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Kemeny’s constant for a graph with bridges
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Abstract. In this paper, we determine a formula for Kemeny’s constant for a graph with multiple
bridges, in terms of quantities that are inherent to the subgraphs obtained upon removal of all bridges
and that can be computed independently. With the formula, we consider several optimization problems
for Kemeny’s constant for graphs with bridges, and we remark on the computational benefit of this
formula for the computation of Kemeny’s constant. Finally, we discuss some potential applications.
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1. Introduction

1.1. Motivation. Kemeny’s constant is an interesting quantifier of a finite discrete-time Markov chain,
measuring the expected time it takes to travel between randomly-chosen states of the chain, where each
state is selected with probability proportional to the long-run prevalence of the state. Originally defined
in [14] as the expected time to reach a randomly-chosen state from a fixed starting state, this quantity
is astonishingly independent of the choice of initial state, and thus is named Kemeny’s constant. Since
its introduction in [14], this quantity has fascinated a number of researchers interested in providing an
intuitive explanation of its constant property (see, for example, [3, 9, 18, 19]). Due to its interpretation
in terms of how ‘well-mixing’ a Markov chain is, it is not surprising that Kemeny’s constant has been
recently used for a wide range of applications. Some significant examples include the modeling of road
traffic networks [8, 23]; city-scale models of pollution from tyre particles [24]; vaccination and testing
strategies in epidemiological networks [26]; and automated stochastic surveillance strategies [21].

Of particular interest is the study of the concept of Kemeny’s constant for simple random walks on
graphs, which are a subclass of Markov chains in which the vertices of the graph G form the state space,
and one models stochastic movement between adjacent vertices in the graph. As such, Kemeny’s constant
for such a Markov chain (denoted κ(G)) provides a global quantifier of how ‘well-connected’ the vertices
of the graph are, in terms of how long it takes to get from a randomly-chosen initial vertex to a randomly-
chosen destination vertex. Large values of κ(G) can indicate clustering in the graph, while small values of
κ(G) indicate that the graph G has good expansion properties. In addition, Kemeny’s constant is closely
connected to a number of many other well-known graph quantities which are commonly used in different
scientific communities, such as the effective graph resistance [25], or the subdominant eigenvalues [10].

Despite the many applications, there are still many open problems involving Kemeny’s constant. In
particular, one of the main challenges is determining how to compute it efficiently in large-scale networks,
and how to update its value under minor modifications to the topology of the underlying graph (e.g.,
vertex or edge removal, vertex or edge addition in the graph [12]), without having to recompute it from
scratch. This is exactly the objective of this manuscript, as we investigate the problem of how to compute
Kemeny’s constant for a random walk in a graph using a divide-and-conquer strategy, given the knowledge
of Kemeny’s constants for smaller subgraphs of the graph. We focus on the case that the graph G has
bridges (i.e. edges whose deletion disconnects the graph into smaller components).

While this scenario is a special case, we believe that the results pave the way for future research along
the same lines, leading to an easier recalculation of Kemeny’s constant, and also for parallel computations
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of its value in some specific cases. Some work has already begun in this area. In [1], the authors determine
an expression for the change in Kemeny’s constant after edge deletion in a connected graph. In [11], a
formula for Kemeny’s constant is provided for graphs with cut vertices. In addition to providing a new
expression for Kemeny’s constant for graphs with bridges, we also improve on this previous work by
exploring the technical expressions for computing Kemeny’s constant and expressing them in terms of
meaningful Markov chain quantities (such as accessibility indices and mean first passage times) in order
to develop further intuition on the underlying meaning of Kemeny’s constant.

1.2. Preliminaries. A graph G consists of a set of vertices V (G) and a set of edges E(G) ⊆ {{u, v} |
u, v ∈ V (G)}. We use mG to denote the number of edges. Two vertices u and v are said to be adjacent

if there is an edge {u, v} in E(G); this is also denoted by u ∼ v. The degree of a vertex v, denoted
degG(v), is the number of vertices adjacent to v in G. For v, w ∈ V (G), we use distG(v, w) to denote
the distance between v and w; that is, the length of the shortest path between v and w. A graph is said
to be connected if there is a path from u to v for every pair of vertices u, v in V (G). A graph which is
not connected is said to be disconnected. A connected component of a graph G is a maximal connected
subgraph of G. For a graph G, we denote by G− v the graph obtained from G in which the vertex v and
all incident edges have been removed, and we denote by G \ e the graph obtained from G by removing
the edge e. A cut vertex of a connected graph G is a vertex v ∈ V (G) such that G− v is disconnected.
A bridge of a connected graph G is an edge e ∈ E(G) for which G \ e is disconnected.

A tree is a connected graph that has no cycles. A forest is a graph whose connected components are
trees. A spanning tree (resp. a spanning forest) of a graph G is a subgraph that is a tree (resp. a forest)
and includes all of the vertices of G. A k-tree spanning forest of G is a spanning forest that consists of k
trees.

We also introduce some useful matrix and vector notation which will be used throughout. Let G be
a graph, and H be a subgraph of G. If the vertices in V (G) are labelled v1, . . . , vn, we define dG to

be the column vector whose ith component is degG(vi) for 1 ≤ i ≤ n. We use d̂H to denote the vector

d̂H = (d̂i)vi∈V (G) where d̂i = degH(vi) if vi ∈ V (H), and d̂i = 0 if vi ∈ V (G)\V (H). We denote by 1k

the all-ones vector of length k, by 0k the all-zeros vector of length k. The subscript k is omitted if the size
is clear from the context. We denote by ei the column vector whose ith entry is 1 and zeros elsewhere.
The size of ei will be clear from the context.

While this work concerns itself mostly with combinatorial expressions for Markov chain quantities that
can be derived in the case that our Markov chain is a random walk on a graph, we introduce the general
concepts briefly here, as they are important in order to develop some intuition around the interpretation
and meaning of Kemeny’s constant. For further background, the interested reader is referred to [14].

A finite, discrete-time, time-homogeneous Markov chain is a stochastic process with a state space
{s1, . . . , sn}. At any given time the chain occupies a state si, and in discrete time-steps transitions
to another state sj according to some prescribed transition probability pij . The probability transition
matrix P = [pij ] determines the evolution of the system, in that the (i, j) entry of P k is the probability of
being in sj after k time-steps, given that the chain starts in si. Under certain conditions on the Markov
chain, the matrix P k converges to 1πT ; that is, the probability distribution after k steps converges to a
stationary distribution vector πT =

[
π1 π2 . . . πn

]
, such that

∑
i πi = 1. Thus πi can be interpreted

as the long-term probability that the system occupies the state si. Note that π can be computed as a left
Perron eigenvector for P , corresponding to the Perron value 1. For short-term behaviour of the system,
one can consider the mean first passage times ; for any pair of states si, sj , the mean first passage time

from si to sj , denoted mij , is the expected number of time-steps elapsed until the chain reaches sj for
the first time, given that it starts in si. These quantities can also be calculated via the transition matrix
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P , using the following formula:

mi,j =

{
eTi (I − P(j))

−11, if i < j;
eTi−1(I − P(j))

−11, if i > j,

where P(j) denotes the jth principal submatrix of P .
For a random walk on a graph G, the states of the Markov chain are the vertices of G, labelled

v1, v2, . . . , vn. At any given time, the ‘random walker’ occupies one of the vertices, and in each subsequent
time-step, chooses a neighbour of the current vertex uniformly-at-random and moves there. Thus the
transition probability pij is given by

pij =

{ 1
degG(vi)

, if vi ∼ vj ;

0, otherwise.

Note that the stationary distribution vector for the simple random walk on a graphG has πi =
degG(vi)
2|E(G)| , or

π = 1
2mG

dG; that is, the long-term probability that a random walker finds themselves on vi is proportional
to the vertex degree.

Kemeny’s constant is defined for an irreducible Markov chain by fixing an index i, and computing∑n
j=1
j 6=i

πjmij . As written, this can be interpreted as a weighted average of the mean first passage times

from a fixed starting state. This is the astonishing quantity which is found to be independent of i;
furthermore, since

∑
i πi = 1, one can rewrite this as

κ(P ) =

n∑

i=1

n∑

j=1
j 6=i

πimijπj ,

which provides the interpretation as the expected length of a random trip between states in the Markov
chain, where both the starting and ending states are chosen at random, with respect to the stationary
probability distribution.

Our final Markov chain parameter we define in the general setting is the accessibility index of a state
sj in an irreducible Markov chain. This is defined (see [17]) as

αj =

n∑

i=1
i6=j

πimi,j .

This appears at first glance to be very similar to Kemeny’s constant; however, it is a weighted average
of the mean first passage times into a fixed destination state sj , rather than from a fixed starting state.
This quantity is not independent of the choice of index j, but rather defines a quantity to measure how
easily a state sj is accessed from anywhere in the Markov chain (hence the name). Note that in the case
of random walks on graphs, there is a related parameter known as the random walk centrality of a vertex
(see [20]), which can be expressed as 1

αj
(see [17]). We note that

∑
j πjαj = κ(P ).

For our work, we use a combinatorial expression for Kemeny’s constant for a random walk on a
connected and undirected graph which can be found in [16]. We note that in [16] (and also in [22]), there
is a combinatorial expression given for κ(P ) for a general Markov chain using the all-minors matrix tree
theorem; we refer the interested reader to these for extensions to weighted graphs or directed graphs, or
arbitrary Markov chains with some interesting combinatorial structure in the transition matrix.

In order to emphasize that we are dealing with random walks on connected and undirected graphs,
given a connected graph G, we use κ(G) to denote Kemeny’s constant for the transition matrix of the
random walk on G. We denote by τG the number of spanning trees of G, and by FG(i; j) the set of 2-tree
spanning forests of G such that one of the two trees contains a vertex i of G, and the other has a vertex
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j of G. This is occasionally referred to as a 2-tree spanning forest separating the vertices i and j. Let
fG
i,j = |FG(i; j)|, and define FG to be the matrix given by FG = [fG

i,j ]. Then, κ(G) is given by

κ(G) =
dT
GFGdG

4mGτG
. (1)

Moreover, κ(G) can be also expressed in terms of the effective resistance matrix RG = [rGi,j ] whose (i, j)-

entry is defined as rGi,j = (eTi − eTj )L
†(ei − ej), where L† is the Moore–Penrose inverse of the Laplacian

matrix of G (see [2]). The quantity rGi,j is referred to as the effective resistance or resistance distance

between vertices i and j. It appears in [6] that RG = 1
τG

FG. Hence, we also have

κ(G) =
dT
GRGdG

4mG

. (2)

This paper is organized as follows. In Section 2, we provide a formula of Kemeny’s constant for graphs
with a single bridge. With this formula, we examine how deleting the bridge and adding a bridge in a
different place between the resulting components affects Kemeny’s constant. In Section 3, we prove the
main result of this article, deriving a formula for Kemeny’s constant for graphs with multiple bridges. As
done in Section 2, we investigate how to optimize Kemeny’s constant by the configuration of the bridges.
Finally, we close this paper by outlining several potential applications in Section 4.

2. Kemeny’s constant for graphs with a cut vertex or a bridge

The combinatorial building-blocks for the formula for κ(G) in (1) are the degree vector dG, the number
of edges mG, the number of spanning trees τG, and the matrix FG of numbers of 2-tree spanning forests
of G separating i and j. The following proposition gives expressions for these building-blocks in the
case that G is constructed by connecting two graphs with a bridge. The proof for this proposition is an
adaptation of the proof of the result [15, Prop 3.1] describing similar quantities for a graph with a cut
vertex. It is included here for completeness.

For a graph G, we use f jG to denote the jth column of FG, or the column of FG corresponding to vertex
j.

Proposition 2.1. Let G be a connected graph on n vertices, and let e be a bridge in G. Suppose that G1

and G2 are the components of G\e. Let e = v1 ∼ v2 where v1 ∈ V (G1) and v2 ∈ V (G2). Then, labelling

the vertices of G in order of V (G1) and V (G2), we have:

dG = d̂G1
+ d̂G2

+ ev1 + ev2 ,

mG = mG1
+mG2

+ 1,

τG = τG1
τG2

,

FG =

[
τG2

FG1
τG2

fv1G1
1T+ τG1

1(fv2G2
)T+ τG1

τG2
J

τG1
fv2G2

1T+ τG2
1(fv1G1

)T + τG1
τG2

J τG1
FG2

]
.

Moreover, this implies that

dT
GFGdG =τG2

dT
G1

FG1
dG1

+ τG1
dT
G2

FG2
dG2

+ 4τG2
(mG2

+ 1)dT
G1

fv1G1

+ 4τG1
(mG1

+ 1)dT
G2

fv2G2
+ 2τG1

τG2
(2mG1

+ 1)(2mG2
+ 1);

and equivalently,

dT
GRGdG =dT

G1
RG1

dG1
+ dT

G2
RG2

dG2
+ 4(mG2

+ 1)dT
G1

RG1
ev1 (3)

+ 4(mG1
+ 1)dT

G2
RG2

ev2 + 2(2mG1
+ 1)(2mG2

+ 1).
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Proof. The results for dG and mG are straightforward. Since any spanning tree of G contains the bridge
e, we have τG = τG1

τG2
. Note that FG is symmetric. We consider two cases for the structure of FG: (i)

vertices i and j both are in either V (G1) or V (G2); (ii) one of i and j is in V (G1), and the other is in
V (G2). Consider (i). Let i, j ∈ V (G1). Then, any 2-tree spanning forest in FG(i; j) can be constructed
from a 2-tree spanning forest in FG1

(i; j) and a spanning tree of G2 by joining v1 and v2, and vice versa.
Thus, |FG(i; j)| = τG2

|FG1
(i; j)|. In a similar way, we can find |FG(i; j)| = τG1

|FG2
(i; j)| for i, j ∈ V (G2).

For the case (ii), we assume without loss of generality that i ∈ V (G1) and j ∈ V (G2). Then, FG(i; j)
is the union of three disjoint subsets X1, X2, and X3, where X1 (resp. X2) is the set of 2-tree spanning
forests such that the subtree having the vertex i (resp. j) contains v2 (resp. v1); and X3 is the set of
2-tree spanning forests such that the subtrees having i and j contain v1 and v2, respectively. Pick any
forest in X1. Then, it can be constructed from a forest in FG2

(v2; j) and a spanning tree of G1, by joining
v1 and v2, and vice versa. So, we have |X1| = τG1

|FG2
(v2; j)|. Similarly, |X2| = τG2

|FG1
(i; v1)|. Consider

X3. Since any 2-tree spanning forest in X3 does not contain e, we have |X3| = τG1
τG2

. Therefore, our
desired structure of FG is established.

For computation of dT
GFGdG, one can check that

(ev1+ ev2)
TFG(ev1+ ev2) = 2eTv1FGev2 = 2τG1

τG2

[dT
G1

0T ]FG(ev1+ ev2) = 2τG2
dT
G1

fv1G1
+ 2τG1

τG2
mG1

[0T dT
G2

]FG(ev1+ ev2) = 2τG1
dT
G2

fv2G2
+ 2τG1

τG2
mG2

[dT
G1

0T ]FG

[
0

dG2

]
= 2mG2

τG2
dT
G1

fv1G1
+ 2mG1

τG1
dT
G2

fv2G2
+ 4τG1

τG2
mG1

mG2
.

Then, the remaining conclusion follows. �

Using these building blocks, we can express Kemeny’s constant for a graph with a bridge.

Proposition 2.2. Let G be a connected graph, and let e be a bridge in G. Suppose that G1 and G2 are

the components of G\e. Let e = v1 ∼ v2, v1 ∈ V (G1), and v2 ∈ V (G2). Then,

κ(G) =
mG1

mG

κ(G1) +
mG2

mG

κ(G2) +
mG2

+ 1

mG

dT
G1

RG1
ev1

+
mG1

+ 1

mG

dT
G2

RG2
ev2 +

(2mG1
+ 1)(2mG2

+ 1)

2mG

.

Proof. Recall that κ(G) =
d

T
GRGdG

4mG
. Dividing both sides of (3) by 4mG, one can establish the desired

result. �

Given two graphs G1 and G2, it is interesting to consider the value of Kemeny’s constant of the
resultant graph G when a bridge v1 ∼ v2 has been added for some v1 ∈ V (G1) and some v2 ∈ V (G2), and
to explore how the choice of v1 and v2 can affect the value of κ(G). In particular, the range of possible
values of κ(G) hinges on the possible values of the quantities dT

G1
RG1

ev1 and dT
G2

RG2
ev2 . This quantity

is more formally defined in [7, 11] as follows:

Definition 2.3. Let G be a connected graph, and v be a vertex of G. The moment µG(v) of v in G is
defined as

µG(v) = dT
GRGev.

The following lemma indicates how the moment µG(v) can be expressed in terms of κ(G) and the
accessibility index αG(v) in G, which is defined in [17] as the vth entry of wTM − 1T where w and M
are the stationary vector and mean first passage time matrix, respectively, for the random walk on G.
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Lemma 2.4. Let G be a connected graph. Then

µG(v) = αG(v) + κ(G).

Proof. Note that

dT
GRGev =

n∑

i=1

degG(i)r
G
i,v.

It is shown in [4] that the effective resistance between two vertices i and j satisfies

2mG · rGi,j = mi,j +mj,i,

where mi,j is the mean first passage time from i to j (note that mi,j +mj,i is sometimes referred to as
the commute time of vertices i and j). Recall that π = 1

2mdG is the stationary vector of a random walk
on G. Thus

n∑

i=1

degG(i)r
G
i,j =

n∑

i=1
i6=j

degG(i)

2mG

mi,j +

n∑

i=1
i6=j

degG(i)

2mG

mji

=

n∑

i=1
i6=j

πimi,j +

n∑

i=1
i6=j

πimji

= αG(j) + κ(G).

�

Combining this observation with Proposition 2.2, we achieve the following alternative expression for
Kemeny’s constant of a graph with a bridge, expressed in terms of the values for Kemeny’s constant of the
connected components G1 and G2 upon removal of the bridge, of the number of edges in each component
mG1

and mG2
, and of the accessibility index of each vertex incident with the bridge in each component.

Theorem 2.5. Let G be a connected graph with a bridge e = {v1, v2}, and let G1 and G2 be the connected

components of G \ e, with v1 ∈ V (G1) and v2 ∈ V (G2). Then

κ(G) = κ(G1) + κ(G2) +
mG2

+ 1

mG

αG1
(v1) +

mG1
+ 1

mG

αG2
(v2)

+
(2mG1

+ 1)(2mG2
+ 1)

2mG

.

2.1. Optimization of Kemeny’s constant for graphs with a bridge. In this section, we discuss how
Theorem 2.5 provides insight on the range of possible values of Kemeny’s constant for a graph G created
by joining two connected graphs G1 and G2 with a bridge v1 ∼ v2, where v1 ∈ V (G1) and v2 ∈ V (G2).
In particular, in this subsection we consider how to maximize and minimize Kemeny’s constant for such
a graph; from Theorem 2.5, it is equivalent to maximizing/minimizing αG1

(v1) and αG2
(v2).

Example 2.6. Let G1 and G2 be the following graphs whose vertices are labelled by their accessibility
indices:
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2.5

8.5

8.5

10.5

8.5

8.5

10.5

G1

2.47

4.83

2.47

5.02 5.02

G2

Suppose that G is formed from G1 and G2 by connecting a vertex of G1 and a vertex from G2 with an
edge. Note that κ(G1) = 7.5, κ(G2) = 3.71, mG1

= 8, mG2
= 6, and mG will be equal to 15. These

quantities impose restrictions on the range of values of κ(G), and thus the minimum will occur when
the vertices of minimum accessibility index in each graph are joined by a bridge, and the maximum will
occur when the vertices of maximum accessibility index in each graph are joined. Thus

20.687 = κ(Gmin) ≤ κ(G) ≤ κ(Gmax) = 25.947,

where Gmin and Gmax are as shown.

Gmin

Gmax

Now we shall show an interesting result that if G1 and G2 are chosen as trees in Theorem 2.5, then
the minimum of κ(G) is attained when v1 and v2 are centroids of G1 and G2, respectively. In [17], the
author examines characterizations of the minimum and maximum of accessibility index in a tree; that is,
the minimum is attained at either a unique vertex or two adjacent vertices, while the maximum only at
a pendent vertex. Here we show at which vertex we can attain the minimum value of the accessibility
indices. A vertex v of a tree T on n vertices is called a centroid if each subtree in T − v contains at most
⌊n
2 ⌋ vertices. It is well-known that either T contains a unique centroid v so that each subtree in T − v

contains less than n
2 , or T has exactly two adjacent centroids v1 and v2, in which case n is even, and two

components in T \v1 ∼ v2 contain n
2 vertices, respectively.

Proposition 2.7. Let T be a tree. Then, minu∈V (T ) αT (u) is attained at v if and only if v is a centroid.

Proof. It is found in [2, Lemma 9.7] that dT
T FT = 1T (2FT − (n− 1)I). Thus, the minimum value of the

accessibility index is attained at a vertex corresponding to the minimum entry in 1TFT .
For any two adjacent vertices v1, v2 ∈ V (T ), let Tv1 and Tv2 be the components in T \v1 ∼ v2 that

contain v1 and v2, respectively. We note that the (i, j)-entry in FT is the distance between vertex i and
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j in T . Then,

1TFT ev2 =
∑

x∈V (T )

distT (v2, x)

=
∑

x∈V (Tv1
)

(distT (v1, x) + 1) +
∑

x∈V (Tv2
)

(distT (v1, x)− 1)

=
∑

x∈V (T )

distT (v1, x) + |V (Tv1)| − |V (Tv2)|.

Hence,

1TFT ev1 − 1TFT ev2 = |V (Tv2)| − |V (Tv1 )|. (4)

Let v be a centroid of G. We consider a vertex w of T adjacent to v. Then, |V (Tw)| ≤ n
2 . If

|V (Tw)| =
n
2 , then w is the other centroid and using (4) we have 1TFT ev = 1TFT ew. If |V (Tw)| <

n
2 ,

then it follows from (4) that 1TFT ev < 1TFT ew. Now we let v1, v2 be any two adjacent vertices
distinct from v. Suppose without loss of generality that 1 ≤ distT (v, v1) < distT (v, v2). We claim that
1TFT ev1 < 1TFT ev2 . Assume to the contrary |V (Tv2)| − |V (Tv1 )| ≥ 0. Since |V (Tv2)|+ |V (Tv1)| = n, we
have |V (Tv2)| ≥

n
2 , and so the subtree in T −v containing v2 has at least n

2 +1 vertices, which contradicts

that v is a centroid. Hence, |V (Tv2 )| − |V (Tv1)| < 0, and 1TFT ev1 < 1TFT ev2 . Therefore, we obtain our
desired result. �

Corollary 2.8. Let T1 and T2 be trees, and let G be a graph formed by adding an edge v1 ∼ v2, where
v1 ∈ V (T1) and v2 ∈ V (T2). Then, κ(G) is minimized if and only if v1 and v2 are centroids of T1 and

T2, respectively.

Proof. The conclusion follows from Theorem 2.5 and Proposition 2.7. �

3. Kemeny’s constant for a chain of connected graphs with respect to a tree

Definition 3.1. Let T be a tree on k vertices where V (T ) = {1, . . . , k}. Let G1, . . . , Gk be connected
graphs. Let G be a graph constructed as follows: the vertices 1, . . . , k are replaced by the graphs
G1, . . . , Gk, respectively; and if i ∼ j is an edge of T , then some vertex vi ∈ V (Gi) is chosen, and some
vertex vj ∈ V (Gj) is chosen, and the two vertices are joined with an edge so that vi ∼ vj is a bridge in
G. Then G is said to be a chain of G1, . . . , Gk with respect to T . We denote by BG the set of the (k− 1)
bridges, used in the construction of G, that correspond to the edges of T .

Remark 3.2. When we deal with a chain G of graphs with respect to a tree T on k vertices, we write
the vertex set of T as {1, . . . , k} and the vertices of G are labelled by letters other than 1, . . . , k.

In this section, we provide a formula for Kemeny’s constant for a chain G of connected graphs
G1, . . . , Gk with respect to a tree. The formula in Theorem 3.9 is proved by induction using Propo-
sition 2.2 and a lemma we prove in this section, Lemma 3.7. Since the formula for κ(G) is based on
resistance distances, which are in turn based on 2-tree spanning forests, we will need to consider how
such forests can be constructed from spanning trees and forests of G1, G2, . . . , Gk, taking into account the
structure of T . This is done in Proposition 3.4. For ease of exposition, we spend some time introducing
and elaborating on the notation we use in this section, and list some as Observations for ease of reference
later.

Let T be a tree on k vertices, and let G be a chain of connected graphs G1, . . . , Gk with respect to T .
For v, w ∈ V (G), there exist i, j ∈ {1, . . . , k} such that v ∈ V (Gi) and w ∈ V (Gj). Let l = distT (i, j)+1,
and suppose l ≥ 2. Since T is a tree, there is a unique path (i1, . . . , il) from i to j in T , that is, im ∼ im+1

for m = 1, . . . , l − 1. (Here, i1 = i and il = j.) Moreover, letting v1 = v and wl = w, there are exactly
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1
4

3

2

k

k − 1

T

G1

G4

G3

G2

Gk

Gk−1

G

Figure 1. An example for illustration of Definition 3.1, which is a chain G of connected
graphs G1, . . . , Gk with respect to a star T on k vertices.

l − 1 bridges in BG such that wm ∼ vm+1 is the bridge between Gim and Gim+1
for m = 1, . . . , l − 1.

Hence, given v, w ∈ V (G), we may define a set consisting of pairs of vertices,

Pv,w = {(vi, wi) | i = 1, . . . , l}.

We note that v1 may be the same as w1, so for this case, (v1, v1) ∈ Pv,w; similarly, vl may be the same
as wl. We further note that Pw1,w = (Pv,w\{(v, w1)}) ∪ {(w1, w1)}. For the case l = 1, we have i = j,
and v, w are both in V (Gi). In this case, we let Pv,w = {(v, w)}. The purpose of defining this set is for
indexing certain summations in the results which follow; for example, in Proposition 3.4, the number of
2-tree spanning forest separating v and w can be calculated in terms of the number of 2-tree spanning
forests which separate pairs of vertices in Pv,w.

v w1 v2 w2 vl−1 wl−1 vl w

Gi1 Gi2 Gil−1
Gil

Figure 2. Illustration of the definition of the set Pv,w. In this figure, we have Pv,w =
{(v, w1), (v2, w2), . . . , (vl−1, wl−1), (vl, w)}.

Given any vertex z in G, there exists a unique j ∈ {1, . . . , k} such that z ∈ V (Gj); and so we shall use
Gz to denote the graph Gj (as stated in Remark 3.2, z is not a number between 1 and k). We note that
for any pair (x, y) in Pv,w, we have Gx = Gy .

Observation 3.3. Let T be a tree on k vertices, and let G be a chain of connected graphs G1, . . . , Gk

with respect to T . Let v, w ∈ V (G). Then, v ∈ V (Gk1
) and w ∈ V (Gk2

) for some k1, k2 ∈ {1, . . . , k}.
Consider the set Pv,w, and pick any pair (x, y) ∈ Pv,w. Then there exists a unique ℓ ∈ {1, . . . , k} such
that Gℓ = Gx. Considering how Pv,w is defined, ℓ is a vertex of T that lies on the path from i to j in T .
Therefore, elements in Pv,w are in one-to-one correspondence with vertices on the path from i to j in T .

The next proposition enumerates the number of 2-tree spanning forests separating any two vertices v

and w in G, and uses this expression to determine the resistance distances, and the quantity d̂T
Gi
RGew.
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Note that the sizes of the vectors ei are ambiguous but they can be determined from the context.
Furthermore, the vector ew denotes the standard basis vector with a 1 in the position corresponding to
the vertex w.

Proposition 3.4. Given a tree T on k vertices and connected graphs G1, . . . , Gk, let G be a chain of

G1, . . . , Gk with respect to T . Consider v, w ∈ V (G), and that v ∈ V (Gi) and w ∈ V (Gj) for some

i, j ∈ {1, . . . , k}. Let w1 be the vertex of Gi such that (v, w1) ∈ Pv,w. Then,

fG
v,w = τGdistT (i, j) + τG

∑

(x,y)∈Pv,w

fGx
x,y

τGx

,

and so,

rGv,w = distT (i, j) +
∑

(x,y)∈Pv,w

rGx
x,y. (5)

Moreover,

d̂T
Gi
RGew = dT

Gi
RGi

ew1
+ 2distT (i, j)mGi

+ 2mGi

∑

(x,y)∈Pw1,w

rGx
x,y. (6)

Proof. Let l = distT (i, j)+1. In this proof, we shall use the same notation for the subgraphs and vertices
used to set up Pv,w with Figure 2, so Pv,w = {(vi, wi) | i = 1, . . . , l} where v = v1, and w = wl. For
m = 1, . . . , l, we define Xm as the set of 2-tree spanning forests in FG(v1;wl) such that the subtree with
the vertex v1 contains vm and the other with wl contains wm. Similarly, for m = 1, . . . , l − 1, Ym is
defined as the set of 2-tree spanning forests in FG(v1;wl) such that the subtree with v1 contains wm

and the other with wl contains vm+1. Then, Xm’s and Ym’s are mutually independent and FG(v1;wl) =(⋃l

m=1 Xm

)
∪
(⋃l−1

m=1 Ym

)
. Applying an analogous argument as done in Proposition 2.1, we can find

that |Xm| = f
Gim
vm,wm

τG
τGim

(note Gim = Gvm = Gwm
) and |Ym| = τG. Hence, our desired results for fG

v,w

and rGv,w are established.

We note that Pw1,w = (Pv,w\{(v, w1)}) ∪ {(w1, w1)} and rGi
w1,w1

= 0. Using (5), we have

d̂T
Gi
RGewl

=
∑

v∈V (Gi)

degGi
(v)rGv,wl

=
∑

v∈V (Gi)

degGi
(v)


distT (i, j) + rGi

v,w1
+

∑

(x,y)∈Pw1,w

rGx
x,y




= dT
Gi
RGi

ew1
+ 2distT (i, j)mGi

+ 2mGi

∑

(x,y)∈Pw1,w

rGx
x,y.

�

We provide a straightforward example of these computations for the sake of clarity.

Example 3.5. Let G1 be a cycle of length 4, G2 be a complete graph on 4 vertices, and G3 be a star on
4 vertices. Suppose that G is the chain of G1, G2, and G3 with respect to a path on 3 vertices as shown
in Figure 3. Then, τG1

= 4, τG2
= 16 (by Cayley’s formula (see [5])), τG3

= 1, and τG = 64. Moreover,
one can find that we have

RG1
=

1

4




0 3 4 3
3 0 3 4
4 3 0 3
3 4 3 0


 , RG2

=
1

16




0 8 8 8
8 0 8 8
8 8 0 8
8 8 8 0


 , RG3

=
1

1




0 1 1 1
1 0 2 2
1 2 0 2
1 2 2 0


 , (7)
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v1 w1 v2 w2 v3 w3

G1 G2 G3

Figure 3. A chain of 3 connected graphs with respect to a path on 3 vertices, which is
used in Examples 3.5, 3.8, and 3.11.

where the first row and column in RG3
correspond to the vertex whose degree is 3 in G3. We have

fG1
v1,w1

= 4, fG2
v2,w2

= 8. By Proposition 3.4, fG
v1,w3

= 64(3 − 1) + 64(44 + 8
16 + 1) = 288 and rGv1,w3

=
1
τG

fG
v1,w3

= 9
2 . Furthermore,

d̂T
G1

RGew3
= dT

G1
RG1

ew1
+ 2(3− 1)mG1

+ 2mG1
(rG2

v2,w2
+ rG3

v3,w3
) = 33.

In order to compute κ(G) when G is a chain of connected graphs G1, . . . , Gk with respect to a tree
T , we need to compute the quantity dT

GRGdG. This quantity can be expressed as a weighted sum of the
quantities dT

GRGev for all v ∈ V (G), and it is this term dT
GRGev which we calculate in the next lemma,

Lemma 3.7, using the results of Proposition 3.4. As observed previously, since the graph G has bridges,
the resistance distances may be reduced and expressed in terms of resistance distances between vertices
in the components Gi, with the expression taking into account the structure of the tree T . For any vertex
v ∈ V (G), there is a particular set of vertices in G incident with the bridges of G (corresponding to the
edges of T ) on which the reduction of our expression for dT

GRGev will be based. This next observation
makes the choice of these vertices clear, and its role is seen clearly in the statement of Lemma 3.7 and
the proof of Theorem 3.9.

Observation 3.6. Let T be a tree on k ≥ 2 vertices and let G be a chain of connected graphs G1, . . . , Gk

with respect to T . For any pair of vertices i and j of T , they are disconnected upon the removal of any
edge on the path from i to j in T . Hence, the deletion of one of the bridges in BG that correspond to
the edges on the path from i and j in T results in two components, where one contains Gi and the other
contains Gj . In particular, among those bridges there exists exactly one bridge such that it is incident to
some vertex w of Gi; in other words, w is the only vertex of Gi such that it is incident to a bridge in BG

and the deletion of that bridge results in two components, where one contains Gi and the other contains
Gj .

Given a vertex v ∈ V (G), there exists i0 ∈ {1, . . . , k} such that v ∈ Gi0 . From the above, there are
exactly (k− 1) vertices wl for l ∈ {1, . . . , k}\{i0} such that wl ∈ V (Gl), and wl is incident to a bridge in
BG whose deletion results in two components, where the one with wl contains Gl and the other does Gi0 .
Furthermore, for two distinct vertices wl1 and wl2 , the corresponding bridges are distinct—that is, the
(k − 1) vertices correspond to the bridges in BG, and vice versa. Fixing any vertex v ∈ V (G) uniquely
determines a set of vertices which are in one-to-one correspondence with the bridges in BG.

Here we introduce some notation. Let G be a chain of connected graphs G1, . . . , Gk with respect to a

tree T on k vertices. Let Ṽ G
k denote the set of the vertices in V (Gk) that are incident to bridges in BG.

Note that |Ṽ G
k | = degT (k). For each bridge x ∼ y ∈ BG, we have exactly two components in G\x ∼ y.

We use WG
x (resp. WG

y ) to denote the number of edges of the component with x (resp. y) in G\x ∼ y.

Let WG
x := mG −WG

x and WG
y := mG −WG

y . Note that WG
x = WG

y + 1 and WG
y = WG

x + 1. We shall
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omit the superscript G if it is clear from the context. In this article, the superscript G for Ṽ G
k , WG

x and

WG
x is only used in the proof of Theorem 3.9 and in Question 3.16.
In the next lemma, we give a formula for dT

GRGewk
for any vertex wk ∈ V (G) using the results of

Proposition 3.4 and the notation outlined so far.

Lemma 3.7. Given a tree T on k vertices and connected graphs G1, . . . , Gk, let G be a chain of G1, . . . , Gk

with respect to T . Let wk ∈ V (Gk). From Observation 3.6, for i = 1, . . . , k−1, we may define wi to be the

unique vertex of Gi such that wi is incident to a bridge in BG whose deletion results in two components,

where the one with wi contains Gi and the other contains Gk. Then,

dT
GRGewk

=

k∑

i=1

dT
Gi
RGi

ewi
+

k∑

i=1

∑

z∈Ṽi

2W zr
Gi
z,wi

+

k−1∑

i=1

(2Wwi
+ 1). (8)

Proof. We note that

dG =

k∑

j=1

d̂Gj
+

∑

x∼y∈BG

(ex + ey) =

k∑

j=1

d̂Gj
+

k∑

j=1

∑

z∈Ṽj

ez.

Using (5) and (6), we have

dT
GRGewk

=

k∑

i=1

d̂T
Gi
RGewk

+

k∑

i=1

∑

z∈Ṽi

rGz,wk

=

k∑

i=1


dT

Gi
RGi

ewi
+ 2distT (i, k)mGi

+ 2mGi

∑

(x,y)∈Pwi,wk

rGx
x,y




+

k∑

i=1

∑

z∈Ṽi


distT (i, k) +

∑

(x,y)∈Pz,wk

rGx
x,y




=

k∑

i=1


2mGi

∑

(x,y)∈Pwi,wk

rGx
x,y +

∑

z∈Ṽi

∑

(x,y)∈Pz,wk

rGx
x,y


 (9)

+

k∑

i=1

dT
Gi
RGi

ewi
+

k∑

i=1

distT (i, k)(2mGi
+ degT (i)). (10)

First, we claim that the right side in (9) can be written as the second summand in the right side of

(8). In (9), we note that for any pair (x, y) in Pwi,wk
∪Pz,wk

, we have x, y ∈ Ṽj for some 1 ≤ j ≤ k. Thus,

in order to establish the claim, it suffices to show that given 1 ≤ s ≤ k, for each ẑ ∈ Ṽs, the coefficient
of rGs

ẑ,ws
in the expansion of the summation in (9) is 2W ẑ. Since rGs

ws,ws
= 0, we may assume ẑ 6= ws.

For the bridge b in BG incident to ẑ, we let C be the component in G\b such that ẑ /∈ V (C). Consider
the expansion of 2mGi

∑
(x,y)∈Pwi,wk

rGx
x,y. We can find from Observation 3.3 that (ẑ, ws) ∈ Pwi,wk

so

that rGs

ẑ,ws
appears with coefficient 2mGi

if for i 6= s, vertex s lies on the path from i to k in T , and

wi ∈ V (C). Similarly, for the expansion of
∑

z∈Ṽi

∑
(x,y)∈Pz,wk

rGx
x,y, (ẑ, ws) ∈ Pz,wk

so that rGs

ẑ,ws
appears

with coefficient degT (i) if for i 6= s, vertex s lies on the path from i to k in T , and z ∈ V (C); and rGs

ẑ,ws

appears with coefficient 1 if i = s and z = ẑ. Note that degT (i) is equal to the number of bridges in BG

that are incident to some vertices of Gi. It follows that rGs

ẑ,ws
has coefficient 2W ẑ. Hence, our claim is

established.
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Now, we consider the last summand in (10); and since distT (k, k) = 0, we shall show that

k−1∑

i=1

(2Wwi
+ 1) =

k−1∑

i=1

distT (i, k)(2mGi
+ degT (i)).

For i = 1, . . . , k − 1, Wwi
is the number of edges of the component H with wi in G\e, where e is the

bridge in BG incident to wi. Then, wk /∈ V (H). We note that H consists of some graphs Gj1 , . . . , Gjl

for some l ≥ 1 and some bridges in BG so that the number of bridges in BG that belong to H is l − 1.
We further note that for r = 1, . . . , l, the number of bridges in BG incident to some vertices of Gjr is

degT (jr). Letting jl = i, we have 2(l − 1) =
∑l−1

r=1 degT (jr) + (degT (i) − 1). Hence, 2Wwi
+ 1 can be

written in terms of mGj1
, . . . ,mGjl

and degT (j1), · · · , degT (jl). Therefore, it is enough to show that in

computation of
∑k−1

i=1 (2Wwi
+1), for each s = 1, . . . , k− 1, mGs

and degT (s) appear exactly 2distT (s, k)
and distT (s, k) times, respectively.

Note that i 6= k. If vertex i lies on the path from s to k in T , then V (Gs) ⊆ V (H) and so mGs
appears

exactly once in computation of Wwi
. This implies that mGs

appears 2distT (s, k) times in computation

of
∑k−1

i=1 (2Wwi
+ 1).

If for i 6= s, vertex i lies on the path from s to k, then degT (s) appears exactly once in computation
of 2Wwi

; and, if i = s, then degT (s) − 1 appears once in computation of 2Wws
. It follows that degT (s)

appears distT (s, k) times in computation of
∑k−1

i=1 (2Wwi
+ 1). �

Example 3.8. Maintaining Example 3.5 with the same notation, let us find dT
GRGew3

with Lemma 3.7.

Note BG = {w1 ∼ v2, w2 ∼ v3}, v1 /∈ Ṽ1, and w3 /∈ Ṽ3. We have W v2 = 5, W v3 = 12, Ww1
= 4, and

Ww2
= 11. Then,

dT
GRGew3

=

3∑

i=1

dT
Gi
RGi

ewi
+ 2W v2r

G2

v2,w2
+ 2W v3r

G3

v3,w3

+ (2Ww1
+ 1) + (2Ww2

+ 1)

=(5 + 4.5 + 7) + 5 + 24 + 9 + 23 = 77.5.

Here is our main result of this article.

Theorem 3.9. Let T be a tree on k vertices, and let G be a chain of connected graphs G1, . . . , Gk with

respect to T . Then,

κ(G) =

k∑

i=1

mGi

mG

κ(Gi) +
∑

x∼y∈BG

(
W x

mG

dT
Gx

RGx
ex +

W y

mG

dT
Gy

RGy
ey

)

+
k∑

i=1

∑

(z1,z2)∈Ṽi×Ṽi

W z1W z2

mG

rGi
z1,z2

+
∑

x∼y∈BG

(2W x − 1)(2W y − 1)

2mG

.

(11)

Proof. We shall use induction on k for this proof. Clearly, the statement holds for k = 1. Suppose that
for k ≥ 1, this expression holds for every chain of connected graphs with respect to any tree on k vertices.

Let T̃ be a tree with vertex set {1, . . . , k + 1}. Without loss of generality, assume degT̃ (k + 1) = 1 and

k ∼ (k + 1) is an edge of T̃ . Let G̃ be a chain of connected graphs G1, . . . , Gk+1 with respect to T̃ . We
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first state what we need to obtain to complete our induction:

κ(G̃) =

k+1∑

i=1

mGi

m
G̃

κ(Gi) +
∑

x∼y∈B
G̃

(
W G̃

x

m
G̃

dT
Gx

RGx
ex +

W G̃
y

m
G̃

dT
Gy

RGy
ey

)

+
k+1∑

i=1

∑

(z1,z2)∈Ṽ G̃
i

×Ṽ G̃
i

W G̃
z1
W G̃

z2

m
G̃

rGi
z1,z2

+
∑

x∼y∈B
G̃

(2W G̃
x − 1)(2W G̃

y − 1)

2m
G̃

.

(12)

Now we shall derive (12) from the inductive hypothesis and the results we have obtained. Suppose

that G is the graph obtained from G̃ by removing all vertices of Gk+1 and all edges incident to vertices
of Gk+1. Further, assume that w ∼ v is the bridge in B

G̃
where w ∈ V (Gk) and v ∈ V (Gk+1). Then, G

is a chain of G1, . . . , Gk with respect to T , where T is the tree obtained from T̃ by removing the pendent
vertex k + 1 and the edge k ∼ (k + 1). Using Proposition 2.2, we have

κ(G̃) =
mG

m
G̃

κ(G) +
mGk+1

m
G̃

κ(Gk+1) +
mGk+1

+ 1

m
G̃

dT
GRGew

+
mG + 1

m
G̃

dT
Gk+1

RGk+1
ev +

(2mG + 1)(2mGk+1
+ 1)

2m
G̃

.

(13)

Let wk = w. By Observation 3.6, for i = 1, . . . , k − 1, we may define wi to be the vertex of Gi such
that wi is incident to a bridge in BG whose deletion results in two components, where the one with wi

contains Gi and the other contains Gk; in this sense, there is one-to-one correspondence between BG and
the set of w1, . . . , wk−1. Here we remark the following, which is used in several places of this proof.

(R) In the same sense above, there is one-to-one correspondence between B
G̃
and the set of w1, . . . , wk.

Note that k is adjacent to k+1 in T̃ . For i = 1, . . . , k, after the deletion of the bridge corresponding

to wi from G̃, the component not having wi contains all vertices of Gk+1.

In (13), applying the inductive hypothesis to κ(G) and Lemma 3.7 to dT
GRGew, we obtain

mG

m
G̃

κ(G) =

k∑

i=1

mGi

m
G̃

κ(Gi) +
∑

x∼y∈BG

(
WG

x

m
G̃

dT
Gx

RGx
ex +

WG
y

m
G̃

dT
Gy

RGy
ey

)

+

k∑

i=1

∑

(z1,z2)∈Ṽ G
i

×Ṽ G
i

WG
z1
WG

z2

m
G̃

rGi
z1,z2

+
∑

x∼y∈BG

(2WG
x − 1)(2WG

y − 1)

2m
G̃

,

(14)

and

mGk+1
+ 1

m
G̃

dT
GRGew =

mGk+1
+ 1

m
G̃




k∑

i=1

dT
Gi
RGi

ewi
+

k∑

i=1

∑

z∈Ṽ G
i

2WG
z r

Gi
z,wi




+
mGk+1

+ 1

m
G̃

k−1∑

i=1

(2WG
wi

+ 1).

(15)

Now, we consider (13) together with (14) and (15) in order to derive (12). First,
k+1∑
i=1

mGi

m
G̃

κ(Gi) can

be obtained from the sum of
mGk+1

m
G̃

κ(Gk+1) in (13) and
k∑

i=1

mGi

m
G̃

κ(Gi) in (14). Next, we claim that

the sum of
mGk+1

+1

m
G̃

∑k

i=1 d
T
Gi
RGi

ewi
in (15),

∑
x∼y∈BG

(
WG

x

m
G̃

dT
Gx

RGx
ex +

WG
y

m
G̃

dT
Gy

RGy
ey

)
in (14), and
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mG+1
m

G̃

dT
Gk+1

RGk+1
ev in (13) yields

∑

x∼y∈B
G̃

(
W G̃

x

m
G̃

dT
Gx

RGx
ex +

W G̃
y

m
G̃

dT
Gy

RGy
ey

)
.

In order to establish the claim, we consider two cases: either a bridge x ∼ y belongs to BG or it is w ∼ v.

First, let us choose x ∼ y ∈ BG. Note that |BG| = k − 1. By (R), one of two components in G̃\x ∼ y
must contain all vertices of Gk+1, say the component containing y does so. Then, x = wi0 for some

i0 ∈ {1, . . . k − 1}. Moreover, W G̃
y = WG

y and W G̃
x = WG

x +mGk+1
+ 1. Hence, we obtain

W G̃
x

m
G̃

dT
Gx

RGx
ex +

W G̃
y

m
G̃

dT
Gy

RGy
ey =

WG
x

m
G̃

dT
Gx

RGx
ex +

WG
y

m
G̃

dT
Gy

RGy
ey

+
mGk+1

+ 1

m
G̃

dT
Gi0

RGi0
ewi0

.

Consider the latter case w ∼ v (note w = wk). Considering (R), we have

W G̃
w

m
G̃

dT
Gw

RGw
ew +

W G̃
v

m
G̃

dT
Gv

RGv
ev =

mGk+1
+ 1

m
G̃

dT
Gk

RGk
ewk

+
mG + 1

m
G̃

dT
Gk+1

RGk+1
ev.

We note again that the bridges in B
G̃

correspond to w1, . . . , wk. Therefore, our claim is established, as
desired.

After that, we shall show that

k+1∑

i=1

∑

(z1,z2)∈Ṽ G̃
i

×Ṽ G̃
i

W G̃
z1
W G̃

z2

m
G̃

rGi
z1,z2

=
k∑

i=1

∑

(z1,z2)∈Ṽ G
i

×Ṽ G
i

WG
z1
WG

z2

m
G̃

rGi
z1,z2

+
mGk+1

+ 1

m
G̃

k∑

i=1

∑

z∈Ṽ G
i

2WG
z r

Gi
z,wi

.

(16)

In order to do that, we shall compare coefficients for both sides. We note rHa,a = 0 for any graph H and

vertex a of H . Since degT̃ (k+1) = 1, Ṽ G̃
k+1 is a singleton. So, it is enough to show that given i = 1, . . . , k,

for any (z1, z2) ∈ Ṽ G̃
i × Ṽ G̃

i with z1 6= z2, the respective coefficients of rGi
z1,z2

on both sides in (16) are
equal.

For (z1, z2) ∈ Ṽ G̃
i × Ṽ G̃

i with z1 6= z2, we let e1 and e2 be the bridges in B
G̃
such that they are incident

to z1 and z2, respectively. Note that wi ∈ Ṽ G̃
i . We now consider two cases: (i) one of z1 and z2 is

wi, and (ii) neither of them is wi. For case (i), we suppose without loss of generality that z2 = wi.

From (R), the component without wi in G̃\e2 contains Gk+1, while the component without z1 in G̃\e1

does not contain Gk+1. Hence, W G̃
z1

= WG
z1

and W G̃
wi

= WG
wi

+ mGk+1
+ 1 for i = 1, . . . , k − 1; and

W G̃
z1

= WG
z1

and W G̃
wk

= mGk+1
+ 1. We note that (z1, wi), (wi, z1) ∈ Ṽ G̃

i × Ṽ G̃
i and rGi

z1,wi
= rGi

wi,z1
. For

i = 1, . . . , k− 1, considering that Ṽ G
i × Ṽ G

i contains two distinct elements (z1, wi) and (wi, z1), replacing

W G̃
z1

and W G̃
z2

in the left side of (16) by WG
z1

and WG
wi

+ mGk+1
+ 1, respectively, one can find that

the respective coefficients of rGi
z1,wi

on both sides in (16) are equal. Similarly, for the case i = k, noting

(z1, wi), (wi, z1) /∈ Ṽ G
i × Ṽ G

i , the equality for the respective coefficients of rGi
z1,wi

can be obtained. Let

us consider (ii). Then, for j = 1, 2, the component without zj in G̃\ej does not contain Gk+1. So,

W G̃
z1

= WG
z1

and W G̃
z2

= WG
z2
. Hence, the respective coefficients of rGi

z1,z2
on both sides in (16) are equal.

Therefore, the equality in (16) follows.
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Finally, for the completion of the proof, we only need to show

∑

x∼y∈B
G̃

(2W G̃
x − 1)(2W G̃

y − 1)

2m
G̃

=
∑

x∼y∈BG

(2WG
x − 1)(2WG

y − 1)

2m
G̃

+
(2mG + 1)(2mGk+1

+ 1)

2m
G̃

+
2(mGk+1

+ 1)

2m
G̃

k−1∑

i=1

(2Wwi
+ 1).

(17)

Recall (R). Choose a bridge x ∼ y ∈ B
G̃
. If x ∼ y is w ∼ v, then W G̃

w = mGk+1
+ 1 and W G̃

v = mG + 1.

Suppose that x ∼ y is in BG. One of two components in G̃\x ∼ y must contain Gk+1, say the component

with y does so. Then, W G̃
x = WG

x + mGk+1
+ 1 and W G̃

y = WG
y . Moreover, x must be wi0 for some

1 ≤ i0 ≤ k − 1, and so Wwi0
= WG

y − 1. Then, one can verify that substituting the above expressions

appropriately for W G̃
x and W G̃

y for x ∼ y ∈ B
G̃
in the left side of (17) yields the right side. �

Remark 3.10. Continuing the notation and result in Theorem 3.9, if Ṽi0 contains exactly one element

for some 1 ≤ i0 ≤ k, i.e, degT (i0) = 1, then r
Gi0
z,z = 0 for (z, z) ∈ Ṽi0 × Ṽi0 . Hence, when it comes to

computation of
∑

(z1,z2)∈Ṽi×Ṽi

W z1
W z2

mG
rGi
z1,z2

, we only need to consider indices i such that degT (i) > 1.

Example 3.11. Continuing Examples 3.5 and 3.8 with the same notation, we shall obtain κ(G) through

Theorem 3.9. It can be found that κ(G1) = 2.5, κ(G2) = 2.25, and κ(G3) = 7.5. Note that Ṽ1 and Ṽ3

both contain a single element. Then, we have

mGκ(G) =

3∑

i=1

mGi
κ(Gi) +Ww1

dT
G1

RG1
ew1

+W v2d
T
G2

RG2
ev2 +Ww2

dT
G2

RG2
ew2

+W v3d
T
G3

RG3
ev3 +W v2Ww2

rG2

v2,w2
+Ww2

W v2r
G2

w2,v2

+
1

2
(2Ww1

− 1)(2W v2 − 1) +
1

2
(2Ww2

− 1)(2W v3 − 1).

One can verify that κ(G) = 357.5
15 = 23.83̇.

The formula for κ(G) in Theorem 3.9 derives its importance from the fact that understanding the resis-
tance matrices and the degree vectors of G1, . . . , Gk allows the computation of κ(G) without calculating
this quantities for G from scratch.

Remark 3.12. For computation of the Moore–Penrose inverse, the singular value decomposition is used;
so, for an m×m matrix A, the cost for computation of A† is O(m3) [13] where O stands for the big O
notation. Continuing Theorem 3.9, we suppose that |V (G)| = n and |V (Gi)| = ni for i = 1, . . . , k. Then,
it follows that the cost for computation of the left side of (11) is O(n3); and the cost of the right side of
(11) is O(n3

1 + · · ·+ n3
k).

Remark 3.13. Given a chain G of trees T1, . . . , Tk with respect to some tree on k vertices, the formula
for κ(G) in Theorem 3.9 is equivalent to that in Proposition 2.2 of [7].

In the following example, we provide a formula for Kemeny’s constant for a chain of connected graphs
G1, . . . , Gk with respect to a star on k vertices, as described in Figure 1.
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Example 3.14. Let k ≥ 3, and T be a star with vertex set {1, . . . , k}. Suppose that vertex 1 is of
degree k − 1. Let G be a chain of connected graphs G1, . . . , Gk with respect to T . We may assume
that BG = {xi ∼ yi|i = 1, . . . , k − 1}, xi ∈ V (G1) and yi ∈ V (Gi+1) for 1 ≤ i ≤ k − 1. Then, we have
W xi

= mGi+1
+ 1 and W yi

= mG −mGi+1
. By Theorem 3.9 with Remark 3.10, we can see that

κ(G)

=

k∑

i=1

mGi

mG

κ(Gi) +

k−1∑

i=1

(
mGi+1

+ 1

mG

dT
G1

RG1
exi

+
mG −mGi+1

mG

dT
Gi+1

RGi+1
eyi

)

+
∑

1≤i<j≤k−1

2(mGi+1
+ 1)(mGj+1

+ 1)

mG

rG1

xi,xj
+

k−1∑

i=1

(2mGi+1
+ 1)(2mG − 2mGi+1

+ 1)

2mG

.

We now recast the formula in Theorem 3.9 in order to provide an intuition for understanding how
κ(G) is affected by G1, . . . , Gk and the placement of bridges in BG, by expressing the formula for κ(G)
in terms of the values of κ(Gi), accessibility indices, mean first passage times, and the numbers of edges
in certain subgraphs of G.

Theorem 3.15. Let T be a tree on k vertices, and G1, . . . , Gk be connected graphs. Let G be a chain of

connected graphs G1, . . . , Gk with respect to T . Then,

κ(G) =
k∑

i=1

κ(Gi) +
∑

x∼y∈BG

(
W x

mG

αGx
(x) +

W y

mG

αGy
(y)

)

+

k∑

i=1

∑

(z1,z2)∈Ṽi×Ṽi

W z1W z2

2m2
G

(m(Gi)
z1,z2

+m(Gi)
z2,z1

) +
∑

x∼y∈BG

(2W x − 1)(2W y − 1)

2mG

,

(18)

where m
(Gi)
z1,z2 is the mean first passage time from z1 to z2 for a random walk on Gi.

Proof. We recall that for a connected graph G, rGi,j = 1
2mG

(mi,j + mj,i) where mi,j is the mean first
passage time from i to j. Then, the conclusion follows from Theorem 3.9 with Lemma 2.4. �

3.1. Optimization of Kemeny’s constant for chains of connected graphs with respect to trees.

Here we consider how we can maximize/minimize Kemeny’s constant for chains of connected graphs with
respect to trees, as in the spirit of Section 2.1. Let k ≥ 2. Suppose that T is a tree on k vertices and
G1, . . . , Gk are k connected graphs. Consider a chain G of G1, . . . , Gk with respect to T . Then, for each
x ∼ y ∈ BG, x ∈ V (Gi) and y ∈ V (Gj) for some i and j with i 6= j. Considering how W x and W y are

defined, we can find that the quantities W x and W y do not depend on the choices of x in Gi and y in
Gj ; further, they only rely on the choice of T and G1, . . . , Gk. Therefore, when a tree T and connected
graphs G1, . . . , Gk are given, maximizing/minimizing κ(G) is equivalent to maximizing/minimizing the
second and third summands of the right side of (18).

When it comes to minimization problem, we have fewer constraints. So, we pose and address two
minimization problems.

Question 3.16. Given a tree T on k ≥ 2 vertices, and connected graphs G1, . . . , Gk, what is the
minimum value of κ(G), where G is a chain of G1, . . . , Gk with respect to T ?

Choose a chain G′ of G1, . . . , Gk with respect to T such that for i = 1, . . . , k, each Ṽ G′

i (the set of

vertices in Gi incident with a bridge in BG′) is a singleton, and the element z′ in Ṽ G′

i satisfies αGi
(z′) ≤

αGi
(z) for z ∈ V (Gi). That is, we suppose that only one vertex from each Gi is incident with any bridge

in BG′ , and that vertex is one with minimal accessibility index in Gi. It follows that κ(G′) ≤ κ(G). So,
we may ignore the third expression on the right side in the formula (18). Therefore, the minimization
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problem for Kemeny’s constant for all possible chains of G1, . . . , Gk with respect to T is equivalent to a
problem of minimizing the accessibility index of a vertex in each of G1, . . . , Gk.

In Question 3.16, in the case that G1, . . . , Gk are all trees, we are able to produce an answer by using
Proposition 2.7.

Proposition 3.17. Let T be a tree on k vertices, and G1, . . . , Gk be trees. Then, the minimum of κ(G)
over all chains G of G1, . . . , Gk with respect to T is attained if and only if for each bridge x ∼ y ∈ BG,

x and y are centroids of Gx and Gy, respectively, and for each i, Ṽ G
i is a singleton.

Question 3.18. Given a connected graph H , what is the minimum value of κ(G) for all chains G of k
copies of H with respect to a tree T on k vertices?

As seen when addressing Question 3.16, we may annihilate the third expression of the right side in
(18) by assuming that exactly one vertex from each Gi is incident with bridges in BG. Note that for
each x ∼ y ∈ BG, W x + W y = mG + 1. The minimum of the second expression can be obtained by
determining a vertex v whose accessibility index in H is minimum, and letting each bridge in BG join
the copies of v in each copy of H . Now we only need to consider the last summand of the right side in
(18). Considering the fact that for x ∼ y ∈ BG, W x = Wy + 1, W y = Wx + 1, and Wx +Wy = mG − 1,
minimizing Kemeny’s constant is equivalent to minimizing the following:

∑

x∼y∈BG

WxWy . (19)

We can further simplify the question. Note that Wx (resp. Wy) can be written in terms of mH and the
number of bridges in BG that belong to the component with x (resp. y) in G\x ∼ y. In the context of
minimizing (19), regarding mH as 1, Wx (resp. Wy) may be viewed as the sum of the number of vertices
and the number of edges in the subtree Tx (resp. Ty) with x (resp. y) in T \x ∼ y. Therefore, it follows
from the handshaking lemma that we only need to find the minimum of

C(T ) :=
∑

x∼y∈E(T )

|V (Tx)||V (Ty)|

over all trees T on k vertices.
We introduce further definitions and notation to address Question 3.18. For a connected graph G

with a vertex v, if G − v has r connected components H1, . . . , Hr for some r ≥ 2, then the subgraph
induced by V (Hi) for 1 ≤ i ≤ r is called a branch of G at v. Let T be a tree, and v be a vertex of T .
For w ∈ V (T )\{v}, we use cv(w) to denote the number of vertices of the subtree obtained from T by
removing the branch of T at w that contains v.

Remark 3.19. In this remark, we discuss which tree minimizes the quantity
∑

x∈V (T )\{v} cv(x), provided

v is a pendent vertex of a tree T on n vertices. Suppose that B is the branch of T at w that contains v.
Then, cv(w) = n− |V (B)|. Clearly, for w ∈ V (T )\{v}, 1 ≤ cv(w) ≤ n− 1. Since v is a pendent vertex,
cv(w) = n− 1 if and only if w is adjacent to v; so, we have exactly one vertex w with cv(w) = n− 1. If
w is a pendent vertex, then cv(w) = 1. It follows that when v is a pendent vertex,

∑
x∈V (T )\{v} cv(x) is

minimized if and only if T is a star.

In order to answer Question 3.18, we consider a property of C(T ) where T is a tree on n vertices. Let
v be a pendent vertex of T , and let T ′ = T − v. For each x ∼ y ∈ E(T ), either Tx or Ty contains v, so
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assuming that in the following, Ty does so, we obtain

C(T ) =
∑

x∼y∈E(T )

|V (Tx)||V (Ty)|

=
∑

x∼y∈E(T ′)

|V (T ′
x)|(|V (T ′

y )|+ 1) + (n− 1)

=C(T ′) +
∑

w∈V (T )\{v}

cv(w) + (n− 1). (20)

(Note that in (20), cv(w) is the number of vertices of the subtree obtained from T (not T ′) by removing
the branch of T at w that contains v.)

Lemma 3.20. Let n ≥ 4. The minimum of C(T ) for trees T on n vertices is attained if and only if T
is a star.

Proof. We shall use induction on n for this proof. It can be seen from computation that the statement
holds for n = 4. Let n ≥ 5. Suppose that T is a tree on n vertices. We choose a pendent vertex v in T .
Consider T ′ = T − v. We can see from the inductive hypothesis and (20) that it suffices to show that
the minimum of

∑
w∈V (T )\{v} cv(w) is attained if and only if T is a star with a pendent vertex v. By

Remark 3.19, the conclusion follows. �

The following states the answer to Question 3.18.

Proposition 3.21. Let H be a connected graph. Fix a vertex v ∈ V (H) such that αH(v) ≤ αH(w) for

all w ∈ V (H). Then, the minimum of κ(G) over all chains G of k copies of H with respect to any tree

T on k vertices is attained when T is a star and for each bridge x ∼ y ∈ BG, x = v and y = v.

4. Concluding remarks

While we are devoted to deriving a formula of Kemeny’s constant for a graph with bridges in terms
of several quantities inherent to the subgraphs obtained upon the deletion of the bridges, we argue that
this result may find many interesting applications in practice. Here, we give some suggestions of how our
findings could be used in practice, without fully developing the identified applications.

If one has several connected graphs G1, . . . , Gk, whose resistance matrices and degree vectors are
known, then Theorems 3.9 and 3.15 may be used to decide how we should connect them with several
edges so that the resulting graph is a chain G of G1, . . . , Gk with respect to some tree T , in order to max-
imize/minimize Kemeny’s constant for the resulting graph. In particular, as discussed in Question 3.16
and Question 3.18, when it comes to minimizing Kemeny’s constant, there are fewer constraints than the
problem of maximizing Kemeny’s constant does.

This could be useful when G1, . . . , Gk correspond to some networks (e.g., microgrids in power systems
in emerging countries, or transportation networks, such as networks of air flights), and one has to decide
which nodes of the networks should be connected in order to maximize the connectivity of the new
whole network, which corresponds to G. As Kemeny’s constant is known to provide a useful indication
on the connectivity of a transportation network (see for instance [8]), then in the second example the
objective could be to find which two airports of two different flight networks should be connected in
order to minimize the Kemeny’s constant of the overall transportation network (and thus, maximize its
connectivity).

Besides, there is some interesting application regarding maximizing Kemeny’s constant. That is,
we shall connect G1, . . . , Gk with several edges so that the resulting graph is a chain G of G1, . . . , Gk

with respect to some tree, while keeping them as least connected as possible, and thus maximizing
κ(G). Related examples have recently emerged in the pandemic scenario, when one may be interested in
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connecting social/community networks in the least connected possible way. For instance, if G1, . . . , Gk

correspond to different and non-connected departments inside companies, the corresponding heads of
departments may want to plan meetings to mitigate the risk of spreading the virus between departments
so that each head has at least one meeting and the number of events is k − 1; hence, one can arrange
schedules in such a way to maximize κ(G).

Finally, Theorem 3.9 may be used to compute Kemeny’s constant of a large graph with bridges in a
parallel fashion. We note Remark 3.12. If one understand where those bridges are in the graph, and if
the resulting graph after deleting the bridges contains connected components ‘similar’ in size, then the
theorem can be used to efficiently compute Kemeny’s constant for the large graph, by understanding the
resistance matrices and degree vectors of the connected components.
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