. (2021)). In the special case of
matroids, however, these three concepts are closely related and their respective
efficient and non-dominated sets coincide.

Theorem 1. Let My = (E,Zy) be a matroid, let Xy denote the set of bases
of M1, and let the functions o, c™" and c™®* be given and defined as above.
Moreover, let By, By € Xy be two bases of My. Then

(O(Bl) < o(Bg)) = (cmi“(Bl) <lox C™(By) and ™(B1) >1ex cmax(Bg)) ,

i. e., if o(By) ordinally dominates o(Bs), then ¢™™(By) lexicographically domi-
nates ¢™*(By) and ¢™*¥(By) lezicographically dominates c™**(Bsy).

Proof. We prove the result for ¢™". The corresponding result for ¢™®* follows
analogously, noting that (MPCmin) involves lexicographic minimization while
(MPCmax) involves lexicographic maximization.

Now let o(B1) < o(Bz) and assume that ¢™(B;) does not lexicographi-
cally dominate ¢™®(By). First note that o(B1) < o(Bz) implies o(B1) # o(Ba)
and hence ¢™®(B;) # ¢™"(By). Let 7 = min{i : ¢™"(B;) # cM"(By)} be
the smallest index where ¢™"(B;) and ¢™"(By) differ. Since we assumed
that ¢™(B;) does not lexicographically dominate ¢™"(By), it follows that
M (By) > ¢Min(By). Thus, the vectors o(B) and o(Bz) are equal in the last



0= emin(By) = 3277 ¢in(By) components, i e., 0j(By) = 0;(Bz) for all

j=K—-{£+41,...,K. Furthermore, it holds that ox_¢(B1) = ox—¢(Bz2), which
contradicts the assumption that o(B;) ordinally dominates o(Bs). O

Note that while the proof of Theorem 1 relies on the fact that all feasible so-
lutions have the same number of elements (and hence all outcome vectors have
the same length), the matroid property is not used. Hence, Theorem 1 gen-
eralizes to all ordinal optimization problems with fixed length solutions. The
following Corollary 2, that also follows from the results in Schéfer et al. (2020),
is an immediate consequence of Theorem 1.

Corollary 2. The set of efficient bases of (MPO) is a superset of the set of
efficient bases of (MPCmin) and of (MPCmax).

Proof. Theorem 1 implies that the efficient set of (MPCmin) can not contain
any bases that are ordinally dominated w.r.t. o since this would imply that they

are also lexicographically dominated w.r.t. ¢™®. The same argument applies to
(MPCmax). O

Remark 3. The reverse implication of Theorem 1 does mot hold in general,
neither for c™™ nor for ¢™®*. As a counter example consider the bases By and
Bg from Figure 3. We have that ¢™"(Bg) = ¢™®(Bg) = (2,1,2), ¢™(By) =
™ (By) = (1,3,1), o(Bs) = (1,1,2,3,3) and o(Bs4) = (1,2,2,2,3). Hence,
™ (By) lexicographically dominates ¢™®(Bg) and c¢™**(Bg) lexicographically
dominates ¢™**(By), while o(By) and o(Bg) are ordinally incomparable.

We show in the following that in the case of matroids Corollary 2 can be
strengthened. Indeed, the following result shows that the respective ordinal
and lexicographic non-dominated sets are always equal and have cardinality
one. This can also be observed in Example 6 below, where all three problems
(MPO), (MPCmin) and (MPCmax) have the same efficient and non-dominated
sets.

The result can be briefly summarized as follows: Corollary 1 states that the
efficient set of (MPO) is a superset of that of (MPCmin) and (MPCmax). If
there were two non-dominated bases By, Bz for (MPO) and only one of them,
say, basis By, was optimal for problem (MPCmin), then the basis exchange
property would imply that basis Bo could be improved w.r.t. ¢™® by an appro-
priate swap operation. However, this would lead to a basis that also ordinally
dominates Bs, contradicting the ordinal efficiency of Bs. This leads to the
following result:

Theorem 4. Let My = (E,Z;) be a matroid, let Xy # () be the set of bases
of M1, and let the functions o, c™™ and c™* be given as defined above. Then
problems (MPO), (MPCmin) and (MPCmax) have the same efficient set, and
the corresponding non-dominated sets have cardinality one.

Proof. We show the equality of the efficient sets of (MPO) and (MPCmin). The
equality of the efficient sets of (MPO) and (MPCmax) follows analogously.
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First observe that the non-dominated set of problem (MPCmin) has cardi-
nality one since the lexicographical order is a total order. Moreover, Theorem 1
implies that every efficient solution of (MPCmin) is also efficient for (MPO).
Consequently, it is sufficient to show that all efficient solutions of (MPO) map to
a unique non-dominated outcome vector. We prove this result by contradiction.

Suppose, to the contrary, that there are two efficient bases By and B for
(MPO) with o(B;1) # o(Bz) and hence also ¢™(B;) # ¢™"(By). W.lo.g.
assume that ™% (By) lexicographically dominates ¢™"(By).

Let e € By \ By be chosen such that o(é) < o(e) for all é € By \ By, ie.,
e is an element of highest category among all elements in By \ B;. Then the
basis exchange property (4) implies that there exists an element e’ € By \ Bs
such that B* = (By U {e'}) \ {e} € A1, and the choice of e and the fact
that ¢™1(B;) <jex ¢™®(By) imply that o(e’) =< o(e). Now, if o(e/) < o(e),
then B* dominates Bs w.r.t. o, contradicting the assumption. Otherwise, i.e.,
if o(e’) = o(e), then B* has one more element in common with By than Bs,
and iterating this procedure at most r times eventually yields a swap where
o(e') < oe). O

Corollary 5. The ordinally non-dominated set of (MPO) can be computed by
a greedy algorithm.

Proof. This follows immediately from Theorem 4 and the matroid properties,
see also Hamacher and Ruhe (1994). O

Note that, while Theorem 4 states that the non-dominated sets of problems
(MPO), (MPCmin) and (MPCmax) have cardinality one, this does in general
not transfer to the respective efficient sets. Indeed, the size of the efficient
sets may grow exponentially with the problem size. As an example, consider
instances with exponentially growing feasible sets and assume that all elements
of F are in the same ordinal category. Then, all feasible solutions of a considered
problem are both ordinally and lexicographically efficient.

4. Multi-objective Matroid Optimization

We extend the settings of the previous section and consider multi-objective
matroid optimization problems (on a matroid M; = (E,Z;) with rank r and
set of bases X;) where we combine an ordinal objective with a sum objective
function with non-negative integer coeflicients w : E — Zx>. The cost of a basis
B € &y w.r.t. this sum objective is given by w(B) == ) . w(e).

4.1. Multi-objective Ordinal and Lexicographic Optimality and their Interrela-
tion
If we add a sum objective function to the problems described in Section 3.1
above, we obtain the following four variants of bi- or multi-objective optimiza-
tion problems involving additive as well as ordinal objective coefficients:
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The bi-objective matroid problem with a binary objective function (BBMP)

min (w(B),b(B))

s.t. Be A, (BBMP)

the multi-objective matroid problem with an ordinal objective function (MMPO)

min (w(B),o(B))

s.t. BE A, (MMPO)

and two multi-objective matroid optimization problems with a counting objective

function (MMPCmax) and (MMPCmin)

min w(B)

lexmax ¢™**(B) (MMPCmax)
s. t. BeXx

min w(B)

lexmin ¢™*(B) (MMPCmin)
s. t. B e X;.

The problem (BBMP) is investigated in detail in Gorski (2010) and Gorski et al.
(2021), where an exhaustive swap algorithm is presented that determines a min-
imal complete representation of the non-dominated set (i.e., all non-dominated
points and one efficient solution for each of them) of (BBMP) in polynomial
time. This assumes that an oracle can determine in polynomial time if a given
subset I C F is independent or not. This is, e.g., the case for graphic matroids,
uniform matroids and partition matroids, see Gabow and Tarjan (1984).

The similarities and differences between the problems (MMPO), (MMPCmax)
and (MMPCmin) are illustrated at the following example of a graphic matroid:

Example 6. Consider the graphic matroid introduced in Figure 2(b). Its bases
are enumerated and illustrated with their weight functions w, o, ¢™® and c™**
in Figure 3. It is easy to see that, in accordance with Theorem 4, the unique
efficient solution w.r.t. all of the individual objective functions o, c™™
is the basis Byg.

The corresponding multi-objective problems that additionally consider the
sum objective function w all have larger non-dominated sets in this example.
The respective non-dominated outcome vectors of the multi-objective problems
that combine w with the objective functions o, ¢™™ and ¢™®¥, respectively, are
highlighted in Figure 3 by printing the latter components, i.e., o, ™™ and ™,
in bold. Note that the basis By is efficient in all three cases since it is the unique
minimizer of w.

and c¢™&*

4.2. Interrelation Between (MMPO), (MMPCmin) and (MMPCmax)

When moving from optimization problems with only one ordinal objective
function to multi-objective problems that additionally include a sum objective

12
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Figure 3: All bases of the graphic matroid introduced in Figure 2(b) together with the objective
values w, o, ¢™™ and ¢™?%, where we write 1 for green-dotted, 2 for orange-dashed, and 3 for
red-solid edges. When only considering the sum objective w, then Bj is optimal, and when
only considering the objective functions o, ¢™™ or ¢™®* respectively, then By is the unique
efficient basis. For the problems (MMPO), (MMPCmin) and (MMPCmax) that combine w
with o, ¢™® and ¢™®*, respectively, the non-dominated outcome vectors are indicated by
printing the partial objective vectors o, ¢™™ and ¢™2¥ in bold.
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w, as in the multi-objective problems (MMPO), (MMPCmin) and (MMPCmax),
the situation is much more complex than that described in Section 3.2 above.
Indeed, while Corollary 2 can be adapted to the new situation, Theorem 4 does
not transfer to the multi-objective case. A corresponding counter example will
be given below.

Theorem 7. The set of efficient bases of (MMPO) is a superset of the set of
efficient bases of (MMPCmin) and of (MMPCmax).

Proof. We prove the result for ¢™". The corresponding result for ¢™®* follows
analogously, noting that (MMPCmin) involves lexicographic minimization while
(MMPCmax) involves lexicographic maximization.

We prove this result by contradiction. Hence, let B be an efficient basis
for (MMPCmin) but not for (MMPO). Then there exists a basis B* with

w(B*) < w(B), o(B*) 2 o(B), and (w(B*),0(B*)) # (w(B),o0(B)). First
note that o(B*) = o(B) implies that ¢™"(B*) <jx ¢™(B), by Theorem 1.
We distinguish two cases: Either w(B*) < w(B) and ¢™(B*) Sjex ¢™(B),
or w(B*) = w(B) and ¢™®(B*) <jex ¢™(B). However, both cases are in
contradiction with the efficiency of B for problem (MMPCmin). O

However, as was to be expected, Theorem 4 does not generalize to the multi-
objective case as is shown by the following counter example:

Example 8. Consider again the graphic matroid introduced in Example 6 and
the set of all of its bases illustrated in Figure 3. The efficient bases for problem
(MMPO) are the bases B1, Ba, By, Bs, Bs, Br, By, while the efficient bases for
the problem (MMPCmin) are given by By, Ba, By, Bs, B7, By, and the efficient
bases for problem (MMPCmax) are given by By, Ba, Bg, By, By. Hence, basis
Bg is efficient for (MMPO) but not for (MMPCmin), and the two bases By and
Bs are efficient for (MMPCmin) but not for (MMPCmax). Thus, Theorem 4
does not generalize to the multi-objective problems (MMPO), (MMPCmin) and
(MMPCmax).

One could conjecture from Example 6 that every efficient basis for (MMPO)
is efficient for at least for one of the problems (MMPCmin) or (MMPCmax).
However, this also does not hold in general as the following example shows.

Example 9. Consider the graphic matroid shown in Figure 4. We focus on all
bases B € Xy that have an objective value of w(B) = 4 in the sum objective.
Note that these bases can only be dominated by other bases B with w(B) < w(B),
and hence we restrict our analysis on those bases in Figure 4. First observe
that all bases B € Xy with w(B) = 4 map to one of the three possible outcome
vectors o(B) € {(1,1,3,3),(1,2,2,3),(2,2,2,2)}, which are all non-dominated
for (MMPO). Their corresponding counting vectors ¢™® are (2,0,2), (1,2,1)
and (0,4,0), where the last one is the only one that is lexicographically non-
dominated. For c™** the counting vectors are the same, but the first one is
lexicographically non-dominated. Consequently, the counting vector (2,0,2) is
neither lexicographically non-dominated for (MMPCmin) nor for (MMPCmax),
but it is non-dominated for (MMPO).
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Figure 4: All possible outcome vectors o(B) with w(B) € {0, ..., 4} for a graphic matroid with
non-negative integer-valued costs w and three categories (1:green-dotted, 2:orange-dashed and
3:red-solid).

5. Matroid Intersection for Ordinal Constraints

In the following we show that the three problems (MMPO), (MMPCmin)
and (MMPCmax) can be solved using a series of matroid intersection problems.
The approach is based on variants of e-constraint scalarizations of problem
(MMPO) with appropriately selected optimization objective and constraints.
Furthermore, we show that matroid intersection problems can be used to solve
even problems with several ordinal objective functions and one sum objective.

5.1. Variants of e-Constraint Scalarizations

We consider an equality-constrained scalarization of (MMPO) (where equal-
ity constraints are used rather than inequality constraints as is commonly the
case in e-constraint scalarizations), given by

min  w(B)
s.t. 0i(B)=¢;, i=1,...,r (5)
Be X

with right-hand side vector ¢ € C". Intuitively, problem (5) specifies eractly
how many elements of each category must be chosen, and hence each feasible
basis B € X; of (5) maps to the same ordinal vector o(B). Depending on
the choice of €, problem (5) may be infeasible (if there is no B € A; with
o(B) = ¢), yield an efficient solution B* for (MMPO) (if there is no B € &}
with w(B) = w(B*) and o(B) < o(B*)), or yield a dominated solution B for
(MMPO) (if there is a B € X; with w(B) = w(B) and o(B) < o(B)). Note
that suitable choices for e satisfy e; < --- < &, since the components of o(B)
are always in non-decreasing order and hence problem (5) is certainly infeasible
otherwise. In the following, we denote all such suitable right-hand-side vectors
by Y ={c€C":e1 <X <.}
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Since problem (5) can be interpreted as a variant of the “classical” e-constraint
scalarization in multi-objective optimization, see, e.g., Ehrgott (2005), the fol-
lowing result is not surprising and follows basically by the same arguments.

Theorem 10. The non-dominated set of problem (MMPO) can be determined
by solving problem (5) for all suitable right-hand side vectors e € T and filtering
out all dominated outcome vectors.

Proof. Let (w(B*),0(B*)) be a non-dominated outcome vector for (MMPO)
with pre-image B* € A;. Then B* is optimal for problem (5) with € := o(B*) €
Y. Thus, every non-dominated outcome vector of problem (MMPO) can be
determined by solving an appropriate scalarization (5). The non-dominated set
is then obtained by employing a dominance filtering to the set of all obtained
outcome vectors. O

Now let a suitable constraint vector € € T be given, i.e., € satisfiese; <X --- < ¢,.
Then we can define an associated suitable counting vector u € ZX by setting
wi = |{j € {1,...,7} &5 = n;}| for all i = 1,..., K, where, by definition, we
have that Zfil u; = r. We denote by U = {u € ZX: Zzlil u; = r} the set of
all suitable counting vectors.

Lemma 11. There is a one-to-one correspondence between suitable right-hand-
side vectors € € T and suitable counting vectors u € U.

Proof. First consider the case that a suitable constraint vector e € T is given.
Then an associated suitable counting vector v € U can be determined from e
as described above, i.e., by setting u; = |{j € {1,...,7} : ¢; = n;}| for all
1=1,..., K. Conversely, if a suitable counting vector u € U is given, then we
can determine associated suitable values for € € T by setting €; := 7;, where the
ordinal level i € {1,..., K} is chosen such that i_, u; < j and Yi—1 u; > j,
forall j=1,...,r. O

Lemma 11 implies that problem (5) can be equivalently written as

min  w(B