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Several classes of PcN power functions over

finite fields

Xiaoqiang Wang, Dabin Zheng*

Abstract

Recently, a new concept called multiplicative differential cryptanalysis and the corresponding c-

differential uniformity were introduced by Ellingsen et al. [11], and then some low differential uniformity

functions were constructed. In this paper, we further study the constructions of perfect c-nonlinear (PcN)

power functions. First, we give a necessary and sufficient condition for the Gold function to be PcN

and a conjecture on all power functions to be PcN over GF(2m). Second, several classes of PcN power

functions are obtained over finite fields of odd characteristic for c = −1 and our theorems generalize

some results in [2], [16], [23]. Finally, the c-differential spectrum of a class of almost perfect c-nonlinear

(APcN) power functions is determined.

Keywords: C-differential uniformity, perfect c-nonlinear function, almost perfect c-nonlinear function, differential

spectrum
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I. INTRODUCTION

Differential cryptanalysis proposed by Biham and Shamir in literature [5] is a powerful analysis

method to attack block cipher, which has attracted extensive attention of researchers. The basic

idea of differential cryptanalysis is to recover the key values with the greatest possibility by

analyzing the influence of a specific plaintext difference on the ciphertext difference. The security
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of cryptographic functions against differential attacks has been extensively studied in the past

30 years. In order to measure the ability of a given function to resist differential attack, Nyberg

introduced the concept of differential uniformity in [14] : Let GF(pm) denote the finite field

with q elements. A function f from GF(pm) to itself is called differentially ∆ f -uniform, where

∆ f = max
06=a∈GF(pm)

max
b∈GF(pm)

|{x ∈ GF(pm) | f (x+a)− f (x) = b}|.

The lower the quantity of ∆ f , the stronger the ability of the function f (x) to resist differential

attack. If ∆ f = 1 and ∆ f = 2, then f is called a perfect nonlinear (PN) function and an almost

perfect nonlinear (APN) function, respectively. In the past many years, a lot of progress on the

constructions of PN and APN functions have been made. The reader is referred to [6], [7], [8],

[9], [10], [21], [22] and the references therein for information.

Recently, a new type of differential was proposed in [5]. The authors extended the type of

differential cryptanalysis by using modular multiplication as a primitive operation. For a vectorial

Boolean function f , they argued that one should look at new type of differential ( f (cx), f (x)) and

not only ( f (x+a), f (x)). Based on this work, Ellingsen et al. in [11] defined a new concept called

multiplicative differential, and proposed the corresponding concept of c-differential uniformity

as follows.

Definition 1. Let GF(pm) denote the finite field with pm elements and a,c ∈ GF(pm). For a

function F(x) from GF(pm) to itself, the (multiplicative) c-derivative of F(x) with respect to a

is defined as

cDaF(x) = F(x+a)− cF(x), for all x.

For a,b ∈ GF(pm), let c∆F(a,b) = #{x ∈ GF(pm) : F(x+ a)− cF(x) = b}. We call c∆F = max

{c∆F(a,b) : a,b ∈ GF(pm), and a 6= 0 if c = 1} the c-differential uniformity of F(x).

If c∆F = δ, then we say that F is differentially (c,δ)-uniform. If δ = 1 and δ = 2, then F is

called a perfect c-nonlinear (PcN) function and an almost perfect c-nonlinear (APcN) function,

respectively. If c = 1, then the c-differential uniformity becomes the usual differential uniformity,

and PcN and APcN functions become PN and APN functions, respectively. It is known that APN

functions over finite fields of even characteristic have the lowest differential uniformity. However,

for the c-differential uniformity, there exist PcN functions.

Since the power functions with low differential uniformity are an ideal choice for S-box

design, these functions have attracted a lot of attention, especially the PcN and APcN power
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functions. The reader is referred to [2], [5], [13], [16], [18], [19], [23] and the references

therein for information. For convenience, we list the known PcN and APcN power functions in

Table 1. Among other results, the references [1], [20] also studied PcN and APcN multinomials.

Table 1 shows that there are very few results on PcN power functions. For the case over finite

fields with even characteristic, except for some very special cases, the Gold function is the only

known PcN power function. For the case over finite fields with odd characteristic, most known

PcN monomials xd are either over finite fields GF(3m),GF(5m) for any positive integer m, or

over small extensions of any odd prime field GF(p). These exponents d can be seen as special

solutions of d(pk +1)≡ 2 (mod pm −1).

In this paper, our main objective is to construct some infinite classes of PcN power functions.

First, we give a necessary and sufficient condition for the Gold function to be PcN and a

conjecture of necessity and sufficiency conditions for all power functions to be PcN over finite

fields with even characteristic. Second, several classes of PcN power functions xd over GF(pm)

with c =−1 are proposed, where p is an odd prime and d satisfies d(pk +1)≡ 2 (mod pm−1).

Some known PcN power functions in [2], [16], [23] are some special cases of our results. Finally,

the c-differential spectrum of a class of APcN power functions is given.

The rest of this paper is organized as follows. Section II documents some preliminaries.

Section III gives the necessity and sufficiency for the Gold function being PcN and a conjecture

for all power functions being PcN over finite fields with even characteristic. Section IV obtains

some PcN power functions over finite fields with odd characteristic. Moreover, the c-differential

spectrum of a class of APcN power functions is given. Section V concludes this paper.

II. NOTATION AND PRELIMINARIES

Throughout this paper, we always let m,k,d be positive integers. Let v2(·) be the 2-adic order

function and v2(0)=∞. Let GF(pm) denote the finite field with pm elements, and GF(pm)∗ the set

of non-zero elements in GF(pm). Let η be the quadratic character of GF(pm)∗, i.e., η(x) = x
pm−1

2

for x ∈ GF(pm)∗. Then η(x) = 1 if x is a square element in GF(pm)∗ and η(x) = −1 if x is a

non-square element in GF(pm)∗.

Let F(x) be a power function over GF(pm). It is easy to check that c∆F(a,b) = c∆F(1,b) for

a ∈ GF(pm)∗ and c∆F(a,b) = gcd(d, pm−1) for a = 0 and c 6= 1. Hence, the following result on

the c-differential uniformity of power functions is easily obtained, which was first given in [19].
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TABLE I

PcN and APcN Power functions F(x) = xd over GF(pm) with c 6= 1

p d condition c∆F Refs.

any 2 c 6= 1 2 [11]

any pm −2 c = 0 1 [11]

2 2m −2 c 6= 0, Trm
1 (c) = Trm

1 (c
−1) = 1 2 [11]

odd pm −2
c = 4,4−1 or

χ(c2 −4c) = χ(1−4c) =−1
2 [11]

3 3k+1
2 c =−1, n

gcd(k,m)
= 1 1 [11]

odd
p2+1

2 c =−1, m odd 1 [2]

odd p2 − p+1 c =−1, m = 3 1 [2]

odd
p4 +(p−2)p2

+(p−1)p+1
c =−1, m = 5 1 [16]

odd (p5 +1)/(p+1) c =−1, m = 5 1 [16]

odd
(p−1)p6 + p5 +(p−2)p3

+(p−1)p2 + p
c =−1, m = 7 1 [16]

odd
(p−2)p6 +(p−2)p5+

+(p−1)p4 + p3 + p2 + p
c =−1, m = 7 1 [16]

odd (p7 +1)/(p+1) c =−1, m = 7 1 [16]

3 3n+3
2 c =−1, m even 2 [13]

3 3n −3 c = 0 2 [13]

odd
pk+1

2 v2(m)≤ v2(k)+1, c =−1 1 [13]

odd pk +1 v2(m)≤ v2(k), 1 6= c ∈ Fpgcd(m,k) 2 [13]

2 2k +1 v2(m)≤ v2(k), k ≥ 2, 1 6= c ∈ F2gcd(m,k) 1 [13]

3 3k+1
2 k odd, gcd(k,m) = 1, c =−1 2 [19]

3

3k+1
2 d ≡ 3m+1

2 (mod 3m −1)

d odd

k and m are odd

such that gcd(m,k) = 1
1 [23]

5

5k+1
2 d ≡ 5m+1

2 (mod 5m −1)

d odd

k and m are positive

integer such that gcd(2m,k) = 1
1 [23]

Lemma 2. [19, Lemma 1] Let F(x) = xd be a power function over GF(pm). Then

c∆F = max{{c∆F(1,b) : b ∈ GF(pm)}∪{gcd(d, pm −1)}} .

PcN functions have the lowest c-differential uniformity and have been widely studied. The

following result on PcN power functions is well-known and has been analyzed in [13], [15],

[16], [19].

Lemma 3. [13, Theorem 6] Let p be an odd prime and m,k be integers with 1 ≤ k < m and
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m ≥ 3. Let F(x) = x
pk+1

2 ∈ GF(pm)[x]. If c =−1, then F is PcN if and only if v2(m)≤ v2(k)+1.

Otherwise, −1∆F = pgcd(k,m)+1
2

.

Following the definition in [3], the c-differential spectrum of a function is given as follows.

Definition 4. Let F(x) = xd be a function over GF(pm). Denote by ωi the number of output

differences b that occur i times, that is, ωi = #{b ∈ GF(pm) | c∆F(a,b) = i} for each 0 ≤ i ≤ c∆F .

The differential spectrum of F is defined to be the set

S= {ωi |0 ≤ i ≤ c∆F(a,b) and ωi > 0}.

The following lemma will be used to compute the c-differential spectrum of some APcN

functions.

Lemma 5. [4, Theorem 5.6] Let g(x) = xpk+1 − bx+ b with b ∈ GF(pm)∗. Then the number

of the solutions to g(x) = 0 in GF(pm) is 0, 1, 2 or pgcd(m,k)+ 1. Let Ni denote the number

of b ∈ GF(pm)∗ such that g(x) = 0 has exactly i roots in GF(pm). Let Q = pgcd(m,k) and h =

[GF(pm) : GF(pgcd(m,k))], then the following statements hold.

(1) If h is even, then

N0 =
Qh+1 −Q

2(Q+1)
, N1 = Qh−1, N2 =

(Q−2)(Qh −1)

2(Q−1)
, NQ+1 =

Qh−1 −Q

Q2 −1
.

(2) If p and h are odd, then

N0 =
Qh+1 −1

2(Q+1)
, N1 = Qh−1, N2 =

Qh+1 −2Qh −2Q+3

2(Q−1)
, NQ+1 =

Qh−1 −Q

Q2 −1
.

(3) If p is even and h is odd, then

N0 =
Qh+1 +Q

2(Q+1)
, N1 = Qh−1 −1, N2 =

(Q−2)(Qh−1)

2(Q−1)
, NQ+1 =

Qh−1 −1

Q2 −1
.

The following is a known result, which will be used throughout this paper.

Lemma 6. Let p be a prime and m,k be positive integers, then

gcd(pk +1, pm −1) =























2gcd(2k,m)−1

2gcd(k,m)−1
, if p = 2,

2, if v2(m)≤ v2(k),

pgcd(k,m)+1, if v2(m)> v2(k).

In order to discuss the existence of the solutions of a congruence equation, we need the

following known fact.
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Lemma 7. Let φ, ϕ, µ be three non-zero elements in GF(pm). Then the congruence equation

φx ≡ ϕ (mod µ) has solutions if and only if gcd(φ,µ) |ϕ.

III. PCN POWER FUNCTIONS OVER GF(2m)

In this section, we present a necessary and sufficient condition for the Gold function to be

PcN and give a conjecture of necessity and sufficiency conditions for all power functions to be

PcN. To this end, we first give a general result on PcN monomials over GF(pm), where p is a

prime.

Lemma 8. Let F(x) = xd be a PcN function over GF(pm), then F ′(x) = xd−1
is also a Pc′N

function, where c′ = cd and d−1 is the inverse of d modulo pm −1. Moreover, c = c′ if c =±1

or 0.

Proof. If c = 0, it is easy to see that the result holds. In the following, we always assume that

c 6= 0. By the definition of PcN functions, for any a,b ∈ GF(pm),

(x+a)d − cxd = b

has only one solution in GF(pm). If b = 0, then the above equation becomes (x+ a)d = cxd ,

which implies (1+a/x)d = c has only one solution for any a ∈ GF(pm). Hence, (1+a/x)d is

a permutation polynomial over GF(pm). This means that gcd(pm − 1,d) = 1. Then d has the

inverse modulo pm −1 and c = cd if c =±1. Hence,

(x+a)d − cxd = b ⇐⇒ (x+a)d = cxd +b ⇐⇒ (x+a) = (cxd +b)d−1

. (1)

Let cxd = y, then x can be expressed as x = (yc−1)d−1
and the equation in (1) becomes (y+

b)d−1
− cdyd−1

= a. Hence, xd−1
is a Pc′N function if xd is a PcN function over GF(pm), where

c′ = cd . This completes the proof.

It is known that there is no PN functions, but exist PcN functions over finite fields of even

characteristic. In [13], [15], [17], [19], the authors considered the c-differential uniformity of the

Gold function F(x)= x2k+1 over GF(2m) and showed that the Gold function has low c-differential

uniformity if c, k and m satisfy some conditions. In the following theorem, we continue to

analysis the Gold function F(x) = x2k+1 and give a necessary and sufficient condition for the

Gold function to be PcN.
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Theorem 9. Let F(x) = x2k+1 over GF(2m). Then F(x) is PcN if and only if v2(m)≤ v2(k) and

c ∈ GF(2gcd(k,m))\{1}.

Proof. It is known there does not exist PcN functions over F2m if c = 1. From Lemma 6, F(x)

is PcN if and only if v2(m)≤ v2(k) if c = 0. In the following, we always assume that c 6= 0 and

c 6= 1.

Assume that F(x) is PcN, then ∆(x) = b has only one solution for b ∈ GF(2m), where

∆(x) = (x+1)2k+1 + cx2k+1 = (c+1)x2k+1 + x2k

+ x+1.

Since gcd(2k,2m−1) = 1, there exists an element β∈GF(2m)∗ such that β2k
= 1

c+1
. Let y = x+β,

then ∆(x) = b can be rewritten as

b = (c+1)(y+β)2k+1 +(y+β)2k

+ y+β+1

= (c+1)y2k+1 +(β2k

(c+1)+1)y+(β(c+1)+1)y2k

+β2k+1 +β2k

+β+1

= (c+1)y2k+1 +(β1−2k

+1)y2k

+β2k+1 +β2k

+β+1

= ((c+1)y+β1−2k

+1)y2k

+β2k+1 +β2k

+β+1.

(2)

Let b = β2k+1 +β2k
+β+1, then Eq. (2) becomes

((c+1)y+β1−2k

+1)y2k

= 0

and this equation has only one solution y= 0 since ∆(x)= b has only one solution for b∈GF(2m).

This means that (c+1)y+β1−2k
+1 = 0 has not solutions except for y = 0. Since (c+1)y is a

permutation polynomial over GF(2m), then β1−2k
+1 = 0. Hence, Eq. (2) can be rewritten as

(c+1)y2k+1 +β2k+1 +β2k

+β+1 = b. (3)

By the definition of PcN, we can deduce gcd(2m − 1,2k + 1) = 1. From Lemma 6, we have

v2(m)≤ v2(k). From β2k
= 1

c+1
, we have β = 1

c2m−k
+1

. Then β1−2k
+1 = 0 if and only if

β

β2k
=

1

c2m−k
+1

/
1

c+1
= 1, i.e., c2m−k−1 = 1.

Since gcd(2m−k−1,2m−1) = gcd(2k −1,2m−1), we have c ∈ GF(2gcd(m,k)). Hence, we deduce

that v2(m)≤ v2(k) and c ∈ GF(2gcd(m,k))\{1} if F(x) is PcN.

Now, we assume that v2(m)≤ v2(k) and c ∈ GF(2gcd(m,k))\{1}. From Lemma 6,

(c+1)y2k+1 +β2k+1 +β2k

+β+1 (4)
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is a permutation polynomial over GF(2m), where β = 1

c2m−k
+1

. Let y = x+β. From Eq.(2) we

know that the polynomial in (4) can be rewritten as (c+1)x2k+1 + x2k
+ x+1, which is also a

permutation polynomial. This means that that F(x) is PcN.

Remark 10. In [13, Theorem 4], the authors proposed the following result: Let 2 ≤ k < m,

m ≥ 3 and F(x) = x2k+1 be the Gold function over GF(2m). Assume that m = ld, where d =

gcd(m,k) and l ≥ 3. If 1 6= c ∈ GF(2d), the c-differential uniformity of F is c∆F = 2gcd(2k,m)−1

2gcd(k,m)−1
.

If c ∈ GF(2m) \GF(2d), the c-differential uniformity of F is c∆F = 2d + 1. From this result, it

is easy to get that when 1 6= c ∈ GF(2d), F(x) = x2k+1 is PcN if 2 ≤ k < m and v2(m)≤ v2(k),

where m = ld, d = gcd(m,k) and l ≥ 3. However, it cannot get the the necessity and sufficiency

for the Gold function F(x) = x2k+1 to be PcN for any k.

Let d = 2 j for 0 ≤ j ≤ m−1 and c ∈ GF(2m)\{1}, one can easily deduce that the equation

(x+a)d + cxd = b

has only one solution in GF(2m) for any a,b ∈ GF(2m). Moreover, let c ∈ GF(2m), the c-

differential uniformity of the power functions xd and xd ph
is the same for any non-negative

integer h. Then combining Lemmas 8 and 9, we have the following result.

Corollary 11. Let F(x) = xd be a monomial over GF(2m). Then F(x) is a PcN function if one

of the following conditions hold:

(1) d = 2 j for 0 ≤ j ≤ m−1 and c ∈ GF(2m)\{1}.

(2) d belongs to
{

2 j(2k +1), j = 0,1, · · · ,m−1
}

or the set of their multiplicative inverses

modulo (2m−1) for some positive integer k with v2(m)≤ v2(k) and c ∈GF(2gcd(k,m))\{1}.

Example 12. Let m = 6 and d ∈U, where

U = {1,2,4,8,10,13,16,17,19,20,26,32,34,38,40,41,52}.

Then F(x) = xd is PcN when c satisfies the corresponding condition in Corollary 11. These

results have been verified by Magma programs.

We checked that the necessity of Corollary 11 by numerical experiment and found that the

necessity of Corollary 11 is also right for 2 ≤ m ≤ 10. However, it is not clear that whether the

necessity of Corollary 11 holds for any m. So, we give the following conjecture.
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Conjecture 13. Let F(x) = xd be a power function over GF(2m), then F(x) = xd is a PcN

function if and only if one of the following conditions holds:

(1) d = 2 j for 0 ≤ j ≤ m−1 and c ∈ GF(2m)\{1}.

(2) d belongs to
{

2 j(2k +1), j = 0,1, · · · ,m−1
}

or the set of their multiplicative inverses

modulo (2m−1) for some positive integer k with v2(m)≤ v2(k) and c ∈GF(2gcd(k,m))\{1}.

IV. PCN AND APCN POWER FUNCTIONS OVER GF(pm)

In this section, let p be an odd prime. We will study the c-differential uniformity of some

monomials and obtain some PcN power functions over GF(pm) for c =−1, and generalize some

results in [2], [16], [23]. To this end, we need to investigate the solutions of the following

equations.

(I)







x2
1 + y2

1 = 1,

x
pk+1
1 − y

pk+1
1 =−b

pk+1
2 ,

(II)







x2
2 − y2

2 = 1,

x
pk+1
2 + y

pk+1
2 =−b

pk+1
2 ,

(III)







x2
3 − y2

3 =−1,

x
pk+1
3 + y

pk+1
3 = b

pk+1
2 ,

(IV)







x2
4 + y2

4 =−1,

x
pk+1
4 − y

pk+1
4 = b

pk+1
2

.

(5)

Lemma 14. Let pk ≡ 3 (mod 4) and pm ≡ 3 (mod 4). Let i = 1,2,3,4 and Ni denote the tuples

(xi,yi) ∈ (GF(pm)∗)2 satisfying the i-th system of equations in (5), respectively. Then Ni = 4 or

0 for any b ∈ GF(pm). Moreover, Ni = 0 if b =±1.

Proof. We only show the possible values of N1 and N2. The possible values of N3 and N4 can

be computed similarly.

Firstly, we consider the system (I) and calculate the possible values of N1. There exists an

element t ∈ GF(p2m)\GF(pm) such that t2 =−1. The equation x2
1 + y2

1 = 1 can be rewritten as

x2
1 − t2y2

1 = (x1 − ty1)(x1 + ty1) = 1. (6)

Denote θ = x1 − ty1 and θ−1 = x1 + ty1 in Eq. (6). So, all solutions of Eq. (6) can be expressed

as

x1 =
θ+θ−1

2
and y1 =

t(θ−θ−1)

2
. (7)

Since x
pm

1 = x1, y
pm

1 = y1 and t pm
=−t, we have

(θ+θ−1)pm

= θ+θ−1 and (θ−θ−1)pm

=−(θ−θ−1).

DRAFT



10

These are equivalent to

(θpm+1 −1)(θpm−1 −1) = 0 and (θpm+1 −1)(θpm−1 +1) = 0.

Hence,

θpm+1 = 1. (8)

From Eq.(7) we obtain

x
pk+1
1 − y

pk+1
1 =

1

4
((θ+θ−1)pk+1 − (θ−θ−1)pk+1) =

1

2
(θpk−1 +θ1−pk

) =−b
pk+1

2 .

Let γ = θpk−1. This equation is rewritten as

γ2 +2b
pk+1

2 γ+1 = 0. (9)

Assume that b=±1. Then b
pk+1

2 = 1 and Eq.(9) has only one solution γ=−1. So, θ2(pk−1) = 1.

Since pm ≡ 3 (mod 4) and pk ≡ 3 (mod 4), we know that m and k are odd. By Lemma 6,

gcd(2(pk−1), pm+1) = 2gcd(pk−1, pm+1) = 4. From Eq.(8) we have θ4 = 1. This means that

θ2 =±1. However, θ2 = 1 is contradictory to that θpk−1 =−1. Hence, θ2 =−1, i.e., θ =−θ−1.

This is impossible since x1 6= 0. Therefore, N1 = 0 if b =±1.

Assume that b 6= ±1. From Lemma 6, it is easy to check that gcd(pm − 1, pk+1
2

) = 1 since

pm ≡ 3 (mod 4) and pk ≡ 3 (mod 4). Then one can deduce that b
pk+1

2 6=±1. So, Eq.(9) has no

or two solutions in GF(p2m). If Eq.(9) has two solutions γ1 and γ2. From Eq.(8) we have

γ1 = θpk−1, θpm+1 = 1, (10)

and

γ2 = θpk−1, θpm+1 = 1. (11)

Since γ1γ2 = 1, θ ∈ GF(p2m) satisfies Eq.(10) if and only if θ−1 satisfies Eq.(11). If θ1,θ2 ∈

GF(p2m) satisfy Eq.(10), then (θ1
θ2
)pm+1 = (θ1

θ2
)pk−1 = 1. So, (θ1

θ2
)2 = 1 since gcd(pk−1, pm+1) =

2. As a result, if there is a θ satisfying Eq.(10), then all solutions of Eq.(10) can be represented

as ±θ, and all solutions of Eq.(11) can be represented as ±θ−1. Therefore, N1 = 4 or 0 for any

b ∈ GF(pm)\{±1}.

Secondly, we study the system (II) and calculate the possible values of N2. From the first

equation of the system (II), we know

x2
2 − y2

2 = (x2 − y2)(x2 + y2) = 1.

DRAFT



11

Let δ = x2 − y2 and δ−1 = x2 + y2. Then,

x2 =
δ+δ−1

2
and y2 =

δ−δ−1

2
.

Substituting x2 and y2 into the second equation of the system (II), we have

x
pk+1
2 + y

pk+1
2 =

1

4
((δ+δ−1)pk+1 +(δ−δ−1)pk+1) =

1

2
(δpk+1 +δ−(pk+1)) =−b

pk+1
2 . (12)

Let ν = δpk+1. Eq.(12) can be rewritten as

ν2 +2b
pk+1

2 ν+1 = 0. (13)

Assume that b=±1. Analysis similar to that in above cases above implies that N2 = 0. Assume

that b 6=±1. We know that b
pk+1

2 6=±1 since gcd(pm −1, pk+1
2

) = 1. So, Eq.(13) has no or two

solutions in GF(p2m). If Eq.(13) has two solutions ν1 and ν2. Then, we have

δpm−1 = 1,ν1 = δpk+1,

and

δpm−1 = 1,ν2 = δpk+1.

By a similar analysis above, we know that N2 = 4 or 0 for any b ∈ GF(pm)\{±1}.

Lemma 15. Let pk ≡ 3 (mod 4) and pm ≡ 3 (mod 4). For b ∈ GF(pm), any two systems in (5)

cannot have solutions in (GF(pm)∗)2 simultaneously.

Proof. We only prove that the systems (I) and (II), the systems (II) and (III) cannot have

solutions simultaneously. The other cases can be similarly proved.

From Lemma 14 we know that x1 and y1 in (I) can be represented as x1 =
θ+θ−1

2
and y1 =

t(θ−θ−1)
2

, respectively, where θ ∈ GF(p2m) and θpm+1 = 1. From the second equation of (I) we

have
1

2
(θpk−1 +θ1−pk

) =−b
pk+1

2 . (14)

Similarly, x2 and y2 in (II) can be expressed as x2 =
δ+δ−1

2
and y2 =

δ−δ−1
2

2
, respectively, where

δ ∈ GF(pm). From the second equation of (II) we have

1

2
(δpk+1 +δ−(pk+1)) =−b

pk+1
2 . (15)

From Eqs.(14) and (15), we obtain

θpk−1 +θ1−pk

−δpk+1 −δ−(pk+1) = 0. (16)
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Multiplying the both sides of Eq.(16) by θpk−1δpk+1, we have

θ2(pk−1)δpk+1 +δpk+1 −θpk−1δ2(pk+1)−θpk−1 = (δpk+1 −θpk−1)(1−θpk−1δpk+1) = 0.

So, δpk+1 = θpk−1 or δpk+1 = θ−(pk−1). Hence,

δ(pk+1)(pm−1) = θ−(pk−1)(pm−1) = 1.

Since pk ≡ 3 (mod 4) and pm ≡ 3 (mod 4), one can verify that gcd((pk−1)(pm−1), pm+1) = 4

by Lemma 6. So, θ4 = 1, i.e., θ2 = 1 or θ2 =−1. If θ2 = 1 then y1 =
t(θ−θ−1)

2
= 0 and if θ2 =−1

then x1 =
θ+θ−1

2
= 0. This is contradictory to that x1,y1 ∈ GF(pm)∗. Hence, (I) and (II) cannot

have solutions (x,y) ∈ (GF(pm)∗)2 simultaneously.

Next, we show that (II) and (III) cannot have solutions (x,y) ∈ (GF(pm)∗)2 simultaneously.

From the first equation of the system (III), let γ= x3−y3 and −γ−1 = x3+y3, where γ∈GF(pm).

Then,

x3 =
γ− γ−1

2
and y3 =−

γ−1 + γ

2
.

The second equation of the system (III) can be rewritten as

1

4
((γ− γ−1)pk+1 +(γ−1 + γ)pk+1) =

1

2
(γpk+1 + γ−(pk+1)) = b

pk+1
2 . (17)

From Eqs. (15) and (17), we have

δpk+1 +δ−(pk+1)+ γpk+1 + γ−(pk+1) = 0. (18)

Multiplying the both sides of Eq.(18) by (δγ)pk+1, we have

(δ2γ)pk+1 +δpk+1 +δpk+1γ2(pk+1)+ γpk+1 = (δpk+1 + γpk+1)((δγ)pk+1 +1) = 0.

So, δpk+1 =−γpk+1 or δpk+1 =−γ−(pk+1). This is a contradiction since δ, γ ∈ GF(pm) and −1

is a non-square element in GF(pm). Hence, the systems (II) and (III) cannot have solutions

simultaneously.

With the above preparations, we now prove the following main result.

Theorem 16. Let pm ≡ 3 (mod 4). Let k and d be positive integers such that d(pk +1) ≡ 2

(mod pm −1). If c =−1, then F(x) = xd is PcN over GF(pm) if and only if d is odd.

Proof. In order to prove this theorem, we need to show the equation

xd +(x+1)d = b (19)
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has at most one solution in GF(pm) for any b ∈ GF(pm). If d is even, then x = 0 and x = −1

are solutions of Eq.(19) for b = 1. So, d is odd if F(x) = xd is a PcN function.

In the following we will prove the sufficiency. Since d(pk +1)≡ 2 (mod pm−1), there exists

an integer ℓ such that

d(pk +1) = 2+ ℓ(pm−1). (20)

If pk ≡ 1 (mod 4), then one can deduce that ℓ is even from Eq.(20). So,

d(
pk +1

2
)≡ 1 (mod pm −1). (21)

If there exists an element d ∈ GF(pm) such that (21) holds, from Lemma 7 we know that

gcd( pk+1
2

, pm−1) = 1, i.e., gcd(pk+1, pm−1) = 2. This implies that v2(m)≤ v2(k) by Lemma 6.

From Lemmas 3 and 8, we know that F(x) = xd is PcN.

Now, we show the result for the case pk ≡ 3 (mod 4). It is clear that x = 0 and x = −1

are solutions of Eq.(19) for b = 1 and b = −1, respectively, since d is odd. Next, we always

assume that x and x+1 are non-zero. Let SQ and NSQ be the sets of the square and non-square

elements in GF(pm), respectively. From Lemma 7, it is clear that gcd(pk +1, pm −1) = 2 and

gcd(d, pm −1) = 1 since d(pk +1) ≡ 2 (mod pm −1) and d is odd. The proof can be done in

the following four cases.

Case 1: x,x+1 ∈ SQ. We use α
pk+1
0 and β

pk+1
0 to represent x and x+1, respectively, where α0,

β0 ∈ GF(pm)∗. So, xd = (α
pk+1
0 )d = α2

0 and (x+1)d = (β
pk+1
0 )d = β2

0. From Eq.(19) we have the

following system of equations,






α2
0 +β2

0 = b,

α
pk+1
0 −β

pk+1
0 =−1.

Set α0 = b
1
2 α1 and β0 = b

1
2 β1, then







α2
1 +β2

1 = 1,

α
pk+1
1 −β

pk+1
1 =−b

pk+1
2 .

(22)

It is clear that all pairs (±α1,±β1) satisfying Eq. (22) give the same pair (x,x+ 1), i.e., the

number of pairs (α1,β1) satisfying Eq.(22) is four times of the number of x ∈GF(pm)∗ satisfying

Eq.(19).

Case 2: x∈ SQ and x+1∈ NSQ. Since pm ≡ 3 (mod 4), −1 is a non-square element in GF(pm).

We use α
pk+1
2 and −β

pk+1
2 to represent x and x+1, respectively, where α2, β2 ∈ GF(pm). So,
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xd = (α
pk+1
2 )d =α2

2 and (x+1)d = (−β
pk+1
2 )d =−β2

2. From Eq. (19) we get the following system

of equations,






α2
2 −β2

2 = b,

α
pk+1
2 +β

pk+1
2 =−1.

Let α2 = b
1
2 α3 and β2 = b

1
2 β3, then







α2
3 −β2

3 = 1,

α
pk+1
3 +β

pk+1
3 =−b

pk+1
2 .

(23)

It is easy to see that all pairs (±α3,±β3) satisfying Eq.(23) give the same pair (x,x+1), i.e.,

the number of pairs (α3,β3) satisfying Eq.(23) is four times of the number of x ∈ GF(pm)∗

satisfying Eq.(19).

Case 3: x ∈ NSQ and x+1 ∈ SQ. In order to determine the number of the solutions of Eq.(19)

for any b ∈ GF(pm), by a similar analysis to those in Case 1 and Case 2, we need to consider

the number of the solutions of the following equations,






α2
4 −β2

4 =−1,

α
pk+1
4 +β

pk+1
4 = b

pk+1
2 .

(24)

Moreover, the number of pairs (α4,β4) satisfying Eq.(24) is four times of the number of x ∈

GF(pm)∗ satisfying Eq.(19).

Case 4: x,x+1 ∈ NSQ. In order to determine the number of the solutions of Eq.(19) for any

b ∈GF(pm), by a similar analysis to those in Case 1 and Case 2, we need to consider the number

of the solutions of the following equations,






α2
5 +β2

5 =−1,

α
pk+1
5 −β

pk+1
5 = b

pk+1
2

(25)

Moreover, the number of pairs (α5,β5) satisfying Eq.(25) is four times of the number of x ∈

GF(pm)∗ satisfying Eq.(19). Then the desired conclusion then follows from Lemmas 14 and 15.

Example 17. Let c = −1 and k = 1. If p = 3,m = 5,d = 61, or p = 7,m = 3,d = 43, or p =

11,m= 3,d = 111, then F(x) = xd is PcN. These results have been verified by Magma programs.

In the following, we discuss the (−1)-differential uniformity of the monomial xd over GF(pm)

for the case pm ≡ 1 (mod 4), where

d(pk +1)≡ 2 (mod pm −1). (26)
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From Lemmas 6 and 7, there are some d such (26) holds if and only if v2(m)≤ v2(k). Obviously,

the congruence (26) is equivalent to d(pk +1) = 2+ ℓ(pm −1) for some integer ℓ. If ℓ is even,

then d · pk+1
2

≡ 1 (mod pm − 1). In this case, by Lemmas 3 and 8 we know that xd is a PcN

function since v2(m) ≤ v2(k). If ℓ is odd then d satisfies that d · pk+1
2

≡ pm+1
2

(mod pm − 1).

For d in this case, (−1)-differential uniformity of the monomial xd is given in the following

theorem.

Theorem 18. Let m and k be positive integers with v2(k) = v2(m). Let pm ≡ 1 (mod 4) and

d · pk+1
2

≡ pm+1
2

(mod pm−1). Then the monomial F(x)= xd is PcN over GF(pm), where c=−1.

Proof. For any b ∈ GF(pm), we need to show

(x+1)d + xd = b (27)

has at most one solution in GF(pm). Since d · pk+1
2

≡ pm+1
2

(mod pm − 1), we have gcd(pm −

1,d) | pm+1
2

by Lemma 7. It is clear that gcd(pm − 1, pm+1
2

) = 1 since pm ≡ 1 (mod 4) and

gcd(pm −1, pm +1) = 2. So, gcd(pm−1,d) = 1.

We first assume that x 6= 0 and x 6= 1. If b = 0, then Eq.(27) becomes (1+1/x)d =−1 and it

has a unique solution since gcd(pm −1,d) = 1. If b 6= 0, then Eq.(27) can be rewritten as

(x+1)d

b
+

xd

b
= 1. (28)

Let h = (p−1)/4 if p ≡ 1 (mod 4) and h = (3p−1)/4 if p ≡ 3 (mod 4). Let γ ∈GF(p2m)∗ be a

solution of x2+µx+h2 = 0, where µ∈GF(pm). It is easy to check that h2γ−1 is also a solution of

x2 +µx+h2 = 0. Then µ = γ+h2γ−1. This means that any element in GF(pm) can be expressed

by −(γ+h2γ−1) for some γ ∈ GF(p2m). Let −xd/b denote by γ+h2γ−1 +2h = (γ+h)2/γ and

1− xd/b denote by γ+h2γ−1 +2h+1 = (γ−h)2/γ, i.e.,

xd =−b ·
(γ+h)2

γ
and (x+1)d = b ·

(γ−h)2

γ
. (29)

Let η denote the quadratic characteristic of GF(pm)∗. Raising the both sides of Eqs.(29) to

pk+1
2

th power, we have

xη(x) = x
pm+1

2 = xd
pk+1

2 =−

(

b

γ

)

pk+1
2

(γ+h)pk+1 (30)

since
pk+1

2
is odd, and

(x+1)η(x+1) = (x+1)
pm+1

2 = (x+1)d
pk+1

2 =

(

b

γ

)

pk+1
2

(γ−h)pk+1. (31)
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Since d · pk+1
2

≡ pm+1
2

(mod pm −1) and pm ≡ 1 (mod 4), we know that d is odd. Raising the

both sides of Eqs.(30) and (31) to dth power, respectively and combining Eqs.(29), we get

η(x) =

(

b

γ

)

pm−1
2

(γ+h)pm−1 and η(x+1) =

(

b

γ

)

pm−1
2

(γ−h)pm−1. (32)

Case I: η(x+1) = η(x). From Eqs.(32) we get

1 =
η(x+1)

η(x)
=

(

γ−h

γ+h

)pm−1

.

This implies that γpm−1 = 1, i.e., γ ∈ GF(pm). Eq.(31) subtracting Eq.(30) implies that

γpk+1 −
1

2
b−

pk+1
2 η(x)γ

pk+1
2 +h2 = 0. (33)

Set θ = γ
pk+1

2 . Since γ ∈ GF(pm)∗ and gcd( pk+1
2

, pm−1) = 1, we know that γ corresponds θ one

by one. Then Eq.(33) can be rewritten as

θ2 −
1

2
b−

pk+1
2 η(x)θ+h2 = 0. (34)

It is known that Eq.(34) has most two solutions θ1 and θ2 in GF(pm), and they satisfy θ2 = h2θ−1
1 .

Since γ and θ are one one corresponding, we know that Eq.(33) has at most two solutions γ1 and

γ2, and they satisfy γ
pk+1

2

2 = h2γ
− pk+1

2

1 . This implies that γ2 = h2γ−1
1 since gcd( pk+1

2
, pm −1) = 1

and h ∈ Fp. Then γ1 +h2γ−1
1 +2h = γ2 +h2γ−1

2 +2h. This means that γ1 and γ2 gives the same

value of x since −xd/b is denoted by γi+h2γ−1
i +2h for i = 1,2 and gcd(pm−1,d) = 1. Hence,

Eq. (27) has at most one solution in this case.

Case II: η(x+1) =−η(x). From (32) we get

−1 =
η(x+1)

η(x)
=

(

γ−h

γ+h

)pm−1

. (35)

This equation implies that
( γ

h

)pm+1
= 1, i.e.,

γ
h

is in the subgroup of (pm +1)-st roots of unity

in GF(p2m)∗, denote it by U. Eq. (31) plus Eq.(30) implies that

γpk−1 −
1

2
b−

pk+1
2 h−1η(x)γ

pk−1
2 +1 = 0. (36)

Set δ =
( γ

h

)

pk−1
2 . Since h ∈ F

∗
p, the above equation is equivalent to

δ2 −
1

2
b−

pk+1
2 h

pk−3
2 η(x)δ+1 = 0. (37)

Eq.(37) has at most two solutions δ3 and δ4 in U. Since v2(k) = v2(m), one can verify that

gcd( pk−1
2

, pm+1) = 2. So, for each solution δi(i = 3,4) of Eq.(37), there are two corresponding
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solutions ± γi

h
of Eq.(36) such that δi =

(

± γi

h

)(pk−1)/2
, i = 3,4. So, all possible solutions of

Eq.(36) in U are ± γ3

h
and ± γ4

h
.

From Eq. (36), we have η(x) =−2(γpk
h+γh)(b

γ )
pk+1

2 . If
γi

h
for i= 3,4, is a solution of Eq.(36),

substituting the values of η(x) and η(x) = −η(x+ 1) into Eqs.(30) and (31), respectively, we

get

x =−
(γi/h+h)pk+1

2
[

(γi/h)pk
h+ γi

] and x+1 =−
(γi/h−h)pk+1

2
[

(γi/h)pk
h+ γi

] . (38)

Moreover, if − γi

h
for i = 3,4, is also a solution of Eq.(36), substituting the values of η(x) and

η(x) =−η(x+1) into Eqs.(30) and (31), respectively, we get

x =
(γi/h−h)pk+1

2
[

(γi/h)pk
h+ γi

] and x+1 =
(γi/h+h)pk+1

2
[

(γi/h)pk
h+ γi

] . (39)

The pairs (x,x+1) in Eqs.(38) and (39) satisfying Eq.(28) simultaneously imply that b = 0. This

is a contradiction. So, we can assume that all possible solutions of Eq.(36) in U are
γ3

h
and

γ4

h
. Moreover,

(

γ3γ4/h2
)

pk−1
2 = 1. This implies that

(

γ3γ4/h2
)2

= 1 since gcd( pk−1
2

, pm −1) = 2.

So, γ4 = ±h2γ−1
3 . A similar analysis as above implies that γ4 = h2γ−1

3 . Then γ3 +h2γ−1
3 +2h =

γ4+h2γ−1
4 +2h. This means that γ3 and γ4 gives the same value of x since −xd/b is denoted by

γi +h2γ−1
i +2h for i = 3,4 and gcd(pm −1,d) = 1. Hence, Eq. (27) has at most one solution in

this case since gcd(pm−1, pk+1
2

) = 1.

Combining the above two cases, we know that for any b ∈ GF(pm), Eq.(27) has at most one

solution in GF(pm) if x 6= 0 and x 6=−1. Obviously, x = 0 and x =−1 are solutions of Eq.(27)

for b = 1 and b =−1, respectively, since d is odd. In the following, we only show that there is

no other solution to Eq.(27) than x = 0 for the case b = 1. The case of b =−1 can be similarly

proved and the details are omitted here.

Assume that x0 is a solution of (x+ 1)d + xd = 1, where x0 6= 0 and x0 6= −1. If η(x0) =

η(x0 +1), Eq.(34) becomes

θ2 −
1

2
η(x0)θ+h2 = 0. (40)

It is easy to see that Eq.(40) has only one solution θ = h or θ = −h. By the definition of θ,

we have γ
pk+1

2 = h or γ
pk+1

2 = −h. Since h ∈ GF(p), then (γ
pk+1

2 )p−1 = 1. Hence, γ ∈ GF(p)

since γpm−1 = 1 and gcd(pm −1, (pk+1)(p−1)
2

) = p−1. This means that γ = h or γ =−h. This is

contradictory to the equations in (29) since x0 6= 0 and x0 6=−1.

If η(x0) =−η(x0 +1), then Eq.(37) becomes

δ2 −
1

2
h

pk−3
2 η(x)δ+1 = 0. (41)
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It is easy to see that h
pk−3

2 = ±h−1 since h ∈ GF(p). Then we have that Eq.(41) has only one

solution δ = 1 or δ =−1. By the definition of δ, we have
( γ

h

)pk−1
= 1. Since

( γ
h

)pm+1
= 1 and

gcd(pm + 1, pk − 1) = 2, then γ = h or γ = −h. This is contradictory to the equations in (29)

since x0 6= 0 and x0 6=−1. The desired conclusion then follows.

Example 19. Let c = −1 and k = 1. If p = 5,m = 5,d = 3645, or p = 13,m = 3,d = 157, or

p = 17,m = 3,d = 111, then F(x) = xd is PcN. These results have been verified by Magma

programs.

Remark 20. It is clear that [23, Theorem 2] and [23, Theorem 4] can be seen as two special

cases of Theorem 16 and Theorem 18 for p = 3 and p = 5, respectively.

Remark 21. In references [2], [16], authors have showed that the monomials xd are PcN for

the following exponents: d = p2− p+1, d = p4+(p−2)p2+(p−1)p+1, d = (p5+1)/(p+1),

d =(p−1)p6+p5+(p−2)p3+(p−1)p2+p, d =(p−2)p6+(p−2)p5+(p−1)p4+p3+p2+p

and d = (p7 + 1)/(p+ 1). It is easy to show that all d listed above are special solutions of

d(pk +1)≡ 2 (mod pm−1) for some special k and m. Hence, our results generalizes the results

about PcN monomials in [2], [16].

At last, we determine the c-differential spectrum of a class of APcN power functions.

Theorem 22. Let F(x) = xd be a power function over GF(pm), where d = pk +1, k is a positive

integer and p is an odd prime. If c ∈ GF(pgcd(m,k))\{1}, then F(x) is APcN with c-differential

spectrum

S=

{

ω0 =
pm −1

2
, ω1 = 1, ω2 =

pm −1

2

}

(42)

if and only if v2(m)≤ v2(k). If c /∈ GF(pgcd(m,k)), then F(x) is APcN with c-differential spectrum

S=

{

ω0 =
pm − p

m
2

2
, ω1 = p

m
2 , ω2 =

pm − p
m
2

2

}

(43)

if and only if m is even and k = m
2

.

Proof. If c = 1, the c-differential uniformity of F(x) = xpk+1 was thoroughly analyzed in [7],

[12]. In the following, we always assume that c 6= 1, and investigate solutions of ∆(x) = b for

b ∈ GF(pm), where

∆(x) = (x+1)pk+1 − cxpk+1 = (1− c)xpk+1 + xpk

+ x+1.
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Let a = 1
1−c

. The equation ∆(x) = b is equivalent to

xpk+1 +axpk

+ax+a(1−b) = 0. (44)

Let x = y−a, then Eq.(44) becomes

(x−a)pk+1 +a(x−a)pk

+a(x−a)+a(1−b) = xpk+1 +(a−apk

)x−a2 +a−ab = 0. (45)

It is clear that

a = apk

⇐⇒
1

1− c
=

(

1

1− c

)pk

⇐⇒ c = cpk

⇐⇒ cpk−1 = 1 (46)

for any c 6= 1. Then a−apk
= 0 if and only if c ∈ GF(pgcd(m,k))\{1}. The proof can be done in

the following two cases.

Case 1: c ∈ GF(pgcd(m,k)) \ {1}. In this case, a−apk
= 0. Since [13, Theorem 3] have proved

that F(x) is APcN if v2(m)≤ v2(k), we here only prove the c-differential spectrum of F(x).

Since a−apk
= 0, Eq.(45) becomes

xpk+1 = a2 −a+ab. (47)

From Lemma 6, we have gcd(pm − 1, pk + 1) = 2 since v2(m) ≤ v2(k). Then Eq.(47) has no

solution, or one solution, or two solutions if a2 − a+ ab is a non-square element, or zero, or

a square element in GF(pm), respectively. Hence, we can obtain the c-differential spectrum of

F(x), which is given in (42).

If F(x) is APcN, then Eq. (47) has at most two solutions. From Lemma 6, we have v2(m)≤

v2(k). Hence, then F(x) is APcN if and only if v2(m)≤ v2(k).

Case 2: c /∈ GF(pgcd(m,k)). In this case, we have a−apk
6= 0 from (46). If a2 −a+ab = 0, then

Eq.(45) can be rewritten as

(xpk

+(a−apk

))x = 0.

It is clear that x1 = 0 and x2 = a−apm−k
are the solutions of the above equation. If a2−a+ab 6= 0,

by a simple substitution of variable x with a2+a−ab
a−ak x and dividing (a2−a+ab

a−ak )pk+1, then Eq. (45)

becomes

xpk+1 +Bx−B = 0,

where B =
(a−apk

)pk+1

(a2−a+ab)pk . Obviously, B runs over GF(pm)∗ if b runs over GF(pm)\ (1−a). From

Lemma 5, we know that F(x) is APcN if and only if m is even and k = m
2

. And F(x) has the

c-differential spectrum given in (43). The desired conclusion then follows.
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Remark 23. When k = 0, then xpk+1 becomes x2. Ellingsen et al. in [11] proved that this function

is APcN over GF(pm) for any c 6= 1. It is very easy to see that the c-differential spectrum of x2

is the given in (42).

V. CONCLUSIONS

Recently, Ellingsen et al. in [11] proposed a new concept called multiplicative differential,

and the corresponding c-differential uniformity. Then some functions with low c-differential

uniformity have been constructed. This paper continued the research in [2], [13], [16], [19],

[23], and mainly focused on the constructions of PcN power functions. Briefly, a necessary

and sufficient condition for the Gold function being PcN was given. According to numerical

experiment, we proposed a conjecture about the possible values of d for xd to be PcN over

GF(2m), where c ∈ GF(2m). Second, we proved that the monomial xd over GF(pm) was PcN,

where c=−1 and d satisfies d(pk +1)≡ 2 (mod pm−1). Our theorems generalized some results

on PcN power functions in [2], [16], [23]. At last, the c-differential spectrum of a class of APcN

power functions was obtained.
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